6214 zpools going south
[illumos-gate.git] / usr / src / uts / common / fs / zfs / arc.c
blobb3afc4ff2b7468f6a18873e33d2e5b699cf896d9
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 * DVA-based Adjustable Replacement Cache
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
75 * The locking model:
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
116 * - L2ARC buflist creation
117 * - L2ARC buflist eviction
118 * - L2ARC write completion, which walks L2ARC buflists
119 * - ARC header destruction, as it removes from L2ARC buflists
120 * - ARC header release, as it removes from L2ARC buflists
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #include <sys/multilist.h>
133 #ifdef _KERNEL
134 #include <sys/vmsystm.h>
135 #include <vm/anon.h>
136 #include <sys/fs/swapnode.h>
137 #include <sys/dnlc.h>
138 #endif
139 #include <sys/callb.h>
140 #include <sys/kstat.h>
141 #include <zfs_fletcher.h>
143 #ifndef _KERNEL
144 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
145 boolean_t arc_watch = B_FALSE;
146 int arc_procfd;
147 #endif
149 static kmutex_t arc_reclaim_lock;
150 static kcondvar_t arc_reclaim_thread_cv;
151 static boolean_t arc_reclaim_thread_exit;
152 static kcondvar_t arc_reclaim_waiters_cv;
154 static kmutex_t arc_user_evicts_lock;
155 static kcondvar_t arc_user_evicts_cv;
156 static boolean_t arc_user_evicts_thread_exit;
158 uint_t arc_reduce_dnlc_percent = 3;
161 * The number of headers to evict in arc_evict_state_impl() before
162 * dropping the sublist lock and evicting from another sublist. A lower
163 * value means we're more likely to evict the "correct" header (i.e. the
164 * oldest header in the arc state), but comes with higher overhead
165 * (i.e. more invocations of arc_evict_state_impl()).
167 int zfs_arc_evict_batch_limit = 10;
170 * The number of sublists used for each of the arc state lists. If this
171 * is not set to a suitable value by the user, it will be configured to
172 * the number of CPUs on the system in arc_init().
174 int zfs_arc_num_sublists_per_state = 0;
176 /* number of seconds before growing cache again */
177 static int arc_grow_retry = 60;
179 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
180 int zfs_arc_overflow_shift = 8;
182 /* shift of arc_c for calculating both min and max arc_p */
183 static int arc_p_min_shift = 4;
185 /* log2(fraction of arc to reclaim) */
186 static int arc_shrink_shift = 7;
189 * log2(fraction of ARC which must be free to allow growing).
190 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
191 * when reading a new block into the ARC, we will evict an equal-sized block
192 * from the ARC.
194 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
195 * we will still not allow it to grow.
197 int arc_no_grow_shift = 5;
201 * minimum lifespan of a prefetch block in clock ticks
202 * (initialized in arc_init())
204 static int arc_min_prefetch_lifespan;
207 * If this percent of memory is free, don't throttle.
209 int arc_lotsfree_percent = 10;
211 static int arc_dead;
214 * The arc has filled available memory and has now warmed up.
216 static boolean_t arc_warm;
219 * These tunables are for performance analysis.
221 uint64_t zfs_arc_max;
222 uint64_t zfs_arc_min;
223 uint64_t zfs_arc_meta_limit = 0;
224 uint64_t zfs_arc_meta_min = 0;
225 int zfs_arc_grow_retry = 0;
226 int zfs_arc_shrink_shift = 0;
227 int zfs_arc_p_min_shift = 0;
228 int zfs_disable_dup_eviction = 0;
229 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
232 * Note that buffers can be in one of 6 states:
233 * ARC_anon - anonymous (discussed below)
234 * ARC_mru - recently used, currently cached
235 * ARC_mru_ghost - recentely used, no longer in cache
236 * ARC_mfu - frequently used, currently cached
237 * ARC_mfu_ghost - frequently used, no longer in cache
238 * ARC_l2c_only - exists in L2ARC but not other states
239 * When there are no active references to the buffer, they are
240 * are linked onto a list in one of these arc states. These are
241 * the only buffers that can be evicted or deleted. Within each
242 * state there are multiple lists, one for meta-data and one for
243 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
244 * etc.) is tracked separately so that it can be managed more
245 * explicitly: favored over data, limited explicitly.
247 * Anonymous buffers are buffers that are not associated with
248 * a DVA. These are buffers that hold dirty block copies
249 * before they are written to stable storage. By definition,
250 * they are "ref'd" and are considered part of arc_mru
251 * that cannot be freed. Generally, they will aquire a DVA
252 * as they are written and migrate onto the arc_mru list.
254 * The ARC_l2c_only state is for buffers that are in the second
255 * level ARC but no longer in any of the ARC_m* lists. The second
256 * level ARC itself may also contain buffers that are in any of
257 * the ARC_m* states - meaning that a buffer can exist in two
258 * places. The reason for the ARC_l2c_only state is to keep the
259 * buffer header in the hash table, so that reads that hit the
260 * second level ARC benefit from these fast lookups.
263 typedef struct arc_state {
265 * list of evictable buffers
267 multilist_t arcs_list[ARC_BUFC_NUMTYPES];
269 * total amount of evictable data in this state
271 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
273 * total amount of data in this state; this includes: evictable,
274 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
276 refcount_t arcs_size;
277 } arc_state_t;
279 /* The 6 states: */
280 static arc_state_t ARC_anon;
281 static arc_state_t ARC_mru;
282 static arc_state_t ARC_mru_ghost;
283 static arc_state_t ARC_mfu;
284 static arc_state_t ARC_mfu_ghost;
285 static arc_state_t ARC_l2c_only;
287 typedef struct arc_stats {
288 kstat_named_t arcstat_hits;
289 kstat_named_t arcstat_misses;
290 kstat_named_t arcstat_demand_data_hits;
291 kstat_named_t arcstat_demand_data_misses;
292 kstat_named_t arcstat_demand_metadata_hits;
293 kstat_named_t arcstat_demand_metadata_misses;
294 kstat_named_t arcstat_prefetch_data_hits;
295 kstat_named_t arcstat_prefetch_data_misses;
296 kstat_named_t arcstat_prefetch_metadata_hits;
297 kstat_named_t arcstat_prefetch_metadata_misses;
298 kstat_named_t arcstat_mru_hits;
299 kstat_named_t arcstat_mru_ghost_hits;
300 kstat_named_t arcstat_mfu_hits;
301 kstat_named_t arcstat_mfu_ghost_hits;
302 kstat_named_t arcstat_deleted;
304 * Number of buffers that could not be evicted because the hash lock
305 * was held by another thread. The lock may not necessarily be held
306 * by something using the same buffer, since hash locks are shared
307 * by multiple buffers.
309 kstat_named_t arcstat_mutex_miss;
311 * Number of buffers skipped because they have I/O in progress, are
312 * indrect prefetch buffers that have not lived long enough, or are
313 * not from the spa we're trying to evict from.
315 kstat_named_t arcstat_evict_skip;
317 * Number of times arc_evict_state() was unable to evict enough
318 * buffers to reach it's target amount.
320 kstat_named_t arcstat_evict_not_enough;
321 kstat_named_t arcstat_evict_l2_cached;
322 kstat_named_t arcstat_evict_l2_eligible;
323 kstat_named_t arcstat_evict_l2_ineligible;
324 kstat_named_t arcstat_evict_l2_skip;
325 kstat_named_t arcstat_hash_elements;
326 kstat_named_t arcstat_hash_elements_max;
327 kstat_named_t arcstat_hash_collisions;
328 kstat_named_t arcstat_hash_chains;
329 kstat_named_t arcstat_hash_chain_max;
330 kstat_named_t arcstat_p;
331 kstat_named_t arcstat_c;
332 kstat_named_t arcstat_c_min;
333 kstat_named_t arcstat_c_max;
334 kstat_named_t arcstat_size;
336 * Number of bytes consumed by internal ARC structures necessary
337 * for tracking purposes; these structures are not actually
338 * backed by ARC buffers. This includes arc_buf_hdr_t structures
339 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
340 * caches), and arc_buf_t structures (allocated via arc_buf_t
341 * cache).
343 kstat_named_t arcstat_hdr_size;
345 * Number of bytes consumed by ARC buffers of type equal to
346 * ARC_BUFC_DATA. This is generally consumed by buffers backing
347 * on disk user data (e.g. plain file contents).
349 kstat_named_t arcstat_data_size;
351 * Number of bytes consumed by ARC buffers of type equal to
352 * ARC_BUFC_METADATA. This is generally consumed by buffers
353 * backing on disk data that is used for internal ZFS
354 * structures (e.g. ZAP, dnode, indirect blocks, etc).
356 kstat_named_t arcstat_metadata_size;
358 * Number of bytes consumed by various buffers and structures
359 * not actually backed with ARC buffers. This includes bonus
360 * buffers (allocated directly via zio_buf_* functions),
361 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
362 * cache), and dnode_t structures (allocated via dnode_t cache).
364 kstat_named_t arcstat_other_size;
366 * Total number of bytes consumed by ARC buffers residing in the
367 * arc_anon state. This includes *all* buffers in the arc_anon
368 * state; e.g. data, metadata, evictable, and unevictable buffers
369 * are all included in this value.
371 kstat_named_t arcstat_anon_size;
373 * Number of bytes consumed by ARC buffers that meet the
374 * following criteria: backing buffers of type ARC_BUFC_DATA,
375 * residing in the arc_anon state, and are eligible for eviction
376 * (e.g. have no outstanding holds on the buffer).
378 kstat_named_t arcstat_anon_evictable_data;
380 * Number of bytes consumed by ARC buffers that meet the
381 * following criteria: backing buffers of type ARC_BUFC_METADATA,
382 * residing in the arc_anon state, and are eligible for eviction
383 * (e.g. have no outstanding holds on the buffer).
385 kstat_named_t arcstat_anon_evictable_metadata;
387 * Total number of bytes consumed by ARC buffers residing in the
388 * arc_mru state. This includes *all* buffers in the arc_mru
389 * state; e.g. data, metadata, evictable, and unevictable buffers
390 * are all included in this value.
392 kstat_named_t arcstat_mru_size;
394 * Number of bytes consumed by ARC buffers that meet the
395 * following criteria: backing buffers of type ARC_BUFC_DATA,
396 * residing in the arc_mru state, and are eligible for eviction
397 * (e.g. have no outstanding holds on the buffer).
399 kstat_named_t arcstat_mru_evictable_data;
401 * Number of bytes consumed by ARC buffers that meet the
402 * following criteria: backing buffers of type ARC_BUFC_METADATA,
403 * residing in the arc_mru state, and are eligible for eviction
404 * (e.g. have no outstanding holds on the buffer).
406 kstat_named_t arcstat_mru_evictable_metadata;
408 * Total number of bytes that *would have been* consumed by ARC
409 * buffers in the arc_mru_ghost state. The key thing to note
410 * here, is the fact that this size doesn't actually indicate
411 * RAM consumption. The ghost lists only consist of headers and
412 * don't actually have ARC buffers linked off of these headers.
413 * Thus, *if* the headers had associated ARC buffers, these
414 * buffers *would have* consumed this number of bytes.
416 kstat_named_t arcstat_mru_ghost_size;
418 * Number of bytes that *would have been* consumed by ARC
419 * buffers that are eligible for eviction, of type
420 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
422 kstat_named_t arcstat_mru_ghost_evictable_data;
424 * Number of bytes that *would have been* consumed by ARC
425 * buffers that are eligible for eviction, of type
426 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
428 kstat_named_t arcstat_mru_ghost_evictable_metadata;
430 * Total number of bytes consumed by ARC buffers residing in the
431 * arc_mfu state. This includes *all* buffers in the arc_mfu
432 * state; e.g. data, metadata, evictable, and unevictable buffers
433 * are all included in this value.
435 kstat_named_t arcstat_mfu_size;
437 * Number of bytes consumed by ARC buffers that are eligible for
438 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
439 * state.
441 kstat_named_t arcstat_mfu_evictable_data;
443 * Number of bytes consumed by ARC buffers that are eligible for
444 * eviction, of type ARC_BUFC_METADATA, and reside in the
445 * arc_mfu state.
447 kstat_named_t arcstat_mfu_evictable_metadata;
449 * Total number of bytes that *would have been* consumed by ARC
450 * buffers in the arc_mfu_ghost state. See the comment above
451 * arcstat_mru_ghost_size for more details.
453 kstat_named_t arcstat_mfu_ghost_size;
455 * Number of bytes that *would have been* consumed by ARC
456 * buffers that are eligible for eviction, of type
457 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
459 kstat_named_t arcstat_mfu_ghost_evictable_data;
461 * Number of bytes that *would have been* consumed by ARC
462 * buffers that are eligible for eviction, of type
463 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
465 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
466 kstat_named_t arcstat_l2_hits;
467 kstat_named_t arcstat_l2_misses;
468 kstat_named_t arcstat_l2_feeds;
469 kstat_named_t arcstat_l2_rw_clash;
470 kstat_named_t arcstat_l2_read_bytes;
471 kstat_named_t arcstat_l2_write_bytes;
472 kstat_named_t arcstat_l2_writes_sent;
473 kstat_named_t arcstat_l2_writes_done;
474 kstat_named_t arcstat_l2_writes_error;
475 kstat_named_t arcstat_l2_writes_lock_retry;
476 kstat_named_t arcstat_l2_evict_lock_retry;
477 kstat_named_t arcstat_l2_evict_reading;
478 kstat_named_t arcstat_l2_evict_l1cached;
479 kstat_named_t arcstat_l2_free_on_write;
480 kstat_named_t arcstat_l2_cdata_free_on_write;
481 kstat_named_t arcstat_l2_abort_lowmem;
482 kstat_named_t arcstat_l2_cksum_bad;
483 kstat_named_t arcstat_l2_io_error;
484 kstat_named_t arcstat_l2_size;
485 kstat_named_t arcstat_l2_asize;
486 kstat_named_t arcstat_l2_hdr_size;
487 kstat_named_t arcstat_l2_compress_successes;
488 kstat_named_t arcstat_l2_compress_zeros;
489 kstat_named_t arcstat_l2_compress_failures;
490 kstat_named_t arcstat_memory_throttle_count;
491 kstat_named_t arcstat_duplicate_buffers;
492 kstat_named_t arcstat_duplicate_buffers_size;
493 kstat_named_t arcstat_duplicate_reads;
494 kstat_named_t arcstat_meta_used;
495 kstat_named_t arcstat_meta_limit;
496 kstat_named_t arcstat_meta_max;
497 kstat_named_t arcstat_meta_min;
498 kstat_named_t arcstat_sync_wait_for_async;
499 kstat_named_t arcstat_demand_hit_predictive_prefetch;
500 } arc_stats_t;
502 static arc_stats_t arc_stats = {
503 { "hits", KSTAT_DATA_UINT64 },
504 { "misses", KSTAT_DATA_UINT64 },
505 { "demand_data_hits", KSTAT_DATA_UINT64 },
506 { "demand_data_misses", KSTAT_DATA_UINT64 },
507 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
508 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
509 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
510 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
511 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
512 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
513 { "mru_hits", KSTAT_DATA_UINT64 },
514 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
515 { "mfu_hits", KSTAT_DATA_UINT64 },
516 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
517 { "deleted", KSTAT_DATA_UINT64 },
518 { "mutex_miss", KSTAT_DATA_UINT64 },
519 { "evict_skip", KSTAT_DATA_UINT64 },
520 { "evict_not_enough", KSTAT_DATA_UINT64 },
521 { "evict_l2_cached", KSTAT_DATA_UINT64 },
522 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
523 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
524 { "evict_l2_skip", KSTAT_DATA_UINT64 },
525 { "hash_elements", KSTAT_DATA_UINT64 },
526 { "hash_elements_max", KSTAT_DATA_UINT64 },
527 { "hash_collisions", KSTAT_DATA_UINT64 },
528 { "hash_chains", KSTAT_DATA_UINT64 },
529 { "hash_chain_max", KSTAT_DATA_UINT64 },
530 { "p", KSTAT_DATA_UINT64 },
531 { "c", KSTAT_DATA_UINT64 },
532 { "c_min", KSTAT_DATA_UINT64 },
533 { "c_max", KSTAT_DATA_UINT64 },
534 { "size", KSTAT_DATA_UINT64 },
535 { "hdr_size", KSTAT_DATA_UINT64 },
536 { "data_size", KSTAT_DATA_UINT64 },
537 { "metadata_size", KSTAT_DATA_UINT64 },
538 { "other_size", KSTAT_DATA_UINT64 },
539 { "anon_size", KSTAT_DATA_UINT64 },
540 { "anon_evictable_data", KSTAT_DATA_UINT64 },
541 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
542 { "mru_size", KSTAT_DATA_UINT64 },
543 { "mru_evictable_data", KSTAT_DATA_UINT64 },
544 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
545 { "mru_ghost_size", KSTAT_DATA_UINT64 },
546 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
547 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
548 { "mfu_size", KSTAT_DATA_UINT64 },
549 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
550 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
551 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
552 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
553 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
554 { "l2_hits", KSTAT_DATA_UINT64 },
555 { "l2_misses", KSTAT_DATA_UINT64 },
556 { "l2_feeds", KSTAT_DATA_UINT64 },
557 { "l2_rw_clash", KSTAT_DATA_UINT64 },
558 { "l2_read_bytes", KSTAT_DATA_UINT64 },
559 { "l2_write_bytes", KSTAT_DATA_UINT64 },
560 { "l2_writes_sent", KSTAT_DATA_UINT64 },
561 { "l2_writes_done", KSTAT_DATA_UINT64 },
562 { "l2_writes_error", KSTAT_DATA_UINT64 },
563 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
564 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
565 { "l2_evict_reading", KSTAT_DATA_UINT64 },
566 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
567 { "l2_free_on_write", KSTAT_DATA_UINT64 },
568 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
569 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
570 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
571 { "l2_io_error", KSTAT_DATA_UINT64 },
572 { "l2_size", KSTAT_DATA_UINT64 },
573 { "l2_asize", KSTAT_DATA_UINT64 },
574 { "l2_hdr_size", KSTAT_DATA_UINT64 },
575 { "l2_compress_successes", KSTAT_DATA_UINT64 },
576 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
577 { "l2_compress_failures", KSTAT_DATA_UINT64 },
578 { "memory_throttle_count", KSTAT_DATA_UINT64 },
579 { "duplicate_buffers", KSTAT_DATA_UINT64 },
580 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
581 { "duplicate_reads", KSTAT_DATA_UINT64 },
582 { "arc_meta_used", KSTAT_DATA_UINT64 },
583 { "arc_meta_limit", KSTAT_DATA_UINT64 },
584 { "arc_meta_max", KSTAT_DATA_UINT64 },
585 { "arc_meta_min", KSTAT_DATA_UINT64 },
586 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
587 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
590 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
592 #define ARCSTAT_INCR(stat, val) \
593 atomic_add_64(&arc_stats.stat.value.ui64, (val))
595 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
596 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
598 #define ARCSTAT_MAX(stat, val) { \
599 uint64_t m; \
600 while ((val) > (m = arc_stats.stat.value.ui64) && \
601 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
602 continue; \
605 #define ARCSTAT_MAXSTAT(stat) \
606 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
609 * We define a macro to allow ARC hits/misses to be easily broken down by
610 * two separate conditions, giving a total of four different subtypes for
611 * each of hits and misses (so eight statistics total).
613 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
614 if (cond1) { \
615 if (cond2) { \
616 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
617 } else { \
618 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
620 } else { \
621 if (cond2) { \
622 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
623 } else { \
624 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
628 kstat_t *arc_ksp;
629 static arc_state_t *arc_anon;
630 static arc_state_t *arc_mru;
631 static arc_state_t *arc_mru_ghost;
632 static arc_state_t *arc_mfu;
633 static arc_state_t *arc_mfu_ghost;
634 static arc_state_t *arc_l2c_only;
637 * There are several ARC variables that are critical to export as kstats --
638 * but we don't want to have to grovel around in the kstat whenever we wish to
639 * manipulate them. For these variables, we therefore define them to be in
640 * terms of the statistic variable. This assures that we are not introducing
641 * the possibility of inconsistency by having shadow copies of the variables,
642 * while still allowing the code to be readable.
644 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
645 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
646 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
647 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
648 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
649 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
650 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
651 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
652 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
654 #define L2ARC_IS_VALID_COMPRESS(_c_) \
655 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
657 static int arc_no_grow; /* Don't try to grow cache size */
658 static uint64_t arc_tempreserve;
659 static uint64_t arc_loaned_bytes;
661 typedef struct arc_callback arc_callback_t;
663 struct arc_callback {
664 void *acb_private;
665 arc_done_func_t *acb_done;
666 arc_buf_t *acb_buf;
667 zio_t *acb_zio_dummy;
668 arc_callback_t *acb_next;
671 typedef struct arc_write_callback arc_write_callback_t;
673 struct arc_write_callback {
674 void *awcb_private;
675 arc_done_func_t *awcb_ready;
676 arc_done_func_t *awcb_physdone;
677 arc_done_func_t *awcb_done;
678 arc_buf_t *awcb_buf;
682 * ARC buffers are separated into multiple structs as a memory saving measure:
683 * - Common fields struct, always defined, and embedded within it:
684 * - L2-only fields, always allocated but undefined when not in L2ARC
685 * - L1-only fields, only allocated when in L1ARC
687 * Buffer in L1 Buffer only in L2
688 * +------------------------+ +------------------------+
689 * | arc_buf_hdr_t | | arc_buf_hdr_t |
690 * | | | |
691 * | | | |
692 * | | | |
693 * +------------------------+ +------------------------+
694 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
695 * | (undefined if L1-only) | | |
696 * +------------------------+ +------------------------+
697 * | l1arc_buf_hdr_t |
698 * | |
699 * | |
700 * | |
701 * | |
702 * +------------------------+
704 * Because it's possible for the L2ARC to become extremely large, we can wind
705 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
706 * is minimized by only allocating the fields necessary for an L1-cached buffer
707 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
708 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
709 * words in pointers. arc_hdr_realloc() is used to switch a header between
710 * these two allocation states.
712 typedef struct l1arc_buf_hdr {
713 kmutex_t b_freeze_lock;
714 #ifdef ZFS_DEBUG
716 * used for debugging wtih kmem_flags - by allocating and freeing
717 * b_thawed when the buffer is thawed, we get a record of the stack
718 * trace that thawed it.
720 void *b_thawed;
721 #endif
723 arc_buf_t *b_buf;
724 uint32_t b_datacnt;
725 /* for waiting on writes to complete */
726 kcondvar_t b_cv;
728 /* protected by arc state mutex */
729 arc_state_t *b_state;
730 multilist_node_t b_arc_node;
732 /* updated atomically */
733 clock_t b_arc_access;
735 /* self protecting */
736 refcount_t b_refcnt;
738 arc_callback_t *b_acb;
739 /* temporary buffer holder for in-flight compressed data */
740 void *b_tmp_cdata;
741 } l1arc_buf_hdr_t;
743 typedef struct l2arc_dev l2arc_dev_t;
745 typedef struct l2arc_buf_hdr {
746 /* protected by arc_buf_hdr mutex */
747 l2arc_dev_t *b_dev; /* L2ARC device */
748 uint64_t b_daddr; /* disk address, offset byte */
749 /* real alloc'd buffer size depending on b_compress applied */
750 int32_t b_asize;
751 uint8_t b_compress;
753 list_node_t b_l2node;
754 } l2arc_buf_hdr_t;
756 struct arc_buf_hdr {
757 /* protected by hash lock */
758 dva_t b_dva;
759 uint64_t b_birth;
761 * Even though this checksum is only set/verified when a buffer is in
762 * the L1 cache, it needs to be in the set of common fields because it
763 * must be preserved from the time before a buffer is written out to
764 * L2ARC until after it is read back in.
