16627 Flesh out AMD Turin chip and Zen 5 uarch revisions.
[illumos-gate.git] / usr / src / uts / common / fs / zfs / arc.c
blobda86fa89ba581f6ff78398f3d6d97afd293a8846
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2019, Joyent, Inc.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2011, 2019, Delphix. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2020, The FreeBSD Foundation [1]
30 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org>
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
37 * DVA-based Adjustable Replacement Cache
39 * While much of the theory of operation used here is
40 * based on the self-tuning, low overhead replacement cache
41 * presented by Megiddo and Modha at FAST 2003, there are some
42 * significant differences:
44 * 1. The Megiddo and Modha model assumes any page is evictable.
45 * Pages in its cache cannot be "locked" into memory. This makes
46 * the eviction algorithm simple: evict the last page in the list.
47 * This also make the performance characteristics easy to reason
48 * about. Our cache is not so simple. At any given moment, some
49 * subset of the blocks in the cache are un-evictable because we
50 * have handed out a reference to them. Blocks are only evictable
51 * when there are no external references active. This makes
52 * eviction far more problematic: we choose to evict the evictable
53 * blocks that are the "lowest" in the list.
55 * There are times when it is not possible to evict the requested
56 * space. In these circumstances we are unable to adjust the cache
57 * size. To prevent the cache growing unbounded at these times we
58 * implement a "cache throttle" that slows the flow of new data
59 * into the cache until we can make space available.
61 * 2. The Megiddo and Modha model assumes a fixed cache size.
62 * Pages are evicted when the cache is full and there is a cache
63 * miss. Our model has a variable sized cache. It grows with
64 * high use, but also tries to react to memory pressure from the
65 * operating system: decreasing its size when system memory is
66 * tight.
68 * 3. The Megiddo and Modha model assumes a fixed page size. All
69 * elements of the cache are therefore exactly the same size. So
70 * when adjusting the cache size following a cache miss, its simply
71 * a matter of choosing a single page to evict. In our model, we
72 * have variable sized cache blocks (rangeing from 512 bytes to
73 * 128K bytes). We therefore choose a set of blocks to evict to make
74 * space for a cache miss that approximates as closely as possible
75 * the space used by the new block.
77 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
78 * by N. Megiddo & D. Modha, FAST 2003
82 * The locking model:
84 * A new reference to a cache buffer can be obtained in two
85 * ways: 1) via a hash table lookup using the DVA as a key,
86 * or 2) via one of the ARC lists. The arc_read() interface
87 * uses method 1, while the internal ARC algorithms for
88 * adjusting the cache use method 2. We therefore provide two
89 * types of locks: 1) the hash table lock array, and 2) the
90 * ARC list locks.
92 * Buffers do not have their own mutexes, rather they rely on the
93 * hash table mutexes for the bulk of their protection (i.e. most
94 * fields in the arc_buf_hdr_t are protected by these mutexes).
96 * buf_hash_find() returns the appropriate mutex (held) when it
97 * locates the requested buffer in the hash table. It returns
98 * NULL for the mutex if the buffer was not in the table.
100 * buf_hash_remove() expects the appropriate hash mutex to be
101 * already held before it is invoked.
103 * Each ARC state also has a mutex which is used to protect the
104 * buffer list associated with the state. When attempting to
105 * obtain a hash table lock while holding an ARC list lock you
106 * must use: mutex_tryenter() to avoid deadlock. Also note that
107 * the active state mutex must be held before the ghost state mutex.
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
112 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 * - L2ARC buflist creation
115 * - L2ARC buflist eviction
116 * - L2ARC write completion, which walks L2ARC buflists
117 * - ARC header destruction, as it removes from L2ARC buflists
118 * - ARC header release, as it removes from L2ARC buflists
122 * ARC operation:
124 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
125 * This structure can point either to a block that is still in the cache or to
126 * one that is only accessible in an L2 ARC device, or it can provide
127 * information about a block that was recently evicted. If a block is
128 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
129 * information to retrieve it from the L2ARC device. This information is
130 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
131 * that is in this state cannot access the data directly.
133 * Blocks that are actively being referenced or have not been evicted
134 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
135 * the arc_buf_hdr_t that will point to the data block in memory. A block can
136 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
137 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
138 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
141 * ability to store the physical data (b_pabd) associated with the DVA of the
142 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
143 * it will match its on-disk compression characteristics. This behavior can be
144 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
145 * compressed ARC functionality is disabled, the b_pabd will point to an
146 * uncompressed version of the on-disk data.
148 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
149 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
150 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
151 * consumer. The ARC will provide references to this data and will keep it
152 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
153 * data block and will evict any arc_buf_t that is no longer referenced. The
154 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
155 * "overhead_size" kstat.
157 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
158 * compressed form. The typical case is that consumers will want uncompressed
159 * data, and when that happens a new data buffer is allocated where the data is
160 * decompressed for them to use. Currently the only consumer who wants
161 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
162 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
163 * with the arc_buf_hdr_t.
165 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
166 * first one is owned by a compressed send consumer (and therefore references
167 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
168 * used by any other consumer (and has its own uncompressed copy of the data
169 * buffer).
