1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2006-2007 Thom Johansen
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
18 ****************************************************************************/
24 #include "replaygain.h"
26 /* Inverse gain of circular cordic rotation in s0.31 format. */
27 static const long cordic_circular_gain
= 0xb2458939; /* 0.607252929 */
29 /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
30 static const unsigned long atan_table
[] = {
31 0x1fffffff, /* +0.785398163 (or pi/4) */
32 0x12e4051d, /* +0.463647609 */
33 0x09fb385b, /* +0.244978663 */
34 0x051111d4, /* +0.124354995 */
35 0x028b0d43, /* +0.062418810 */
36 0x0145d7e1, /* +0.031239833 */
37 0x00a2f61e, /* +0.015623729 */
38 0x00517c55, /* +0.007812341 */
39 0x0028be53, /* +0.003906230 */
40 0x00145f2e, /* +0.001953123 */
41 0x000a2f98, /* +0.000976562 */
42 0x000517cc, /* +0.000488281 */
43 0x00028be6, /* +0.000244141 */
44 0x000145f3, /* +0.000122070 */
45 0x0000a2f9, /* +0.000061035 */
46 0x0000517c, /* +0.000030518 */
47 0x000028be, /* +0.000015259 */
48 0x0000145f, /* +0.000007629 */
49 0x00000a2f, /* +0.000003815 */
50 0x00000517, /* +0.000001907 */
51 0x0000028b, /* +0.000000954 */
52 0x00000145, /* +0.000000477 */
53 0x000000a2, /* +0.000000238 */
54 0x00000051, /* +0.000000119 */
55 0x00000028, /* +0.000000060 */
56 0x00000014, /* +0.000000030 */
57 0x0000000a, /* +0.000000015 */
58 0x00000005, /* +0.000000007 */
59 0x00000002, /* +0.000000004 */
60 0x00000001, /* +0.000000002 */
61 0x00000000, /* +0.000000001 */
62 0x00000000, /* +0.000000000 */
66 * Implements sin and cos using CORDIC rotation.
68 * @param phase has range from 0 to 0xffffffff, representing 0 and
70 * @param cos return address for cos
71 * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
72 * representing -1 and 1 respectively.
74 static long fsincos(unsigned long phase
, long *cos
) {
79 /* Setup initial vector */
80 x
= cordic_circular_gain
;
84 /* The phase has to be somewhere between 0..pi for this to work right */
85 if (z
< 0xffffffff / 4) {
86 /* z in first quadrant, z += pi/2 to correct */
89 } else if (z
< 3 * (0xffffffff / 4)) {
90 /* z in third quadrant, z -= pi/2 to correct */
93 /* z in fourth quadrant, z -= 3pi/2 to correct */
95 z
-= 3 * (0xffffffff / 4);
98 /* Each iteration adds roughly 1-bit of extra precision */
99 for (i
= 0; i
< 31; i
++) {
104 /* Decided which direction to rotate vector. Pivot point is pi/2 */
105 if (z
>= 0xffffffff / 4) {
122 * Calculate first order shelving filter. Filter is not directly usable by the
123 * eq_filter() function.
124 * @param cutoff shelf midpoint frequency. See eq_pk_coefs for format.
125 * @param A decibel value multiplied by ten, describing gain/attenuation of
126 * shelf. Max value is 24 dB.
127 * @param low true for low-shelf filter, false for high-shelf filter.
128 * @param c pointer to coefficient storage. Coefficients are s4.27 format.