766 zio_cksum_t *b_freeze_cksum;
768 arc_buf_hdr_t *b_hash_next;
769 arc_flags_t b_flags;
771 /* immutable */
772 int32_t b_size;
773 uint64_t b_spa;
775 /* L2ARC fields. Undefined when not in L2ARC. */
776 l2arc_buf_hdr_t b_l2hdr;
777 /* L1ARC fields. Undefined when in l2arc_only state */
778 l1arc_buf_hdr_t b_l1hdr;
781 static arc_buf_t *arc_eviction_list;
782 static arc_buf_hdr_t arc_eviction_hdr;
784 #define GHOST_STATE(state) \
785 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
786 (state) == arc_l2c_only)
788 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
789 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
790 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
791 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
792 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
793 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
795 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
796 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
797 #define HDR_L2_READING(hdr) \
798 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
799 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
800 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
801 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
802 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
804 #define HDR_ISTYPE_METADATA(hdr) \
805 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
806 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
808 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
809 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
812 * Other sizes
815 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
816 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
819 * Hash table routines
822 #define HT_LOCK_PAD 64
824 struct ht_lock {
825 kmutex_t ht_lock;
826 #ifdef _KERNEL
827 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
828 #endif
831 #define BUF_LOCKS 256
832 typedef struct buf_hash_table {
833 uint64_t ht_mask;
834 arc_buf_hdr_t **ht_table;
835 struct ht_lock ht_locks[BUF_LOCKS];
836 } buf_hash_table_t;
838 static buf_hash_table_t buf_hash_table;
840 #define BUF_HASH_INDEX(spa, dva, birth) \
841 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
842 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
843 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
844 #define HDR_LOCK(hdr) \
845 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
847 uint64_t zfs_crc64_table[256];
850 * Level 2 ARC
853 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
854 #define L2ARC_HEADROOM 2 /* num of writes */
856 * If we discover during ARC scan any buffers to be compressed, we boost
857 * our headroom for the next scanning cycle by this percentage multiple.
859 #define L2ARC_HEADROOM_BOOST 200
860 #define L2ARC_FEED_SECS 1 /* caching interval secs */
861 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
864 * Used to distinguish headers that are being process by
865 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
866 * address. This can happen when the header is added to the l2arc's list
867 * of buffers to write in the first stage of l2arc_write_buffers(), but
868 * has not yet been written out which happens in the second stage of
869 * l2arc_write_buffers().
871 #define L2ARC_ADDR_UNSET ((uint64_t)(-1))
873 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
874 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
876 /* L2ARC Performance Tunables */
877 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
878 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
879 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
880 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
881 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
882 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
883 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
884 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
885 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
888 * L2ARC Internals
890 struct l2arc_dev {
891 vdev_t *l2ad_vdev; /* vdev */
892 spa_t *l2ad_spa; /* spa */
893 uint64_t l2ad_hand; /* next write location */
894 uint64_t l2ad_start; /* first addr on device */
895 uint64_t l2ad_end; /* last addr on device */
896 boolean_t l2ad_first; /* first sweep through */
897 boolean_t l2ad_writing; /* currently writing */
898 kmutex_t l2ad_mtx; /* lock for buffer list */
899 list_t l2ad_buflist; /* buffer list */
900 list_node_t l2ad_node; /* device list node */
901 refcount_t l2ad_alloc; /* allocated bytes */
904 static list_t L2ARC_dev_list; /* device list */
905 static list_t *l2arc_dev_list; /* device list pointer */
906 static kmutex_t l2arc_dev_mtx; /* device list mutex */
907 static l2arc_dev_t *l2arc_dev_last; /* last device used */
908 static list_t L2ARC_free_on_write; /* free after write buf list */
909 static list_t *l2arc_free_on_write; /* free after write list ptr */
910 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
911 static uint64_t l2arc_ndev; /* number of devices */
913 typedef struct l2arc_read_callback {
914 arc_buf_t *l2rcb_buf; /* read buffer */
915 spa_t *l2rcb_spa; /* spa */
916 blkptr_t l2rcb_bp; /* original blkptr */
917 zbookmark_phys_t l2rcb_zb; /* original bookmark */
918 int l2rcb_flags; /* original flags */
919 enum zio_compress l2rcb_compress; /* applied compress */
920 } l2arc_read_callback_t;
922 typedef struct l2arc_write_callback {
923 l2arc_dev_t *l2wcb_dev; /* device info */
924 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
925 } l2arc_write_callback_t;
927 typedef struct l2arc_data_free {
928 /* protected by l2arc_free_on_write_mtx */
929 void *l2df_data;
930 size_t l2df_size;
931 void (*l2df_func)(void *, size_t);
932 list_node_t l2df_list_node;
933 } l2arc_data_free_t;
935 static kmutex_t l2arc_feed_thr_lock;
936 static kcondvar_t l2arc_feed_thr_cv;
937 static uint8_t l2arc_thread_exit;
939 static void arc_get_data_buf(arc_buf_t *);
940 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
941 static boolean_t arc_is_overflowing();
942 static void arc_buf_watch(arc_buf_t *);
944 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
945 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
947 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
948 static void l2arc_read_done(zio_t *);
950 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
951 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
952 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
954 static uint64_t
955 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
957 uint8_t *vdva = (uint8_t *)dva;
958 uint64_t crc = -1ULL;
959 int i;
961 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
963 for (i = 0; i < sizeof (dva_t); i++)
964 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
966 crc ^= (spa>>8) ^ birth;
968 return (crc);
971 #define BUF_EMPTY(buf) \
972 ((buf)->b_dva.dva_word[0] == 0 && \
973 (buf)->b_dva.dva_word[1] == 0)
975 #define BUF_EQUAL(spa, dva, birth, buf) \
976 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
977 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
978 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
980 static void
981 buf_discard_identity(arc_buf_hdr_t *hdr)
983 hdr->b_dva.dva_word[0] = 0;
984 hdr->b_dva.dva_word[1] = 0;
985 hdr->b_birth = 0;
988 static arc_buf_hdr_t *
989 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
991 const dva_t *dva = BP_IDENTITY(bp);
992 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
993 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
994 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
995 arc_buf_hdr_t *hdr;
997 mutex_enter(hash_lock);
998 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
999 hdr = hdr->b_hash_next) {
1000 if (BUF_EQUAL(spa, dva, birth, hdr)) {
1001 *lockp = hash_lock;
1002 return (hdr);
1005 mutex_exit(hash_lock);
1006 *lockp = NULL;
1007 return (NULL);
1011 * Insert an entry into the hash table. If there is already an element
1012 * equal to elem in the hash table, then the already existing element
1013 * will be returned and the new element will not be inserted.
1014 * Otherwise returns NULL.
1015 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1017 static arc_buf_hdr_t *
1018 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1020 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1021 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1022 arc_buf_hdr_t *fhdr;
1023 uint32_t i;
1025 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1026 ASSERT(hdr->b_birth != 0);
1027 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1029 if (lockp != NULL) {
1030 *lockp = hash_lock;
1031 mutex_enter(hash_lock);
1032 } else {
1033 ASSERT(MUTEX_HELD(hash_lock));
1036 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1037 fhdr = fhdr->b_hash_next, i++) {
1038 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1039 return (fhdr);
1042 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1043 buf_hash_table.ht_table[idx] = hdr;
1044 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1046 /* collect some hash table performance data */
1047 if (i > 0) {
1048 ARCSTAT_BUMP(arcstat_hash_collisions);
1049 if (i == 1)
1050 ARCSTAT_BUMP(arcstat_hash_chains);
1052 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1055 ARCSTAT_BUMP(arcstat_hash_elements);
1056 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1058 return (NULL);
1061 static void
1062 buf_hash_remove(arc_buf_hdr_t *hdr)
1064 arc_buf_hdr_t *fhdr, **hdrp;
1065 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1067 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1068 ASSERT(HDR_IN_HASH_TABLE(hdr));
1070 hdrp = &buf_hash_table.ht_table[idx];
1071 while ((fhdr = *hdrp) != hdr) {
1072 ASSERT(fhdr != NULL);
1073 hdrp = &fhdr->b_hash_next;
1075 *hdrp = hdr->b_hash_next;
1076 hdr->b_hash_next = NULL;
1077 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1079 /* collect some hash table performance data */
1080 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1082 if (buf_hash_table.ht_table[idx] &&
1083 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1084 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1088 * Global data structures and functions for the buf kmem cache.
1090 static kmem_cache_t *hdr_full_cache;
1091 static kmem_cache_t *hdr_l2only_cache;
1092 static kmem_cache_t *buf_cache;
1094 static void
1095 buf_fini(void)
1097 int i;
1099 kmem_free(buf_hash_table.ht_table,
1100 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1101 for (i = 0; i < BUF_LOCKS; i++)
1102 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1103 kmem_cache_destroy(hdr_full_cache);
1104 kmem_cache_destroy(hdr_l2only_cache);
1105 kmem_cache_destroy(buf_cache);
1109 * Constructor callback - called when the cache is empty
1110 * and a new buf is requested.
1112 /* ARGSUSED */
1113 static int
1114 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1116 arc_buf_hdr_t *hdr = vbuf;
1118 bzero(hdr, HDR_FULL_SIZE);
1119 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1120 refcount_create(&hdr->b_l1hdr.b_refcnt);
1121 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1122 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1123 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1125 return (0);
1128 /* ARGSUSED */
1129 static int
1130 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1132 arc_buf_hdr_t *hdr = vbuf;
1134 bzero(hdr, HDR_L2ONLY_SIZE);
1135 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1137 return (0);
1140 /* ARGSUSED */
1141 static int
1142 buf_cons(void *vbuf, void *unused, int kmflag)
1144 arc_buf_t *buf = vbuf;
1146 bzero(buf, sizeof (arc_buf_t));
1147 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1148 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1150 return (0);
1154 * Destructor callback - called when a cached buf is
1155 * no longer required.
1157 /* ARGSUSED */
1158 static void
1159 hdr_full_dest(void *vbuf, void *unused)
1161 arc_buf_hdr_t *hdr = vbuf;
1163 ASSERT(BUF_EMPTY(hdr));
1164 cv_destroy(&hdr->b_l1hdr.b_cv);
1165 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1166 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1167 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1168 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1171 /* ARGSUSED */
1172 static void
1173 hdr_l2only_dest(void *vbuf, void *unused)
1175 arc_buf_hdr_t *hdr = vbuf;
1177 ASSERT(BUF_EMPTY(hdr));
1178 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1181 /* ARGSUSED */
1182 static void
1183 buf_dest(void *vbuf, void *unused)
1185 arc_buf_t *buf = vbuf;
1187 mutex_destroy(&buf->b_evict_lock);
1188 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1192 * Reclaim callback -- invoked when memory is low.
1194 /* ARGSUSED */
1195 static void
1196 hdr_recl(void *unused)
1198 dprintf("hdr_recl called\n");
1200 * umem calls the reclaim func when we destroy the buf cache,
1201 * which is after we do arc_fini().
1203 if (!arc_dead)
1204 cv_signal(&arc_reclaim_thread_cv);
1207 static void
1208 buf_init(void)
1210 uint64_t *ct;
1211 uint64_t hsize = 1ULL << 12;
1212 int i, j;
1215 * The hash table is big enough to fill all of physical memory
1216 * with an average block size of zfs_arc_average_blocksize (default 8K).
1217 * By default, the table will take up
1218 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1220 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1221 hsize <<= 1;
1222 retry:
1223 buf_hash_table.ht_mask = hsize - 1;
1224 buf_hash_table.ht_table =
1225 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1226 if (buf_hash_table.ht_table == NULL) {
1227 ASSERT(hsize > (1ULL << 8));
1228 hsize >>= 1;
1229 goto retry;
1232 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1233 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1234 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1235 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1236 NULL, NULL, 0);
1237 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1238 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1240 for (i = 0; i < 256; i++)
1241 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1242 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1244 for (i = 0; i < BUF_LOCKS; i++) {
1245 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1246 NULL, MUTEX_DEFAULT, NULL);
1251 * Transition between the two allocation states for the arc_buf_hdr struct.
1252 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1253 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1254 * version is used when a cache buffer is only in the L2ARC in order to reduce
1255 * memory usage.
1257 static arc_buf_hdr_t *
1258 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1260 ASSERT(HDR_HAS_L2HDR(hdr));
1262 arc_buf_hdr_t *nhdr;
1263 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1265 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1266 (old == hdr_l2only_cache && new == hdr_full_cache));
1268 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1270 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1271 buf_hash_remove(hdr);
1273 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1275 if (new == hdr_full_cache) {
1276 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1278 * arc_access and arc_change_state need to be aware that a
1279 * header has just come out of L2ARC, so we set its state to
1280 * l2c_only even though it's about to change.
1282 nhdr->b_l1hdr.b_state = arc_l2c_only;
1284 /* Verify previous threads set to NULL before freeing */
1285 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1286 } else {
1287 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1288 ASSERT0(hdr->b_l1hdr.b_datacnt);
1291 * If we've reached here, We must have been called from
1292 * arc_evict_hdr(), as such we should have already been
1293 * removed from any ghost list we were previously on
1294 * (which protects us from racing with arc_evict_state),
1295 * thus no locking is needed during this check.
1297 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1300 * A buffer must not be moved into the arc_l2c_only
1301 * state if it's not finished being written out to the
1302 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1303 * might try to be accessed, even though it was removed.
1305 VERIFY(!HDR_L2_WRITING(hdr));
1306 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1308 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1311 * The header has been reallocated so we need to re-insert it into any
1312 * lists it was on.
1314 (void) buf_hash_insert(nhdr, NULL);
1316 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1318 mutex_enter(&dev->l2ad_mtx);
1321 * We must place the realloc'ed header back into the list at
1322 * the same spot. Otherwise, if it's placed earlier in the list,
1323 * l2arc_write_buffers() could find it during the function's
1324 * write phase, and try to write it out to the l2arc.
1326 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1327 list_remove(&dev->l2ad_buflist, hdr);
1329 mutex_exit(&dev->l2ad_mtx);
1332 * Since we're using the pointer address as the tag when
1333 * incrementing and decrementing the l2ad_alloc refcount, we
1334 * must remove the old pointer (that we're about to destroy) and
1335 * add the new pointer to the refcount. Otherwise we'd remove
1336 * the wrong pointer address when calling arc_hdr_destroy() later.
1339 (void) refcount_remove_many(&dev->l2ad_alloc,
1340 hdr->b_l2hdr.b_asize, hdr);
1342 (void) refcount_add_many(&dev->l2ad_alloc,
1343 nhdr->b_l2hdr.b_asize, nhdr);
1345 buf_discard_identity(hdr);
1346 hdr->b_freeze_cksum = NULL;
1347 kmem_cache_free(old, hdr);
1349 return (nhdr);
1353 #define ARC_MINTIME (hz>>4) /* 62 ms */
1355 static void
1356 arc_cksum_verify(arc_buf_t *buf)
1358 zio_cksum_t zc;
1360 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1361 return;
1363 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1364 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1365 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1366 return;
1368 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1369 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1370 panic("buffer modified while frozen!");
1371 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1374 static int
1375 arc_cksum_equal(arc_buf_t *buf)
1377 zio_cksum_t zc;
1378 int equal;
1380 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1381 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1382 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1383 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1385 return (equal);
1388 static void
1389 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1391 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1392 return;
1394 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1395 if (buf->b_hdr->b_freeze_cksum != NULL) {
1396 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1397 return;
1399 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1400 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1401 buf->b_hdr->b_freeze_cksum);
1402 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1403 arc_buf_watch(buf);
1406 #ifndef _KERNEL
1407 typedef struct procctl {
1408 long cmd;
1409 prwatch_t prwatch;
1410 } procctl_t;
1411 #endif
1413 /* ARGSUSED */
1414 static void
1415 arc_buf_unwatch(arc_buf_t *buf)
1417 #ifndef _KERNEL
1418 if (arc_watch) {
1419 int result;
1420 procctl_t ctl;
1421 ctl.cmd = PCWATCH;
1422 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1423 ctl.prwatch.pr_size = 0;
1424 ctl.prwatch.pr_wflags = 0;
1425 result = write(arc_procfd, &ctl, sizeof (ctl));
1426 ASSERT3U(result, ==, sizeof (ctl));
1428 #endif
1431 /* ARGSUSED */
1432 static void
1433 arc_buf_watch(arc_buf_t *buf)
1435 #ifndef _KERNEL
1436 if (arc_watch) {
1437 int result;
1438 procctl_t ctl;
1439 ctl.cmd = PCWATCH;
1440 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1441 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1442 ctl.prwatch.pr_wflags = WA_WRITE;
1443 result = write(arc_procfd, &ctl, sizeof (ctl));
1444 ASSERT3U(result, ==, sizeof (ctl));
1446 #endif
1449 static arc_buf_contents_t
1450 arc_buf_type(arc_buf_hdr_t *hdr)
1452 if (HDR_ISTYPE_METADATA(hdr)) {
1453 return (ARC_BUFC_METADATA);
1454 } else {
1455 return (ARC_BUFC_DATA);
1459 static uint32_t
1460 arc_bufc_to_flags(arc_buf_contents_t type)
1462 switch (type) {
1463 case ARC_BUFC_DATA:
1464 /* metadata field is 0 if buffer contains normal data */
1465 return (0);
1466 case ARC_BUFC_METADATA:
1467 return (ARC_FLAG_BUFC_METADATA);
1468 default:
1469 break;
1471 panic("undefined ARC buffer type!");
1472 return ((uint32_t)-1);
1475 void
1476 arc_buf_thaw(arc_buf_t *buf)
1478 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1479 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1480 panic("modifying non-anon buffer!");
1481 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1482 panic("modifying buffer while i/o in progress!");
1483 arc_cksum_verify(buf);
1486 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1487 if (buf->b_hdr->b_freeze_cksum != NULL) {
1488 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1489 buf->b_hdr->b_freeze_cksum = NULL;
1492 #ifdef ZFS_DEBUG
1493 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1494 if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1495 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1496 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1498 #endif
1500 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1502 arc_buf_unwatch(buf);
1505 void
1506 arc_buf_freeze(arc_buf_t *buf)
1508 kmutex_t *hash_lock;
1510 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1511 return;
1513 hash_lock = HDR_LOCK(buf->b_hdr);
1514 mutex_enter(hash_lock);
1516 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1517 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1518 arc_cksum_compute(buf, B_FALSE);
1519 mutex_exit(hash_lock);
1523 static void
1524 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1526 ASSERT(HDR_HAS_L1HDR(hdr));
1527 ASSERT(MUTEX_HELD(hash_lock));
1528 arc_state_t *state = hdr->b_l1hdr.b_state;
1530 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1531 (state != arc_anon)) {
1532 /* We don't use the L2-only state list. */
1533 if (state != arc_l2c_only) {
1534 arc_buf_contents_t type = arc_buf_type(hdr);
1535 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1536 multilist_t *list = &state->arcs_list[type];
1537 uint64_t *size = &state->arcs_lsize[type];
1539 multilist_remove(list, hdr);
1541 if (GHOST_STATE(state)) {
1542 ASSERT0(hdr->b_l1hdr.b_datacnt);
1543 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1544 delta = hdr->b_size;
1546 ASSERT(delta > 0);
1547 ASSERT3U(*size, >=, delta);
1548 atomic_add_64(size, -delta);
1550 /* remove the prefetch flag if we get a reference */
1551 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1555 static int
1556 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1558 int cnt;
1559 arc_state_t *state = hdr->b_l1hdr.b_state;
1561 ASSERT(HDR_HAS_L1HDR(hdr));
1562 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1563 ASSERT(!GHOST_STATE(state));
1566 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1567 * check to prevent usage of the arc_l2c_only list.
1569 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1570 (state != arc_anon)) {
1571 arc_buf_contents_t type = arc_buf_type(hdr);
1572 multilist_t *list = &state->arcs_list[type];
1573 uint64_t *size = &state->arcs_lsize[type];
1575 multilist_insert(list, hdr);
1577 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1578 atomic_add_64(size, hdr->b_size *
1579 hdr->b_l1hdr.b_datacnt);
1581 return (cnt);
1585 * Move the supplied buffer to the indicated state. The hash lock
1586 * for the buffer must be held by the caller.
1588 static void
1589 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1590 kmutex_t *hash_lock)
1592 arc_state_t *old_state;
1593 int64_t refcnt;
1594 uint32_t datacnt;
1595 uint64_t from_delta, to_delta;
1596 arc_buf_contents_t buftype = arc_buf_type(hdr);
1599 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1600 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1601 * L1 hdr doesn't always exist when we change state to arc_anon before
1602 * destroying a header, in which case reallocating to add the L1 hdr is
1603 * pointless.
1605 if (HDR_HAS_L1HDR(hdr)) {
1606 old_state = hdr->b_l1hdr.b_state;
1607 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1608 datacnt = hdr->b_l1hdr.b_datacnt;
1609 } else {
1610 old_state = arc_l2c_only;
1611 refcnt = 0;
1612 datacnt = 0;
1615 ASSERT(MUTEX_HELD(hash_lock));
1616 ASSERT3P(new_state, !=, old_state);
1617 ASSERT(refcnt == 0 || datacnt > 0);
1618 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1619 ASSERT(old_state != arc_anon || datacnt <= 1);
1621 from_delta = to_delta = datacnt * hdr->b_size;
1624 * If this buffer is evictable, transfer it from the
1625 * old state list to the new state list.
1627 if (refcnt == 0) {
1628 if (old_state != arc_anon && old_state != arc_l2c_only) {
1629 uint64_t *size = &old_state->arcs_lsize[buftype];
1631 ASSERT(HDR_HAS_L1HDR(hdr));
1632 multilist_remove(&old_state->arcs_list[buftype], hdr);
1635 * If prefetching out of the ghost cache,
1636 * we will have a non-zero datacnt.
1638 if (GHOST_STATE(old_state) && datacnt == 0) {
1639 /* ghost elements have a ghost size */
1640 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1641 from_delta = hdr->b_size;
1643 ASSERT3U(*size, >=, from_delta);
1644 atomic_add_64(size, -from_delta);
1646 if (new_state != arc_anon && new_state != arc_l2c_only) {
1647 uint64_t *size = &new_state->arcs_lsize[buftype];
1650 * An L1 header always exists here, since if we're
1651 * moving to some L1-cached state (i.e. not l2c_only or
1652 * anonymous), we realloc the header to add an L1hdr
1653 * beforehand.
1655 ASSERT(HDR_HAS_L1HDR(hdr));
1656 multilist_insert(&new_state->arcs_list[buftype], hdr);
1658 /* ghost elements have a ghost size */
1659 if (GHOST_STATE(new_state)) {
1660 ASSERT0(datacnt);
1661 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1662 to_delta = hdr->b_size;
1664 atomic_add_64(size, to_delta);
1668 ASSERT(!BUF_EMPTY(hdr));
1669 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1670 buf_hash_remove(hdr);
1672 /* adjust state sizes (ignore arc_l2c_only) */
1674 if (to_delta && new_state != arc_l2c_only) {
1675 ASSERT(HDR_HAS_L1HDR(hdr));
1676 if (GHOST_STATE(new_state)) {
1677 ASSERT0(datacnt);
1680 * We moving a header to a ghost state, we first
1681 * remove all arc buffers. Thus, we'll have a
1682 * datacnt of zero, and no arc buffer to use for
1683 * the reference. As a result, we use the arc
1684 * header pointer for the reference.