171 * arc_buf_hdr_t
172 * +-----------+
173 * | fields |
174 * | common to |
175 * | L1- and |
176 * | L2ARC |
177 * +-----------+
178 * | l2arc_buf_hdr_t
179 * | |
180 * +-----------+
181 * | l1arc_buf_hdr_t
182 * | | arc_buf_t
183 * | b_buf +------------>+-----------+ arc_buf_t
184 * | b_pabd +-+ |b_next +---->+-----------+
185 * +-----------+ | |-----------| |b_next +-->NULL
186 * | |b_comp = T | +-----------+
187 * | |b_data +-+ |b_comp = F |
188 * | +-----------+ | |b_data +-+
189 * +->+------+ | +-----------+ |
190 * compressed | | | |
191 * data | |<--------------+ | uncompressed
192 * +------+ compressed, | data
193 * shared +-->+------+
194 * data | |
195 * | |
196 * +------+
198 * When a consumer reads a block, the ARC must first look to see if the
199 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
200 * arc_buf_t and either copies uncompressed data into a new data buffer from an
201 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
202 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
203 * hdr is compressed and the desired compression characteristics of the
204 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
205 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
206 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
207 * be anywhere in the hdr's list.
209 * The diagram below shows an example of an uncompressed ARC hdr that is
210 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
211 * the last element in the buf list):
213 * arc_buf_hdr_t
214 * +-----------+
215 * | |
216 * | |
217 * | |
218 * +-----------+
219 * l2arc_buf_hdr_t| |
220 * | |
221 * +-----------+
222 * l1arc_buf_hdr_t| |
223 * | | arc_buf_t (shared)
224 * | b_buf +------------>+---------+ arc_buf_t
225 * | | |b_next +---->+---------+
226 * | b_pabd +-+ |---------| |b_next +-->NULL
227 * +-----------+ | | | +---------+
228 * | |b_data +-+ | |
229 * | +---------+ | |b_data +-+
230 * +->+------+ | +---------+ |
231 * | | | |
232 * uncompressed | | | |
233 * data +------+ | |
234 * ^ +->+------+ |
235 * | uncompressed | | |
236 * | data | | |
237 * | +------+ |
238 * +---------------------------------+
240 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
241 * since the physical block is about to be rewritten. The new data contents
242 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
243 * it may compress the data before writing it to disk. The ARC will be called
244 * with the transformed data and will bcopy the transformed on-disk block into
245 * a newly allocated b_pabd. Writes are always done into buffers which have
246 * either been loaned (and hence are new and don't have other readers) or
247 * buffers which have been released (and hence have their own hdr, if there
248 * were originally other readers of the buf's original hdr). This ensures that
249 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
252 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
253 * that when compressed ARC is enabled that the L2ARC blocks are identical
254 * to the on-disk block in the main data pool. This provides a significant
255 * advantage since the ARC can leverage the bp's checksum when reading from the
256 * L2ARC to determine if the contents are valid. However, if the compressed
257 * ARC is disabled, then the L2ARC's block must be transformed to look
258 * like the physical block in the main data pool before comparing the
259 * checksum and determining its validity.
261 * The L1ARC has a slightly different system for storing encrypted data.
262 * Raw (encrypted + possibly compressed) data has a few subtle differences from
263 * data that is just compressed. The biggest difference is that it is not
264 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
265 * The other difference is that encryption cannot be treated as a suggestion.
266 * If a caller would prefer compressed data, but they actually wind up with
267 * uncompressed data the worst thing that could happen is there might be a
268 * performance hit. If the caller requests encrypted data, however, we must be
269 * sure they actually get it or else secret information could be leaked. Raw
270 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
271 * may have both an encrypted version and a decrypted version of its data at
272 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
273 * copied out of this header. To avoid complications with b_pabd, raw buffers
274 * cannot be shared.
277 #include <sys/spa.h>
278 #include <sys/zio.h>
279 #include <sys/spa_impl.h>
280 #include <sys/zio_compress.h>
281 #include <sys/zio_checksum.h>
282 #include <sys/zfs_context.h>
283 #include <sys/arc.h>
284 #include <sys/refcount.h>
285 #include <sys/vdev.h>
286 #include <sys/vdev_impl.h>
287 #include <sys/dsl_pool.h>
288 #include <sys/zio_checksum.h>
289 #include <sys/multilist.h>
290 #include <sys/abd.h>
291 #include <sys/zil.h>
292 #include <sys/fm/fs/zfs.h>
293 #ifdef _KERNEL
294 #include <sys/vmsystm.h>
295 #include <vm/anon.h>
296 #include <sys/fs/swapnode.h>
297 #include <sys/dnlc.h>
298 #endif
299 #include <sys/callb.h>
300 #include <sys/kstat.h>
301 #include <sys/zthr.h>
302 #include <zfs_fletcher.h>
303 #include <sys/arc_impl.h>
304 #include <sys/aggsum.h>
305 #include <sys/cityhash.h>
306 #include <sys/param.h>
308 #ifndef _KERNEL
309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
310 boolean_t arc_watch = B_FALSE;
311 int arc_procfd;
312 #endif
315 * This thread's job is to keep enough free memory in the system, by
316 * calling arc_kmem_reap_now() plus arc_shrink(), which improves
317 * arc_available_memory().
319 static zthr_t *arc_reap_zthr;
322 * This thread's job is to keep arc_size under arc_c, by calling
323 * arc_adjust(), which improves arc_is_overflowing().
