zenvision.h -> zenvision30gb.h
[kugel-rb.git] / apps / buffering.c
blob9deced433f5208ab26edf0cef85b5e613b39fb5a
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2007 Nicolas Pennequin
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
22 #include "config.h"
23 #include <stdio.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include "buffering.h"
29 #include "storage.h"
30 #include "system.h"
31 #include "thread.h"
32 #include "file.h"
33 #include "panic.h"
34 #include "memory.h"
35 #include "lcd.h"
36 #include "font.h"
37 #include "button.h"
38 #include "kernel.h"
39 #include "tree.h"
40 #include "debug.h"
41 #include "sprintf.h"
42 #include "settings.h"
43 #include "codecs.h"
44 #include "audio.h"
45 #include "mp3_playback.h"
46 #include "usb.h"
47 #include "screens.h"
48 #include "playlist.h"
49 #include "pcmbuf.h"
50 #include "bmp.h"
51 #include "appevents.h"
52 #include "metadata.h"
53 #ifdef HAVE_ALBUMART
54 #include "albumart.h"
55 #include "jpeg_load.h"
56 #include "bmp.h"
57 #endif
59 #define GUARD_BUFSIZE (32*1024)
61 /* Define LOGF_ENABLE to enable logf output in this file */
62 /*#define LOGF_ENABLE*/
63 #include "logf.h"
65 /* macros to enable logf for queues
66 logging on SYS_TIMEOUT can be disabled */
67 #ifdef SIMULATOR
68 /* Define this for logf output of all queuing except SYS_TIMEOUT */
69 #define BUFFERING_LOGQUEUES
70 /* Define this to logf SYS_TIMEOUT messages */
71 /* #define BUFFERING_LOGQUEUES_SYS_TIMEOUT */
72 #endif
74 #ifdef BUFFERING_LOGQUEUES
75 #define LOGFQUEUE logf
76 #else
77 #define LOGFQUEUE(...)
78 #endif
80 #ifdef BUFFERING_LOGQUEUES_SYS_TIMEOUT
81 #define LOGFQUEUE_SYS_TIMEOUT logf
82 #else
83 #define LOGFQUEUE_SYS_TIMEOUT(...)
84 #endif
86 /* default point to start buffer refill */
87 #define BUFFERING_DEFAULT_WATERMARK (1024*128)
88 /* amount of data to read in one read() call */
89 #define BUFFERING_DEFAULT_FILECHUNK (1024*32)
91 #define BUF_HANDLE_MASK 0x7FFFFFFF
94 /* Ring buffer helper macros */
95 /* Buffer pointer (p) plus value (v), wrapped if necessary */
96 #define RINGBUF_ADD(p,v) (((p)+(v))<buffer_len ? (p)+(v) : (p)+(v)-buffer_len)
97 /* Buffer pointer (p) minus value (v), wrapped if necessary */
98 #define RINGBUF_SUB(p,v) ((p>=v) ? (p)-(v) : (p)+buffer_len-(v))
99 /* How far value (v) plus buffer pointer (p1) will cross buffer pointer (p2) */
100 #define RINGBUF_ADD_CROSS(p1,v,p2) \
101 ((p1<p2) ? (int)((p1)+(v))-(int)(p2) : (int)((p1)+(v)-(p2))-(int)buffer_len)
102 /* Bytes available in the buffer */
103 #define BUF_USED RINGBUF_SUB(buf_widx, buf_ridx)
105 /* assert(sizeof(struct memory_handle)%4==0) */
106 struct memory_handle {
107 int id; /* A unique ID for the handle */
108 enum data_type type; /* Type of data buffered with this handle */
109 char path[MAX_PATH]; /* Path if data originated in a file */
110 int fd; /* File descriptor to path (-1 if closed) */
111 size_t data; /* Start index of the handle's data buffer */
112 volatile size_t ridx; /* Read pointer, relative to the main buffer */
113 size_t widx; /* Write pointer */
114 size_t filesize; /* File total length */
115 size_t filerem; /* Remaining bytes of file NOT in buffer */
116 volatile size_t available; /* Available bytes to read from buffer */
117 size_t offset; /* Offset at which we started reading the file */
118 struct memory_handle *next;
120 /* invariant: filesize == offset + available + filerem */
122 static char *buffer;
123 static char *guard_buffer;
125 static size_t buffer_len;
127 static volatile size_t buf_widx; /* current writing position */
128 static volatile size_t buf_ridx; /* current reading position */
129 /* buf_*idx are values relative to the buffer, not real pointers. */
131 /* Configuration */
132 static size_t conf_watermark = 0; /* Level to trigger filebuf fill */
133 #if MEM > 8
134 static size_t high_watermark = 0; /* High watermark for rebuffer */
135 #endif
137 /* current memory handle in the linked list. NULL when the list is empty. */
138 static struct memory_handle *cur_handle;
139 /* first memory handle in the linked list. NULL when the list is empty. */
140 static struct memory_handle *first_handle;
142 static int num_handles; /* number of handles in the list */
144 static int base_handle_id;
146 static struct mutex llist_mutex;
147 static struct mutex llist_mod_mutex;
149 /* Handle cache (makes find_handle faster).
150 This is global so that move_handle and rm_handle can invalidate it. */
151 static struct memory_handle *cached_handle = NULL;
153 static struct {
154 size_t remaining; /* Amount of data needing to be buffered */
155 size_t wasted; /* Amount of space available for freeing */
156 size_t buffered; /* Amount of data currently in the buffer */
157 size_t useful; /* Amount of data still useful to the user */
158 } data_counters;
161 /* Messages available to communicate with the buffering thread */
162 enum {
163 Q_BUFFER_HANDLE = 1, /* Request buffering of a handle, this should not be
164 used in a low buffer situation. */
165 Q_RESET_HANDLE, /* (internal) Request resetting of a handle to its
166 offset (the offset has to be set beforehand) */
167 Q_CLOSE_HANDLE, /* Request closing a handle */
168 Q_BASE_HANDLE, /* Set the reference handle for buf_useful_data */
170 /* Configuration: */
171 Q_START_FILL, /* Request that the buffering thread initiate a buffer
172 fill at its earliest convenience */
173 Q_HANDLE_ADDED, /* Inform the buffering thread that a handle was added,
174 (which means the disk is spinning) */
177 /* Buffering thread */
178 static void buffering_thread(void);
179 static long buffering_stack[(DEFAULT_STACK_SIZE + 0x2000)/sizeof(long)];
180 static const char buffering_thread_name[] = "buffering";
181 static unsigned int buffering_thread_id = 0;
182 static struct event_queue buffering_queue;
183 static struct queue_sender_list buffering_queue_sender_list;
188 LINKED LIST MANAGEMENT
189 ======================
191 add_handle : Add a handle to the list
192 rm_handle : Remove a handle from the list
193 find_handle : Get a handle pointer from an ID
194 move_handle : Move a handle in the buffer (with or without its data)
196 These functions only handle the linked list structure. They don't touch the
197 contents of the struct memory_handle headers. They also change the buf_*idx
198 pointers when necessary and manage the handle IDs.