1686 (void) refcount_add_many(&new_state->arcs_size,
1687 hdr->b_size, hdr);
1688 } else {
1689 ASSERT3U(datacnt, !=, 0);
1692 * Each individual buffer holds a unique reference,
1693 * thus we must remove each of these references one
1694 * at a time.
1696 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1697 buf = buf->b_next) {
1698 (void) refcount_add_many(&new_state->arcs_size,
1699 hdr->b_size, buf);
1704 if (from_delta && old_state != arc_l2c_only) {
1705 ASSERT(HDR_HAS_L1HDR(hdr));
1706 if (GHOST_STATE(old_state)) {
1708 * When moving a header off of a ghost state,
1709 * there's the possibility for datacnt to be
1710 * non-zero. This is because we first add the
1711 * arc buffer to the header prior to changing
1712 * the header's state. Since we used the header
1713 * for the reference when putting the header on
1714 * the ghost state, we must balance that and use
1715 * the header when removing off the ghost state
1716 * (even though datacnt is non zero).
1719 IMPLY(datacnt == 0, new_state == arc_anon ||
1720 new_state == arc_l2c_only);
1722 (void) refcount_remove_many(&old_state->arcs_size,
1723 hdr->b_size, hdr);
1724 } else {
1725 ASSERT3P(datacnt, !=, 0);
1728 * Each individual buffer holds a unique reference,
1729 * thus we must remove each of these references one
1730 * at a time.
1732 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1733 buf = buf->b_next) {
1734 (void) refcount_remove_many(
1735 &old_state->arcs_size, hdr->b_size, buf);
1740 if (HDR_HAS_L1HDR(hdr))
1741 hdr->b_l1hdr.b_state = new_state;
1744 * L2 headers should never be on the L2 state list since they don't
1745 * have L1 headers allocated.
1747 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1748 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1751 void
1752 arc_space_consume(uint64_t space, arc_space_type_t type)
1754 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1756 switch (type) {
1757 case ARC_SPACE_DATA:
1758 ARCSTAT_INCR(arcstat_data_size, space);
1759 break;
1760 case ARC_SPACE_META:
1761 ARCSTAT_INCR(arcstat_metadata_size, space);
1762 break;
1763 case ARC_SPACE_OTHER:
1764 ARCSTAT_INCR(arcstat_other_size, space);
1765 break;
1766 case ARC_SPACE_HDRS:
1767 ARCSTAT_INCR(arcstat_hdr_size, space);
1768 break;
1769 case ARC_SPACE_L2HDRS:
1770 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1771 break;
1774 if (type != ARC_SPACE_DATA)
1775 ARCSTAT_INCR(arcstat_meta_used, space);
1777 atomic_add_64(&arc_size, space);
1780 void
1781 arc_space_return(uint64_t space, arc_space_type_t type)
1783 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1785 switch (type) {
1786 case ARC_SPACE_DATA:
1787 ARCSTAT_INCR(arcstat_data_size, -space);
1788 break;
1789 case ARC_SPACE_META:
1790 ARCSTAT_INCR(arcstat_metadata_size, -space);
1791 break;
1792 case ARC_SPACE_OTHER:
1793 ARCSTAT_INCR(arcstat_other_size, -space);
1794 break;
1795 case ARC_SPACE_HDRS:
1796 ARCSTAT_INCR(arcstat_hdr_size, -space);
1797 break;
1798 case ARC_SPACE_L2HDRS:
1799 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1800 break;
1803 if (type != ARC_SPACE_DATA) {
1804 ASSERT(arc_meta_used >= space);
1805 if (arc_meta_max < arc_meta_used)
1806 arc_meta_max = arc_meta_used;
1807 ARCSTAT_INCR(arcstat_meta_used, -space);
1810 ASSERT(arc_size >= space);
1811 atomic_add_64(&arc_size, -space);
1814 arc_buf_t *
1815 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1817 arc_buf_hdr_t *hdr;
1818 arc_buf_t *buf;
1820 ASSERT3U(size, >, 0);
1821 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1822 ASSERT(BUF_EMPTY(hdr));
1823 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1824 hdr->b_size = size;
1825 hdr->b_spa = spa_load_guid(spa);
1827 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1828 buf->b_hdr = hdr;
1829 buf->b_data = NULL;
1830 buf->b_efunc = NULL;
1831 buf->b_private = NULL;
1832 buf->b_next = NULL;
1834 hdr->b_flags = arc_bufc_to_flags(type);
1835 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1837 hdr->b_l1hdr.b_buf = buf;
1838 hdr->b_l1hdr.b_state = arc_anon;
1839 hdr->b_l1hdr.b_arc_access = 0;
1840 hdr->b_l1hdr.b_datacnt = 1;
1841 hdr->b_l1hdr.b_tmp_cdata = NULL;
1843 arc_get_data_buf(buf);
1844 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1845 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1847 return (buf);
1850 static char *arc_onloan_tag = "onloan";
1853 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1854 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1855 * buffers must be returned to the arc before they can be used by the DMU or
1856 * freed.
1858 arc_buf_t *
1859 arc_loan_buf(spa_t *spa, int size)
1861 arc_buf_t *buf;
1863 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1865 atomic_add_64(&arc_loaned_bytes, size);
1866 return (buf);
1870 * Return a loaned arc buffer to the arc.
1872 void
1873 arc_return_buf(arc_buf_t *buf, void *tag)
1875 arc_buf_hdr_t *hdr = buf->b_hdr;
1877 ASSERT(buf->b_data != NULL);
1878 ASSERT(HDR_HAS_L1HDR(hdr));
1879 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1880 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1882 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1885 /* Detach an arc_buf from a dbuf (tag) */
1886 void
1887 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1889 arc_buf_hdr_t *hdr = buf->b_hdr;
1891 ASSERT(buf->b_data != NULL);
1892 ASSERT(HDR_HAS_L1HDR(hdr));
1893 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1894 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1895 buf->b_efunc = NULL;
1896 buf->b_private = NULL;
1898 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1901 static arc_buf_t *
1902 arc_buf_clone(arc_buf_t *from)
1904 arc_buf_t *buf;
1905 arc_buf_hdr_t *hdr = from->b_hdr;
1906 uint64_t size = hdr->b_size;
1908 ASSERT(HDR_HAS_L1HDR(hdr));
1909 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1911 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1912 buf->b_hdr = hdr;
1913 buf->b_data = NULL;
1914 buf->b_efunc = NULL;
1915 buf->b_private = NULL;
1916 buf->b_next = hdr->b_l1hdr.b_buf;
1917 hdr->b_l1hdr.b_buf = buf;
1918 arc_get_data_buf(buf);
1919 bcopy(from->b_data, buf->b_data, size);
1922 * This buffer already exists in the arc so create a duplicate
1923 * copy for the caller. If the buffer is associated with user data
1924 * then track the size and number of duplicates. These stats will be
1925 * updated as duplicate buffers are created and destroyed.
1927 if (HDR_ISTYPE_DATA(hdr)) {
1928 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1929 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1931 hdr->b_l1hdr.b_datacnt += 1;
1932 return (buf);
1935 void
1936 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1938 arc_buf_hdr_t *hdr;
1939 kmutex_t *hash_lock;
1942 * Check to see if this buffer is evicted. Callers
1943 * must verify b_data != NULL to know if the add_ref
1944 * was successful.
1946 mutex_enter(&buf->b_evict_lock);
1947 if (buf->b_data == NULL) {
1948 mutex_exit(&buf->b_evict_lock);
1949 return;
1951 hash_lock = HDR_LOCK(buf->b_hdr);
1952 mutex_enter(hash_lock);
1953 hdr = buf->b_hdr;
1954 ASSERT(HDR_HAS_L1HDR(hdr));
1955 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1956 mutex_exit(&buf->b_evict_lock);
1958 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1959 hdr->b_l1hdr.b_state == arc_mfu);
1961 add_reference(hdr, hash_lock, tag);
1962 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1963 arc_access(hdr, hash_lock);
1964 mutex_exit(hash_lock);
1965 ARCSTAT_BUMP(arcstat_hits);
1966 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1967 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1968 data, metadata, hits);
1971 static void
1972 arc_buf_free_on_write(void *data, size_t size,
1973 void (*free_func)(void *, size_t))
1975 l2arc_data_free_t *df;
1977 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1978 df->l2df_data = data;
1979 df->l2df_size = size;
1980 df->l2df_func = free_func;
1981 mutex_enter(&l2arc_free_on_write_mtx);
1982 list_insert_head(l2arc_free_on_write, df);
1983 mutex_exit(&l2arc_free_on_write_mtx);
1987 * Free the arc data buffer. If it is an l2arc write in progress,
1988 * the buffer is placed on l2arc_free_on_write to be freed later.
1990 static void
1991 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1993 arc_buf_hdr_t *hdr = buf->b_hdr;
1995 if (HDR_L2_WRITING(hdr)) {
1996 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1997 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1998 } else {
1999 free_func(buf->b_data, hdr->b_size);
2003 static void
2004 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2006 ASSERT(HDR_HAS_L2HDR(hdr));
2007 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2010 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2011 * that doesn't exist, the header is in the arc_l2c_only state,
2012 * and there isn't anything to free (it's already been freed).
2014 if (!HDR_HAS_L1HDR(hdr))
2015 return;
2018 * The header isn't being written to the l2arc device, thus it
2019 * shouldn't have a b_tmp_cdata to free.
2021 if (!HDR_L2_WRITING(hdr)) {
2022 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2023 return;
2027 * The header does not have compression enabled. This can be due
2028 * to the buffer not being compressible, or because we're
2029 * freeing the buffer before the second phase of
2030 * l2arc_write_buffer() has started (which does the compression
2031 * step). In either case, b_tmp_cdata does not point to a
2032 * separately compressed buffer, so there's nothing to free (it
2033 * points to the same buffer as the arc_buf_t's b_data field).
2035 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2036 hdr->b_l1hdr.b_tmp_cdata = NULL;
2037 return;
2041 * There's nothing to free since the buffer was all zero's and
2042 * compressed to a zero length buffer.
2044 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2045 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2046 return;
2049 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2051 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2052 hdr->b_size, zio_data_buf_free);
2054 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2055 hdr->b_l1hdr.b_tmp_cdata = NULL;
2059 * Free up buf->b_data and if 'remove' is set, then pull the
2060 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2062 static void
2063 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2065 arc_buf_t **bufp;
2067 /* free up data associated with the buf */
2068 if (buf->b_data != NULL) {
2069 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2070 uint64_t size = buf->b_hdr->b_size;
2071 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2073 arc_cksum_verify(buf);
2074 arc_buf_unwatch(buf);
2076 if (type == ARC_BUFC_METADATA) {
2077 arc_buf_data_free(buf, zio_buf_free);
2078 arc_space_return(size, ARC_SPACE_META);
2079 } else {
2080 ASSERT(type == ARC_BUFC_DATA);
2081 arc_buf_data_free(buf, zio_data_buf_free);
2082 arc_space_return(size, ARC_SPACE_DATA);
2085 /* protected by hash lock, if in the hash table */
2086 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2087 uint64_t *cnt = &state->arcs_lsize[type];
2089 ASSERT(refcount_is_zero(
2090 &buf->b_hdr->b_l1hdr.b_refcnt));
2091 ASSERT(state != arc_anon && state != arc_l2c_only);
2093 ASSERT3U(*cnt, >=, size);
2094 atomic_add_64(cnt, -size);
2097 (void) refcount_remove_many(&state->arcs_size, size, buf);
2098 buf->b_data = NULL;
2101 * If we're destroying a duplicate buffer make sure
2102 * that the appropriate statistics are updated.
2104 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2105 HDR_ISTYPE_DATA(buf->b_hdr)) {
2106 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2107 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2109 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2110 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2113 /* only remove the buf if requested */
2114 if (!remove)
2115 return;
2117 /* remove the buf from the hdr list */
2118 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2119 bufp = &(*bufp)->b_next)
2120 continue;
2121 *bufp = buf->b_next;
2122 buf->b_next = NULL;
2124 ASSERT(buf->b_efunc == NULL);
2126 /* clean up the buf */
2127 buf->b_hdr = NULL;
2128 kmem_cache_free(buf_cache, buf);
2131 static void
2132 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2134 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2135 l2arc_dev_t *dev = l2hdr->b_dev;
2137 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2138 ASSERT(HDR_HAS_L2HDR(hdr));
2140 list_remove(&dev->l2ad_buflist, hdr);
2143 * We don't want to leak the b_tmp_cdata buffer that was
2144 * allocated in l2arc_write_buffers()
2146 arc_buf_l2_cdata_free(hdr);
2149 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2150 * this header is being processed by l2arc_write_buffers() (i.e.
2151 * it's in the first stage of l2arc_write_buffers()).
2152 * Re-affirming that truth here, just to serve as a reminder. If
2153 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2154 * may not have its HDR_L2_WRITING flag set. (the write may have
2155 * completed, in which case HDR_L2_WRITING will be false and the
2156 * b_daddr field will point to the address of the buffer on disk).
2158 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2161 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2162 * l2arc_write_buffers(). Since we've just removed this header
2163 * from the l2arc buffer list, this header will never reach the
2164 * second stage of l2arc_write_buffers(), which increments the
2165 * accounting stats for this header. Thus, we must be careful
2166 * not to decrement them for this header either.
2168 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2169 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2170 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2172 vdev_space_update(dev->l2ad_vdev,
2173 -l2hdr->b_asize, 0, 0);
2175 (void) refcount_remove_many(&dev->l2ad_alloc,
2176 l2hdr->b_asize, hdr);
2179 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2182 static void
2183 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2185 if (HDR_HAS_L1HDR(hdr)) {
2186 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2187 hdr->b_l1hdr.b_datacnt > 0);
2188 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2189 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2191 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2192 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2194 if (HDR_HAS_L2HDR(hdr)) {
2195 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2196 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2198 if (!buflist_held)
2199 mutex_enter(&dev->l2ad_mtx);
2202 * Even though we checked this conditional above, we
2203 * need to check this again now that we have the
2204 * l2ad_mtx. This is because we could be racing with
2205 * another thread calling l2arc_evict() which might have
2206 * destroyed this header's L2 portion as we were waiting
2207 * to acquire the l2ad_mtx. If that happens, we don't
2208 * want to re-destroy the header's L2 portion.
2210 if (HDR_HAS_L2HDR(hdr))
2211 arc_hdr_l2hdr_destroy(hdr);
2213 if (!buflist_held)
2214 mutex_exit(&dev->l2ad_mtx);
2217 if (!BUF_EMPTY(hdr))
2218 buf_discard_identity(hdr);
2220 if (hdr->b_freeze_cksum != NULL) {
2221 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2222 hdr->b_freeze_cksum = NULL;
2225 if (HDR_HAS_L1HDR(hdr)) {
2226 while (hdr->b_l1hdr.b_buf) {
2227 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2229 if (buf->b_efunc != NULL) {
2230 mutex_enter(&arc_user_evicts_lock);
2231 mutex_enter(&buf->b_evict_lock);
2232 ASSERT(buf->b_hdr != NULL);
2233 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2234 hdr->b_l1hdr.b_buf = buf->b_next;
2235 buf->b_hdr = &arc_eviction_hdr;
2236 buf->b_next = arc_eviction_list;
2237 arc_eviction_list = buf;
2238 mutex_exit(&buf->b_evict_lock);
2239 cv_signal(&arc_user_evicts_cv);
2240 mutex_exit(&arc_user_evicts_lock);
2241 } else {
2242 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2245 #ifdef ZFS_DEBUG
2246 if (hdr->b_l1hdr.b_thawed != NULL) {
2247 kmem_free(hdr->b_l1hdr.b_thawed, 1);
2248 hdr->b_l1hdr.b_thawed = NULL;
2250 #endif
2253 ASSERT3P(hdr->b_hash_next, ==, NULL);
2254 if (HDR_HAS_L1HDR(hdr)) {
2255 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2256 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2257 kmem_cache_free(hdr_full_cache, hdr);
2258 } else {
2259 kmem_cache_free(hdr_l2only_cache, hdr);
2263 void
2264 arc_buf_free(arc_buf_t *buf, void *tag)
2266 arc_buf_hdr_t *hdr = buf->b_hdr;
2267 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2269 ASSERT(buf->b_efunc == NULL);
2270 ASSERT(buf->b_data != NULL);
2272 if (hashed) {
2273 kmutex_t *hash_lock = HDR_LOCK(hdr);
2275 mutex_enter(hash_lock);
2276 hdr = buf->b_hdr;
2277 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2279 (void) remove_reference(hdr, hash_lock, tag);
2280 if (hdr->b_l1hdr.b_datacnt > 1) {
2281 arc_buf_destroy(buf, TRUE);
2282 } else {
2283 ASSERT(buf == hdr->b_l1hdr.b_buf);
2284 ASSERT(buf->b_efunc == NULL);
2285 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2287 mutex_exit(hash_lock);
2288 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2289 int destroy_hdr;
2291 * We are in the middle of an async write. Don't destroy
2292 * this buffer unless the write completes before we finish
2293 * decrementing the reference count.
2295 mutex_enter(&arc_user_evicts_lock);
2296 (void) remove_reference(hdr, NULL, tag);
2297 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2298 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2299 mutex_exit(&arc_user_evicts_lock);
2300 if (destroy_hdr)
2301 arc_hdr_destroy(hdr);
2302 } else {
2303 if (remove_reference(hdr, NULL, tag) > 0)
2304 arc_buf_destroy(buf, TRUE);
2305 else
2306 arc_hdr_destroy(hdr);
2310 boolean_t
2311 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2313 arc_buf_hdr_t *hdr = buf->b_hdr;
2314 kmutex_t *hash_lock = HDR_LOCK(hdr);
2315 boolean_t no_callback = (buf->b_efunc == NULL);
2317 if (hdr->b_l1hdr.b_state == arc_anon) {
2318 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2319 arc_buf_free(buf, tag);
2320 return (no_callback);
2323 mutex_enter(hash_lock);
2324 hdr = buf->b_hdr;
2325 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2326 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2327 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2328 ASSERT(buf->b_data != NULL);
2330 (void) remove_reference(hdr, hash_lock, tag);
2331 if (hdr->b_l1hdr.b_datacnt > 1) {
2332 if (no_callback)
2333 arc_buf_destroy(buf, TRUE);
2334 } else if (no_callback) {
2335 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2336 ASSERT(buf->b_efunc == NULL);
2337 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2339 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2340 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2341 mutex_exit(hash_lock);
2342 return (no_callback);
2345 int32_t
2346 arc_buf_size(arc_buf_t *buf)
2348 return (buf->b_hdr->b_size);
2352 * Called from the DMU to determine if the current buffer should be
2353 * evicted. In order to ensure proper locking, the eviction must be initiated
2354 * from the DMU. Return true if the buffer is associated with user data and
2355 * duplicate buffers still exist.
2357 boolean_t
2358 arc_buf_eviction_needed(arc_buf_t *buf)
2360 arc_buf_hdr_t *hdr;
2361 boolean_t evict_needed = B_FALSE;
2363 if (zfs_disable_dup_eviction)
2364 return (B_FALSE);
2366 mutex_enter(&buf->b_evict_lock);
2367 hdr = buf->b_hdr;
2368 if (hdr == NULL) {
2370 * We are in arc_do_user_evicts(); let that function
2371 * perform the eviction.
2373 ASSERT(buf->b_data == NULL);
2374 mutex_exit(&buf->b_evict_lock);
2375 return (B_FALSE);
2376 } else if (buf->b_data == NULL) {
2378 * We have already been added to the arc eviction list;
2379 * recommend eviction.
2381 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2382 mutex_exit(&buf->b_evict_lock);
2383 return (B_TRUE);
2386 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2387 evict_needed = B_TRUE;
2389 mutex_exit(&buf->b_evict_lock);
2390 return (evict_needed);
2394 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2395 * state of the header is dependent on it's state prior to entering this
2396 * function. The following transitions are possible:
2398 * - arc_mru -> arc_mru_ghost
2399 * - arc_mfu -> arc_mfu_ghost
2400 * - arc_mru_ghost -> arc_l2c_only
2401 * - arc_mru_ghost -> deleted
2402 * - arc_mfu_ghost -> arc_l2c_only
2403 * - arc_mfu_ghost -> deleted
2405 static int64_t
2406 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2408 arc_state_t *evicted_state, *state;
2409 int64_t bytes_evicted = 0;
2411 ASSERT(MUTEX_HELD(hash_lock));
2412 ASSERT(HDR_HAS_L1HDR(hdr));
2414 state = hdr->b_l1hdr.b_state;
2415 if (GHOST_STATE(state)) {
2416 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2417 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2420 * l2arc_write_buffers() relies on a header's L1 portion
2421 * (i.e. it's b_tmp_cdata field) during it's write phase.
2422 * Thus, we cannot push a header onto the arc_l2c_only
2423 * state (removing it's L1 piece) until the header is
2424 * done being written to the l2arc.
2426 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2427 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2428 return (bytes_evicted);
2431 ARCSTAT_BUMP(arcstat_deleted);
2432 bytes_evicted += hdr->b_size;
2434 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2436 if (HDR_HAS_L2HDR(hdr)) {
2438 * This buffer is cached on the 2nd Level ARC;
2439 * don't destroy the header.
2441 arc_change_state(arc_l2c_only, hdr, hash_lock);
2443 * dropping from L1+L2 cached to L2-only,
2444 * realloc to remove the L1 header.
2446 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2447 hdr_l2only_cache);
2448 } else {
2449 arc_change_state(arc_anon, hdr, hash_lock);
2450 arc_hdr_destroy(hdr);
2452 return (bytes_evicted);
2455 ASSERT(state == arc_mru || state == arc_mfu);
2456 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2458 /* prefetch buffers have a minimum lifespan */
2459 if (HDR_IO_IN_PROGRESS(hdr) ||
2460 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2461 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2462 arc_min_prefetch_lifespan)) {
2463 ARCSTAT_BUMP(arcstat_evict_skip);
2464 return (bytes_evicted);
2467 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2468 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2469 while (hdr->b_l1hdr.b_buf) {
2470 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2471 if (!mutex_tryenter(&buf->b_evict_lock)) {
2472 ARCSTAT_BUMP(arcstat_mutex_miss);
2473 break;
2475 if (buf->b_data != NULL)
2476 bytes_evicted += hdr->b_size;
2477 if (buf->b_efunc != NULL) {
2478 mutex_enter(&arc_user_evicts_lock);
2479 arc_buf_destroy(buf, FALSE);
2480 hdr->b_l1hdr.b_buf = buf->b_next;
2481 buf->b_hdr = &arc_eviction_hdr;
2482 buf->b_next = arc_eviction_list;
2483 arc_eviction_list = buf;
2484 cv_signal(&arc_user_evicts_cv);
2485 mutex_exit(&arc_user_evicts_lock);
2486 mutex_exit(&buf->b_evict_lock);
2487 } else {
2488 mutex_exit(&buf->b_evict_lock);
2489 arc_buf_destroy(buf, TRUE);
2493 if (HDR_HAS_L2HDR(hdr)) {
2494 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2495 } else {
2496 if (l2arc_write_eligible(hdr->b_spa, hdr))
2497 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2498 else
2499 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2502 if (hdr->b_l1hdr.b_datacnt == 0) {
2503 arc_change_state(evicted_state, hdr, hash_lock);
2504 ASSERT(HDR_IN_HASH_TABLE(hdr));
2505 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2506 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2507 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2510 return (bytes_evicted);
2513 static uint64_t
2514 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2515 uint64_t spa, int64_t bytes)
2517 multilist_sublist_t *mls;
2518 uint64_t bytes_evicted = 0;
2519 arc_buf_hdr_t *hdr;
2520 kmutex_t *hash_lock;
2521 int evict_count = 0;
2523 ASSERT3P(marker, !=, NULL);
2524 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2526 mls = multilist_sublist_lock(ml, idx);
2528 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2529 hdr = multilist_sublist_prev(mls, marker)) {
2530 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2531 (evict_count >= zfs_arc_evict_batch_limit))
2532 break;
2535 * To keep our iteration location, move the marker
2536 * forward. Since we're not holding hdr's hash lock, we
2537 * must be very careful and not remove 'hdr' from the
2538 * sublist. Otherwise, other consumers might mistake the
2539 * 'hdr' as not being on a sublist when they call the
2540 * multilist_link_active() function (they all rely on
2541 * the hash lock protecting concurrent insertions and
2542 * removals). multilist_sublist_move_forward() was
2543 * specifically implemented to ensure this is the case
2544 * (only 'marker' will be removed and re-inserted).