325 static zthr_t *arc_adjust_zthr;
327 static kmutex_t arc_adjust_lock;
328 static kcondvar_t arc_adjust_waiters_cv;
329 static boolean_t arc_adjust_needed = B_FALSE;
331 uint_t arc_reduce_dnlc_percent = 3;
334 * The number of headers to evict in arc_evict_state_impl() before
335 * dropping the sublist lock and evicting from another sublist. A lower
336 * value means we're more likely to evict the "correct" header (i.e. the
337 * oldest header in the arc state), but comes with higher overhead
338 * (i.e. more invocations of arc_evict_state_impl()).
340 int zfs_arc_evict_batch_limit = 10;
342 /* number of seconds before growing cache again */
343 int arc_grow_retry = 60;
346 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will
347 * be converted to ticks, so with the default hz=100, a setting of 15 ms
348 * will actually wait 2 ticks, or 20ms.
350 int arc_kmem_cache_reap_retry_ms = 1000;
352 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
353 int zfs_arc_overflow_shift = 8;
355 /* shift of arc_c for calculating both min and max arc_p */
356 int arc_p_min_shift = 4;
358 /* log2(fraction of arc to reclaim) */
359 int arc_shrink_shift = 7;
362 * log2(fraction of ARC which must be free to allow growing).
363 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
364 * when reading a new block into the ARC, we will evict an equal-sized block
365 * from the ARC.
367 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
368 * we will still not allow it to grow.
370 int arc_no_grow_shift = 5;
374 * minimum lifespan of a prefetch block in clock ticks
375 * (initialized in arc_init())
377 static int zfs_arc_min_prefetch_ms = 1;
378 static int zfs_arc_min_prescient_prefetch_ms = 6;
381 * If this percent of memory is free, don't throttle.
383 int arc_lotsfree_percent = 10;
385 static boolean_t arc_initialized;
388 * The arc has filled available memory and has now warmed up.
390 static boolean_t arc_warm;
393 * log2 fraction of the zio arena to keep free.
395 int arc_zio_arena_free_shift = 2;
398 * These tunables are for performance analysis.
400 uint64_t zfs_arc_max;
401 uint64_t zfs_arc_min;
402 uint64_t zfs_arc_meta_limit = 0;
403 uint64_t zfs_arc_meta_min = 0;
404 int zfs_arc_grow_retry = 0;
405 int zfs_arc_shrink_shift = 0;
406 int zfs_arc_p_min_shift = 0;
407 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
410 * ARC dirty data constraints for arc_tempreserve_space() throttle
412 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
413 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
414 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
416 boolean_t zfs_compressed_arc_enabled = B_TRUE;
418 /* The 6 states: */
419 static arc_state_t ARC_anon;
420 static arc_state_t ARC_mru;
421 static arc_state_t ARC_mru_ghost;
422 static arc_state_t ARC_mfu;
423 static arc_state_t ARC_mfu_ghost;
424 static arc_state_t ARC_l2c_only;
426 arc_stats_t arc_stats = {
427 { "hits", KSTAT_DATA_UINT64 },
428 { "misses", KSTAT_DATA_UINT64 },
429 { "demand_data_hits", KSTAT_DATA_UINT64 },
430 { "demand_data_misses", KSTAT_DATA_UINT64 },
431 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
432 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
433 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
434 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
435 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
436 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
437 { "mru_hits", KSTAT_DATA_UINT64 },
438 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
439 { "mfu_hits", KSTAT_DATA_UINT64 },
440 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
441 { "deleted", KSTAT_DATA_UINT64 },
442 { "mutex_miss", KSTAT_DATA_UINT64 },
443 { "access_skip", KSTAT_DATA_UINT64 },
444 { "evict_skip", KSTAT_DATA_UINT64 },
445 { "evict_not_enough", KSTAT_DATA_UINT64 },
446 { "evict_l2_cached", KSTAT_DATA_UINT64 },
447 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
448 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
449 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
450 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
451 { "evict_l2_skip", KSTAT_DATA_UINT64 },
452 { "hash_elements", KSTAT_DATA_UINT64 },
453 { "hash_elements_max", KSTAT_DATA_UINT64 },
454 { "hash_collisions", KSTAT_DATA_UINT64 },
455 { "hash_chains", KSTAT_DATA_UINT64 },
456 { "hash_chain_max", KSTAT_DATA_UINT64 },
457 { "p", KSTAT_DATA_UINT64 },
458 { "c", KSTAT_DATA_UINT64 },
459 { "c_min", KSTAT_DATA_UINT64 },
460 { "c_max", KSTAT_DATA_UINT64 },
461 { "size", KSTAT_DATA_UINT64 },
462 { "compressed_size", KSTAT_DATA_UINT64 },
463 { "uncompressed_size", KSTAT_DATA_UINT64 },
464 { "overhead_size", KSTAT_DATA_UINT64 },
465 { "hdr_size", KSTAT_DATA_UINT64 },
466 { "data_size", KSTAT_DATA_UINT64 },
467 { "metadata_size", KSTAT_DATA_UINT64 },
468 { "other_size", KSTAT_DATA_UINT64 },
469 { "anon_size", KSTAT_DATA_UINT64 },
470 { "anon_evictable_data", KSTAT_DATA_UINT64 },
471 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
472 { "mru_size", KSTAT_DATA_UINT64 },
473 { "mru_evictable_data", KSTAT_DATA_UINT64 },
474 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
475 { "mru_ghost_size", KSTAT_DATA_UINT64 },
476 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
477 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
478 { "mfu_size", KSTAT_DATA_UINT64 },
479 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
480 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
481 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
482 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
483 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
484 { "l2_hits", KSTAT_DATA_UINT64 },
485 { "l2_misses", KSTAT_DATA_UINT64 },
486 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
487 { "l2_mru_asize", KSTAT_DATA_UINT64 },
488 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
489 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
490 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
491 { "l2_feeds", KSTAT_DATA_UINT64 },
492 { "l2_rw_clash", KSTAT_DATA_UINT64 },
493 { "l2_read_bytes", KSTAT_DATA_UINT64 },
494 { "l2_write_bytes", KSTAT_DATA_UINT64 },
495 { "l2_writes_sent", KSTAT_DATA_UINT64 },
496 { "l2_writes_done", KSTAT_DATA_UINT64 },
497 { "l2_writes_error", KSTAT_DATA_UINT64 },
498 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
499 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
500 { "l2_evict_reading", KSTAT_DATA_UINT64 },
501 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
502 { "l2_free_on_write", KSTAT_DATA_UINT64 },
503 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
504 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
505 { "l2_io_error", KSTAT_DATA_UINT64 },
506 { "l2_size", KSTAT_DATA_UINT64 },
507 { "l2_asize", KSTAT_DATA_UINT64 },
508 { "l2_hdr_size", KSTAT_DATA_UINT64 },
509 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
510 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
511 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
512 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
513 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