130 void filter_shelf_coefs(unsigned long cutoff
, long A
, bool low
, int32_t *c
)
133 int32_t b0
, b1
, a0
, a1
; /* s3.28 */
134 const long g
= get_replaygain_int(A
*5) << 4; /* 10^(db/40), s3.28 */
136 sin
= fsincos(cutoff
/2, &cos
);
138 const int32_t sin_div_g
= DIV64(sin
, g
, 25);
140 b0
= FRACMUL(sin
, g
) + cos
; /* 0.25 .. 4.10 */
141 b1
= FRACMUL(sin
, g
) - cos
; /* -1 .. 3.98 */
142 a0
= sin_div_g
+ cos
; /* 0.25 .. 4.10 */
143 a1
= sin_div_g
- cos
; /* -1 .. 3.98 */
145 const int32_t cos_div_g
= DIV64(cos
, g
, 25);
147 b0
= sin
+ FRACMUL(cos
, g
); /* 0.25 .. 4.10 */
148 b1
= sin
- FRACMUL(cos
, g
); /* -3.98 .. 1 */
149 a0
= sin
+ cos_div_g
; /* 0.25 .. 4.10 */
150 a1
= sin
- cos_div_g
; /* -3.98 .. 1 */
153 const int32_t rcp_a0
= DIV64(1, a0
, 57); /* 0.24 .. 3.98, s2.29 */
154 *c
++ = FRACMUL_SHL(b0
, rcp_a0
, 1); /* 0.063 .. 15.85 */
155 *c
++ = FRACMUL_SHL(b1
, rcp_a0
, 1); /* -15.85 .. 15.85 */
156 *c
++ = -FRACMUL_SHL(a1
, rcp_a0
, 1); /* -1 .. 1 */
159 #ifdef HAVE_SW_TONE_CONTROLS
161 * Calculate second order section filter consisting of one low-shelf and one
162 * high-shelf section.
163 * @param cutoff_low low-shelf midpoint frequency. See eq_pk_coefs for format.
164 * @param cutoff_high high-shelf midpoint frequency.
165 * @param A_low decibel value multiplied by ten, describing gain/attenuation of
166 * low-shelf part. Max value is 24 dB.
167 * @param A_high decibel value multiplied by ten, describing gain/attenuation of
168 * high-shelf part. Max value is 24 dB.
169 * @param A decibel value multiplied by ten, describing additional overall gain.
170 * @param c pointer to coefficient storage. Coefficients are s4.27 format.
172 void filter_bishelf_coefs(unsigned long cutoff_low
, unsigned long cutoff_high
,
173 long A_low
, long A_high
, long A
, int32_t *c
)
175 const long g
= get_replaygain_int(A
*10) << 7; /* 10^(db/20), s0.31 */
176 int32_t c_ls
[3], c_hs
[3];
178 filter_shelf_coefs(cutoff_low
, A_low
, true, c_ls
);
179 filter_shelf_coefs(cutoff_high
, A_high
, false, c_hs
);
180 c_ls
[0] = FRACMUL(g
, c_ls
[0]);
181 c_ls
[1] = FRACMUL(g
, c_ls
[1]);
183 /* now we cascade the two first order filters to one second order filter
184 * which can be used by eq_filter(). these resulting coefficients have a
185 * really wide numerical range, so we use a fixed point format which will
186 * work for the selected cutoff frequencies (in dsp.c) only.
188 const int32_t b0
= c_ls
[0], b1
= c_ls
[1], b2
= c_hs
[0], b3
= c_hs
[1];
189 const int32_t a0
= c_ls
[2], a1
= c_hs
[2];
190 *c
++ = FRACMUL_SHL(b0
, b2
, 4);
191 *c
++ = FRACMUL_SHL(b0
, b3
, 4) + FRACMUL_SHL(b1
, b2
, 4);
192 *c
++ = FRACMUL_SHL(b1
, b3
, 4);
194 *c
++ = -FRACMUL_SHL(a0
, a1
, 4);
198 /* Coef calculation taken from Audio-EQ-Cookbook.txt by Robert Bristow-Johnson.
199 * Slightly faster calculation can be done by deriving forms which use tan()
200 * instead of cos() and sin(), but the latter are far easier to use when doing
201 * fixed point math, and performance is not a big point in the calculation part.
202 * All the 'a' filter coefficients are negated so we can use only additions
203 * in the filtering equation.
207 * Calculate second order section peaking filter coefficients.