200 The first and current (== last) handle are kept track of.
201 A new handle is added at buf_widx and becomes the current one.
202 buf_widx always points to the current writing position for the current handle
203 buf_ridx always points to the location of the first handle.
204 buf_ridx == buf_widx means the buffer is empty.
208 /* Add a new handle to the linked list and return it. It will have become the
209 new current handle.
210 data_size must contain the size of what will be in the handle.
211 can_wrap tells us whether this type of data may wrap on buffer
212 alloc_all tells us if we must immediately be able to allocate data_size
213 returns a valid memory handle if all conditions for allocation are met.
214 NULL if there memory_handle itself cannot be allocated or if the
215 data_size cannot be allocated and alloc_all is set. This function's
216 only potential side effect is to allocate space for the cur_handle
217 if it returns NULL.
219 static struct memory_handle *add_handle(size_t data_size, bool can_wrap,
220 bool alloc_all)
222 /* gives each handle a unique id */
223 static int cur_handle_id = 0;
224 size_t shift;
225 size_t new_widx;
226 size_t len;
227 int overlap;
229 if (num_handles >= BUF_MAX_HANDLES)
230 return NULL;
232 mutex_lock(&llist_mutex);
233 mutex_lock(&llist_mod_mutex);
235 if (cur_handle && cur_handle->filerem > 0) {
236 /* the current handle hasn't finished buffering. We can only add
237 a new one if there is already enough free space to finish
238 the buffering. */
239 size_t req = cur_handle->filerem + sizeof(struct memory_handle);
240 if (RINGBUF_ADD_CROSS(cur_handle->widx, req, buf_ridx) >= 0) {
241 /* Not enough space */
242 mutex_unlock(&llist_mod_mutex);
243 mutex_unlock(&llist_mutex);
244 return NULL;
245 } else {
246 /* Allocate the remainder of the space for the current handle */
247 buf_widx = RINGBUF_ADD(cur_handle->widx, cur_handle->filerem);
251 /* align to 4 bytes up */
252 new_widx = RINGBUF_ADD(buf_widx, 3) & ~3;
254 len = data_size + sizeof(struct memory_handle);
256 /* First, will the handle wrap? */
257 /* If the handle would wrap, move to the beginning of the buffer,
258 * or if the data must not but would wrap, move it to the beginning */
259 if( (new_widx + sizeof(struct memory_handle) > buffer_len) ||
260 (!can_wrap && (new_widx + len > buffer_len)) ) {
261 new_widx = 0;
264 /* How far we shifted buf_widx to align things, must be < buffer_len */
265 shift = RINGBUF_SUB(new_widx, buf_widx);
267 /* How much space are we short in the actual ring buffer? */
268 overlap = RINGBUF_ADD_CROSS(buf_widx, shift + len, buf_ridx);
269 if (overlap >= 0 && (alloc_all || (unsigned)overlap > data_size)) {
270 /* Not enough space for required allocations */
271 mutex_unlock(&llist_mod_mutex);
272 mutex_unlock(&llist_mutex);
273 return NULL;
276 /* There is enough space for the required data, advance the buf_widx and
277 * initialize the struct */
278 buf_widx = new_widx;
280 struct memory_handle *new_handle =
281 (struct memory_handle *)(&buffer[buf_widx]);
283 /* only advance the buffer write index of the size of the struct */
284 buf_widx = RINGBUF_ADD(buf_widx, sizeof(struct memory_handle));
286 new_handle->id = cur_handle_id;
287 /* Wrap signed int is safe and 0 doesn't happen */
288 cur_handle_id = (cur_handle_id + 1) & BUF_HANDLE_MASK;
289 new_handle->next = NULL;
290 num_handles++;
292 if (!first_handle)
293 /* the new handle is the first one */
294 first_handle = new_handle;
296 if (cur_handle)
297 cur_handle->next = new_handle;
299 cur_handle = new_handle;
301 mutex_unlock(&llist_mod_mutex);
302 mutex_unlock(&llist_mutex);
303 return new_handle;
306 /* Delete a given memory handle from the linked list
307 and return true for success. Nothing is actually erased from memory. */
308 static bool rm_handle(const struct memory_handle *h)
310 if (h == NULL)
311 return true;
313 mutex_lock(&llist_mutex);
314 mutex_lock(&llist_mod_mutex);
316 if (h == first_handle) {
317 first_handle = h->next;
318 if (h == cur_handle) {
319 /* h was the first and last handle: the buffer is now empty */
320 cur_handle = NULL;
321 buf_ridx = buf_widx = 0;
322 } else {
323 /* update buf_ridx to point to the new first handle */
324 buf_ridx = (void *)first_handle - (void *)buffer;
326 } else {
327 struct memory_handle *m = first_handle;
328 /* Find the previous handle */
329 while (m && m->next != h) {
330 m = m->next;
332 if (m && m->next == h) {
333 m->next = h->next;
334 if (h == cur_handle) {
335 cur_handle = m;
336 buf_widx = cur_handle->widx;
338 } else {
339 mutex_unlock(&llist_mod_mutex);
340 mutex_unlock(&llist_mutex);
341 return false;
345 /* Invalidate the cache to prevent it from keeping the old location of h */
346 if (h == cached_handle)
347 cached_handle = NULL;
349 num_handles--;
351 mutex_unlock(&llist_mod_mutex);
352 mutex_unlock(&llist_mutex);
353 return true;
356 /* Return a pointer to the memory handle of given ID.