514 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
515 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
516 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
517 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
518 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
519 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
520 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
521 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
522 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
523 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
524 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
525 { "memory_throttle_count", KSTAT_DATA_UINT64 },
526 { "arc_meta_used", KSTAT_DATA_UINT64 },
527 { "arc_meta_limit", KSTAT_DATA_UINT64 },
528 { "arc_meta_max", KSTAT_DATA_UINT64 },
529 { "arc_meta_min", KSTAT_DATA_UINT64 },
530 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
531 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
532 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
535 #define ARCSTAT_MAX(stat, val) { \
536 uint64_t m; \
537 while ((val) > (m = arc_stats.stat.value.ui64) && \
538 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
539 continue; \
542 #define ARCSTAT_MAXSTAT(stat) \
543 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
546 * We define a macro to allow ARC hits/misses to be easily broken down by
547 * two separate conditions, giving a total of four different subtypes for
548 * each of hits and misses (so eight statistics total).
550 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
551 if (cond1) { \
552 if (cond2) { \
553 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
554 } else { \
555 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
557 } else { \
558 if (cond2) { \
559 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
560 } else { \
561 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
566 * This macro allows us to use kstats as floating averages. Each time we
567 * update this kstat, we first factor it and the update value by
568 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
569 * average. This macro assumes that integer loads and stores are atomic, but
570 * is not safe for multiple writers updating the kstat in parallel (only the
571 * last writer's update will remain).
573 #define ARCSTAT_F_AVG_FACTOR 3
574 #define ARCSTAT_F_AVG(stat, value) \
575 do { \
576 uint64_t x = ARCSTAT(stat); \
577 x = x - x / ARCSTAT_F_AVG_FACTOR + \
578 (value) / ARCSTAT_F_AVG_FACTOR; \
579 ARCSTAT(stat) = x; \
580 _NOTE(CONSTCOND) \
581 } while (0)
583 kstat_t *arc_ksp;
584 static arc_state_t *arc_anon;
585 static arc_state_t *arc_mru;
586 static arc_state_t *arc_mru_ghost;
587 static arc_state_t *arc_mfu;
588 static arc_state_t *arc_mfu_ghost;
589 static arc_state_t *arc_l2c_only;
592 * There are also some ARC variables that we want to export, but that are
593 * updated so often that having the canonical representation be the statistic
594 * variable causes a performance bottleneck. We want to use aggsum_t's for these
595 * instead, but still be able to export the kstat in the same way as before.
596 * The solution is to always use the aggsum version, except in the kstat update
597 * callback.
599 aggsum_t arc_size;
600 aggsum_t arc_meta_used;
601 aggsum_t astat_data_size;
602 aggsum_t astat_metadata_size;
603 aggsum_t astat_hdr_size;
604 aggsum_t astat_other_size;
605 aggsum_t astat_l2_hdr_size;
607 static int arc_no_grow; /* Don't try to grow cache size */
608 static hrtime_t arc_growtime;
609 static uint64_t arc_tempreserve;
610 static uint64_t arc_loaned_bytes;
612 #define GHOST_STATE(state) \
613 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
614 (state) == arc_l2c_only)
616 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
617 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
618 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
619 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
620 #define HDR_PRESCIENT_PREFETCH(hdr) \
621 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
622 #define HDR_COMPRESSION_ENABLED(hdr) \
623 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
625 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
626 #define HDR_L2_READING(hdr) \
627 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
628 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
629 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
630 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
631 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
632 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
633 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
634 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
636 #define HDR_ISTYPE_METADATA(hdr) \
637 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
638 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
640 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
641 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
642 #define HDR_HAS_RABD(hdr) \
643 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
644 (hdr)->b_crypt_hdr.b_rabd != NULL)
645 #define HDR_ENCRYPTED(hdr) \
646 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
647 #define HDR_AUTHENTICATED(hdr) \
648 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
650 /* For storing compression mode in b_flags */
651 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
653 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
654 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
655 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
656 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
658 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
659 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
660 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
661 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
664 * Other sizes
667 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
668 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
669 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
672 * Hash table routines
675 #define HT_LOCK_PAD 64
677 struct ht_lock {
678 kmutex_t ht_lock;
679 #ifdef _KERNEL
680 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
681 #endif
684 #define BUF_LOCKS 256
685 typedef struct buf_hash_table {
686 uint64_t ht_mask;
687 arc_buf_hdr_t **ht_table;
688 struct ht_lock ht_locks[BUF_LOCKS];
689 } buf_hash_table_t;
691 static buf_hash_table_t buf_hash_table;
693 #define BUF_HASH_INDEX(spa, dva, birth) \
694 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
695 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
696 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
697 #define HDR_LOCK(hdr) \
698 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
700 uint64_t zfs_crc64_table[256];
703 * Level 2 ARC
706 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
707 #define L2ARC_HEADROOM 2 /* num of writes */
709 * If we discover during ARC scan any buffers to be compressed, we boost
710 * our headroom for the next scanning cycle by this percentage multiple.