208 * @param cutoff a value from 0 to 0x80000000, where 0 represents 0 Hz and
209 * 0x80000000 represents the Nyquist frequency (samplerate/2).
210 * @param Q Q factor value multiplied by ten. Lower bound is artificially set
212 * @param db decibel value multiplied by ten, describing gain/attenuation at
213 * peak freq. Max value is 24 dB.
214 * @param c pointer to coefficient storage. Coefficients are s3.28 format.
216 void eq_pk_coefs(unsigned long cutoff
, unsigned long Q
, long db
, int32_t *c
)
219 const long one
= 1 << 28; /* s3.28 */
220 const long A
= get_replaygain_int(db
*5) << 5; /* 10^(db/40), s2.29 */
221 const long alpha
= fsincos(cutoff
, &cs
)/(2*Q
)*10 >> 1; /* s1.30 */
222 int32_t a0
, a1
, a2
; /* these are all s3.28 format */
224 const long alphadivA
= DIV64(alpha
, A
, 27);
226 /* possible numerical ranges are in comments by each coef */
227 b0
= one
+ FRACMUL(alpha
, A
); /* [1 .. 5] */
228 b1
= a1
= -2*(cs
>> 3); /* [-2 .. 2] */
229 b2
= one
- FRACMUL(alpha
, A
); /* [-3 .. 1] */
230 a0
= one
+ alphadivA
; /* [1 .. 5] */
231 a2
= one
- alphadivA
; /* [-3 .. 1] */
233 /* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */
234 const long rcp_a0
= DIV64(1, a0
, 59); /* s0.31 */
235 *c
++ = FRACMUL(b0
, rcp_a0
); /* [0.25 .. 4] */
236 *c
++ = FRACMUL(b1
, rcp_a0
); /* [-2 .. 2] */
237 *c
++ = FRACMUL(b2
, rcp_a0
); /* [-2.4 .. 1] */
238 *c
++ = FRACMUL(-a1
, rcp_a0
); /* [-2 .. 2] */
239 *c
++ = FRACMUL(-a2
, rcp_a0
); /* [-0.6 .. 1] */
243 * Calculate coefficients for lowshelf filter. Parameters are as for
244 * eq_pk_coefs, but the coefficient format is s5.26 fixed point.
246 void eq_ls_coefs(unsigned long cutoff
, unsigned long Q
, long db
, int32_t *c
)
249 const long one
= 1 << 25; /* s6.25 */
250 const long sqrtA
= get_replaygain_int(db
*5/2) << 2; /* 10^(db/80), s5.26 */
251 const long A
= FRACMUL_SHL(sqrtA
, sqrtA
, 8); /* s2.29 */
252 const long alpha
= fsincos(cutoff
, &cs
)/(2*Q
)*10 >> 1; /* s1.30 */
253 const long ap1
= (A
>> 4) + one
;
254 const long am1
= (A
>> 4) - one
;
255 const long twosqrtalpha
= 2*FRACMUL(sqrtA
, alpha
);
256 int32_t a0
, a1
, a2
; /* these are all s6.25 format */
260 b0
= FRACMUL_SHL(A
, ap1
- FRACMUL(am1
, cs
) + twosqrtalpha
, 2);
262 b1
= FRACMUL_SHL(A
, am1
- FRACMUL(ap1
, cs
), 3);
264 b2
= FRACMUL_SHL(A
, ap1
- FRACMUL(am1
, cs
) - twosqrtalpha
, 2);
266 a0
= ap1
+ FRACMUL(am1
, cs
) + twosqrtalpha
;
268 a1
= -2*((am1
+ FRACMUL(ap1
, cs
)));
270 a2
= ap1
+ FRACMUL(am1
, cs
) - twosqrtalpha
;
273 const long rcp_a0
= DIV64(1, a0
, 55); /* s1.30 */
274 *c
++ = FRACMUL_SHL(b0
, rcp_a0
, 2); /* [0.06 .. 15.9] */
275 *c
++ = FRACMUL_SHL(b1
, rcp_a0
, 2); /* [-2 .. 31.7] */
276 *c
++ = FRACMUL_SHL(b2
, rcp_a0
, 2); /* [0 .. 15.9] */
277 *c
++ = FRACMUL_SHL(-a1
, rcp_a0
, 2); /* [-2 .. 2] */
278 *c
++ = FRACMUL_SHL(-a2
, rcp_a0
, 2); /* [0 .. 1] */
282 * Calculate coefficients for highshelf filter. Parameters are as for
283 * eq_pk_coefs, but the coefficient format is s5.26 fixed point.