2546 multilist_sublist_move_forward(mls, marker);
2549 * The only case where the b_spa field should ever be
2550 * zero, is the marker headers inserted by
2551 * arc_evict_state(). It's possible for multiple threads
2552 * to be calling arc_evict_state() concurrently (e.g.
2553 * dsl_pool_close() and zio_inject_fault()), so we must
2554 * skip any markers we see from these other threads.
2556 if (hdr->b_spa == 0)
2557 continue;
2559 /* we're only interested in evicting buffers of a certain spa */
2560 if (spa != 0 && hdr->b_spa != spa) {
2561 ARCSTAT_BUMP(arcstat_evict_skip);
2562 continue;
2565 hash_lock = HDR_LOCK(hdr);
2568 * We aren't calling this function from any code path
2569 * that would already be holding a hash lock, so we're
2570 * asserting on this assumption to be defensive in case
2571 * this ever changes. Without this check, it would be
2572 * possible to incorrectly increment arcstat_mutex_miss
2573 * below (e.g. if the code changed such that we called
2574 * this function with a hash lock held).
2576 ASSERT(!MUTEX_HELD(hash_lock));
2578 if (mutex_tryenter(hash_lock)) {
2579 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2580 mutex_exit(hash_lock);
2582 bytes_evicted += evicted;
2585 * If evicted is zero, arc_evict_hdr() must have
2586 * decided to skip this header, don't increment
2587 * evict_count in this case.
2589 if (evicted != 0)
2590 evict_count++;
2593 * If arc_size isn't overflowing, signal any
2594 * threads that might happen to be waiting.
2596 * For each header evicted, we wake up a single
2597 * thread. If we used cv_broadcast, we could
2598 * wake up "too many" threads causing arc_size
2599 * to significantly overflow arc_c; since
2600 * arc_get_data_buf() doesn't check for overflow
2601 * when it's woken up (it doesn't because it's
2602 * possible for the ARC to be overflowing while
2603 * full of un-evictable buffers, and the
2604 * function should proceed in this case).
2606 * If threads are left sleeping, due to not
2607 * using cv_broadcast, they will be woken up
2608 * just before arc_reclaim_thread() sleeps.
2610 mutex_enter(&arc_reclaim_lock);
2611 if (!arc_is_overflowing())
2612 cv_signal(&arc_reclaim_waiters_cv);
2613 mutex_exit(&arc_reclaim_lock);
2614 } else {
2615 ARCSTAT_BUMP(arcstat_mutex_miss);
2619 multilist_sublist_unlock(mls);
2621 return (bytes_evicted);
2625 * Evict buffers from the given arc state, until we've removed the
2626 * specified number of bytes. Move the removed buffers to the
2627 * appropriate evict state.
2629 * This function makes a "best effort". It skips over any buffers
2630 * it can't get a hash_lock on, and so, may not catch all candidates.
2631 * It may also return without evicting as much space as requested.
2633 * If bytes is specified using the special value ARC_EVICT_ALL, this
2634 * will evict all available (i.e. unlocked and evictable) buffers from
2635 * the given arc state; which is used by arc_flush().
2637 static uint64_t
2638 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2639 arc_buf_contents_t type)
2641 uint64_t total_evicted = 0;
2642 multilist_t *ml = &state->arcs_list[type];
2643 int num_sublists;
2644 arc_buf_hdr_t **markers;
2646 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2648 num_sublists = multilist_get_num_sublists(ml);
2651 * If we've tried to evict from each sublist, made some
2652 * progress, but still have not hit the target number of bytes
2653 * to evict, we want to keep trying. The markers allow us to
2654 * pick up where we left off for each individual sublist, rather
2655 * than starting from the tail each time.
2657 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2658 for (int i = 0; i < num_sublists; i++) {
2659 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2662 * A b_spa of 0 is used to indicate that this header is
2663 * a marker. This fact is used in arc_adjust_type() and
2664 * arc_evict_state_impl().
2666 markers[i]->b_spa = 0;
2668 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2669 multilist_sublist_insert_tail(mls, markers[i]);
2670 multilist_sublist_unlock(mls);
2674 * While we haven't hit our target number of bytes to evict, or
2675 * we're evicting all available buffers.
2677 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2679 * Start eviction using a randomly selected sublist,
2680 * this is to try and evenly balance eviction across all
2681 * sublists. Always starting at the same sublist
2682 * (e.g. index 0) would cause evictions to favor certain
2683 * sublists over others.
2685 int sublist_idx = multilist_get_random_index(ml);
2686 uint64_t scan_evicted = 0;
2688 for (int i = 0; i < num_sublists; i++) {
2689 uint64_t bytes_remaining;
2690 uint64_t bytes_evicted;
2692 if (bytes == ARC_EVICT_ALL)
2693 bytes_remaining = ARC_EVICT_ALL;
2694 else if (total_evicted < bytes)
2695 bytes_remaining = bytes - total_evicted;
2696 else
2697 break;
2699 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2700 markers[sublist_idx], spa, bytes_remaining);
2702 scan_evicted += bytes_evicted;
2703 total_evicted += bytes_evicted;
2705 /* we've reached the end, wrap to the beginning */
2706 if (++sublist_idx >= num_sublists)
2707 sublist_idx = 0;
2711 * If we didn't evict anything during this scan, we have
2712 * no reason to believe we'll evict more during another
2713 * scan, so break the loop.
2715 if (scan_evicted == 0) {
2716 /* This isn't possible, let's make that obvious */
2717 ASSERT3S(bytes, !=, 0);
2720 * When bytes is ARC_EVICT_ALL, the only way to
2721 * break the loop is when scan_evicted is zero.
2722 * In that case, we actually have evicted enough,
2723 * so we don't want to increment the kstat.
2725 if (bytes != ARC_EVICT_ALL) {
2726 ASSERT3S(total_evicted, <, bytes);
2727 ARCSTAT_BUMP(arcstat_evict_not_enough);
2730 break;
2734 for (int i = 0; i < num_sublists; i++) {
2735 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2736 multilist_sublist_remove(mls, markers[i]);
2737 multilist_sublist_unlock(mls);
2739 kmem_cache_free(hdr_full_cache, markers[i]);
2741 kmem_free(markers, sizeof (*markers) * num_sublists);
2743 return (total_evicted);
2747 * Flush all "evictable" data of the given type from the arc state
2748 * specified. This will not evict any "active" buffers (i.e. referenced).
2750 * When 'retry' is set to FALSE, the function will make a single pass
2751 * over the state and evict any buffers that it can. Since it doesn't
2752 * continually retry the eviction, it might end up leaving some buffers
2753 * in the ARC due to lock misses.
2755 * When 'retry' is set to TRUE, the function will continually retry the
2756 * eviction until *all* evictable buffers have been removed from the
2757 * state. As a result, if concurrent insertions into the state are
2758 * allowed (e.g. if the ARC isn't shutting down), this function might
2759 * wind up in an infinite loop, continually trying to evict buffers.
2761 static uint64_t
2762 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2763 boolean_t retry)
2765 uint64_t evicted = 0;
2767 while (state->arcs_lsize[type] != 0) {
2768 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2770 if (!retry)
2771 break;
2774 return (evicted);
2778 * Evict the specified number of bytes from the state specified,
2779 * restricting eviction to the spa and type given. This function
2780 * prevents us from trying to evict more from a state's list than
2781 * is "evictable", and to skip evicting altogether when passed a
2782 * negative value for "bytes". In contrast, arc_evict_state() will
2783 * evict everything it can, when passed a negative value for "bytes".
2785 static uint64_t
2786 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2787 arc_buf_contents_t type)
2789 int64_t delta;
2791 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2792 delta = MIN(state->arcs_lsize[type], bytes);
2793 return (arc_evict_state(state, spa, delta, type));
2796 return (0);
2800 * Evict metadata buffers from the cache, such that arc_meta_used is
2801 * capped by the arc_meta_limit tunable.
2803 static uint64_t
2804 arc_adjust_meta(void)
2806 uint64_t total_evicted = 0;
2807 int64_t target;
2810 * If we're over the meta limit, we want to evict enough
2811 * metadata to get back under the meta limit. We don't want to
2812 * evict so much that we drop the MRU below arc_p, though. If
2813 * we're over the meta limit more than we're over arc_p, we
2814 * evict some from the MRU here, and some from the MFU below.
2816 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2817 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2818 refcount_count(&arc_mru->arcs_size) - arc_p));
2820 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2823 * Similar to the above, we want to evict enough bytes to get us
2824 * below the meta limit, but not so much as to drop us below the
2825 * space alloted to the MFU (which is defined as arc_c - arc_p).
2827 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2828 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
2830 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2832 return (total_evicted);
2836 * Return the type of the oldest buffer in the given arc state
2838 * This function will select a random sublist of type ARC_BUFC_DATA and
2839 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2840 * is compared, and the type which contains the "older" buffer will be
2841 * returned.
2843 static arc_buf_contents_t
2844 arc_adjust_type(arc_state_t *state)
2846 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2847 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2848 int data_idx = multilist_get_random_index(data_ml);
2849 int meta_idx = multilist_get_random_index(meta_ml);
2850 multilist_sublist_t *data_mls;
2851 multilist_sublist_t *meta_mls;
2852 arc_buf_contents_t type;
2853 arc_buf_hdr_t *data_hdr;
2854 arc_buf_hdr_t *meta_hdr;
2857 * We keep the sublist lock until we're finished, to prevent
2858 * the headers from being destroyed via arc_evict_state().
2860 data_mls = multilist_sublist_lock(data_ml, data_idx);
2861 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2864 * These two loops are to ensure we skip any markers that
2865 * might be at the tail of the lists due to arc_evict_state().
2868 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2869 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2870 if (data_hdr->b_spa != 0)
2871 break;
2874 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2875 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2876 if (meta_hdr->b_spa != 0)
2877 break;
2880 if (data_hdr == NULL && meta_hdr == NULL) {
2881 type = ARC_BUFC_DATA;
2882 } else if (data_hdr == NULL) {
2883 ASSERT3P(meta_hdr, !=, NULL);
2884 type = ARC_BUFC_METADATA;
2885 } else if (meta_hdr == NULL) {
2886 ASSERT3P(data_hdr, !=, NULL);
2887 type = ARC_BUFC_DATA;
2888 } else {
2889 ASSERT3P(data_hdr, !=, NULL);
2890 ASSERT3P(meta_hdr, !=, NULL);
2892 /* The headers can't be on the sublist without an L1 header */
2893 ASSERT(HDR_HAS_L1HDR(data_hdr));
2894 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2896 if (data_hdr->b_l1hdr.b_arc_access <
2897 meta_hdr->b_l1hdr.b_arc_access) {
2898 type = ARC_BUFC_DATA;
2899 } else {
2900 type = ARC_BUFC_METADATA;
2904 multilist_sublist_unlock(meta_mls);
2905 multilist_sublist_unlock(data_mls);
2907 return (type);
2911 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2913 static uint64_t
2914 arc_adjust(void)
2916 uint64_t total_evicted = 0;
2917 uint64_t bytes;
2918 int64_t target;
2921 * If we're over arc_meta_limit, we want to correct that before
2922 * potentially evicting data buffers below.
2924 total_evicted += arc_adjust_meta();
2927 * Adjust MRU size
2929 * If we're over the target cache size, we want to evict enough
2930 * from the list to get back to our target size. We don't want
2931 * to evict too much from the MRU, such that it drops below
2932 * arc_p. So, if we're over our target cache size more than
2933 * the MRU is over arc_p, we'll evict enough to get back to
2934 * arc_p here, and then evict more from the MFU below.
2936 target = MIN((int64_t)(arc_size - arc_c),
2937 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2938 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
2941 * If we're below arc_meta_min, always prefer to evict data.
2942 * Otherwise, try to satisfy the requested number of bytes to
2943 * evict from the type which contains older buffers; in an
2944 * effort to keep newer buffers in the cache regardless of their
2945 * type. If we cannot satisfy the number of bytes from this
2946 * type, spill over into the next type.
2948 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2949 arc_meta_used > arc_meta_min) {
2950 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2951 total_evicted += bytes;
2954 * If we couldn't evict our target number of bytes from
2955 * metadata, we try to get the rest from data.
2957 target -= bytes;
2959 total_evicted +=
2960 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2961 } else {
2962 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2963 total_evicted += bytes;
2966 * If we couldn't evict our target number of bytes from
2967 * data, we try to get the rest from metadata.
2969 target -= bytes;
2971 total_evicted +=
2972 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2976 * Adjust MFU size
2978 * Now that we've tried to evict enough from the MRU to get its
2979 * size back to arc_p, if we're still above the target cache
2980 * size, we evict the rest from the MFU.
2982 target = arc_size - arc_c;
2984 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
2985 arc_meta_used > arc_meta_min) {
2986 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2987 total_evicted += bytes;
2990 * If we couldn't evict our target number of bytes from
2991 * metadata, we try to get the rest from data.
2993 target -= bytes;
2995 total_evicted +=
2996 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2997 } else {
2998 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2999 total_evicted += bytes;
3002 * If we couldn't evict our target number of bytes from
3003 * data, we try to get the rest from data.
3005 target -= bytes;
3007 total_evicted +=
3008 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3012 * Adjust ghost lists
3014 * In addition to the above, the ARC also defines target values
3015 * for the ghost lists. The sum of the mru list and mru ghost
3016 * list should never exceed the target size of the cache, and
3017 * the sum of the mru list, mfu list, mru ghost list, and mfu
3018 * ghost list should never exceed twice the target size of the
3019 * cache. The following logic enforces these limits on the ghost
3020 * caches, and evicts from them as needed.
3022 target = refcount_count(&arc_mru->arcs_size) +
3023 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3025 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3026 total_evicted += bytes;
3028 target -= bytes;
3030 total_evicted +=
3031 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3034 * We assume the sum of the mru list and mfu list is less than
3035 * or equal to arc_c (we enforced this above), which means we
3036 * can use the simpler of the two equations below:
3038 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3039 * mru ghost + mfu ghost <= arc_c
3041 target = refcount_count(&arc_mru_ghost->arcs_size) +
3042 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3044 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3045 total_evicted += bytes;
3047 target -= bytes;
3049 total_evicted +=
3050 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3052 return (total_evicted);
3055 static void
3056 arc_do_user_evicts(void)
3058 mutex_enter(&arc_user_evicts_lock);
3059 while (arc_eviction_list != NULL) {
3060 arc_buf_t *buf = arc_eviction_list;
3061 arc_eviction_list = buf->b_next;
3062 mutex_enter(&buf->b_evict_lock);
3063 buf->b_hdr = NULL;
3064 mutex_exit(&buf->b_evict_lock);
3065 mutex_exit(&arc_user_evicts_lock);
3067 if (buf->b_efunc != NULL)
3068 VERIFY0(buf->b_efunc(buf->b_private));
3070 buf->b_efunc = NULL;
3071 buf->b_private = NULL;
3072 kmem_cache_free(buf_cache, buf);
3073 mutex_enter(&arc_user_evicts_lock);
3075 mutex_exit(&arc_user_evicts_lock);
3078 void
3079 arc_flush(spa_t *spa, boolean_t retry)
3081 uint64_t guid = 0;
3084 * If retry is TRUE, a spa must not be specified since we have
3085 * no good way to determine if all of a spa's buffers have been
3086 * evicted from an arc state.
3088 ASSERT(!retry || spa == 0);
3090 if (spa != NULL)
3091 guid = spa_load_guid(spa);
3093 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3094 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3096 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3097 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3099 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3100 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3102 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3103 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3105 arc_do_user_evicts();
3106 ASSERT(spa || arc_eviction_list == NULL);
3109 void
3110 arc_shrink(int64_t to_free)
3112 if (arc_c > arc_c_min) {
3114 if (arc_c > arc_c_min + to_free)
3115 atomic_add_64(&arc_c, -to_free);
3116 else
3117 arc_c = arc_c_min;
3119 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3120 if (arc_c > arc_size)
3121 arc_c = MAX(arc_size, arc_c_min);
3122 if (arc_p > arc_c)
3123 arc_p = (arc_c >> 1);
3124 ASSERT(arc_c >= arc_c_min);
3125 ASSERT((int64_t)arc_p >= 0);
3128 if (arc_size > arc_c)
3129 (void) arc_adjust();
3132 typedef enum free_memory_reason_t {
3133 FMR_UNKNOWN,
3134 FMR_NEEDFREE,
3135 FMR_LOTSFREE,
3136 FMR_SWAPFS_MINFREE,
3137 FMR_PAGES_PP_MAXIMUM,
3138 FMR_HEAP_ARENA,
3139 FMR_ZIO_ARENA,
3140 } free_memory_reason_t;
3142 int64_t last_free_memory;
3143 free_memory_reason_t last_free_reason;
3146 * Additional reserve of pages for pp_reserve.
3148 int64_t arc_pages_pp_reserve = 64;
3151 * Additional reserve of pages for swapfs.
3153 int64_t arc_swapfs_reserve = 64;
3156 * Return the amount of memory that can be consumed before reclaim will be
3157 * needed. Positive if there is sufficient free memory, negative indicates
3158 * the amount of memory that needs to be freed up.
3160 static int64_t
3161 arc_available_memory(void)
3163 int64_t lowest = INT64_MAX;
3164 int64_t n;
3165 free_memory_reason_t r = FMR_UNKNOWN;
3167 #ifdef _KERNEL
3168 if (needfree > 0) {
3169 n = PAGESIZE * (-needfree);
3170 if (n < lowest) {
3171 lowest = n;
3172 r = FMR_NEEDFREE;
3177 * check that we're out of range of the pageout scanner. It starts to
3178 * schedule paging if freemem is less than lotsfree and needfree.
3179 * lotsfree is the high-water mark for pageout, and needfree is the
3180 * number of needed free pages. We add extra pages here to make sure
3181 * the scanner doesn't start up while we're freeing memory.
3183 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3184 if (n < lowest) {
3185 lowest = n;
3186 r = FMR_LOTSFREE;
3190 * check to make sure that swapfs has enough space so that anon
3191 * reservations can still succeed. anon_resvmem() checks that the
3192 * availrmem is greater than swapfs_minfree, and the number of reserved
3193 * swap pages. We also add a bit of extra here just to prevent
3194 * circumstances from getting really dire.
3196 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3197 desfree - arc_swapfs_reserve);
3198 if (n < lowest) {
3199 lowest = n;
3200 r = FMR_SWAPFS_MINFREE;
3205 * Check that we have enough availrmem that memory locking (e.g., via
3206 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3207 * stores the number of pages that cannot be locked; when availrmem
3208 * drops below pages_pp_maximum, page locking mechanisms such as
3209 * page_pp_lock() will fail.)
3211 n = PAGESIZE * (availrmem - pages_pp_maximum -
3212 arc_pages_pp_reserve);
3213 if (n < lowest) {
3214 lowest = n;
3215 r = FMR_PAGES_PP_MAXIMUM;
3218 #if defined(__i386)
3220 * If we're on an i386 platform, it's possible that we'll exhaust the
3221 * kernel heap space before we ever run out of available physical
3222 * memory. Most checks of the size of the heap_area compare against
3223 * tune.t_minarmem, which is the minimum available real memory that we
3224 * can have in the system. However, this is generally fixed at 25 pages
3225 * which is so low that it's useless. In this comparison, we seek to
3226 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3227 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3228 * free)
3230 n = vmem_size(heap_arena, VMEM_FREE) -
3231 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3232 if (n < lowest) {
3233 lowest = n;
3234 r = FMR_HEAP_ARENA;
3236 #endif
3239 * If zio data pages are being allocated out of a separate heap segment,
3240 * then enforce that the size of available vmem for this arena remains
3241 * above about 1/16th free.
3243 * Note: The 1/16th arena free requirement was put in place
3244 * to aggressively evict memory from the arc in order to avoid
3245 * memory fragmentation issues.
3247 if (zio_arena != NULL) {
3248 n = vmem_size(zio_arena, VMEM_FREE) -
3249 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3250 if (n < lowest) {
3251 lowest = n;
3252 r = FMR_ZIO_ARENA;
3255 #else
3256 /* Every 100 calls, free a small amount */
3257 if (spa_get_random(100) == 0)
3258 lowest = -1024;
3259 #endif
3261 last_free_memory = lowest;
3262 last_free_reason = r;
3264 return (lowest);
3269 * Determine if the system is under memory pressure and is asking
3270 * to reclaim memory. A return value of TRUE indicates that the system
3271 * is under memory pressure and that the arc should adjust accordingly.
3273 static boolean_t
3274 arc_reclaim_needed(void)
3276 return (arc_available_memory() < 0);
3279 static void
3280 arc_kmem_reap_now(void)
3282 size_t i;
3283 kmem_cache_t *prev_cache = NULL;
3284 kmem_cache_t *prev_data_cache = NULL;
3285 extern kmem_cache_t *zio_buf_cache[];
3286 extern kmem_cache_t *zio_data_buf_cache[];
3287 extern kmem_cache_t *range_seg_cache;
3289 #ifdef _KERNEL
3290 if (arc_meta_used >= arc_meta_limit) {
3292 * We are exceeding our meta-data cache limit.
3293 * Purge some DNLC entries to release holds on meta-data.
3295 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3297 #if defined(__i386)
3299 * Reclaim unused memory from all kmem caches.
3301 kmem_reap();
3302 #endif
3303 #endif
3305 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3306 if (zio_buf_cache[i] != prev_cache) {
3307 prev_cache = zio_buf_cache[i];
3308 kmem_cache_reap_now(zio_buf_cache[i]);
3310 if (zio_data_buf_cache[i] != prev_data_cache) {
3311 prev_data_cache = zio_data_buf_cache[i];
3312 kmem_cache_reap_now(zio_data_buf_cache[i]);
3315 kmem_cache_reap_now(buf_cache);
3316 kmem_cache_reap_now(hdr_full_cache);
3317 kmem_cache_reap_now(hdr_l2only_cache);
3318 kmem_cache_reap_now(range_seg_cache);
3320 if (zio_arena != NULL) {
3322 * Ask the vmem arena to reclaim unused memory from its
3323 * quantum caches.
3325 vmem_qcache_reap(zio_arena);
3330 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3331 * enough data and signal them to proceed. When this happens, the threads in
3332 * arc_get_data_buf() are sleeping while holding the hash lock for their
3333 * particular arc header. Thus, we must be careful to never sleep on a
3334 * hash lock in this thread. This is to prevent the following deadlock:
3336 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3337 * waiting for the reclaim thread to signal it.