712 #define L2ARC_HEADROOM_BOOST 200
713 #define L2ARC_FEED_SECS 1 /* caching interval secs */
714 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
717 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
718 * and each of the state has two types: data and metadata.
720 #define L2ARC_FEED_TYPES 4
723 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
724 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
726 /* L2ARC Performance Tunables */
727 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
728 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
729 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
730 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
731 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
732 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
733 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
734 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
735 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
736 int l2arc_meta_percent = 33; /* limit on headers size */
739 * L2ARC Internals
741 static list_t L2ARC_dev_list; /* device list */
742 static list_t *l2arc_dev_list; /* device list pointer */
743 static kmutex_t l2arc_dev_mtx; /* device list mutex */
744 static l2arc_dev_t *l2arc_dev_last; /* last device used */
745 static list_t L2ARC_free_on_write; /* free after write buf list */
746 static list_t *l2arc_free_on_write; /* free after write list ptr */
747 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
748 static uint64_t l2arc_ndev; /* number of devices */
750 typedef struct l2arc_read_callback {
751 arc_buf_hdr_t *l2rcb_hdr; /* read header */
752 blkptr_t l2rcb_bp; /* original blkptr */
753 zbookmark_phys_t l2rcb_zb; /* original bookmark */
754 int l2rcb_flags; /* original flags */
755 abd_t *l2rcb_abd; /* temporary buffer */
756 } l2arc_read_callback_t;
758 typedef struct l2arc_data_free {
759 /* protected by l2arc_free_on_write_mtx */
760 abd_t *l2df_abd;
761 size_t l2df_size;
762 arc_buf_contents_t l2df_type;
763 list_node_t l2df_list_node;
764 } l2arc_data_free_t;
766 static kmutex_t l2arc_feed_thr_lock;
767 static kcondvar_t l2arc_feed_thr_cv;
768 static uint8_t l2arc_thread_exit;
770 static kmutex_t l2arc_rebuild_thr_lock;
771 static kcondvar_t l2arc_rebuild_thr_cv;
773 enum arc_hdr_alloc_flags {
774 ARC_HDR_ALLOC_RDATA = 0x1,
775 ARC_HDR_DO_ADAPT = 0x2,
779 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
780 typedef enum arc_fill_flags {
781 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
782 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
783 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
784 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
785 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
786 } arc_fill_flags_t;
788 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
789 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
790 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
791 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
792 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
793 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
794 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int);
795 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
796 static boolean_t arc_is_overflowing();
797 static void arc_buf_watch(arc_buf_t *);
798 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
800 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
801 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
802 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
803 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
805 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
806 static void l2arc_read_done(zio_t *);
807 static void l2arc_do_free_on_write(void);
808 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
809 boolean_t state_only);
811 #define l2arc_hdr_arcstats_increment(hdr) \
812 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
813 #define l2arc_hdr_arcstats_decrement(hdr) \
814 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
815 #define l2arc_hdr_arcstats_increment_state(hdr) \
816 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
817 #define l2arc_hdr_arcstats_decrement_state(hdr) \
818 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
821 * The arc_all_memory function is a ZoL enhancement that lives in their OSL
822 * code. In user-space code, which is used primarily for testing, we return
823 * half of all memory.
825 uint64_t
826 arc_all_memory(void)
828 #ifdef _KERNEL
829 return (ptob(physmem));
830 #else
831 return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
832 #endif
836 * We use Cityhash for this. It's fast, and has good hash properties without
837 * requiring any large static buffers.
839 static uint64_t
840 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
842 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
845 #define HDR_EMPTY(hdr) \
846 ((hdr)->b_dva.dva_word[0] == 0 && \
847 (hdr)->b_dva.dva_word[1] == 0)
849 #define HDR_EMPTY_OR_LOCKED(hdr) \
850 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
852 #define HDR_EQUAL(spa, dva, birth, hdr) \
853 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
854 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
855 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
857 static void
858 buf_discard_identity(arc_buf_hdr_t *hdr)
860 hdr->b_dva.dva_word[0] = 0;
861 hdr->b_dva.dva_word[1] = 0;
862 hdr->b_birth = 0;
865 static arc_buf_hdr_t *
866 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
868 const dva_t *dva = BP_IDENTITY(bp);
869 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
870 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
871 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
872 arc_buf_hdr_t *hdr;
874 mutex_enter(hash_lock);
875 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
876 hdr = hdr->b_hash_next) {
877 if (HDR_EQUAL(spa, dva, birth, hdr)) {
878 *lockp = hash_lock;
879 return (hdr);
882 mutex_exit(hash_lock);
883 *lockp = NULL;
884 return (NULL);
888 * Insert an entry into the hash table. If there is already an element
889 * equal to elem in the hash table, then the already existing element
890 * will be returned and the new element will not be inserted.