357 NULL if the handle wasn't found */
358 static struct memory_handle *find_handle(int handle_id)
360 if (handle_id < 0)
361 return NULL;
363 mutex_lock(&llist_mutex);
365 /* simple caching because most of the time the requested handle
366 will either be the same as the last, or the one after the last */
367 if (cached_handle)
369 if (cached_handle->id == handle_id) {
370 mutex_unlock(&llist_mutex);
371 return cached_handle;
372 } else if (cached_handle->next &&
373 (cached_handle->next->id == handle_id)) {
374 cached_handle = cached_handle->next;
375 mutex_unlock(&llist_mutex);
376 return cached_handle;
380 struct memory_handle *m = first_handle;
381 while (m && m->id != handle_id) {
382 m = m->next;
384 /* This condition can only be reached with !m or m->id == handle_id */
385 if (m)
386 cached_handle = m;
388 mutex_unlock(&llist_mutex);
389 return m;
392 /* Move a memory handle and data_size of its data delta bytes along the buffer.
393 delta maximum bytes available to move the handle. If the move is performed
394 it is set to the actual distance moved.
395 data_size is the amount of data to move along with the struct.
396 returns a valid memory_handle if the move is successful
397 NULL if the handle is NULL, the move would be less than the size of
398 a memory_handle after correcting for wraps or if the handle is not
399 found in the linked list for adjustment. This function has no side
400 effects if NULL is returned. */
401 static bool move_handle(struct memory_handle **h, size_t *delta,
402 size_t data_size, bool can_wrap)
404 struct memory_handle *dest;
405 const struct memory_handle *src;
406 int32_t *here;
407 int32_t *there;
408 int32_t *end;
409 int32_t *begin;
410 size_t oldpos;
411 size_t newpos;
412 size_t size_to_move;
413 size_t final_delta = *delta;
414 size_t n;
415 int overlap;
416 int overlap_old;
418 if (h == NULL || (src = *h) == NULL)
419 return false;
421 size_to_move = sizeof(struct memory_handle) + data_size;
423 /* Align to four bytes, down */
424 final_delta &= ~3;
425 if (final_delta < sizeof(struct memory_handle)) {
426 /* It's not legal to move less than the size of the struct */
427 return false;
430 mutex_lock(&llist_mutex);
431 mutex_lock(&llist_mod_mutex);
433 oldpos = (void *)src - (void *)buffer;
434 newpos = RINGBUF_ADD(oldpos, final_delta);
435 overlap = RINGBUF_ADD_CROSS(newpos, size_to_move, buffer_len - 1);
436 overlap_old = RINGBUF_ADD_CROSS(oldpos, size_to_move, buffer_len -1);
438 if (overlap > 0) {
439 /* Some part of the struct + data would wrap, maybe ok */
440 size_t correction = 0;
441 /* If the overlap lands inside the memory_handle */
442 if (!can_wrap) {
443 /* Otherwise the overlap falls in the data area and must all be
444 * backed out. This may become conditional if ever we move
445 * data that is allowed to wrap (ie audio) */
446 correction = overlap;
447 } else if ((unsigned)overlap > data_size) {
448 /* Correct the position and real delta to prevent the struct from
449 * wrapping, this guarantees an aligned delta, I think */
450 correction = overlap - data_size;
452 if (correction) {
453 /* Align correction to four bytes up */
454 correction = (correction + 3) & ~3;
455 if (final_delta < correction + sizeof(struct memory_handle)) {
456 /* Delta cannot end up less than the size of the struct */
457 mutex_unlock(&llist_mod_mutex);
458 mutex_unlock(&llist_mutex);
459 return false;
461 newpos -= correction;
462 overlap -= correction;/* Used below to know how to split the data */
463 final_delta -= correction;
467 dest = (struct memory_handle *)(&buffer[newpos]);
469 if (src == first_handle) {
470 first_handle = dest;
471 buf_ridx = newpos;
472 } else {
473 struct memory_handle *m = first_handle;
474 while (m && m->next != src) {
475 m = m->next;
477 if (m && m->next == src) {
478 m->next = dest;
479 } else {
480 mutex_unlock(&llist_mod_mutex);
481 mutex_unlock(&llist_mutex);
482 return false;
487 /* Update the cache to prevent it from keeping the old location of h */
488 if (src == cached_handle)
489 cached_handle = dest;
491 /* the cur_handle pointer might need updating */
492 if (src == cur_handle)
493 cur_handle = dest;
496 /* Copying routine takes into account that the handles have a
497 * distance between each other which is a multiple of four. Faster 2 word
498 * copy may be ok but do this for safety and because wrapped copies should
499 * be fairly uncommon */
501 here = (int32_t *)((RINGBUF_ADD(oldpos, size_to_move - 1) & ~3)+ (intptr_t)buffer);
502 there =(int32_t *)((RINGBUF_ADD(newpos, size_to_move - 1) & ~3)+ (intptr_t)buffer);
503 end = (int32_t *)(( intptr_t)buffer + buffer_len - 4);
504 begin =(int32_t *)buffer;
506 n = (size_to_move & ~3)/4;
508 if ( overlap_old > 0 || overlap > 0 ) {
509 /* Old or moved handle wraps */
510 while (n--) {
511 if (here < begin)
512 here = end;
513 if (there < begin)
514 there = end;
515 *there-- = *here--;
517 } else {
518 /* both handles do not wrap */
519 memmove(dest,src,size_to_move);
523 /* Update the caller with the new location of h and the distance moved */
524 *h = dest;
525 *delta = final_delta;
526 mutex_unlock(&llist_mod_mutex);
527 mutex_unlock(&llist_mutex);
528 return dest;
533 BUFFER SPACE MANAGEMENT
534 =======================
536 update_data_counters: Updates the values in data_counters
537 buffer_is_low : Returns true if the amount of useful data in the buffer is low
538 buffer_handle : Buffer data for a handle
539 reset_handle : Reset write position and data buffer of a handle to its offset
540 rebuffer_handle : Seek to a nonbuffered part of a handle by rebuffering the data
541 shrink_handle : Free buffer space by moving a handle
542 fill_buffer : Call buffer_handle for all handles that have data to buffer
544 These functions are used by the buffering thread to manage buffer space.
547 static void update_data_counters(void)
549 struct memory_handle *m = find_handle(base_handle_id);
550 bool is_useful = m==NULL;
552 size_t buffered = 0;
553 size_t wasted = 0;
554 size_t remaining = 0;
555 size_t useful = 0;
557 mutex_lock(&llist_mutex);
559 m = first_handle;
560 while (m) {
561 buffered += m->available;
562 wasted += RINGBUF_SUB(m->ridx, m->data);
563 remaining += m->filerem;
565 if (m->id == base_handle_id)
566 is_useful = true;
568 if (is_useful)
569 useful += RINGBUF_SUB(m->widx, m->ridx);
571 m = m->next;
574 mutex_unlock(&llist_mutex);
576 data_counters.buffered = buffered;
577 data_counters.wasted = wasted;
578 data_counters.remaining = remaining;
579 data_counters.useful = useful;
582 static inline bool buffer_is_low(void)
584 update_data_counters();
585 return data_counters.useful < (conf_watermark / 2);
588 /* Buffer data for the given handle.