3339 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3340 * fails, and goes to sleep forever.
3342 * This possible deadlock is avoided by always acquiring a hash lock
3343 * using mutex_tryenter() from arc_reclaim_thread().
3345 static void
3346 arc_reclaim_thread(void)
3348 clock_t growtime = 0;
3349 callb_cpr_t cpr;
3351 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3353 mutex_enter(&arc_reclaim_lock);
3354 while (!arc_reclaim_thread_exit) {
3355 int64_t free_memory = arc_available_memory();
3356 uint64_t evicted = 0;
3358 mutex_exit(&arc_reclaim_lock);
3360 if (free_memory < 0) {
3362 arc_no_grow = B_TRUE;
3363 arc_warm = B_TRUE;
3366 * Wait at least zfs_grow_retry (default 60) seconds
3367 * before considering growing.
3369 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3371 arc_kmem_reap_now();
3374 * If we are still low on memory, shrink the ARC
3375 * so that we have arc_shrink_min free space.
3377 free_memory = arc_available_memory();
3379 int64_t to_free =
3380 (arc_c >> arc_shrink_shift) - free_memory;
3381 if (to_free > 0) {
3382 #ifdef _KERNEL
3383 to_free = MAX(to_free, ptob(needfree));
3384 #endif
3385 arc_shrink(to_free);
3387 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3388 arc_no_grow = B_TRUE;
3389 } else if (ddi_get_lbolt() >= growtime) {
3390 arc_no_grow = B_FALSE;
3393 evicted = arc_adjust();
3395 mutex_enter(&arc_reclaim_lock);
3398 * If evicted is zero, we couldn't evict anything via
3399 * arc_adjust(). This could be due to hash lock
3400 * collisions, but more likely due to the majority of
3401 * arc buffers being unevictable. Therefore, even if
3402 * arc_size is above arc_c, another pass is unlikely to
3403 * be helpful and could potentially cause us to enter an
3404 * infinite loop.
3406 if (arc_size <= arc_c || evicted == 0) {
3408 * We're either no longer overflowing, or we
3409 * can't evict anything more, so we should wake
3410 * up any threads before we go to sleep.
3412 cv_broadcast(&arc_reclaim_waiters_cv);
3415 * Block until signaled, or after one second (we
3416 * might need to perform arc_kmem_reap_now()
3417 * even if we aren't being signalled)
3419 CALLB_CPR_SAFE_BEGIN(&cpr);
3420 (void) cv_timedwait(&arc_reclaim_thread_cv,
3421 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3422 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3426 arc_reclaim_thread_exit = FALSE;
3427 cv_broadcast(&arc_reclaim_thread_cv);
3428 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3429 thread_exit();
3432 static void
3433 arc_user_evicts_thread(void)
3435 callb_cpr_t cpr;
3437 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3439 mutex_enter(&arc_user_evicts_lock);
3440 while (!arc_user_evicts_thread_exit) {
3441 mutex_exit(&arc_user_evicts_lock);
3443 arc_do_user_evicts();
3446 * This is necessary in order for the mdb ::arc dcmd to
3447 * show up to date information. Since the ::arc command
3448 * does not call the kstat's update function, without
3449 * this call, the command may show stale stats for the
3450 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3451 * with this change, the data might be up to 1 second
3452 * out of date; but that should suffice. The arc_state_t
3453 * structures can be queried directly if more accurate
3454 * information is needed.
3456 if (arc_ksp != NULL)
3457 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3459 mutex_enter(&arc_user_evicts_lock);
3462 * Block until signaled, or after one second (we need to
3463 * call the arc's kstat update function regularly).
3465 CALLB_CPR_SAFE_BEGIN(&cpr);
3466 (void) cv_timedwait(&arc_user_evicts_cv,
3467 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3468 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3471 arc_user_evicts_thread_exit = FALSE;
3472 cv_broadcast(&arc_user_evicts_cv);
3473 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3474 thread_exit();
3478 * Adapt arc info given the number of bytes we are trying to add and
3479 * the state that we are comming from. This function is only called
3480 * when we are adding new content to the cache.
3482 static void
3483 arc_adapt(int bytes, arc_state_t *state)
3485 int mult;
3486 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3487 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3488 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3490 if (state == arc_l2c_only)
3491 return;
3493 ASSERT(bytes > 0);
3495 * Adapt the target size of the MRU list:
3496 * - if we just hit in the MRU ghost list, then increase
3497 * the target size of the MRU list.
3498 * - if we just hit in the MFU ghost list, then increase
3499 * the target size of the MFU list by decreasing the
3500 * target size of the MRU list.
3502 if (state == arc_mru_ghost) {
3503 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3504 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3506 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3507 } else if (state == arc_mfu_ghost) {
3508 uint64_t delta;
3510 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3511 mult = MIN(mult, 10);
3513 delta = MIN(bytes * mult, arc_p);
3514 arc_p = MAX(arc_p_min, arc_p - delta);
3516 ASSERT((int64_t)arc_p >= 0);
3518 if (arc_reclaim_needed()) {
3519 cv_signal(&arc_reclaim_thread_cv);
3520 return;
3523 if (arc_no_grow)
3524 return;
3526 if (arc_c >= arc_c_max)
3527 return;
3530 * If we're within (2 * maxblocksize) bytes of the target
3531 * cache size, increment the target cache size
3533 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3534 atomic_add_64(&arc_c, (int64_t)bytes);
3535 if (arc_c > arc_c_max)
3536 arc_c = arc_c_max;
3537 else if (state == arc_anon)
3538 atomic_add_64(&arc_p, (int64_t)bytes);
3539 if (arc_p > arc_c)
3540 arc_p = arc_c;
3542 ASSERT((int64_t)arc_p >= 0);
3546 * Check if arc_size has grown past our upper threshold, determined by
3547 * zfs_arc_overflow_shift.
3549 static boolean_t
3550 arc_is_overflowing(void)
3552 /* Always allow at least one block of overflow */
3553 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3554 arc_c >> zfs_arc_overflow_shift);
3556 return (arc_size >= arc_c + overflow);
3560 * The buffer, supplied as the first argument, needs a data block. If we
3561 * are hitting the hard limit for the cache size, we must sleep, waiting
3562 * for the eviction thread to catch up. If we're past the target size
3563 * but below the hard limit, we'll only signal the reclaim thread and
3564 * continue on.
3566 static void
3567 arc_get_data_buf(arc_buf_t *buf)
3569 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3570 uint64_t size = buf->b_hdr->b_size;
3571 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3573 arc_adapt(size, state);
3576 * If arc_size is currently overflowing, and has grown past our
3577 * upper limit, we must be adding data faster than the evict
3578 * thread can evict. Thus, to ensure we don't compound the
3579 * problem by adding more data and forcing arc_size to grow even
3580 * further past it's target size, we halt and wait for the
3581 * eviction thread to catch up.
3583 * It's also possible that the reclaim thread is unable to evict
3584 * enough buffers to get arc_size below the overflow limit (e.g.
3585 * due to buffers being un-evictable, or hash lock collisions).
3586 * In this case, we want to proceed regardless if we're
3587 * overflowing; thus we don't use a while loop here.
3589 if (arc_is_overflowing()) {
3590 mutex_enter(&arc_reclaim_lock);
3593 * Now that we've acquired the lock, we may no longer be
3594 * over the overflow limit, lets check.
3596 * We're ignoring the case of spurious wake ups. If that
3597 * were to happen, it'd let this thread consume an ARC
3598 * buffer before it should have (i.e. before we're under
3599 * the overflow limit and were signalled by the reclaim
3600 * thread). As long as that is a rare occurrence, it
3601 * shouldn't cause any harm.
3603 if (arc_is_overflowing()) {
3604 cv_signal(&arc_reclaim_thread_cv);
3605 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3608 mutex_exit(&arc_reclaim_lock);
3611 if (type == ARC_BUFC_METADATA) {
3612 buf->b_data = zio_buf_alloc(size);
3613 arc_space_consume(size, ARC_SPACE_META);
3614 } else {
3615 ASSERT(type == ARC_BUFC_DATA);
3616 buf->b_data = zio_data_buf_alloc(size);
3617 arc_space_consume(size, ARC_SPACE_DATA);
3621 * Update the state size. Note that ghost states have a
3622 * "ghost size" and so don't need to be updated.
3624 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3625 arc_buf_hdr_t *hdr = buf->b_hdr;
3626 arc_state_t *state = hdr->b_l1hdr.b_state;
3628 (void) refcount_add_many(&state->arcs_size, size, buf);
3631 * If this is reached via arc_read, the link is
3632 * protected by the hash lock. If reached via
3633 * arc_buf_alloc, the header should not be accessed by
3634 * any other thread. And, if reached via arc_read_done,
3635 * the hash lock will protect it if it's found in the
3636 * hash table; otherwise no other thread should be
3637 * trying to [add|remove]_reference it.
3639 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3640 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3641 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3642 size);
3645 * If we are growing the cache, and we are adding anonymous
3646 * data, and we have outgrown arc_p, update arc_p
3648 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3649 (refcount_count(&arc_anon->arcs_size) +
3650 refcount_count(&arc_mru->arcs_size) > arc_p))
3651 arc_p = MIN(arc_c, arc_p + size);
3656 * This routine is called whenever a buffer is accessed.
3657 * NOTE: the hash lock is dropped in this function.
3659 static void
3660 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3662 clock_t now;
3664 ASSERT(MUTEX_HELD(hash_lock));
3665 ASSERT(HDR_HAS_L1HDR(hdr));
3667 if (hdr->b_l1hdr.b_state == arc_anon) {
3669 * This buffer is not in the cache, and does not
3670 * appear in our "ghost" list. Add the new buffer
3671 * to the MRU state.
3674 ASSERT0(hdr->b_l1hdr.b_arc_access);
3675 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3676 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3677 arc_change_state(arc_mru, hdr, hash_lock);
3679 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3680 now = ddi_get_lbolt();
3683 * If this buffer is here because of a prefetch, then either:
3684 * - clear the flag if this is a "referencing" read
3685 * (any subsequent access will bump this into the MFU state).
3686 * or
3687 * - move the buffer to the head of the list if this is
3688 * another prefetch (to make it less likely to be evicted).
3690 if (HDR_PREFETCH(hdr)) {
3691 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3692 /* link protected by hash lock */
3693 ASSERT(multilist_link_active(
3694 &hdr->b_l1hdr.b_arc_node));
3695 } else {
3696 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3697 ARCSTAT_BUMP(arcstat_mru_hits);
3699 hdr->b_l1hdr.b_arc_access = now;
3700 return;
3704 * This buffer has been "accessed" only once so far,
3705 * but it is still in the cache. Move it to the MFU
3706 * state.
3708 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3710 * More than 125ms have passed since we
3711 * instantiated this buffer. Move it to the
3712 * most frequently used state.
3714 hdr->b_l1hdr.b_arc_access = now;
3715 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3716 arc_change_state(arc_mfu, hdr, hash_lock);
3718 ARCSTAT_BUMP(arcstat_mru_hits);
3719 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3720 arc_state_t *new_state;
3722 * This buffer has been "accessed" recently, but
3723 * was evicted from the cache. Move it to the
3724 * MFU state.
3727 if (HDR_PREFETCH(hdr)) {
3728 new_state = arc_mru;
3729 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3730 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3731 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3732 } else {
3733 new_state = arc_mfu;
3734 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3737 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3738 arc_change_state(new_state, hdr, hash_lock);
3740 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3741 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
3743 * This buffer has been accessed more than once and is
3744 * still in the cache. Keep it in the MFU state.
3746 * NOTE: an add_reference() that occurred when we did
3747 * the arc_read() will have kicked this off the list.
3748 * If it was a prefetch, we will explicitly move it to
3749 * the head of the list now.
3751 if ((HDR_PREFETCH(hdr)) != 0) {
3752 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3753 /* link protected by hash_lock */
3754 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3756 ARCSTAT_BUMP(arcstat_mfu_hits);
3757 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3758 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3759 arc_state_t *new_state = arc_mfu;
3761 * This buffer has been accessed more than once but has
3762 * been evicted from the cache. Move it back to the
3763 * MFU state.
3766 if (HDR_PREFETCH(hdr)) {
3768 * This is a prefetch access...
3769 * move this block back to the MRU state.
3771 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3772 new_state = arc_mru;
3775 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3776 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3777 arc_change_state(new_state, hdr, hash_lock);
3779 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3780 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3782 * This buffer is on the 2nd Level ARC.
3785 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3786 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3787 arc_change_state(arc_mfu, hdr, hash_lock);
3788 } else {
3789 ASSERT(!"invalid arc state");
3793 /* a generic arc_done_func_t which you can use */
3794 /* ARGSUSED */
3795 void
3796 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3798 if (zio == NULL || zio->io_error == 0)
3799 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3800 VERIFY(arc_buf_remove_ref(buf, arg));
3803 /* a generic arc_done_func_t */
3804 void
3805 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3807 arc_buf_t **bufp = arg;
3808 if (zio && zio->io_error) {
3809 VERIFY(arc_buf_remove_ref(buf, arg));
3810 *bufp = NULL;
3811 } else {
3812 *bufp = buf;
3813 ASSERT(buf->b_data);
3817 static void
3818 arc_read_done(zio_t *zio)
3820 arc_buf_hdr_t *hdr;
3821 arc_buf_t *buf;
3822 arc_buf_t *abuf; /* buffer we're assigning to callback */
3823 kmutex_t *hash_lock = NULL;
3824 arc_callback_t *callback_list, *acb;
3825 int freeable = FALSE;
3827 buf = zio->io_private;
3828 hdr = buf->b_hdr;
3831 * The hdr was inserted into hash-table and removed from lists
3832 * prior to starting I/O. We should find this header, since
3833 * it's in the hash table, and it should be legit since it's
3834 * not possible to evict it during the I/O. The only possible
3835 * reason for it not to be found is if we were freed during the
3836 * read.
3838 if (HDR_IN_HASH_TABLE(hdr)) {
3839 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3840 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3841 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3842 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3843 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3845 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3846 &hash_lock);
3848 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3849 hash_lock == NULL) ||
3850 (found == hdr &&
3851 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3852 (found == hdr && HDR_L2_READING(hdr)));
3855 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3856 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3857 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3859 /* byteswap if necessary */
3860 callback_list = hdr->b_l1hdr.b_acb;
3861 ASSERT(callback_list != NULL);
3862 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3863 dmu_object_byteswap_t bswap =
3864 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3865 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3866 byteswap_uint64_array :
3867 dmu_ot_byteswap[bswap].ob_func;
3868 func(buf->b_data, hdr->b_size);
3871 arc_cksum_compute(buf, B_FALSE);
3872 arc_buf_watch(buf);
3874 if (hash_lock && zio->io_error == 0 &&
3875 hdr->b_l1hdr.b_state == arc_anon) {
3877 * Only call arc_access on anonymous buffers. This is because
3878 * if we've issued an I/O for an evicted buffer, we've already
3879 * called arc_access (to prevent any simultaneous readers from
3880 * getting confused).
3882 arc_access(hdr, hash_lock);
3885 /* create copies of the data buffer for the callers */
3886 abuf = buf;
3887 for (acb = callback_list; acb; acb = acb->acb_next) {
3888 if (acb->acb_done) {
3889 if (abuf == NULL) {
3890 ARCSTAT_BUMP(arcstat_duplicate_reads);
3891 abuf = arc_buf_clone(buf);
3893 acb->acb_buf = abuf;
3894 abuf = NULL;
3897 hdr->b_l1hdr.b_acb = NULL;
3898 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3899 ASSERT(!HDR_BUF_AVAILABLE(hdr));
3900 if (abuf == buf) {
3901 ASSERT(buf->b_efunc == NULL);
3902 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3903 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3906 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3907 callback_list != NULL);
3909 if (zio->io_error != 0) {
3910 hdr->b_flags |= ARC_FLAG_IO_ERROR;
3911 if (hdr->b_l1hdr.b_state != arc_anon)
3912 arc_change_state(arc_anon, hdr, hash_lock);
3913 if (HDR_IN_HASH_TABLE(hdr))
3914 buf_hash_remove(hdr);
3915 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3919 * Broadcast before we drop the hash_lock to avoid the possibility
3920 * that the hdr (and hence the cv) might be freed before we get to
3921 * the cv_broadcast().
3923 cv_broadcast(&hdr->b_l1hdr.b_cv);
3925 if (hash_lock != NULL) {
3926 mutex_exit(hash_lock);
3927 } else {
3929 * This block was freed while we waited for the read to
3930 * complete. It has been removed from the hash table and
3931 * moved to the anonymous state (so that it won't show up
3932 * in the cache).
3934 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3935 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3938 /* execute each callback and free its structure */
3939 while ((acb = callback_list) != NULL) {
3940 if (acb->acb_done)
3941 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3943 if (acb->acb_zio_dummy != NULL) {
3944 acb->acb_zio_dummy->io_error = zio->io_error;
3945 zio_nowait(acb->acb_zio_dummy);
3948 callback_list = acb->acb_next;
3949 kmem_free(acb, sizeof (arc_callback_t));
3952 if (freeable)
3953 arc_hdr_destroy(hdr);
3957 * "Read" the block at the specified DVA (in bp) via the
3958 * cache. If the block is found in the cache, invoke the provided
3959 * callback immediately and return. Note that the `zio' parameter
3960 * in the callback will be NULL in this case, since no IO was
3961 * required. If the block is not in the cache pass the read request
3962 * on to the spa with a substitute callback function, so that the
3963 * requested block will be added to the cache.
3965 * If a read request arrives for a block that has a read in-progress,
3966 * either wait for the in-progress read to complete (and return the
3967 * results); or, if this is a read with a "done" func, add a record
3968 * to the read to invoke the "done" func when the read completes,
3969 * and return; or just return.
3971 * arc_read_done() will invoke all the requested "done" functions
3972 * for readers of this block.
3975 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3976 void *private, zio_priority_t priority, int zio_flags,
3977 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3979 arc_buf_hdr_t *hdr = NULL;
3980 arc_buf_t *buf = NULL;
3981 kmutex_t *hash_lock = NULL;
3982 zio_t *rzio;
3983 uint64_t guid = spa_load_guid(spa);
3985 ASSERT(!BP_IS_EMBEDDED(bp) ||
3986 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3988 top:
3989 if (!BP_IS_EMBEDDED(bp)) {
3991 * Embedded BP's have no DVA and require no I/O to "read".
3992 * Create an anonymous arc buf to back it.
3994 hdr = buf_hash_find(guid, bp, &hash_lock);
3997 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
3999 *arc_flags |= ARC_FLAG_CACHED;
4001 if (HDR_IO_IN_PROGRESS(hdr)) {
4003 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4004 priority == ZIO_PRIORITY_SYNC_READ) {
4006 * This sync read must wait for an
4007 * in-progress async read (e.g. a predictive
4008 * prefetch). Async reads are queued
4009 * separately at the vdev_queue layer, so
4010 * this is a form of priority inversion.
4011 * Ideally, we would "inherit" the demand
4012 * i/o's priority by moving the i/o from
4013 * the async queue to the synchronous queue,
4014 * but there is currently no mechanism to do
4015 * so. Track this so that we can evaluate
4016 * the magnitude of this potential performance
4017 * problem.
4019 * Note that if the prefetch i/o is already
4020 * active (has been issued to the device),
4021 * the prefetch improved performance, because
4022 * we issued it sooner than we would have
4023 * without the prefetch.
4025 DTRACE_PROBE1(arc__sync__wait__for__async,
4026 arc_buf_hdr_t *, hdr);
4027 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4029 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4030 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4033 if (*arc_flags & ARC_FLAG_WAIT) {
4034 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4035 mutex_exit(hash_lock);
4036 goto top;
4038 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4040 if (done) {
4041 arc_callback_t *acb = NULL;
4043 acb = kmem_zalloc(sizeof (arc_callback_t),
4044 KM_SLEEP);
4045 acb->acb_done = done;
4046 acb->acb_private = private;
4047 if (pio != NULL)
4048 acb->acb_zio_dummy = zio_null(pio,
4049 spa, NULL, NULL, NULL, zio_flags);
4051 ASSERT(acb->acb_done != NULL);
4052 acb->acb_next = hdr->b_l1hdr.b_acb;
4053 hdr->b_l1hdr.b_acb = acb;
4054 add_reference(hdr, hash_lock, private);
4055 mutex_exit(hash_lock);
4056 return (0);
4058 mutex_exit(hash_lock);
4059 return (0);
4062 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4063 hdr->b_l1hdr.b_state == arc_mfu);
4065 if (done) {
4066 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4068 * This is a demand read which does not have to
4069 * wait for i/o because we did a predictive
4070 * prefetch i/o for it, which has completed.
4072 DTRACE_PROBE1(
4073 arc__demand__hit__predictive__prefetch,
4074 arc_buf_hdr_t *, hdr);
4075 ARCSTAT_BUMP(
4076 arcstat_demand_hit_predictive_prefetch);
4077 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4079 add_reference(hdr, hash_lock, private);
4081 * If this block is already in use, create a new
4082 * copy of the data so that we will be guaranteed
4083 * that arc_release() will always succeed.
4085 buf = hdr->b_l1hdr.b_buf;
4086 ASSERT(buf);
4087 ASSERT(buf->b_data);
4088 if (HDR_BUF_AVAILABLE(hdr)) {
4089 ASSERT(buf->b_efunc == NULL);
4090 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4091 } else {
4092 buf = arc_buf_clone(buf);
4095 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4096 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4097 hdr->b_flags |= ARC_FLAG_PREFETCH;
4099 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4100 arc_access(hdr, hash_lock);
4101 if (*arc_flags & ARC_FLAG_L2CACHE)
4102 hdr->b_flags |= ARC_FLAG_L2CACHE;
4103 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4104 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4105 mutex_exit(hash_lock);
4106 ARCSTAT_BUMP(arcstat_hits);
4107 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4108 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4109 data, metadata, hits);
4111 if (done)
4112 done(NULL, buf, private);
4113 } else {
4114 uint64_t size = BP_GET_LSIZE(bp);
4115 arc_callback_t *acb;
4116 vdev_t *vd = NULL;
4117 uint64_t addr = 0;
4118 boolean_t devw = B_FALSE;
4119 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4120 int32_t b_asize = 0;
4122 if (hdr == NULL) {
4123 /* this block is not in the cache */
4124 arc_buf_hdr_t *exists = NULL;
4125 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4126 buf = arc_buf_alloc(spa, size, private, type);
4127 hdr = buf->b_hdr;
4128 if (!BP_IS_EMBEDDED(bp)) {
4129 hdr->b_dva = *BP_IDENTITY(bp);
4130 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4131 exists = buf_hash_insert(hdr, &hash_lock);
4133 if (exists != NULL) {
4134 /* somebody beat us to the hash insert */
4135 mutex_exit(hash_lock);
4136 buf_discard_identity(hdr);
4137 (void) arc_buf_remove_ref(buf, private);
4138 goto top; /* restart the IO request */
4142 * If there is a callback, we pass our reference to
4143 * it; otherwise we remove our reference.
4145 if (done == NULL) {
4146 (void) remove_reference(hdr, hash_lock,
4147 private);
4149 if (*arc_flags & ARC_FLAG_PREFETCH)
4150 hdr->b_flags |= ARC_FLAG_PREFETCH;
4151 if (*arc_flags & ARC_FLAG_L2CACHE)
4152 hdr->b_flags |= ARC_FLAG_L2CACHE;
4153 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4154 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4155 if (BP_GET_LEVEL(bp) > 0)
4156 hdr->b_flags |= ARC_FLAG_INDIRECT;
4157 } else {
4159 * This block is in the ghost cache. If it was L2-only
4160 * (and thus didn't have an L1 hdr), we realloc the
4161 * header to add an L1 hdr.