891 * Otherwise returns NULL.
892 * If lockp == NULL, the caller is assumed to already hold the hash lock.
894 static arc_buf_hdr_t *
895 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
897 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
898 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
899 arc_buf_hdr_t *fhdr;
900 uint32_t i;
902 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
903 ASSERT(hdr->b_birth != 0);
904 ASSERT(!HDR_IN_HASH_TABLE(hdr));
906 if (lockp != NULL) {
907 *lockp = hash_lock;
908 mutex_enter(hash_lock);
909 } else {
910 ASSERT(MUTEX_HELD(hash_lock));
913 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
914 fhdr = fhdr->b_hash_next, i++) {
915 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
916 return (fhdr);
919 hdr->b_hash_next = buf_hash_table.ht_table[idx];
920 buf_hash_table.ht_table[idx] = hdr;
921 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
923 /* collect some hash table performance data */
924 if (i > 0) {
925 ARCSTAT_BUMP(arcstat_hash_collisions);
926 if (i == 1)
927 ARCSTAT_BUMP(arcstat_hash_chains);
929 ARCSTAT_MAX(arcstat_hash_chain_max, i);
932 ARCSTAT_BUMP(arcstat_hash_elements);
933 ARCSTAT_MAXSTAT(arcstat_hash_elements);
935 return (NULL);
938 static void
939 buf_hash_remove(arc_buf_hdr_t *hdr)
941 arc_buf_hdr_t *fhdr, **hdrp;
942 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
944 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
945 ASSERT(HDR_IN_HASH_TABLE(hdr));
947 hdrp = &buf_hash_table.ht_table[idx];
948 while ((fhdr = *hdrp) != hdr) {
949 ASSERT3P(fhdr, !=, NULL);
950 hdrp = &fhdr->b_hash_next;
952 *hdrp = hdr->b_hash_next;
953 hdr->b_hash_next = NULL;
954 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
956 /* collect some hash table performance data */
957 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
959 if (buf_hash_table.ht_table[idx] &&
960 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
961 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
965 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
966 * metadata and data are cached from ARC into L2ARC.
968 int l2arc_mfuonly = 0;
971 * Global data structures and functions for the buf kmem cache.
974 static kmem_cache_t *hdr_full_cache;
975 static kmem_cache_t *hdr_full_crypt_cache;
976 static kmem_cache_t *hdr_l2only_cache;
977 static kmem_cache_t *buf_cache;
979 static void
980 buf_fini(void)
982 int i;
984 kmem_free(buf_hash_table.ht_table,
985 (buf_hash_table.ht_mask + 1) * sizeof (void *));
986 for (i = 0; i < BUF_LOCKS; i++)
987 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
988 kmem_cache_destroy(hdr_full_cache);
989 kmem_cache_destroy(hdr_full_crypt_cache);
990 kmem_cache_destroy(hdr_l2only_cache);
991 kmem_cache_destroy(buf_cache);
995 * Constructor callback - called when the cache is empty
996 * and a new buf is requested.
998 /* ARGSUSED */
999 static int
1000 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1002 arc_buf_hdr_t *hdr = vbuf;
1004 bzero(hdr, HDR_FULL_SIZE);
1005 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1006 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1007 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1008 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1009 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1010 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1012 return (0);
1015 /* ARGSUSED */
1016 static int
1017 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1019 arc_buf_hdr_t *hdr = vbuf;
1021 (void) hdr_full_cons(vbuf, unused, kmflag);
1022 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1023 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1025 return (0);
1028 /* ARGSUSED */
1029 static int
1030 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1032 arc_buf_hdr_t *hdr = vbuf;
1034 bzero(hdr, HDR_L2ONLY_SIZE);
1035 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1037 return (0);
1040 /* ARGSUSED */
1041 static int
1042 buf_cons(void *vbuf, void *unused, int kmflag)
1044 arc_buf_t *buf = vbuf;
1046 bzero(buf, sizeof (arc_buf_t));
1047 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1048 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1050 return (0);
1054 * Destructor callback - called when a cached buf is
1055 * no longer required.
1057 /* ARGSUSED */
1058 static void
1059 hdr_full_dest(void *vbuf, void *unused)
1061 arc_buf_hdr_t *hdr = vbuf;
1063 ASSERT(HDR_EMPTY(hdr));
1064 cv_destroy(&hdr->b_l1hdr.b_cv);
1065 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1066 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1067 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1068 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1071 /* ARGSUSED */
1072 static void
1073 hdr_full_crypt_dest(void *vbuf, void *unused)
1075 arc_buf_hdr_t *hdr = vbuf;
1077 hdr_full_dest(hdr, unused);
1078 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1081 /* ARGSUSED */
1082 static void
1083 hdr_l2only_dest(void *vbuf, void *unused)
1085 arc_buf_hdr_t *hdr = vbuf;
1087 ASSERT(HDR_EMPTY(hdr));
1088 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1091 /* ARGSUSED */
1092 static void
1093 buf_dest(void *vbuf, void *unused)
1095 arc_buf_t *buf = vbuf;
1097 mutex_destroy(&buf->b_evict_lock);
1098 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1102 * Reclaim callback -- invoked when memory is low.
1104 /* ARGSUSED */
1105 static void
1106 hdr_recl(void *unused)
1108 dprintf("hdr_recl called\n");
1110 * umem calls the reclaim func when we destroy the buf cache,
1111 * which is after we do arc_fini().