589 Return whether or not the buffering should continue explicitly. */
590 static bool buffer_handle(int handle_id)
592 logf("buffer_handle(%d)", handle_id);
593 struct memory_handle *h = find_handle(handle_id);
594 if (!h)
595 return true;
597 if (h->filerem == 0) {
598 /* nothing left to buffer */
599 return true;
602 if (h->fd < 0) /* file closed, reopen */
604 if (*h->path)
605 h->fd = open(h->path, O_RDONLY);
607 if (h->fd < 0)
609 /* could not open the file, truncate it where it is */
610 h->filesize -= h->filerem;
611 h->filerem = 0;
612 return true;
615 if (h->offset)
616 lseek(h->fd, h->offset, SEEK_SET);
619 trigger_cpu_boost();
621 if (h->type == TYPE_ID3)
623 if (!get_metadata((struct mp3entry *)(buffer + h->data), h->fd, h->path))
625 /* metadata parsing failed: clear the buffer. */
626 memset(buffer + h->data, 0, sizeof(struct mp3entry));
628 close(h->fd);
629 h->fd = -1;
630 h->filerem = 0;
631 h->available = sizeof(struct mp3entry);
632 h->widx += sizeof(struct mp3entry);
633 send_event(BUFFER_EVENT_FINISHED, &h->id);
634 return true;
637 while (h->filerem > 0)
639 /* max amount to copy */
640 size_t copy_n = MIN( MIN(h->filerem, BUFFERING_DEFAULT_FILECHUNK),
641 buffer_len - h->widx);
643 /* stop copying if it would overwrite the reading position */
644 if (RINGBUF_ADD_CROSS(h->widx, copy_n, buf_ridx) >= 0)
645 return false;
647 /* This would read into the next handle, this is broken
648 if (h->next && RINGBUF_ADD_CROSS(h->widx, copy_n,
649 (unsigned)((void *)h->next - (void *)buffer)) > 0) {
650 Try to recover by truncating this file
651 copy_n = RINGBUF_ADD_CROSS(h->widx, copy_n,
652 (unsigned)((void *)h->next - (void *)buffer));
653 h->filerem -= copy_n;
654 h->filesize -= copy_n;
655 logf("buf alloc short %ld", (long)copy_n);
656 if (h->filerem)
657 continue;
658 else
659 break;
660 } */
662 /* rc is the actual amount read */
663 int rc = read(h->fd, &buffer[h->widx], copy_n);
665 if (rc < 0)
667 /* Some kind of filesystem error, maybe recoverable if not codec */
668 if (h->type == TYPE_CODEC) {
669 logf("Partial codec");
670 break;
673 DEBUGF("File ended %ld bytes early\n", (long)h->filerem);
674 h->filesize -= h->filerem;
675 h->filerem = 0;
676 break;
679 /* Advance buffer */
680 h->widx = RINGBUF_ADD(h->widx, rc);
681 if (h == cur_handle)
682 buf_widx = h->widx;
683 h->available += rc;
684 h->filerem -= rc;
686 /* If this is a large file, see if we need to break or give the codec
687 * more time */
688 if (h->type == TYPE_PACKET_AUDIO &&
689 pcmbuf_is_lowdata() && !buffer_is_low())
691 sleep(1);
693 else
695 yield();
698 if (!queue_empty(&buffering_queue))
699 break;
702 if (h->filerem == 0) {
703 /* finished buffering the file */
704 close(h->fd);
705 h->fd = -1;
706 send_event(BUFFER_EVENT_FINISHED, &h->id);
709 return true;
712 /* Reset writing position and data buffer of a handle to its current offset.
713 Use this after having set the new offset to use. */
714 static void reset_handle(int handle_id)
716 logf("reset_handle(%d)", handle_id);
718 struct memory_handle *h = find_handle(handle_id);
719 if (!h)
720 return;
722 h->ridx = h->widx = h->data;
723 if (h == cur_handle)
724 buf_widx = h->widx;
725 h->available = 0;
726 h->filerem = h->filesize - h->offset;
728 if (h->fd >= 0) {
729 lseek(h->fd, h->offset, SEEK_SET);
733 /* Seek to a nonbuffered part of a handle by rebuffering the data. */
734 static void rebuffer_handle(int handle_id, size_t newpos)
736 struct memory_handle *h = find_handle(handle_id);
737 if (!h)
738 return;
740 /* When seeking foward off of the buffer, if it is a short seek don't
741 rebuffer the whole track, just read enough to satisfy */
742 if (newpos > h->offset && newpos - h->offset < BUFFERING_DEFAULT_FILECHUNK)
744 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", handle_id);
745 queue_send(&buffering_queue, Q_BUFFER_HANDLE, handle_id);
746 h->ridx = h->data + newpos;
747 return;
750 h->offset = newpos;
752 /* Reset the handle to its new offset */
753 LOGFQUEUE("buffering >| Q_RESET_HANDLE %d", handle_id);
754 queue_send(&buffering_queue, Q_RESET_HANDLE, handle_id);
756 size_t next = (unsigned)((void *)h->next - (void *)buffer);
757 if (RINGBUF_SUB(next, h->data) < h->filesize - newpos)
759 /* There isn't enough space to rebuffer all of the track from its new
760 offset, so we ask the user to free some */
761 DEBUGF("rebuffer_handle: space is needed\n");
762 send_event(BUFFER_EVENT_REBUFFER, &handle_id);
765 /* Now we ask for a rebuffer */
766 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", handle_id);
767 queue_send(&buffering_queue, Q_BUFFER_HANDLE, handle_id);
770 static bool close_handle(int handle_id)