4163 if (!HDR_HAS_L1HDR(hdr)) {
4164 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4165 hdr_full_cache);
4168 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4169 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4170 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4171 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4174 * If there is a callback, we pass a reference to it.
4176 if (done != NULL)
4177 add_reference(hdr, hash_lock, private);
4178 if (*arc_flags & ARC_FLAG_PREFETCH)
4179 hdr->b_flags |= ARC_FLAG_PREFETCH;
4180 if (*arc_flags & ARC_FLAG_L2CACHE)
4181 hdr->b_flags |= ARC_FLAG_L2CACHE;
4182 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4183 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4184 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4185 buf->b_hdr = hdr;
4186 buf->b_data = NULL;
4187 buf->b_efunc = NULL;
4188 buf->b_private = NULL;
4189 buf->b_next = NULL;
4190 hdr->b_l1hdr.b_buf = buf;
4191 ASSERT0(hdr->b_l1hdr.b_datacnt);
4192 hdr->b_l1hdr.b_datacnt = 1;
4193 arc_get_data_buf(buf);
4194 arc_access(hdr, hash_lock);
4197 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4198 hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4199 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4201 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4202 acb->acb_done = done;
4203 acb->acb_private = private;
4205 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4206 hdr->b_l1hdr.b_acb = acb;
4207 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4209 if (HDR_HAS_L2HDR(hdr) &&
4210 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4211 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4212 addr = hdr->b_l2hdr.b_daddr;
4213 b_compress = hdr->b_l2hdr.b_compress;
4214 b_asize = hdr->b_l2hdr.b_asize;
4216 * Lock out device removal.
4218 if (vdev_is_dead(vd) ||
4219 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4220 vd = NULL;
4223 if (hash_lock != NULL)
4224 mutex_exit(hash_lock);
4227 * At this point, we have a level 1 cache miss. Try again in
4228 * L2ARC if possible.
4230 ASSERT3U(hdr->b_size, ==, size);
4231 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4232 uint64_t, size, zbookmark_phys_t *, zb);
4233 ARCSTAT_BUMP(arcstat_misses);
4234 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4235 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4236 data, metadata, misses);
4238 if (priority == ZIO_PRIORITY_ASYNC_READ)
4239 hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4240 else
4241 hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4243 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4245 * Read from the L2ARC if the following are true:
4246 * 1. The L2ARC vdev was previously cached.
4247 * 2. This buffer still has L2ARC metadata.
4248 * 3. This buffer isn't currently writing to the L2ARC.
4249 * 4. The L2ARC entry wasn't evicted, which may
4250 * also have invalidated the vdev.
4251 * 5. This isn't prefetch and l2arc_noprefetch is set.
4253 if (HDR_HAS_L2HDR(hdr) &&
4254 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4255 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4256 l2arc_read_callback_t *cb;
4258 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4259 ARCSTAT_BUMP(arcstat_l2_hits);
4261 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4262 KM_SLEEP);
4263 cb->l2rcb_buf = buf;
4264 cb->l2rcb_spa = spa;
4265 cb->l2rcb_bp = *bp;
4266 cb->l2rcb_zb = *zb;
4267 cb->l2rcb_flags = zio_flags;
4268 cb->l2rcb_compress = b_compress;
4270 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4271 addr + size < vd->vdev_psize -
4272 VDEV_LABEL_END_SIZE);
4275 * l2arc read. The SCL_L2ARC lock will be
4276 * released by l2arc_read_done().
4277 * Issue a null zio if the underlying buffer
4278 * was squashed to zero size by compression.
4280 if (b_compress == ZIO_COMPRESS_EMPTY) {
4281 rzio = zio_null(pio, spa, vd,
4282 l2arc_read_done, cb,
4283 zio_flags | ZIO_FLAG_DONT_CACHE |
4284 ZIO_FLAG_CANFAIL |
4285 ZIO_FLAG_DONT_PROPAGATE |
4286 ZIO_FLAG_DONT_RETRY);
4287 } else {
4288 rzio = zio_read_phys(pio, vd, addr,
4289 b_asize, buf->b_data,
4290 ZIO_CHECKSUM_OFF,
4291 l2arc_read_done, cb, priority,
4292 zio_flags | ZIO_FLAG_DONT_CACHE |
4293 ZIO_FLAG_CANFAIL |
4294 ZIO_FLAG_DONT_PROPAGATE |
4295 ZIO_FLAG_DONT_RETRY, B_FALSE);
4297 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4298 zio_t *, rzio);
4299 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4301 if (*arc_flags & ARC_FLAG_NOWAIT) {
4302 zio_nowait(rzio);
4303 return (0);
4306 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4307 if (zio_wait(rzio) == 0)
4308 return (0);
4310 /* l2arc read error; goto zio_read() */
4311 } else {
4312 DTRACE_PROBE1(l2arc__miss,
4313 arc_buf_hdr_t *, hdr);
4314 ARCSTAT_BUMP(arcstat_l2_misses);
4315 if (HDR_L2_WRITING(hdr))
4316 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4317 spa_config_exit(spa, SCL_L2ARC, vd);
4319 } else {
4320 if (vd != NULL)
4321 spa_config_exit(spa, SCL_L2ARC, vd);
4322 if (l2arc_ndev != 0) {
4323 DTRACE_PROBE1(l2arc__miss,
4324 arc_buf_hdr_t *, hdr);
4325 ARCSTAT_BUMP(arcstat_l2_misses);
4329 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4330 arc_read_done, buf, priority, zio_flags, zb);
4332 if (*arc_flags & ARC_FLAG_WAIT)
4333 return (zio_wait(rzio));
4335 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4336 zio_nowait(rzio);
4338 return (0);
4341 void
4342 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4344 ASSERT(buf->b_hdr != NULL);
4345 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4346 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4347 func == NULL);
4348 ASSERT(buf->b_efunc == NULL);
4349 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4351 buf->b_efunc = func;
4352 buf->b_private = private;
4356 * Notify the arc that a block was freed, and thus will never be used again.
4358 void
4359 arc_freed(spa_t *spa, const blkptr_t *bp)
4361 arc_buf_hdr_t *hdr;
4362 kmutex_t *hash_lock;
4363 uint64_t guid = spa_load_guid(spa);
4365 ASSERT(!BP_IS_EMBEDDED(bp));
4367 hdr = buf_hash_find(guid, bp, &hash_lock);
4368 if (hdr == NULL)
4369 return;
4370 if (HDR_BUF_AVAILABLE(hdr)) {
4371 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4372 add_reference(hdr, hash_lock, FTAG);
4373 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4374 mutex_exit(hash_lock);
4376 arc_release(buf, FTAG);
4377 (void) arc_buf_remove_ref(buf, FTAG);
4378 } else {
4379 mutex_exit(hash_lock);
4385 * Clear the user eviction callback set by arc_set_callback(), first calling
4386 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4387 * clearing the callback may result in the arc_buf being destroyed. However,
4388 * it will not result in the *last* arc_buf being destroyed, hence the data
4389 * will remain cached in the ARC. We make a copy of the arc buffer here so
4390 * that we can process the callback without holding any locks.
4392 * It's possible that the callback is already in the process of being cleared
4393 * by another thread. In this case we can not clear the callback.
4395 * Returns B_TRUE if the callback was successfully called and cleared.
4397 boolean_t
4398 arc_clear_callback(arc_buf_t *buf)
4400 arc_buf_hdr_t *hdr;
4401 kmutex_t *hash_lock;
4402 arc_evict_func_t *efunc = buf->b_efunc;
4403 void *private = buf->b_private;
4405 mutex_enter(&buf->b_evict_lock);
4406 hdr = buf->b_hdr;
4407 if (hdr == NULL) {
4409 * We are in arc_do_user_evicts().
4411 ASSERT(buf->b_data == NULL);
4412 mutex_exit(&buf->b_evict_lock);
4413 return (B_FALSE);
4414 } else if (buf->b_data == NULL) {
4416 * We are on the eviction list; process this buffer now
4417 * but let arc_do_user_evicts() do the reaping.
4419 buf->b_efunc = NULL;
4420 mutex_exit(&buf->b_evict_lock);
4421 VERIFY0(efunc(private));
4422 return (B_TRUE);
4424 hash_lock = HDR_LOCK(hdr);
4425 mutex_enter(hash_lock);
4426 hdr = buf->b_hdr;
4427 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4429 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4430 hdr->b_l1hdr.b_datacnt);
4431 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4432 hdr->b_l1hdr.b_state == arc_mfu);
4434 buf->b_efunc = NULL;
4435 buf->b_private = NULL;
4437 if (hdr->b_l1hdr.b_datacnt > 1) {
4438 mutex_exit(&buf->b_evict_lock);
4439 arc_buf_destroy(buf, TRUE);
4440 } else {
4441 ASSERT(buf == hdr->b_l1hdr.b_buf);
4442 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4443 mutex_exit(&buf->b_evict_lock);
4446 mutex_exit(hash_lock);
4447 VERIFY0(efunc(private));
4448 return (B_TRUE);
4452 * Release this buffer from the cache, making it an anonymous buffer. This
4453 * must be done after a read and prior to modifying the buffer contents.
4454 * If the buffer has more than one reference, we must make
4455 * a new hdr for the buffer.
4457 void
4458 arc_release(arc_buf_t *buf, void *tag)
4460 arc_buf_hdr_t *hdr = buf->b_hdr;
4463 * It would be nice to assert that if it's DMU metadata (level >
4464 * 0 || it's the dnode file), then it must be syncing context.
4465 * But we don't know that information at this level.
4468 mutex_enter(&buf->b_evict_lock);
4470 ASSERT(HDR_HAS_L1HDR(hdr));
4473 * We don't grab the hash lock prior to this check, because if
4474 * the buffer's header is in the arc_anon state, it won't be
4475 * linked into the hash table.
4477 if (hdr->b_l1hdr.b_state == arc_anon) {
4478 mutex_exit(&buf->b_evict_lock);
4479 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4480 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4481 ASSERT(!HDR_HAS_L2HDR(hdr));
4482 ASSERT(BUF_EMPTY(hdr));
4484 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4485 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4486 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4488 ASSERT3P(buf->b_efunc, ==, NULL);
4489 ASSERT3P(buf->b_private, ==, NULL);
4491 hdr->b_l1hdr.b_arc_access = 0;
4492 arc_buf_thaw(buf);
4494 return;
4497 kmutex_t *hash_lock = HDR_LOCK(hdr);
4498 mutex_enter(hash_lock);
4501 * This assignment is only valid as long as the hash_lock is
4502 * held, we must be careful not to reference state or the
4503 * b_state field after dropping the lock.
4505 arc_state_t *state = hdr->b_l1hdr.b_state;
4506 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4507 ASSERT3P(state, !=, arc_anon);
4509 /* this buffer is not on any list */
4510 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4512 if (HDR_HAS_L2HDR(hdr)) {
4513 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4516 * We have to recheck this conditional again now that
4517 * we're holding the l2ad_mtx to prevent a race with
4518 * another thread which might be concurrently calling
4519 * l2arc_evict(). In that case, l2arc_evict() might have
4520 * destroyed the header's L2 portion as we were waiting
4521 * to acquire the l2ad_mtx.
4523 if (HDR_HAS_L2HDR(hdr))
4524 arc_hdr_l2hdr_destroy(hdr);
4526 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4530 * Do we have more than one buf?
4532 if (hdr->b_l1hdr.b_datacnt > 1) {
4533 arc_buf_hdr_t *nhdr;
4534 arc_buf_t **bufp;
4535 uint64_t blksz = hdr->b_size;
4536 uint64_t spa = hdr->b_spa;
4537 arc_buf_contents_t type = arc_buf_type(hdr);
4538 uint32_t flags = hdr->b_flags;
4540 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4542 * Pull the data off of this hdr and attach it to
4543 * a new anonymous hdr.
4545 (void) remove_reference(hdr, hash_lock, tag);
4546 bufp = &hdr->b_l1hdr.b_buf;
4547 while (*bufp != buf)
4548 bufp = &(*bufp)->b_next;
4549 *bufp = buf->b_next;
4550 buf->b_next = NULL;
4552 ASSERT3P(state, !=, arc_l2c_only);
4554 (void) refcount_remove_many(
4555 &state->arcs_size, hdr->b_size, buf);
4557 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4558 ASSERT3P(state, !=, arc_l2c_only);
4559 uint64_t *size = &state->arcs_lsize[type];
4560 ASSERT3U(*size, >=, hdr->b_size);
4561 atomic_add_64(size, -hdr->b_size);
4565 * We're releasing a duplicate user data buffer, update
4566 * our statistics accordingly.
4568 if (HDR_ISTYPE_DATA(hdr)) {
4569 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4570 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4571 -hdr->b_size);
4573 hdr->b_l1hdr.b_datacnt -= 1;
4574 arc_cksum_verify(buf);
4575 arc_buf_unwatch(buf);
4577 mutex_exit(hash_lock);
4579 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4580 nhdr->b_size = blksz;
4581 nhdr->b_spa = spa;
4583 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4584 nhdr->b_flags |= arc_bufc_to_flags(type);
4585 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4587 nhdr->b_l1hdr.b_buf = buf;
4588 nhdr->b_l1hdr.b_datacnt = 1;
4589 nhdr->b_l1hdr.b_state = arc_anon;
4590 nhdr->b_l1hdr.b_arc_access = 0;
4591 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4592 nhdr->b_freeze_cksum = NULL;
4594 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4595 buf->b_hdr = nhdr;
4596 mutex_exit(&buf->b_evict_lock);
4597 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4598 } else {
4599 mutex_exit(&buf->b_evict_lock);
4600 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4601 /* protected by hash lock, or hdr is on arc_anon */
4602 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4603 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4604 arc_change_state(arc_anon, hdr, hash_lock);
4605 hdr->b_l1hdr.b_arc_access = 0;
4606 mutex_exit(hash_lock);
4608 buf_discard_identity(hdr);
4609 arc_buf_thaw(buf);
4611 buf->b_efunc = NULL;
4612 buf->b_private = NULL;
4616 arc_released(arc_buf_t *buf)
4618 int released;
4620 mutex_enter(&buf->b_evict_lock);
4621 released = (buf->b_data != NULL &&
4622 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4623 mutex_exit(&buf->b_evict_lock);
4624 return (released);
4627 #ifdef ZFS_DEBUG
4629 arc_referenced(arc_buf_t *buf)
4631 int referenced;
4633 mutex_enter(&buf->b_evict_lock);
4634 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4635 mutex_exit(&buf->b_evict_lock);
4636 return (referenced);
4638 #endif
4640 static void
4641 arc_write_ready(zio_t *zio)
4643 arc_write_callback_t *callback = zio->io_private;
4644 arc_buf_t *buf = callback->awcb_buf;
4645 arc_buf_hdr_t *hdr = buf->b_hdr;
4647 ASSERT(HDR_HAS_L1HDR(hdr));
4648 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4649 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4650 callback->awcb_ready(zio, buf, callback->awcb_private);
4653 * If the IO is already in progress, then this is a re-write
4654 * attempt, so we need to thaw and re-compute the cksum.
4655 * It is the responsibility of the callback to handle the
4656 * accounting for any re-write attempt.
4658 if (HDR_IO_IN_PROGRESS(hdr)) {
4659 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4660 if (hdr->b_freeze_cksum != NULL) {
4661 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4662 hdr->b_freeze_cksum = NULL;
4664 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4666 arc_cksum_compute(buf, B_FALSE);
4667 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4671 * The SPA calls this callback for each physical write that happens on behalf
4672 * of a logical write. See the comment in dbuf_write_physdone() for details.
4674 static void
4675 arc_write_physdone(zio_t *zio)
4677 arc_write_callback_t *cb = zio->io_private;
4678 if (cb->awcb_physdone != NULL)
4679 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4682 static void
4683 arc_write_done(zio_t *zio)
4685 arc_write_callback_t *callback = zio->io_private;
4686 arc_buf_t *buf = callback->awcb_buf;
4687 arc_buf_hdr_t *hdr = buf->b_hdr;
4689 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4691 if (zio->io_error == 0) {
4692 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4693 buf_discard_identity(hdr);
4694 } else {
4695 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4696 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4698 } else {
4699 ASSERT(BUF_EMPTY(hdr));
4703 * If the block to be written was all-zero or compressed enough to be
4704 * embedded in the BP, no write was performed so there will be no
4705 * dva/birth/checksum. The buffer must therefore remain anonymous
4706 * (and uncached).
4708 if (!BUF_EMPTY(hdr)) {
4709 arc_buf_hdr_t *exists;
4710 kmutex_t *hash_lock;
4712 ASSERT(zio->io_error == 0);
4714 arc_cksum_verify(buf);
4716 exists = buf_hash_insert(hdr, &hash_lock);
4717 if (exists != NULL) {
4719 * This can only happen if we overwrite for
4720 * sync-to-convergence, because we remove
4721 * buffers from the hash table when we arc_free().
4723 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4724 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4725 panic("bad overwrite, hdr=%p exists=%p",
4726 (void *)hdr, (void *)exists);
4727 ASSERT(refcount_is_zero(
4728 &exists->b_l1hdr.b_refcnt));
4729 arc_change_state(arc_anon, exists, hash_lock);
4730 mutex_exit(hash_lock);
4731 arc_hdr_destroy(exists);
4732 exists = buf_hash_insert(hdr, &hash_lock);
4733 ASSERT3P(exists, ==, NULL);
4734 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4735 /* nopwrite */
4736 ASSERT(zio->io_prop.zp_nopwrite);
4737 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4738 panic("bad nopwrite, hdr=%p exists=%p",
4739 (void *)hdr, (void *)exists);
4740 } else {
4741 /* Dedup */
4742 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4743 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4744 ASSERT(BP_GET_DEDUP(zio->io_bp));
4745 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4748 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4749 /* if it's not anon, we are doing a scrub */
4750 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4751 arc_access(hdr, hash_lock);
4752 mutex_exit(hash_lock);
4753 } else {
4754 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4757 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4758 callback->awcb_done(zio, buf, callback->awcb_private);
4760 kmem_free(callback, sizeof (arc_write_callback_t));
4763 zio_t *
4764 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4765 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4766 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4767 arc_done_func_t *done, void *private, zio_priority_t priority,
4768 int zio_flags, const zbookmark_phys_t *zb)
4770 arc_buf_hdr_t *hdr = buf->b_hdr;
4771 arc_write_callback_t *callback;
4772 zio_t *zio;
4774 ASSERT(ready != NULL);
4775 ASSERT(done != NULL);
4776 ASSERT(!HDR_IO_ERROR(hdr));
4777 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4778 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4779 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4780 if (l2arc)
4781 hdr->b_flags |= ARC_FLAG_L2CACHE;
4782 if (l2arc_compress)
4783 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4784 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4785 callback->awcb_ready = ready;
4786 callback->awcb_physdone = physdone;
4787 callback->awcb_done = done;
4788 callback->awcb_private = private;
4789 callback->awcb_buf = buf;
4791 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4792 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4793 priority, zio_flags, zb);
4795 return (zio);
4798 static int
4799 arc_memory_throttle(uint64_t reserve, uint64_t txg)
4801 #ifdef _KERNEL
4802 uint64_t available_memory = ptob(freemem);
4803 static uint64_t page_load = 0;
4804 static uint64_t last_txg = 0;
4806 #if defined(__i386)
4807 available_memory =
4808 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4809 #endif
4811 if (freemem > physmem * arc_lotsfree_percent / 100)
4812 return (0);
4814 if (txg > last_txg) {
4815 last_txg = txg;
4816 page_load = 0;
4819 * If we are in pageout, we know that memory is already tight,
4820 * the arc is already going to be evicting, so we just want to
4821 * continue to let page writes occur as quickly as possible.
4823 if (curproc == proc_pageout) {
4824 if (page_load > MAX(ptob(minfree), available_memory) / 4)
4825 return (SET_ERROR(ERESTART));
4826 /* Note: reserve is inflated, so we deflate */
4827 page_load += reserve / 8;
4828 return (0);
4829 } else if (page_load > 0 && arc_reclaim_needed()) {
4830 /* memory is low, delay before restarting */
4831 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4832 return (SET_ERROR(EAGAIN));
4834 page_load = 0;
4835 #endif
4836 return (0);
4839 void
4840 arc_tempreserve_clear(uint64_t reserve)
4842 atomic_add_64(&arc_tempreserve, -reserve);
4843 ASSERT((int64_t)arc_tempreserve >= 0);
4847 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4849 int error;
4850 uint64_t anon_size;
4852 if (reserve > arc_c/4 && !arc_no_grow)
4853 arc_c = MIN(arc_c_max, reserve * 4);
4854 if (reserve > arc_c)
4855 return (SET_ERROR(ENOMEM));
4858 * Don't count loaned bufs as in flight dirty data to prevent long
4859 * network delays from blocking transactions that are ready to be
4860 * assigned to a txg.
4862 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
4863 arc_loaned_bytes), 0);
4866 * Writes will, almost always, require additional memory allocations
4867 * in order to compress/encrypt/etc the data. We therefore need to
4868 * make sure that there is sufficient available memory for this.
4870 error = arc_memory_throttle(reserve, txg);
4871 if (error != 0)
4872 return (error);
4875 * Throttle writes when the amount of dirty data in the cache
4876 * gets too large. We try to keep the cache less than half full
4877 * of dirty blocks so that our sync times don't grow too large.
4878 * Note: if two requests come in concurrently, we might let them
4879 * both succeed, when one of them should fail. Not a huge deal.
4882 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4883 anon_size > arc_c / 4) {
4884 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4885 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4886 arc_tempreserve>>10,
4887 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4888 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4889 reserve>>10, arc_c>>10);
4890 return (SET_ERROR(ERESTART));
4892 atomic_add_64(&arc_tempreserve, reserve);
4893 return (0);
4896 static void
4897 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4898 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4900 size->value.ui64 = refcount_count(&state->arcs_size);
4901 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4902 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4905 static int
4906 arc_kstat_update(kstat_t *ksp, int rw)
4908 arc_stats_t *as = ksp->ks_data;
4910 if (rw == KSTAT_WRITE) {
4911 return (EACCES);
4912 } else {
4913 arc_kstat_update_state(arc_anon,
4914 &as->arcstat_anon_size,
4915 &as->arcstat_anon_evictable_data,
4916 &as->arcstat_anon_evictable_metadata);
4917 arc_kstat_update_state(arc_mru,
4918 &as->arcstat_mru_size,
4919 &as->arcstat_mru_evictable_data,
4920 &as->arcstat_mru_evictable_metadata);
4921 arc_kstat_update_state(arc_mru_ghost,
4922 &as->arcstat_mru_ghost_size,
4923 &as->arcstat_mru_ghost_evictable_data,
4924 &as->arcstat_mru_ghost_evictable_metadata);
4925 arc_kstat_update_state(arc_mfu,
4926 &as->arcstat_mfu_size,
4927 &as->arcstat_mfu_evictable_data,
4928 &as->arcstat_mfu_evictable_metadata);
4929 arc_kstat_update_state(arc_mfu_ghost,
4930 &as->arcstat_mfu_ghost_size,
4931 &as->arcstat_mfu_ghost_evictable_data,
4932 &as->arcstat_mfu_ghost_evictable_metadata);
4935 return (0);
4939 * This function *must* return indices evenly distributed between all
4940 * sublists of the multilist. This is needed due to how the ARC eviction
4941 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4942 * distributed between all sublists and uses this assumption when
4943 * deciding which sublist to evict from and how much to evict from it.