1113 if (arc_initialized)
1114 zthr_wakeup(arc_reap_zthr);
1117 static void
1118 buf_init(void)
1120 uint64_t *ct;
1121 uint64_t hsize = 1ULL << 12;
1122 int i, j;
1125 * The hash table is big enough to fill all of physical memory
1126 * with an average block size of zfs_arc_average_blocksize (default 8K).
1127 * By default, the table will take up
1128 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1130 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1131 hsize <<= 1;
1132 retry:
1133 buf_hash_table.ht_mask = hsize - 1;
1134 buf_hash_table.ht_table =
1135 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1136 if (buf_hash_table.ht_table == NULL) {
1137 ASSERT(hsize > (1ULL << 8));
1138 hsize >>= 1;
1139 goto retry;
1142 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1143 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1144 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1145 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1146 hdr_recl, NULL, NULL, 0);
1147 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1148 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1149 NULL, NULL, 0);
1150 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1151 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1153 for (i = 0; i < 256; i++)
1154 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1155 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1157 for (i = 0; i < BUF_LOCKS; i++) {
1158 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1159 NULL, MUTEX_DEFAULT, NULL);
1164 * This is the size that the buf occupies in memory. If the buf is compressed,
1165 * it will correspond to the compressed size. You should use this method of
1166 * getting the buf size unless you explicitly need the logical size.
1168 int32_t
1169 arc_buf_size(arc_buf_t *buf)
1171 return (ARC_BUF_COMPRESSED(buf) ?
1172 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1175 int32_t
1176 arc_buf_lsize(arc_buf_t *buf)
1178 return (HDR_GET_LSIZE(buf->b_hdr));
1182 * This function will return B_TRUE if the buffer is encrypted in memory.
1183 * This buffer can be decrypted by calling arc_untransform().
1185 boolean_t
1186 arc_is_encrypted(arc_buf_t *buf)
1188 return (ARC_BUF_ENCRYPTED(buf) != 0);
1192 * Returns B_TRUE if the buffer represents data that has not had its MAC
1193 * verified yet.
1195 boolean_t
1196 arc_is_unauthenticated(arc_buf_t *buf)
1198 return (HDR_NOAUTH(buf->b_hdr) != 0);
1201 void
1202 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1203 uint8_t *iv, uint8_t *mac)
1205 arc_buf_hdr_t *hdr = buf->b_hdr;
1207 ASSERT(HDR_PROTECTED(hdr));
1209 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1210 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1211 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1212 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1213 /* CONSTCOND */
1214 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1218 * Indicates how this buffer is compressed in memory. If it is not compressed
1219 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1220 * arc_untransform() as long as it is also unencrypted.
1222 enum zio_compress
1223 arc_get_compression(arc_buf_t *buf)
1225 return (ARC_BUF_COMPRESSED(buf) ?
1226 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1229 #define ARC_MINTIME (hz>>4) /* 62 ms */
1232 * Return the compression algorithm used to store this data in the ARC. If ARC
1233 * compression is enabled or this is an encrypted block, this will be the same
1234 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1236 static inline enum zio_compress
1237 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1239 return (HDR_COMPRESSION_ENABLED(hdr) ?
1240 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1243 static inline boolean_t
1244 arc_buf_is_shared(arc_buf_t *buf)
1246 boolean_t shared = (buf->b_data != NULL &&
1247 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1248 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1249 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1250 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1251 IMPLY(shared, ARC_BUF_SHARED(buf));
1252 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1255 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1256 * already being shared" requirement prevents us from doing that.
1259 return (shared);
1263 * Free the checksum associated with this header. If there is no checksum, this
1264 * is a no-op.
1266 static inline void
1267 arc_cksum_free(arc_buf_hdr_t *hdr)
1269 ASSERT(HDR_HAS_L1HDR(hdr));
1271 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1272 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1273 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1274 hdr->b_l1hdr.b_freeze_cksum = NULL;
1276 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1280 * Return true iff at least one of the bufs on hdr is not compressed.
1281 * Encrypted buffers count as compressed.
1283 static boolean_t
1284 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1286 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1288 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1289 if (!ARC_BUF_COMPRESSED(b)) {
1290 return (B_TRUE);
1293 return (B_FALSE);
1297 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1298 * matches the checksum that is stored in the hdr. If there is no checksum,
1299 * or if the buf is compressed, this is a no-op.
1301 static void
1302 arc_cksum_verify(arc_buf_t *buf)
1304 arc_buf_hdr_t *hdr = buf->b_hdr;
1305 zio_cksum_t zc;
1307 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1308 return;
1310 if (ARC_BUF_COMPRESSED(buf))
1311 return;
1313 ASSERT(HDR_HAS_L1HDR(hdr));
1315 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1317 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1318 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1319 return;
1322 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1323 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1324 panic("buffer modified while frozen!");
1325 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1329 * This function makes the assumption that data stored in the L2ARC
1330 * will be transformed exactly as it is in the main pool. Because of
1331 * this we can verify the checksum against the reading process's bp.
1333 static boolean_t
1334 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1336 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1337 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1340 * Block pointers always store the checksum for the logical data.