772 struct memory_handle *h = find_handle(handle_id);
774 /* If the handle is not found, it is closed */
775 if (!h)
776 return true;
778 if (h->fd >= 0) {
779 close(h->fd);
780 h->fd = -1;
783 /* rm_handle returns true unless the handle somehow persists after exit */
784 return rm_handle(h);
787 /* Free buffer space by moving the handle struct right before the useful
788 part of its data buffer or by moving all the data. */
789 static void shrink_handle(struct memory_handle *h)
791 size_t delta;
793 if (!h)
794 return;
796 if (h->next && h->filerem == 0 &&
797 (h->type == TYPE_ID3 || h->type == TYPE_CUESHEET ||
798 h->type == TYPE_BITMAP || h->type == TYPE_CODEC ||
799 h->type == TYPE_ATOMIC_AUDIO))
801 /* metadata handle: we can move all of it */
802 size_t handle_distance =
803 RINGBUF_SUB((unsigned)((void *)h->next - (void*)buffer), h->data);
804 delta = handle_distance - h->available;
806 /* The value of delta might change for alignment reasons */
807 if (!move_handle(&h, &delta, h->available, h->type==TYPE_CODEC))
808 return;
810 size_t olddata = h->data;
811 h->data = RINGBUF_ADD(h->data, delta);
812 h->ridx = RINGBUF_ADD(h->ridx, delta);
813 h->widx = RINGBUF_ADD(h->widx, delta);
815 if (h->type == TYPE_ID3 && h->filesize == sizeof(struct mp3entry)) {
816 /* when moving an mp3entry we need to readjust its pointers. */
817 adjust_mp3entry((struct mp3entry *)&buffer[h->data],
818 (void *)&buffer[h->data],
819 (const void *)&buffer[olddata]);
820 } else if (h->type == TYPE_BITMAP) {
821 /* adjust the bitmap's pointer */
822 struct bitmap *bmp = (struct bitmap *)&buffer[h->data];
823 bmp->data = &buffer[h->data + sizeof(struct bitmap)];
826 else
828 /* only move the handle struct */
829 delta = RINGBUF_SUB(h->ridx, h->data);
830 if (!move_handle(&h, &delta, 0, true))
831 return;
833 h->data = RINGBUF_ADD(h->data, delta);
834 h->available -= delta;
835 h->offset += delta;
839 /* Fill the buffer by buffering as much data as possible for handles that still
840 have data left to buffer
841 Return whether or not to continue filling after this */
842 static bool fill_buffer(void)
844 logf("fill_buffer()");
845 struct memory_handle *m;
846 shrink_handle(first_handle);
847 m = first_handle;
848 while (queue_empty(&buffering_queue) && m) {
849 if (m->filerem > 0) {
850 if (!buffer_handle(m->id)) {
851 m = NULL;
852 break;
855 m = m->next;
858 if (m) {
859 return true;
861 else
863 /* only spin the disk down if the filling wasn't interrupted by an
864 event arriving in the queue. */
865 storage_sleep();
866 return false;
870 #ifdef HAVE_ALBUMART
871 /* Given a file descriptor to a bitmap file, write the bitmap data to the
872 buffer, with a struct bitmap and the actual data immediately following.
873 Return value is the total size (struct + data). */
874 static int load_image(int fd, const char *path, struct dim *dim)
876 int rc;
877 struct bitmap *bmp = (struct bitmap *)&buffer[buf_widx];
879 /* get the desired image size */
880 bmp->width = dim->width, bmp->height = dim->height;
881 /* FIXME: alignment may be needed for the data buffer. */
882 bmp->data = &buffer[buf_widx + sizeof(struct bitmap)];
883 #ifndef HAVE_JPEG
884 (void) path;
885 #endif
886 #if (LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)
887 bmp->maskdata = NULL;
888 #endif
890 int free = (int)MIN(buffer_len - BUF_USED, buffer_len - buf_widx)
891 - sizeof(struct bitmap);
893 #ifdef HAVE_JPEG
894 int pathlen = strlen(path);
895 if (strcmp(path + pathlen - 4, ".bmp"))
896 rc = read_jpeg_fd(fd, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
897 FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
898 else
899 #endif
900 rc = read_bmp_fd(fd, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
901 FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
902 return rc + (rc > 0 ? sizeof(struct bitmap) : 0);
904 #endif
908 MAIN BUFFERING API CALLS
909 ========================
911 bufopen : Request the opening of a new handle for a file
912 bufalloc : Open a new handle for data other than a file.
913 bufclose : Close an open handle
914 bufseek : Set the read pointer in a handle
915 bufadvance : Move the read pointer in a handle
916 bufread : Copy data from a handle into a given buffer
917 bufgetdata : Give a pointer to the handle's data
919 These functions are exported, to allow interaction with the buffer.
920 They take care of the content of the structs, and rely on the linked list
921 management functions for all the actual handle management work.
925 /* Reserve space in the buffer for a file.
926 filename: name of the file to open
927 offset: offset at which to start buffering the file, useful when the first
928 (offset-1) bytes of the file aren't needed.