4945 unsigned int
4946 arc_state_multilist_index_func(multilist_t *ml, void *obj)
4948 arc_buf_hdr_t *hdr = obj;
4951 * We rely on b_dva to generate evenly distributed index
4952 * numbers using buf_hash below. So, as an added precaution,
4953 * let's make sure we never add empty buffers to the arc lists.
4955 ASSERT(!BUF_EMPTY(hdr));
4958 * The assumption here, is the hash value for a given
4959 * arc_buf_hdr_t will remain constant throughout it's lifetime
4960 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
4961 * Thus, we don't need to store the header's sublist index
4962 * on insertion, as this index can be recalculated on removal.
4964 * Also, the low order bits of the hash value are thought to be
4965 * distributed evenly. Otherwise, in the case that the multilist
4966 * has a power of two number of sublists, each sublists' usage
4967 * would not be evenly distributed.
4969 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4970 multilist_get_num_sublists(ml));
4973 void
4974 arc_init(void)
4977 * allmem is "all memory that we could possibly use".
4979 #ifdef _KERNEL
4980 uint64_t allmem = ptob(physmem - swapfs_minfree);
4981 #else
4982 uint64_t allmem = (physmem * PAGESIZE) / 2;
4983 #endif
4985 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4986 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
4987 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
4989 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
4990 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
4992 /* Convert seconds to clock ticks */
4993 arc_min_prefetch_lifespan = 1 * hz;
4995 /* Start out with 1/8 of all memory */
4996 arc_c = allmem / 8;
4998 #ifdef _KERNEL
5000 * On architectures where the physical memory can be larger
5001 * than the addressable space (intel in 32-bit mode), we may
5002 * need to limit the cache to 1/8 of VM size.
5004 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5005 #endif
5007 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5008 arc_c_min = MAX(allmem / 32, 64 << 20);
5009 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
5010 if (allmem >= 1 << 30)
5011 arc_c_max = allmem - (1 << 30);
5012 else
5013 arc_c_max = arc_c_min;
5014 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
5017 * Allow the tunables to override our calculations if they are
5018 * reasonable (ie. over 64MB)
5020 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem)
5021 arc_c_max = zfs_arc_max;
5022 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
5023 arc_c_min = zfs_arc_min;
5025 arc_c = arc_c_max;
5026 arc_p = (arc_c >> 1);
5028 /* limit meta-data to 1/4 of the arc capacity */
5029 arc_meta_limit = arc_c_max / 4;
5031 /* Allow the tunable to override if it is reasonable */
5032 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5033 arc_meta_limit = zfs_arc_meta_limit;
5035 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5036 arc_c_min = arc_meta_limit / 2;
5038 if (zfs_arc_meta_min > 0) {
5039 arc_meta_min = zfs_arc_meta_min;
5040 } else {
5041 arc_meta_min = arc_c_min / 2;
5044 if (zfs_arc_grow_retry > 0)
5045 arc_grow_retry = zfs_arc_grow_retry;
5047 if (zfs_arc_shrink_shift > 0)
5048 arc_shrink_shift = zfs_arc_shrink_shift;
5051 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5053 if (arc_no_grow_shift >= arc_shrink_shift)
5054 arc_no_grow_shift = arc_shrink_shift - 1;
5056 if (zfs_arc_p_min_shift > 0)
5057 arc_p_min_shift = zfs_arc_p_min_shift;
5059 if (zfs_arc_num_sublists_per_state < 1)
5060 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5062 /* if kmem_flags are set, lets try to use less memory */
5063 if (kmem_debugging())
5064 arc_c = arc_c / 2;
5065 if (arc_c < arc_c_min)
5066 arc_c = arc_c_min;
5068 arc_anon = &ARC_anon;
5069 arc_mru = &ARC_mru;
5070 arc_mru_ghost = &ARC_mru_ghost;
5071 arc_mfu = &ARC_mfu;
5072 arc_mfu_ghost = &ARC_mfu_ghost;
5073 arc_l2c_only = &ARC_l2c_only;
5074 arc_size = 0;
5076 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5077 sizeof (arc_buf_hdr_t),
5078 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5079 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5080 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5081 sizeof (arc_buf_hdr_t),
5082 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5083 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5084 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5085 sizeof (arc_buf_hdr_t),
5086 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5087 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5088 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5089 sizeof (arc_buf_hdr_t),
5090 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5091 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5092 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5093 sizeof (arc_buf_hdr_t),
5094 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5095 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5096 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5097 sizeof (arc_buf_hdr_t),
5098 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5099 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5100 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5101 sizeof (arc_buf_hdr_t),
5102 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5103 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5104 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5105 sizeof (arc_buf_hdr_t),
5106 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5107 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5108 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5109 sizeof (arc_buf_hdr_t),
5110 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5111 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5112 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5113 sizeof (arc_buf_hdr_t),
5114 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5115 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5117 refcount_create(&arc_anon->arcs_size);
5118 refcount_create(&arc_mru->arcs_size);
5119 refcount_create(&arc_mru_ghost->arcs_size);
5120 refcount_create(&arc_mfu->arcs_size);
5121 refcount_create(&arc_mfu_ghost->arcs_size);
5122 refcount_create(&arc_l2c_only->arcs_size);
5124 buf_init();
5126 arc_reclaim_thread_exit = FALSE;
5127 arc_user_evicts_thread_exit = FALSE;
5128 arc_eviction_list = NULL;
5129 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5131 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5132 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5134 if (arc_ksp != NULL) {
5135 arc_ksp->ks_data = &arc_stats;
5136 arc_ksp->ks_update = arc_kstat_update;
5137 kstat_install(arc_ksp);
5140 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5141 TS_RUN, minclsyspri);
5143 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5144 TS_RUN, minclsyspri);
5146 arc_dead = FALSE;
5147 arc_warm = B_FALSE;
5150 * Calculate maximum amount of dirty data per pool.
5152 * If it has been set by /etc/system, take that.
5153 * Otherwise, use a percentage of physical memory defined by
5154 * zfs_dirty_data_max_percent (default 10%) with a cap at
5155 * zfs_dirty_data_max_max (default 4GB).
5157 if (zfs_dirty_data_max == 0) {
5158 zfs_dirty_data_max = physmem * PAGESIZE *
5159 zfs_dirty_data_max_percent / 100;
5160 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5161 zfs_dirty_data_max_max);
5165 void
5166 arc_fini(void)
5168 mutex_enter(&arc_reclaim_lock);
5169 arc_reclaim_thread_exit = TRUE;
5171 * The reclaim thread will set arc_reclaim_thread_exit back to
5172 * FALSE when it is finished exiting; we're waiting for that.
5174 while (arc_reclaim_thread_exit) {
5175 cv_signal(&arc_reclaim_thread_cv);
5176 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5178 mutex_exit(&arc_reclaim_lock);
5180 mutex_enter(&arc_user_evicts_lock);
5181 arc_user_evicts_thread_exit = TRUE;
5183 * The user evicts thread will set arc_user_evicts_thread_exit
5184 * to FALSE when it is finished exiting; we're waiting for that.
5186 while (arc_user_evicts_thread_exit) {
5187 cv_signal(&arc_user_evicts_cv);
5188 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5190 mutex_exit(&arc_user_evicts_lock);
5192 /* Use TRUE to ensure *all* buffers are evicted */
5193 arc_flush(NULL, TRUE);
5195 arc_dead = TRUE;
5197 if (arc_ksp != NULL) {
5198 kstat_delete(arc_ksp);
5199 arc_ksp = NULL;
5202 mutex_destroy(&arc_reclaim_lock);
5203 cv_destroy(&arc_reclaim_thread_cv);
5204 cv_destroy(&arc_reclaim_waiters_cv);
5206 mutex_destroy(&arc_user_evicts_lock);
5207 cv_destroy(&arc_user_evicts_cv);
5209 refcount_destroy(&arc_anon->arcs_size);
5210 refcount_destroy(&arc_mru->arcs_size);
5211 refcount_destroy(&arc_mru_ghost->arcs_size);
5212 refcount_destroy(&arc_mfu->arcs_size);
5213 refcount_destroy(&arc_mfu_ghost->arcs_size);
5214 refcount_destroy(&arc_l2c_only->arcs_size);
5216 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5217 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5218 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5219 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5220 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5221 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5222 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5223 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5225 buf_fini();
5227 ASSERT0(arc_loaned_bytes);
5231 * Level 2 ARC
5233 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5234 * It uses dedicated storage devices to hold cached data, which are populated
5235 * using large infrequent writes. The main role of this cache is to boost
5236 * the performance of random read workloads. The intended L2ARC devices
5237 * include short-stroked disks, solid state disks, and other media with
5238 * substantially faster read latency than disk.
5240 * +-----------------------+
5241 * | ARC |
5242 * +-----------------------+
5243 * | ^ ^
5244 * | | |
5245 * l2arc_feed_thread() arc_read()
5246 * | | |
5247 * | l2arc read |
5248 * V | |
5249 * +---------------+ |
5250 * | L2ARC | |
5251 * +---------------+ |
5252 * | ^ |
5253 * l2arc_write() | |
5254 * | | |
5255 * V | |
5256 * +-------+ +-------+
5257 * | vdev | | vdev |
5258 * | cache | | cache |
5259 * +-------+ +-------+
5260 * +=========+ .-----.
5261 * : L2ARC : |-_____-|
5262 * : devices : | Disks |
5263 * +=========+ `-_____-'
5265 * Read requests are satisfied from the following sources, in order:
5267 * 1) ARC
5268 * 2) vdev cache of L2ARC devices
5269 * 3) L2ARC devices
5270 * 4) vdev cache of disks
5271 * 5) disks
5273 * Some L2ARC device types exhibit extremely slow write performance.
5274 * To accommodate for this there are some significant differences between
5275 * the L2ARC and traditional cache design:
5277 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5278 * the ARC behave as usual, freeing buffers and placing headers on ghost
5279 * lists. The ARC does not send buffers to the L2ARC during eviction as
5280 * this would add inflated write latencies for all ARC memory pressure.
5282 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5283 * It does this by periodically scanning buffers from the eviction-end of
5284 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5285 * not already there. It scans until a headroom of buffers is satisfied,
5286 * which itself is a buffer for ARC eviction. If a compressible buffer is
5287 * found during scanning and selected for writing to an L2ARC device, we
5288 * temporarily boost scanning headroom during the next scan cycle to make
5289 * sure we adapt to compression effects (which might significantly reduce
5290 * the data volume we write to L2ARC). The thread that does this is
5291 * l2arc_feed_thread(), illustrated below; example sizes are included to
5292 * provide a better sense of ratio than this diagram:
5294 * head --> tail
5295 * +---------------------+----------+
5296 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5297 * +---------------------+----------+ | o L2ARC eligible
5298 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5299 * +---------------------+----------+ |
5300 * 15.9 Gbytes ^ 32 Mbytes |
5301 * headroom |
5302 * l2arc_feed_thread()
5304 * l2arc write hand <--[oooo]--'
5305 * | 8 Mbyte
5306 * | write max
5308 * +==============================+
5309 * L2ARC dev |####|#|###|###| |####| ... |
5310 * +==============================+
5311 * 32 Gbytes
5313 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5314 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5315 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5316 * safe to say that this is an uncommon case, since buffers at the end of
5317 * the ARC lists have moved there due to inactivity.
5319 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5320 * then the L2ARC simply misses copying some buffers. This serves as a
5321 * pressure valve to prevent heavy read workloads from both stalling the ARC
5322 * with waits and clogging the L2ARC with writes. This also helps prevent
5323 * the potential for the L2ARC to churn if it attempts to cache content too
5324 * quickly, such as during backups of the entire pool.
5326 * 5. After system boot and before the ARC has filled main memory, there are
5327 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5328 * lists can remain mostly static. Instead of searching from tail of these
5329 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5330 * for eligible buffers, greatly increasing its chance of finding them.
5332 * The L2ARC device write speed is also boosted during this time so that
5333 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5334 * there are no L2ARC reads, and no fear of degrading read performance
5335 * through increased writes.
5337 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5338 * the vdev queue can aggregate them into larger and fewer writes. Each
5339 * device is written to in a rotor fashion, sweeping writes through
5340 * available space then repeating.
5342 * 7. The L2ARC does not store dirty content. It never needs to flush
5343 * write buffers back to disk based storage.
5345 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5346 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5348 * The performance of the L2ARC can be tweaked by a number of tunables, which
5349 * may be necessary for different workloads:
5351 * l2arc_write_max max write bytes per interval
5352 * l2arc_write_boost extra write bytes during device warmup
5353 * l2arc_noprefetch skip caching prefetched buffers
5354 * l2arc_headroom number of max device writes to precache
5355 * l2arc_headroom_boost when we find compressed buffers during ARC
5356 * scanning, we multiply headroom by this
5357 * percentage factor for the next scan cycle,
5358 * since more compressed buffers are likely to
5359 * be present
5360 * l2arc_feed_secs seconds between L2ARC writing
5362 * Tunables may be removed or added as future performance improvements are
5363 * integrated, and also may become zpool properties.
5365 * There are three key functions that control how the L2ARC warms up:
5367 * l2arc_write_eligible() check if a buffer is eligible to cache
5368 * l2arc_write_size() calculate how much to write
5369 * l2arc_write_interval() calculate sleep delay between writes
5371 * These three functions determine what to write, how much, and how quickly
5372 * to send writes.
5375 static boolean_t
5376 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5379 * A buffer is *not* eligible for the L2ARC if it:
5380 * 1. belongs to a different spa.
5381 * 2. is already cached on the L2ARC.
5382 * 3. has an I/O in progress (it may be an incomplete read).
5383 * 4. is flagged not eligible (zfs property).
5385 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5386 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
5387 return (B_FALSE);
5389 return (B_TRUE);
5392 static uint64_t
5393 l2arc_write_size(void)
5395 uint64_t size;
5398 * Make sure our globals have meaningful values in case the user
5399 * altered them.
5401 size = l2arc_write_max;
5402 if (size == 0) {
5403 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5404 "be greater than zero, resetting it to the default (%d)",
5405 L2ARC_WRITE_SIZE);
5406 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5409 if (arc_warm == B_FALSE)
5410 size += l2arc_write_boost;
5412 return (size);
5416 static clock_t
5417 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5419 clock_t interval, next, now;
5422 * If the ARC lists are busy, increase our write rate; if the
5423 * lists are stale, idle back. This is achieved by checking
5424 * how much we previously wrote - if it was more than half of
5425 * what we wanted, schedule the next write much sooner.
5427 if (l2arc_feed_again && wrote > (wanted / 2))
5428 interval = (hz * l2arc_feed_min_ms) / 1000;
5429 else
5430 interval = hz * l2arc_feed_secs;
5432 now = ddi_get_lbolt();
5433 next = MAX(now, MIN(now + interval, began + interval));
5435 return (next);
5439 * Cycle through L2ARC devices. This is how L2ARC load balances.
5440 * If a device is returned, this also returns holding the spa config lock.
5442 static l2arc_dev_t *
5443 l2arc_dev_get_next(void)
5445 l2arc_dev_t *first, *next = NULL;
5448 * Lock out the removal of spas (spa_namespace_lock), then removal
5449 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5450 * both locks will be dropped and a spa config lock held instead.
5452 mutex_enter(&spa_namespace_lock);
5453 mutex_enter(&l2arc_dev_mtx);
5455 /* if there are no vdevs, there is nothing to do */
5456 if (l2arc_ndev == 0)
5457 goto out;
5459 first = NULL;
5460 next = l2arc_dev_last;
5461 do {
5462 /* loop around the list looking for a non-faulted vdev */
5463 if (next == NULL) {
5464 next = list_head(l2arc_dev_list);
5465 } else {
5466 next = list_next(l2arc_dev_list, next);
5467 if (next == NULL)
5468 next = list_head(l2arc_dev_list);
5471 /* if we have come back to the start, bail out */
5472 if (first == NULL)
5473 first = next;
5474 else if (next == first)
5475 break;
5477 } while (vdev_is_dead(next->l2ad_vdev));
5479 /* if we were unable to find any usable vdevs, return NULL */
5480 if (vdev_is_dead(next->l2ad_vdev))
5481 next = NULL;
5483 l2arc_dev_last = next;
5485 out:
5486 mutex_exit(&l2arc_dev_mtx);
5489 * Grab the config lock to prevent the 'next' device from being
5490 * removed while we are writing to it.
5492 if (next != NULL)
5493 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5494 mutex_exit(&spa_namespace_lock);
5496 return (next);
5500 * Free buffers that were tagged for destruction.
5502 static void
5503 l2arc_do_free_on_write()
5505 list_t *buflist;
5506 l2arc_data_free_t *df, *df_prev;
5508 mutex_enter(&l2arc_free_on_write_mtx);
5509 buflist = l2arc_free_on_write;
5511 for (df = list_tail(buflist); df; df = df_prev) {
5512 df_prev = list_prev(buflist, df);
5513 ASSERT(df->l2df_data != NULL);
5514 ASSERT(df->l2df_func != NULL);
5515 df->l2df_func(df->l2df_data, df->l2df_size);
5516 list_remove(buflist, df);
5517 kmem_free(df, sizeof (l2arc_data_free_t));
5520 mutex_exit(&l2arc_free_on_write_mtx);
5524 * A write to a cache device has completed. Update all headers to allow
5525 * reads from these buffers to begin.
5527 static void
5528 l2arc_write_done(zio_t *zio)
5530 l2arc_write_callback_t *cb;
5531 l2arc_dev_t *dev;
5532 list_t *buflist;
5533 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5534 kmutex_t *hash_lock;
5535 int64_t bytes_dropped = 0;
5537 cb = zio->io_private;
5538 ASSERT(cb != NULL);
5539 dev = cb->l2wcb_dev;
5540 ASSERT(dev != NULL);
5541 head = cb->l2wcb_head;
5542 ASSERT(head != NULL);
5543 buflist = &dev->l2ad_buflist;
5544 ASSERT(buflist != NULL);
5545 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5546 l2arc_write_callback_t *, cb);
5548 if (zio->io_error != 0)
5549 ARCSTAT_BUMP(arcstat_l2_writes_error);
5552 * All writes completed, or an error was hit.
5554 top:
5555 mutex_enter(&dev->l2ad_mtx);
5556 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5557 hdr_prev = list_prev(buflist, hdr);
5559 hash_lock = HDR_LOCK(hdr);
5562 * We cannot use mutex_enter or else we can deadlock
5563 * with l2arc_write_buffers (due to swapping the order
5564 * the hash lock and l2ad_mtx are taken).
5566 if (!mutex_tryenter(hash_lock)) {
5568 * Missed the hash lock. We must retry so we
5569 * don't leave the ARC_FLAG_L2_WRITING bit set.
5571 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5574 * We don't want to rescan the headers we've
5575 * already marked as having been written out, so
5576 * we reinsert the head node so we can pick up
5577 * where we left off.
5579 list_remove(buflist, head);
5580 list_insert_after(buflist, hdr, head);
5582 mutex_exit(&dev->l2ad_mtx);
5585 * We wait for the hash lock to become available
5586 * to try and prevent busy waiting, and increase
5587 * the chance we'll be able to acquire the lock
5588 * the next time around.
5590 mutex_enter(hash_lock);
5591 mutex_exit(hash_lock);
5592 goto top;
5596 * We could not have been moved into the arc_l2c_only
5597 * state while in-flight due to our ARC_FLAG_L2_WRITING
5598 * bit being set. Let's just ensure that's being enforced.
5600 ASSERT(HDR_HAS_L1HDR(hdr));
5603 * We may have allocated a buffer for L2ARC compression,
5604 * we must release it to avoid leaking this data.
5606 l2arc_release_cdata_buf(hdr);
5608 if (zio->io_error != 0) {
5610 * Error - drop L2ARC entry.
5612 list_remove(buflist, hdr);
5613 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5615 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5616 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5618 bytes_dropped += hdr->b_l2hdr.b_asize;
5619 (void) refcount_remove_many(&dev->l2ad_alloc,
5620 hdr->b_l2hdr.b_asize, hdr);
5624 * Allow ARC to begin reads and ghost list evictions to
5625 * this L2ARC entry.
5627 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5629 mutex_exit(hash_lock);
5632 atomic_inc_64(&l2arc_writes_done);
5633 list_remove(buflist, head);
5634 ASSERT(!HDR_HAS_L1HDR(head));
5635 kmem_cache_free(hdr_l2only_cache, head);
5636 mutex_exit(&dev->l2ad_mtx);
5638 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5640 l2arc_do_free_on_write();
5642 kmem_free(cb, sizeof (l2arc_write_callback_t));
5646 * A read to a cache device completed. Validate buffer contents before
5647 * handing over to the regular ARC routines.
5649 static void
5650 l2arc_read_done(zio_t *zio)
5652 l2arc_read_callback_t *cb;
5653 arc_buf_hdr_t *hdr;
5654 arc_buf_t *buf;
5655 kmutex_t *hash_lock;
5656 int equal;
5658 ASSERT(zio->io_vd != NULL);
5659 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5661 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5663 cb = zio->io_private;
5664 ASSERT(cb != NULL);
5665 buf = cb->l2rcb_buf;
5666 ASSERT(buf != NULL);
5668 hash_lock = HDR_LOCK(buf->b_hdr);
5669 mutex_enter(hash_lock);
5670 hdr = buf->b_hdr;
5671 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5674 * If the buffer was compressed, decompress it first.
5676 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5677 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5678 ASSERT(zio->io_data != NULL);
5679 ASSERT3U(zio->io_size, ==, hdr->b_size);
5680 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
5683 * Check this survived the L2ARC journey.
5685 equal = arc_cksum_equal(buf);
5686 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5687 mutex_exit(hash_lock);
5688 zio->io_private = buf;
5689 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5690 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
5691 arc_read_done(zio);
5692 } else {
5693 mutex_exit(hash_lock);
5695 * Buffer didn't survive caching. Increment stats and
5696 * reissue to the original storage device.
5698 if (zio->io_error != 0) {
5699 ARCSTAT_BUMP(arcstat_l2_io_error);
5700 } else {
5701 zio->io_error = SET_ERROR(EIO);
5703 if (!equal)
5704 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5707 * If there's no waiter, issue an async i/o to the primary
5708 * storage now. If there *is* a waiter, the caller must
5709 * issue the i/o in a context where it's OK to block.
5711 if (zio->io_waiter == NULL) {
5712 zio_t *pio = zio_unique_parent(zio);
5714 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5716 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5717 buf->b_data, hdr->b_size, arc_read_done, buf,
5718 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5722 kmem_free(cb, sizeof (l2arc_read_callback_t));
5726 * This is the list priority from which the L2ARC will search for pages to
5727 * cache. This is used within loops (0..3) to cycle through lists in the
5728 * desired order. This order can have a significant effect on cache
5729 * performance.
5731 * Currently the metadata lists are hit first, MFU then MRU, followed by
5732 * the data lists. This function returns a locked list, and also returns
5733 * the lock pointer.
5735 static multilist_sublist_t *
5736 l2arc_sublist_lock(int list_num)
5738 multilist_t *ml = NULL;
5739 unsigned int idx;
5741 ASSERT(list_num >= 0 && list_num <= 3);
5743 switch (list_num) {
5744 case 0:
5745 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
5746 break;
5747 case 1:
5748 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
5749 break;
5750 case 2:
5751 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
5752 break;
5753 case 3:
5754 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
5755 break;
5759 * Return a randomly-selected sublist. This is acceptable
5760 * because the caller feeds only a little bit of data for each
5761 * call (8MB). Subsequent calls will result in different
5762 * sublists being selected.