285 void eq_hs_coefs(unsigned long cutoff
, unsigned long Q
, long db
, int32_t *c
)
288 const long one
= 1 << 25; /* s6.25 */
289 const long sqrtA
= get_replaygain_int(db
*5/2) << 2; /* 10^(db/80), s5.26 */
290 const long A
= FRACMUL_SHL(sqrtA
, sqrtA
, 8); /* s2.29 */
291 const long alpha
= fsincos(cutoff
, &cs
)/(2*Q
)*10 >> 1; /* s1.30 */
292 const long ap1
= (A
>> 4) + one
;
293 const long am1
= (A
>> 4) - one
;
294 const long twosqrtalpha
= 2*FRACMUL(sqrtA
, alpha
);
295 int32_t a0
, a1
, a2
; /* these are all s6.25 format */
299 b0
= FRACMUL_SHL(A
, ap1
+ FRACMUL(am1
, cs
) + twosqrtalpha
, 2);
301 b1
= -FRACMUL_SHL(A
, am1
+ FRACMUL(ap1
, cs
), 3);
303 b2
= FRACMUL_SHL(A
, ap1
+ FRACMUL(am1
, cs
) - twosqrtalpha
, 2);
305 a0
= ap1
- FRACMUL(am1
, cs
) + twosqrtalpha
;
307 a1
= 2*((am1
- FRACMUL(ap1
, cs
)));
309 a2
= ap1
- FRACMUL(am1
, cs
) - twosqrtalpha
;
312 const long rcp_a0
= DIV64(1, a0
, 55); /* s1.30 */
313 *c
++ = FRACMUL_SHL(b0
, rcp_a0
, 2); /* [0 .. 16] */
314 *c
++ = FRACMUL_SHL(b1
, rcp_a0
, 2); /* [-31.7 .. 2] */
315 *c
++ = FRACMUL_SHL(b2
, rcp_a0
, 2); /* [0 .. 16] */
316 *c
++ = FRACMUL_SHL(-a1
, rcp_a0
, 2); /* [-2 .. 2] */
317 *c
++ = FRACMUL_SHL(-a2
, rcp_a0
, 2); /* [0 .. 1] */
320 /* We realise the filters as a second order direct form 1 structure. Direct
321 * form 1 was chosen because of better numerical properties for fixed point
325 #if (!defined(CPU_COLDFIRE) && !defined(CPU_ARM))
326 void eq_filter(int32_t **x
, struct eqfilter
*f
, unsigned num
,
327 unsigned channels
, unsigned shift
)
332 /* Direct form 1 filtering code.
333 y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2],
334 where y[] is output and x[] is input.
337 for (c
= 0; c
< channels
; c
++) {
338 for (i
= 0; i
< num
; i
++) {
339 acc
= (long long) x
[c
][i
] * f
->coefs
[0];
340 acc
+= (long long) f
->history
[c
][0] * f
->coefs
[1];
341 acc
+= (long long) f
->history
[c
][1] * f
->coefs
[2];
342 acc
+= (long long) f
->history
[c
][2] * f
->coefs
[3];
343 acc
+= (long long) f
->history
[c
][3] * f
->coefs
[4];
344 f
->history
[c
][1] = f
->history
[c
][0];
345 f
->history
[c
][0] = x
[c
][i
];
346 f
->history
[c
][3] = f
->history
[c
][2];
347 x
[c
][i
] = (acc
<< shift
) >> 32;
348 f
->history
[c
][2] = x
[c
][i
];