929 type: one of the data types supported (audio, image, cuesheet, others
930 user_data: user data passed possibly passed in subcalls specific to a
931 data_type (only used for image (albumart) buffering so far )
932 return value: <0 if the file cannot be opened, or one file already
933 queued to be opened, otherwise the handle for the file in the buffer
935 int bufopen(const char *file, size_t offset, enum data_type type,
936 void *user_data)
938 #ifndef HAVE_ALBUMART
939 /* currently only used for aa loading */
940 (void)user_data;
941 #endif
942 if (type == TYPE_ID3)
944 /* ID3 case: allocate space, init the handle and return. */
946 struct memory_handle *h = add_handle(sizeof(struct mp3entry), false, true);
947 if (!h)
948 return ERR_BUFFER_FULL;
950 h->fd = -1;
951 h->filesize = sizeof(struct mp3entry);
952 h->filerem = sizeof(struct mp3entry);
953 h->offset = 0;
954 h->data = buf_widx;
955 h->ridx = buf_widx;
956 h->widx = buf_widx;
957 h->available = 0;
958 h->type = type;
959 strlcpy(h->path, file, MAX_PATH);
961 buf_widx += sizeof(struct mp3entry); /* safe because the handle
962 can't wrap */
964 /* Inform the buffering thread that we added a handle */
965 LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", h->id);
966 queue_post(&buffering_queue, Q_HANDLE_ADDED, h->id);
968 return h->id;
971 /* Other cases: there is a little more work. */
973 int fd = open(file, O_RDONLY);
974 if (fd < 0)
975 return ERR_FILE_ERROR;
977 size_t size = filesize(fd);
978 bool can_wrap = type==TYPE_PACKET_AUDIO || type==TYPE_CODEC;
980 size_t adjusted_offset = offset;
981 if (adjusted_offset > size)
982 adjusted_offset = 0;
984 struct memory_handle *h = add_handle(size-adjusted_offset, can_wrap, false);
985 if (!h)
987 DEBUGF("bufopen: failed to add handle\n");
988 close(fd);
989 return ERR_BUFFER_FULL;
992 strlcpy(h->path, file, MAX_PATH);
993 h->offset = adjusted_offset;
994 h->ridx = buf_widx;
995 h->widx = buf_widx;
996 h->data = buf_widx;
997 h->available = 0;
998 h->filerem = 0;
999 h->type = type;
1001 #ifdef HAVE_ALBUMART
1002 if (type == TYPE_BITMAP)
1004 /* Bitmap file: we load the data instead of the file */
1005 int rc;
1006 mutex_lock(&llist_mod_mutex); /* Lock because load_bitmap yields */
1007 rc = load_image(fd, file, (struct dim*)user_data);
1008 mutex_unlock(&llist_mod_mutex);
1009 if (rc <= 0)
1011 rm_handle(h);
1012 close(fd);
1013 return ERR_FILE_ERROR;
1015 h->filerem = 0;
1016 h->filesize = rc;
1017 h->available = rc;
1018 h->widx = buf_widx + rc; /* safe because the data doesn't wrap */
1019 buf_widx += rc; /* safe too */
1021 else
1022 #endif
1024 h->filerem = size - adjusted_offset;
1025 h->filesize = size;
1026 h->available = 0;
1027 h->widx = buf_widx;
1030 if (type == TYPE_CUESHEET) {
1031 h->fd = fd;
1032 /* Immediately start buffering those */
1033 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", h->id);
1034 queue_send(&buffering_queue, Q_BUFFER_HANDLE, h->id);
1035 } else {
1036 /* Other types will get buffered in the course of normal operations */
1037 h->fd = -1;
1038 close(fd);
1040 /* Inform the buffering thread that we added a handle */
1041 LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", h->id);
1042 queue_post(&buffering_queue, Q_HANDLE_ADDED, h->id);
1045 logf("bufopen: new hdl %d", h->id);
1046 return h->id;
1049 /* Open a new handle from data that needs to be copied from memory.
1050 src is the source buffer from which to copy data. It can be NULL to simply
1051 reserve buffer space.
1052 size is the requested size. The call will only be successful if the
1053 requested amount of data can entirely fit in the buffer without wrapping.
1054 Return value is the handle id for success or <0 for failure.
1056 int bufalloc(const void *src, size_t size, enum data_type type)
1058 struct memory_handle *h = add_handle(size, false, true);
1060 if (!h)
1061 return ERR_BUFFER_FULL;
1063 if (src) {
1064 if (type == TYPE_ID3 && size == sizeof(struct mp3entry)) {
1065 /* specially take care of struct mp3entry */
1066 copy_mp3entry((struct mp3entry *)&buffer[buf_widx],
1067 (const struct mp3entry *)src);
1068 } else {
1069 memcpy(&buffer[buf_widx], src, size);
1073 h->fd = -1;
1074 *h->path = 0;
1075 h->filesize = size;
1076 h->filerem = 0;
1077 h->offset = 0;
1078 h->ridx = buf_widx;
1079 h->widx = buf_widx + size; /* this is safe because the data doesn't wrap */
1080 h->data = buf_widx;
1081 h->available = size;
1082 h->type = type;
1084 buf_widx += size; /* safe too */
1086 logf("bufalloc: new hdl %d", h->id);
1087 return h->id;
1090 /* Close the handle. Return true for success and false for failure */
1091 bool bufclose(int handle_id)
1093 logf("bufclose(%d)", handle_id);
1095 LOGFQUEUE("buffering >| Q_CLOSE_HANDLE %d", handle_id);
1096 return queue_send(&buffering_queue, Q_CLOSE_HANDLE, handle_id);
1099 /* Set reading index in handle (relatively to the start of the file).
1100 Access before the available data will trigger a rebuffer.
1101 Return 0 for success and < 0 for failure:
1102 -1 if the handle wasn't found
1103 -2 if the new requested position was beyond the end of the file
1105 int bufseek(int handle_id, size_t newpos)
1107 struct memory_handle *h = find_handle(handle_id);
1108 if (!h)
1109 return ERR_HANDLE_NOT_FOUND;
1111 if (newpos > h->filesize) {
1112 /* access beyond the end of the file */
1113 return ERR_INVALID_VALUE;
1115 else if (newpos < h->offset || h->offset + h->available < newpos) {
1116 /* access before or after buffered data. A rebuffer is needed. */
1117 rebuffer_handle(handle_id, newpos);
1119 else {
1120 h->ridx = RINGBUF_ADD(h->data, newpos - h->offset);
1122 return 0;
1125 /* Advance the reading index in a handle (relatively to its current position).