5764 idx = multilist_get_random_index(ml);
5765 return (multilist_sublist_lock(ml, idx));
5769 * Evict buffers from the device write hand to the distance specified in
5770 * bytes. This distance may span populated buffers, it may span nothing.
5771 * This is clearing a region on the L2ARC device ready for writing.
5772 * If the 'all' boolean is set, every buffer is evicted.
5774 static void
5775 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5777 list_t *buflist;
5778 arc_buf_hdr_t *hdr, *hdr_prev;
5779 kmutex_t *hash_lock;
5780 uint64_t taddr;
5782 buflist = &dev->l2ad_buflist;
5784 if (!all && dev->l2ad_first) {
5786 * This is the first sweep through the device. There is
5787 * nothing to evict.
5789 return;
5792 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5794 * When nearing the end of the device, evict to the end
5795 * before the device write hand jumps to the start.
5797 taddr = dev->l2ad_end;
5798 } else {
5799 taddr = dev->l2ad_hand + distance;
5801 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5802 uint64_t, taddr, boolean_t, all);
5804 top:
5805 mutex_enter(&dev->l2ad_mtx);
5806 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5807 hdr_prev = list_prev(buflist, hdr);
5809 hash_lock = HDR_LOCK(hdr);
5812 * We cannot use mutex_enter or else we can deadlock
5813 * with l2arc_write_buffers (due to swapping the order
5814 * the hash lock and l2ad_mtx are taken).
5816 if (!mutex_tryenter(hash_lock)) {
5818 * Missed the hash lock. Retry.
5820 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5821 mutex_exit(&dev->l2ad_mtx);
5822 mutex_enter(hash_lock);
5823 mutex_exit(hash_lock);
5824 goto top;
5827 if (HDR_L2_WRITE_HEAD(hdr)) {
5829 * We hit a write head node. Leave it for
5830 * l2arc_write_done().
5832 list_remove(buflist, hdr);
5833 mutex_exit(hash_lock);
5834 continue;
5837 if (!all && HDR_HAS_L2HDR(hdr) &&
5838 (hdr->b_l2hdr.b_daddr > taddr ||
5839 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5841 * We've evicted to the target address,
5842 * or the end of the device.
5844 mutex_exit(hash_lock);
5845 break;
5848 ASSERT(HDR_HAS_L2HDR(hdr));
5849 if (!HDR_HAS_L1HDR(hdr)) {
5850 ASSERT(!HDR_L2_READING(hdr));
5852 * This doesn't exist in the ARC. Destroy.
5853 * arc_hdr_destroy() will call list_remove()
5854 * and decrement arcstat_l2_size.
5856 arc_change_state(arc_anon, hdr, hash_lock);
5857 arc_hdr_destroy(hdr);
5858 } else {
5859 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5860 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5862 * Invalidate issued or about to be issued
5863 * reads, since we may be about to write
5864 * over this location.
5866 if (HDR_L2_READING(hdr)) {
5867 ARCSTAT_BUMP(arcstat_l2_evict_reading);
5868 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5871 /* Ensure this header has finished being written */
5872 ASSERT(!HDR_L2_WRITING(hdr));
5873 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
5875 arc_hdr_l2hdr_destroy(hdr);
5877 mutex_exit(hash_lock);
5879 mutex_exit(&dev->l2ad_mtx);
5883 * Find and write ARC buffers to the L2ARC device.
5885 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5886 * for reading until they have completed writing.
5887 * The headroom_boost is an in-out parameter used to maintain headroom boost
5888 * state between calls to this function.
5890 * Returns the number of bytes actually written (which may be smaller than
5891 * the delta by which the device hand has changed due to alignment).
5893 static uint64_t
5894 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5895 boolean_t *headroom_boost)
5897 arc_buf_hdr_t *hdr, *hdr_prev, *head;
5898 uint64_t write_asize, write_psize, write_sz, headroom,
5899 buf_compress_minsz;
5900 void *buf_data;
5901 boolean_t full;
5902 l2arc_write_callback_t *cb;
5903 zio_t *pio, *wzio;
5904 uint64_t guid = spa_load_guid(spa);
5905 const boolean_t do_headroom_boost = *headroom_boost;
5907 ASSERT(dev->l2ad_vdev != NULL);
5909 /* Lower the flag now, we might want to raise it again later. */
5910 *headroom_boost = B_FALSE;
5912 pio = NULL;
5913 write_sz = write_asize = write_psize = 0;
5914 full = B_FALSE;
5915 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5916 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5917 head->b_flags |= ARC_FLAG_HAS_L2HDR;
5920 * We will want to try to compress buffers that are at least 2x the
5921 * device sector size.
5923 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5926 * Copy buffers for L2ARC writing.
5928 for (int try = 0; try <= 3; try++) {
5929 multilist_sublist_t *mls = l2arc_sublist_lock(try);
5930 uint64_t passed_sz = 0;
5933 * L2ARC fast warmup.
5935 * Until the ARC is warm and starts to evict, read from the
5936 * head of the ARC lists rather than the tail.
5938 if (arc_warm == B_FALSE)
5939 hdr = multilist_sublist_head(mls);
5940 else
5941 hdr = multilist_sublist_tail(mls);
5943 headroom = target_sz * l2arc_headroom;
5944 if (do_headroom_boost)
5945 headroom = (headroom * l2arc_headroom_boost) / 100;
5947 for (; hdr; hdr = hdr_prev) {
5948 kmutex_t *hash_lock;
5949 uint64_t buf_sz;
5951 if (arc_warm == B_FALSE)
5952 hdr_prev = multilist_sublist_next(mls, hdr);
5953 else
5954 hdr_prev = multilist_sublist_prev(mls, hdr);
5956 hash_lock = HDR_LOCK(hdr);
5957 if (!mutex_tryenter(hash_lock)) {
5959 * Skip this buffer rather than waiting.
5961 continue;
5964 passed_sz += hdr->b_size;
5965 if (passed_sz > headroom) {
5967 * Searched too far.
5969 mutex_exit(hash_lock);
5970 break;
5973 if (!l2arc_write_eligible(guid, hdr)) {
5974 mutex_exit(hash_lock);
5975 continue;
5978 if ((write_sz + hdr->b_size) > target_sz) {
5979 full = B_TRUE;
5980 mutex_exit(hash_lock);
5981 break;
5984 if (pio == NULL) {
5986 * Insert a dummy header on the buflist so
5987 * l2arc_write_done() can find where the
5988 * write buffers begin without searching.
5990 mutex_enter(&dev->l2ad_mtx);
5991 list_insert_head(&dev->l2ad_buflist, head);
5992 mutex_exit(&dev->l2ad_mtx);
5994 cb = kmem_alloc(
5995 sizeof (l2arc_write_callback_t), KM_SLEEP);
5996 cb->l2wcb_dev = dev;
5997 cb->l2wcb_head = head;
5998 pio = zio_root(spa, l2arc_write_done, cb,
5999 ZIO_FLAG_CANFAIL);
6003 * Create and add a new L2ARC header.
6005 hdr->b_l2hdr.b_dev = dev;
6006 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6008 * Temporarily stash the data buffer in b_tmp_cdata.
6009 * The subsequent write step will pick it up from
6010 * there. This is because can't access b_l1hdr.b_buf
6011 * without holding the hash_lock, which we in turn
6012 * can't access without holding the ARC list locks
6013 * (which we want to avoid during compression/writing).
6015 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6016 hdr->b_l2hdr.b_asize = hdr->b_size;
6017 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6020 * Explicitly set the b_daddr field to a known
6021 * value which means "invalid address". This
6022 * enables us to differentiate which stage of
6023 * l2arc_write_buffers() the particular header
6024 * is in (e.g. this loop, or the one below).
6025 * ARC_FLAG_L2_WRITING is not enough to make
6026 * this distinction, and we need to know in
6027 * order to do proper l2arc vdev accounting in
6028 * arc_release() and arc_hdr_destroy().
6030 * Note, we can't use a new flag to distinguish
6031 * the two stages because we don't hold the
6032 * header's hash_lock below, in the second stage
6033 * of this function. Thus, we can't simply
6034 * change the b_flags field to denote that the
6035 * IO has been sent. We can change the b_daddr
6036 * field of the L2 portion, though, since we'll
6037 * be holding the l2ad_mtx; which is why we're
6038 * using it to denote the header's state change.
6040 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6042 buf_sz = hdr->b_size;
6043 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6045 mutex_enter(&dev->l2ad_mtx);
6046 list_insert_head(&dev->l2ad_buflist, hdr);
6047 mutex_exit(&dev->l2ad_mtx);
6050 * Compute and store the buffer cksum before
6051 * writing. On debug the cksum is verified first.
6053 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6054 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6056 mutex_exit(hash_lock);
6058 write_sz += buf_sz;
6061 multilist_sublist_unlock(mls);
6063 if (full == B_TRUE)
6064 break;
6067 /* No buffers selected for writing? */
6068 if (pio == NULL) {
6069 ASSERT0(write_sz);
6070 ASSERT(!HDR_HAS_L1HDR(head));
6071 kmem_cache_free(hdr_l2only_cache, head);
6072 return (0);
6075 mutex_enter(&dev->l2ad_mtx);
6078 * Now start writing the buffers. We're starting at the write head
6079 * and work backwards, retracing the course of the buffer selector
6080 * loop above.
6082 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6083 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6084 uint64_t buf_sz;
6087 * We rely on the L1 portion of the header below, so
6088 * it's invalid for this header to have been evicted out
6089 * of the ghost cache, prior to being written out. The
6090 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6092 ASSERT(HDR_HAS_L1HDR(hdr));
6095 * We shouldn't need to lock the buffer here, since we flagged
6096 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6097 * take care to only access its L2 cache parameters. In
6098 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6099 * ARC eviction.
6101 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6103 if ((HDR_L2COMPRESS(hdr)) &&
6104 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6105 if (l2arc_compress_buf(hdr)) {
6107 * If compression succeeded, enable headroom
6108 * boost on the next scan cycle.
6110 *headroom_boost = B_TRUE;
6115 * Pick up the buffer data we had previously stashed away
6116 * (and now potentially also compressed).
6118 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6119 buf_sz = hdr->b_l2hdr.b_asize;
6122 * We need to do this regardless if buf_sz is zero or
6123 * not, otherwise, when this l2hdr is evicted we'll
6124 * remove a reference that was never added.
6126 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6128 /* Compression may have squashed the buffer to zero length. */
6129 if (buf_sz != 0) {
6130 uint64_t buf_p_sz;
6132 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6133 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6134 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6135 ZIO_FLAG_CANFAIL, B_FALSE);
6137 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6138 zio_t *, wzio);
6139 (void) zio_nowait(wzio);
6141 write_asize += buf_sz;
6144 * Keep the clock hand suitably device-aligned.
6146 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6147 write_psize += buf_p_sz;
6148 dev->l2ad_hand += buf_p_sz;
6152 mutex_exit(&dev->l2ad_mtx);
6154 ASSERT3U(write_asize, <=, target_sz);
6155 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6156 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6157 ARCSTAT_INCR(arcstat_l2_size, write_sz);
6158 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6159 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6162 * Bump device hand to the device start if it is approaching the end.
6163 * l2arc_evict() will already have evicted ahead for this case.
6165 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6166 dev->l2ad_hand = dev->l2ad_start;
6167 dev->l2ad_first = B_FALSE;
6170 dev->l2ad_writing = B_TRUE;
6171 (void) zio_wait(pio);
6172 dev->l2ad_writing = B_FALSE;
6174 return (write_asize);
6178 * Compresses an L2ARC buffer.
6179 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6180 * size in l2hdr->b_asize. This routine tries to compress the data and
6181 * depending on the compression result there are three possible outcomes:
6182 * *) The buffer was incompressible. The original l2hdr contents were left
6183 * untouched and are ready for writing to an L2 device.
6184 * *) The buffer was all-zeros, so there is no need to write it to an L2
6185 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6186 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6187 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6188 * data buffer which holds the compressed data to be written, and b_asize
6189 * tells us how much data there is. b_compress is set to the appropriate
6190 * compression algorithm. Once writing is done, invoke
6191 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6193 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6194 * buffer was incompressible).
6196 static boolean_t
6197 l2arc_compress_buf(arc_buf_hdr_t *hdr)
6199 void *cdata;
6200 size_t csize, len, rounded;
6201 ASSERT(HDR_HAS_L2HDR(hdr));
6202 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6204 ASSERT(HDR_HAS_L1HDR(hdr));
6205 ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6206 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6208 len = l2hdr->b_asize;
6209 cdata = zio_data_buf_alloc(len);
6210 ASSERT3P(cdata, !=, NULL);
6211 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6212 cdata, l2hdr->b_asize);
6214 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6215 if (rounded > csize) {
6216 bzero((char *)cdata + csize, rounded - csize);
6217 csize = rounded;
6220 if (csize == 0) {
6221 /* zero block, indicate that there's nothing to write */
6222 zio_data_buf_free(cdata, len);
6223 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6224 l2hdr->b_asize = 0;
6225 hdr->b_l1hdr.b_tmp_cdata = NULL;
6226 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6227 return (B_TRUE);
6228 } else if (csize > 0 && csize < len) {
6230 * Compression succeeded, we'll keep the cdata around for
6231 * writing and release it afterwards.
6233 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6234 l2hdr->b_asize = csize;
6235 hdr->b_l1hdr.b_tmp_cdata = cdata;
6236 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6237 return (B_TRUE);
6238 } else {
6240 * Compression failed, release the compressed buffer.
6241 * l2hdr will be left unmodified.
6243 zio_data_buf_free(cdata, len);
6244 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6245 return (B_FALSE);
6250 * Decompresses a zio read back from an l2arc device. On success, the
6251 * underlying zio's io_data buffer is overwritten by the uncompressed
6252 * version. On decompression error (corrupt compressed stream), the
6253 * zio->io_error value is set to signal an I/O error.
6255 * Please note that the compressed data stream is not checksummed, so
6256 * if the underlying device is experiencing data corruption, we may feed
6257 * corrupt data to the decompressor, so the decompressor needs to be
6258 * able to handle this situation (LZ4 does).
6260 static void
6261 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6263 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6265 if (zio->io_error != 0) {
6267 * An io error has occured, just restore the original io
6268 * size in preparation for a main pool read.
6270 zio->io_orig_size = zio->io_size = hdr->b_size;
6271 return;
6274 if (c == ZIO_COMPRESS_EMPTY) {
6276 * An empty buffer results in a null zio, which means we
6277 * need to fill its io_data after we're done restoring the
6278 * buffer's contents.
6280 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6281 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6282 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6283 } else {
6284 ASSERT(zio->io_data != NULL);
6286 * We copy the compressed data from the start of the arc buffer
6287 * (the zio_read will have pulled in only what we need, the
6288 * rest is garbage which we will overwrite at decompression)
6289 * and then decompress back to the ARC data buffer. This way we
6290 * can minimize copying by simply decompressing back over the
6291 * original compressed data (rather than decompressing to an
6292 * aux buffer and then copying back the uncompressed buffer,
6293 * which is likely to be much larger).
6295 uint64_t csize;
6296 void *cdata;
6298 csize = zio->io_size;
6299 cdata = zio_data_buf_alloc(csize);
6300 bcopy(zio->io_data, cdata, csize);
6301 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6302 hdr->b_size) != 0)
6303 zio->io_error = EIO;
6304 zio_data_buf_free(cdata, csize);
6307 /* Restore the expected uncompressed IO size. */
6308 zio->io_orig_size = zio->io_size = hdr->b_size;
6312 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6313 * This buffer serves as a temporary holder of compressed data while
6314 * the buffer entry is being written to an l2arc device. Once that is
6315 * done, we can dispose of it.
6317 static void
6318 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6320 ASSERT(HDR_HAS_L2HDR(hdr));
6321 enum zio_compress comp = hdr->b_l2hdr.b_compress;
6323 ASSERT(HDR_HAS_L1HDR(hdr));
6324 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6326 if (comp == ZIO_COMPRESS_OFF) {
6328 * In this case, b_tmp_cdata points to the same buffer
6329 * as the arc_buf_t's b_data field. We don't want to
6330 * free it, since the arc_buf_t will handle that.
6332 hdr->b_l1hdr.b_tmp_cdata = NULL;
6333 } else if (comp == ZIO_COMPRESS_EMPTY) {
6335 * In this case, b_tmp_cdata was compressed to an empty
6336 * buffer, thus there's nothing to free and b_tmp_cdata
6337 * should have been set to NULL in l2arc_write_buffers().
6339 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6340 } else {
6342 * If the data was compressed, then we've allocated a
6343 * temporary buffer for it, so now we need to release it.
6345 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6346 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6347 hdr->b_size);
6348 hdr->b_l1hdr.b_tmp_cdata = NULL;
6354 * This thread feeds the L2ARC at regular intervals. This is the beating
6355 * heart of the L2ARC.
6357 static void
6358 l2arc_feed_thread(void)
6360 callb_cpr_t cpr;
6361 l2arc_dev_t *dev;
6362 spa_t *spa;
6363 uint64_t size, wrote;
6364 clock_t begin, next = ddi_get_lbolt();
6365 boolean_t headroom_boost = B_FALSE;
6367 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6369 mutex_enter(&l2arc_feed_thr_lock);
6371 while (l2arc_thread_exit == 0) {
6372 CALLB_CPR_SAFE_BEGIN(&cpr);
6373 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6374 next);
6375 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6376 next = ddi_get_lbolt() + hz;
6379 * Quick check for L2ARC devices.
6381 mutex_enter(&l2arc_dev_mtx);
6382 if (l2arc_ndev == 0) {
6383 mutex_exit(&l2arc_dev_mtx);
6384 continue;
6386 mutex_exit(&l2arc_dev_mtx);
6387 begin = ddi_get_lbolt();
6390 * This selects the next l2arc device to write to, and in
6391 * doing so the next spa to feed from: dev->l2ad_spa. This
6392 * will return NULL if there are now no l2arc devices or if
6393 * they are all faulted.
6395 * If a device is returned, its spa's config lock is also
6396 * held to prevent device removal. l2arc_dev_get_next()
6397 * will grab and release l2arc_dev_mtx.
6399 if ((dev = l2arc_dev_get_next()) == NULL)
6400 continue;
6402 spa = dev->l2ad_spa;
6403 ASSERT(spa != NULL);
6406 * If the pool is read-only then force the feed thread to
6407 * sleep a little longer.
6409 if (!spa_writeable(spa)) {
6410 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6411 spa_config_exit(spa, SCL_L2ARC, dev);
6412 continue;
6416 * Avoid contributing to memory pressure.
6418 if (arc_reclaim_needed()) {
6419 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6420 spa_config_exit(spa, SCL_L2ARC, dev);
6421 continue;
6424 ARCSTAT_BUMP(arcstat_l2_feeds);
6426 size = l2arc_write_size();
6429 * Evict L2ARC buffers that will be overwritten.
6431 l2arc_evict(dev, size, B_FALSE);
6434 * Write ARC buffers.
6436 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6439 * Calculate interval between writes.
6441 next = l2arc_write_interval(begin, size, wrote);
6442 spa_config_exit(spa, SCL_L2ARC, dev);
6445 l2arc_thread_exit = 0;
6446 cv_broadcast(&l2arc_feed_thr_cv);
6447 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6448 thread_exit();
6451 boolean_t
6452 l2arc_vdev_present(vdev_t *vd)
6454 l2arc_dev_t *dev;
6456 mutex_enter(&l2arc_dev_mtx);
6457 for (dev = list_head(l2arc_dev_list); dev != NULL;
6458 dev = list_next(l2arc_dev_list, dev)) {
6459 if (dev->l2ad_vdev == vd)
6460 break;
6462 mutex_exit(&l2arc_dev_mtx);
6464 return (dev != NULL);
6468 * Add a vdev for use by the L2ARC. By this point the spa has already
6469 * validated the vdev and opened it.
6471 void
6472 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6474 l2arc_dev_t *adddev;
6476 ASSERT(!l2arc_vdev_present(vd));
6479 * Create a new l2arc device entry.
6481 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6482 adddev->l2ad_spa = spa;
6483 adddev->l2ad_vdev = vd;
6484 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6485 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6486 adddev->l2ad_hand = adddev->l2ad_start;
6487 adddev->l2ad_first = B_TRUE;
6488 adddev->l2ad_writing = B_FALSE;
6490 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6492 * This is a list of all ARC buffers that are still valid on the
6493 * device.
6495 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6496 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6498 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6499 refcount_create(&adddev->l2ad_alloc);
6502 * Add device to global list
6504 mutex_enter(&l2arc_dev_mtx);
6505 list_insert_head(l2arc_dev_list, adddev);
6506 atomic_inc_64(&l2arc_ndev);
6507 mutex_exit(&l2arc_dev_mtx);
6511 * Remove a vdev from the L2ARC.
6513 void
6514 l2arc_remove_vdev(vdev_t *vd)
6516 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6519 * Find the device by vdev
6521 mutex_enter(&l2arc_dev_mtx);
6522 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6523 nextdev = list_next(l2arc_dev_list, dev);
6524 if (vd == dev->l2ad_vdev) {
6525 remdev = dev;
6526 break;
6529 ASSERT(remdev != NULL);
6532 * Remove device from global list
6534 list_remove(l2arc_dev_list, remdev);
6535 l2arc_dev_last = NULL; /* may have been invalidated */
6536 atomic_dec_64(&l2arc_ndev);
6537 mutex_exit(&l2arc_dev_mtx);
6540 * Clear all buflists and ARC references. L2ARC device flush.
6542 l2arc_evict(remdev, 0, B_TRUE);
6543 list_destroy(&remdev->l2ad_buflist);
6544 mutex_destroy(&remdev->l2ad_mtx);
6545 refcount_destroy(&remdev->l2ad_alloc);
6546 kmem_free(remdev, sizeof (l2arc_dev_t));
6549 void
6550 l2arc_init(void)
6552 l2arc_thread_exit = 0;
6553 l2arc_ndev = 0;
6554 l2arc_writes_sent = 0;
6555 l2arc_writes_done = 0;
6557 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6558 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6559 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6560 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6562 l2arc_dev_list = &L2ARC_dev_list;
6563 l2arc_free_on_write = &L2ARC_free_on_write;
6564 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6565 offsetof(l2arc_dev_t, l2ad_node));
6566 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6567 offsetof(l2arc_data_free_t, l2df_list_node));
6570 void
6571 l2arc_fini(void)
6574 * This is called from dmu_fini(), which is called from spa_fini();
6575 * Because of this, we can assume that all l2arc devices have
6576 * already been removed when the pools themselves were removed.
6579 l2arc_do_free_on_write();
6581 mutex_destroy(&l2arc_feed_thr_lock);
6582 cv_destroy(&l2arc_feed_thr_cv);
6583 mutex_destroy(&l2arc_dev_mtx);
6584 mutex_destroy(&l2arc_free_on_write_mtx);
6586 list_destroy(l2arc_dev_list);
6587 list_destroy(l2arc_free_on_write);
6590 void
6591 l2arc_start(void)
6593 if (!(spa_mode_global & FWRITE))
6594 return;
6596 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6597 TS_RUN, minclsyspri);
6600 void
6601 l2arc_stop(void)
6603 if (!(spa_mode_global & FWRITE))
6604 return;
6606 mutex_enter(&l2arc_feed_thr_lock);
6607 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6608 l2arc_thread_exit = 1;
6609 while (l2arc_thread_exit != 0)
6610 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6611 mutex_exit(&l2arc_feed_thr_lock);