1126 Return 0 for success and < 0 for failure */
1127 int bufadvance(int handle_id, off_t offset)
1129 const struct memory_handle *h = find_handle(handle_id);
1130 if (!h)
1131 return ERR_HANDLE_NOT_FOUND;
1133 size_t newpos = h->offset + RINGBUF_SUB(h->ridx, h->data) + offset;
1134 return bufseek(handle_id, newpos);
1137 /* Used by bufread and bufgetdata to prepare the buffer and retrieve the
1138 * actual amount of data available for reading. This function explicitly
1139 * does not check the validity of the input handle. It does do range checks
1140 * on size and returns a valid (and explicit) amount of data for reading */
1141 static struct memory_handle *prep_bufdata(int handle_id, size_t *size,
1142 bool guardbuf_limit)
1144 struct memory_handle *h = find_handle(handle_id);
1145 if (!h)
1146 return NULL;
1148 size_t avail = RINGBUF_SUB(h->widx, h->ridx);
1150 if (avail == 0 && h->filerem == 0)
1152 /* File is finished reading */
1153 *size = 0;
1154 return h;
1157 if (*size == 0 || *size > avail + h->filerem)
1158 *size = avail + h->filerem;
1160 if (guardbuf_limit && h->type == TYPE_PACKET_AUDIO && *size > GUARD_BUFSIZE)
1162 logf("data request > guardbuf");
1163 /* If more than the size of the guardbuf is requested and this is a
1164 * bufgetdata, limit to guard_bufsize over the end of the buffer */
1165 *size = MIN(*size, buffer_len - h->ridx + GUARD_BUFSIZE);
1166 /* this ensures *size <= buffer_len - h->ridx + GUARD_BUFSIZE */
1169 if (h->filerem > 0 && avail < *size)
1171 /* Data isn't ready. Request buffering */
1172 buf_request_buffer_handle(handle_id);
1173 /* Wait for the data to be ready */
1176 sleep(1);
1177 /* it is not safe for a non-buffering thread to sleep while
1178 * holding a handle */
1179 h = find_handle(handle_id);
1180 if (!h)
1181 return NULL;
1182 avail = RINGBUF_SUB(h->widx, h->ridx);
1184 while (h->filerem > 0 && avail < *size);
1187 *size = MIN(*size,avail);
1188 return h;
1191 /* Copy data from the given handle to the dest buffer.
1192 Return the number of bytes copied or < 0 for failure (handle not found).
1193 The caller is blocked until the requested amount of data is available.
1195 ssize_t bufread(int handle_id, size_t size, void *dest)
1197 const struct memory_handle *h;
1198 size_t adjusted_size = size;
1200 h = prep_bufdata(handle_id, &adjusted_size, false);
1201 if (!h)
1202 return ERR_HANDLE_NOT_FOUND;
1204 if (h->ridx + adjusted_size > buffer_len)
1206 /* the data wraps around the end of the buffer */
1207 size_t read = buffer_len - h->ridx;
1208 memcpy(dest, &buffer[h->ridx], read);
1209 memcpy(dest+read, buffer, adjusted_size - read);
1211 else
1213 memcpy(dest, &buffer[h->ridx], adjusted_size);
1216 return adjusted_size;
1219 /* Update the "data" pointer to make the handle's data available to the caller.
1220 Return the length of the available linear data or < 0 for failure (handle
1221 not found).
1222 The caller is blocked until the requested amount of data is available.
1223 size is the amount of linear data requested. it can be 0 to get as
1224 much as possible.
1225 The guard buffer may be used to provide the requested size. This means it's
1226 unsafe to request more than the size of the guard buffer.
1228 ssize_t bufgetdata(int handle_id, size_t size, void **data)
1230 const struct memory_handle *h;
1231 size_t adjusted_size = size;
1233 h = prep_bufdata(handle_id, &adjusted_size, true);
1234 if (!h)
1235 return ERR_HANDLE_NOT_FOUND;
1237 if (h->ridx + adjusted_size > buffer_len)
1239 /* the data wraps around the end of the buffer :
1240 use the guard buffer to provide the requested amount of data. */
1241 size_t copy_n = h->ridx + adjusted_size - buffer_len;
1242 /* prep_bufdata ensures adjusted_size <= buffer_len - h->ridx + GUARD_BUFSIZE,
1243 so copy_n <= GUARD_BUFSIZE */
1244 memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
1247 if (data)
1248 *data = &buffer[h->ridx];
1250 return adjusted_size;
1253 ssize_t bufgettail(int handle_id, size_t size, void **data)
1255 size_t tidx;
1257 const struct memory_handle *h;
1259 h = find_handle(handle_id);
1261 if (!h)
1262 return ERR_HANDLE_NOT_FOUND;
1264 if (h->filerem)
1265 return ERR_HANDLE_NOT_DONE;
1267 /* We don't support tail requests of > guardbuf_size, for simplicity */
1268 if (size > GUARD_BUFSIZE)
1269 return ERR_INVALID_VALUE;
1271 tidx = RINGBUF_SUB(h->widx, size);
1273 if (tidx + size > buffer_len)
1275 size_t copy_n = tidx + size - buffer_len;
1276 memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
1279 *data = &buffer[tidx];
1280 return size;
1283 ssize_t bufcuttail(int handle_id, size_t size)
1285 struct memory_handle *h;
1286 size_t adjusted_size = size;
1288 h = find_handle(handle_id);
1290 if (!h)
1291 return ERR_HANDLE_NOT_FOUND;
1293 if (h->filerem)
1294 return ERR_HANDLE_NOT_DONE;
1296 if (h->available < adjusted_size)
1297 adjusted_size = h->available;
1299 h->available -= adjusted_size;
1300 h->filesize -= adjusted_size;
1301 h->widx = RINGBUF_SUB(h->widx, adjusted_size);
1302 if (h == cur_handle)
1303 buf_widx = h->widx;
1305 return adjusted_size;
1310 SECONDARY EXPORTED FUNCTIONS
1311 ============================
1313 buf_get_offset
1314 buf_handle_offset
1315 buf_request_buffer_handle
1316 buf_set_base_handle
1317 buf_used
1318 register_buffering_callback
1319 unregister_buffering_callback
1321 These functions are exported, to allow interaction with the buffer.
1322 They take care of the content of the structs, and rely on the linked list
1323 management functions for all the actual handle management work.
1326 /* Get a handle offset from a pointer */
1327 ssize_t buf_get_offset(int handle_id, void *ptr)
1329 const struct memory_handle *h = find_handle(handle_id);
1330 if (!h)
1331 return ERR_HANDLE_NOT_FOUND;
1333 return (size_t)ptr - (size_t)&buffer[h->ridx];
1336 ssize_t buf_handle_offset(int handle_id)
1338 const struct memory_handle *h = find_handle(handle_id);
1339 if (!h)
1340 return ERR_HANDLE_NOT_FOUND;
1341 return h->offset;
1344 void buf_request_buffer_handle(int handle_id)
1346 LOGFQUEUE("buffering >| Q_START_FILL %d",handle_id);
1347 queue_send(&buffering_queue, Q_START_FILL, handle_id);
1350 void buf_set_base_handle(int handle_id)
1352 LOGFQUEUE("buffering > Q_BASE_HANDLE %d", handle_id);
1353 queue_post(&buffering_queue, Q_BASE_HANDLE, handle_id);
1356 /* Return the amount of buffer space used */
1357 size_t buf_used(void)
1359 return BUF_USED;
1362 void buf_set_watermark(size_t bytes)
1364 conf_watermark = bytes;
1367 static void shrink_buffer_inner(struct memory_handle *h)
1369 if (h == NULL)
1370 return;
1372 shrink_buffer_inner(h->next);
1374 shrink_handle(h);
1377 static void shrink_buffer(void)
1379 logf("shrink_buffer()");
1380 shrink_buffer_inner(first_handle);
1383 void buffering_thread(void)
1385 bool filling = false;
1386 struct queue_event ev;
1388 while (true)
1390 if (!filling) {
1391 cancel_cpu_boost();
1394 queue_wait_w_tmo(&buffering_queue, &ev, filling ? 5 : HZ/2);
1396 switch (ev.id)
1398 case Q_START_FILL:
1399 LOGFQUEUE("buffering < Q_START_FILL %d", (int)ev.data);
1400 /* Call buffer callbacks here because this is one of two ways
1401 * to begin a full buffer fill */
1402 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1403 shrink_buffer();
1404 queue_reply(&buffering_queue, 1);
1405 filling |= buffer_handle((int)ev.data);
1406 break;
1408 case Q_BUFFER_HANDLE:
1409 LOGFQUEUE("buffering < Q_BUFFER_HANDLE %d", (int)ev.data);
1410 queue_reply(&buffering_queue, 1);
1411 buffer_handle((int)ev.data);
1412 break;
1414 case Q_RESET_HANDLE:
1415 LOGFQUEUE("buffering < Q_RESET_HANDLE %d", (int)ev.data);
1416 queue_reply(&buffering_queue, 1);
1417 reset_handle((int)ev.data);
1418 break;
1420 case Q_CLOSE_HANDLE:
1421 LOGFQUEUE("buffering < Q_CLOSE_HANDLE %d", (int)ev.data);
1422 queue_reply(&buffering_queue, close_handle((int)ev.data));
1423 break;
1425 case Q_HANDLE_ADDED:
1426 LOGFQUEUE("buffering < Q_HANDLE_ADDED %d", (int)ev.data);
1427 /* A handle was added: the disk is spinning, so we can fill */
1428 filling = true;
1429 break;
1431 case Q_BASE_HANDLE:
1432 LOGFQUEUE("buffering < Q_BASE_HANDLE %d", (int)ev.data);
1433 base_handle_id = (int)ev.data;
1434 break;
1436 #ifndef SIMULATOR
1437 case SYS_USB_CONNECTED:
1438 LOGFQUEUE("buffering < SYS_USB_CONNECTED");
1439 usb_acknowledge(SYS_USB_CONNECTED_ACK);
1440 usb_wait_for_disconnect(&buffering_queue);
1441 break;
1442 #endif
1444 case SYS_TIMEOUT:
1445 LOGFQUEUE_SYS_TIMEOUT("buffering < SYS_TIMEOUT");
1446 break;
1449 update_data_counters();
1451 /* If the buffer is low, call the callbacks to get new data */
1452 if (num_handles > 0 && data_counters.useful <= conf_watermark)
1453 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1455 #if 0
1456 /* TODO: This needs to be fixed to use the idle callback, disable it
1457 * for simplicity until its done right */
1458 #if MEM > 8
1459 /* If the disk is spinning, take advantage by filling the buffer */
1460 else if (storage_disk_is_active() && queue_empty(&buffering_queue))
1462 if (num_handles > 0 && data_counters.useful <= high_watermark)
1463 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1465 if (data_counters.remaining > 0 && BUF_USED <= high_watermark)
1467 /* This is a new fill, shrink the buffer up first */
1468 if (!filling)
1469 shrink_buffer();
1470 filling = fill_buffer();
1471 update_data_counters();
1474 #endif
1475 #endif
1477 if (queue_empty(&buffering_queue)) {
1478 if (filling) {
1479 if (data_counters.remaining > 0 && BUF_USED < buffer_len)
1480 filling = fill_buffer();
1481 else if (data_counters.remaining == 0)
1482 filling = false;
1484 else if (ev.id == SYS_TIMEOUT)
1486 if (data_counters.remaining > 0 &&
1487 data_counters.useful <= conf_watermark) {
1488 shrink_buffer();
1489 filling = fill_buffer();
1496 void buffering_init(void)
1498 mutex_init(&llist_mutex);
1499 mutex_init(&llist_mod_mutex);
1500 #ifdef HAVE_PRIORITY_SCHEDULING
1501 /* This behavior not safe atm */
1502 mutex_set_preempt(&llist_mutex, false);
1503 mutex_set_preempt(&llist_mod_mutex, false);
1504 #endif
1506 conf_watermark = BUFFERING_DEFAULT_WATERMARK;
1508 queue_init(&buffering_queue, true);
1509 buffering_thread_id = create_thread( buffering_thread, buffering_stack,
1510 sizeof(buffering_stack), CREATE_THREAD_FROZEN,
1511 buffering_thread_name IF_PRIO(, PRIORITY_BUFFERING)
1512 IF_COP(, CPU));
1514 queue_enable_queue_send(&buffering_queue, &buffering_queue_sender_list,
1515 buffering_thread_id);
1518 /* Initialise the buffering subsystem */
1519 bool buffering_reset(char *buf, size_t buflen)
1521 if (!buf || !buflen)
1522 return false;
1524 buffer = buf;
1525 buffer_len = buflen;
1526 guard_buffer = buf + buflen;
1528 buf_widx = 0;
1529 buf_ridx = 0;
1531 first_handle = NULL;
1532 cur_handle = NULL;
1533 cached_handle = NULL;
1534 num_handles = 0;
1535 base_handle_id = -1;
1537 /* Set the high watermark as 75% full...or 25% empty :) */
1538 #if MEM > 8
1539 high_watermark = 3*buflen / 4;
1540 #endif
1542 thread_thaw(buffering_thread_id);
1544 return true;
1547 void buffering_get_debugdata(struct buffering_debug *dbgdata)
1549 update_data_counters();
1550 dbgdata->num_handles = num_handles;
1551 dbgdata->data_rem = data_counters.remaining;
1552 dbgdata->wasted_space = data_counters.wasted;
1553 dbgdata->buffered_data = data_counters.buffered;
1554 dbgdata->useful_data = data_counters.useful;
1555 dbgdata->watermark = conf_watermark;