1341 * If the block pointer has the gang bit set, then the checksum
1342 * it represents is for the reconstituted data and not for an
1343 * individual gang member. The zio pipeline, however, must be able to
1344 * determine the checksum of each of the gang constituents so it
1345 * treats the checksum comparison differently than what we need
1346 * for l2arc blocks. This prevents us from using the
1347 * zio_checksum_error() interface directly. Instead we must call the
1348 * zio_checksum_error_impl() so that we can ensure the checksum is
1349 * generated using the correct checksum algorithm and accounts for the
1350 * logical I/O size and not just a gang fragment.
1352 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1353 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1354 zio->io_offset, NULL) == 0);
1358 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1359 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1360 * isn't modified later on. If buf is compressed or there is already a checksum
1361 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1363 static void
1364 arc_cksum_compute(arc_buf_t *buf)
1366 arc_buf_hdr_t *hdr = buf->b_hdr;
1368 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1369 return;
1371 ASSERT(HDR_HAS_L1HDR(hdr));
1373 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1374 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1375 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1376 return;
1379 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1380 ASSERT(!ARC_BUF_COMPRESSED(buf));
1381 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1382 KM_SLEEP);
1383 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1384 hdr->b_l1hdr.b_freeze_cksum);
1385 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1386 arc_buf_watch(buf);
1389 #ifndef _KERNEL
1390 typedef struct procctl {
1391 long cmd;
1392 prwatch_t prwatch;
1393 } procctl_t;
1394 #endif
1396 /* ARGSUSED */
1397 static void
1398 arc_buf_unwatch(arc_buf_t *buf)
1400 #ifndef _KERNEL
1401 if (arc_watch) {
1402 int result;
1403 procctl_t ctl;
1404 ctl.cmd = PCWATCH;
1405 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1406 ctl.prwatch.pr_size = 0;
1407 ctl.prwatch.pr_wflags = 0;
1408 result = write(arc_procfd, &ctl, sizeof (ctl));
1409 ASSERT3U(result, ==, sizeof (ctl));
1411 #endif
1414 /* ARGSUSED */
1415 static void
1416 arc_buf_watch(arc_buf_t *buf)
1418 #ifndef _KERNEL
1419 if (arc_watch) {
1420 int result;
1421 procctl_t ctl;
1422 ctl.cmd = PCWATCH;
1423 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1424 ctl.prwatch.pr_size = arc_buf_size(buf);
1425 ctl.prwatch.pr_wflags = WA_WRITE;
1426 result = write(arc_procfd, &ctl, sizeof (ctl));
1427 ASSERT3U(result, ==, sizeof (ctl));
1429 #endif
1432 static arc_buf_contents_t
1433 arc_buf_type(arc_buf_hdr_t *hdr)
1435 arc_buf_contents_t type;
1436 if (HDR_ISTYPE_METADATA(hdr)) {
1437 type = ARC_BUFC_METADATA;
1438 } else {
1439 type = ARC_BUFC_DATA;
1441 VERIFY3U(hdr->b_type, ==, type);
1442 return (type);
1445 boolean_t
1446 arc_is_metadata(arc_buf_t *buf)
1448 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1451 static uint32_t
1452 arc_bufc_to_flags(arc_buf_contents_t type)
1454 switch (type) {
1455 case ARC_BUFC_DATA:
1456 /* metadata field is 0 if buffer contains normal data */
1457 return (0);
1458 case ARC_BUFC_METADATA:
1459 return (ARC_FLAG_BUFC_METADATA);
1460 default:
1461 break;
1463 panic("undefined ARC buffer type!");
1464 return ((uint32_t)-1);
1467 void
1468 arc_buf_thaw(arc_buf_t *buf)
1470 arc_buf_hdr_t *hdr = buf->b_hdr;
1472 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1473 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1475 arc_cksum_verify(buf);
1478 * Compressed buffers do not manipulate the b_freeze_cksum.
1480 if (ARC_BUF_COMPRESSED(buf))
1481 return;
1483 ASSERT(HDR_HAS_L1HDR(hdr));
1484 arc_cksum_free(hdr);
1486 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1487 #ifdef ZFS_DEBUG
1488 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1489 if (hdr->b_l1hdr.b_thawed != NULL)
1490 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1491 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1493 #endif
1495 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1497 arc_buf_unwatch(buf);
1500 void
1501 arc_buf_freeze(arc_buf_t *buf)
1503 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1504 return;
1506 if (ARC_BUF_COMPRESSED(buf))
1507 return;
1509 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1510 arc_cksum_compute(buf);
1514 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1515 * the following functions should be used to ensure that the flags are
1516 * updated in a thread-safe way. When manipulating the flags either
1517 * the hash_lock must be held or the hdr must be undiscoverable. This
1518 * ensures that we're not racing with any other threads when updating
1519 * the flags.
1521 static inline void
1522 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1524 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1525 hdr->b_flags |= flags;
1528 static inline void
1529 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1531 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1532 hdr->b_flags &= ~flags;
1536 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1537 * done in a special way since we have to clear and set bits
1538 * at the same time. Consumers that wish to set the compression bits
1539 * must use this function to ensure that the flags are updated in
1540 * thread-safe manner.
1542 static void
1543 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1545 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1548 * Holes and embedded blocks will always have a psize = 0 so
1549 * we ignore the compression of the blkptr and set the
1550 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1551 * Holes and embedded blocks remain anonymous so we don't
1552 * want to uncompress them. Mark them as uncompressed.
1554 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1555 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1556 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1557 } else {
1558 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1559 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1562 HDR_SET_COMPRESS(hdr, cmp);
1563 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1567 * Looks for another buf on the same hdr which has the data decompressed, copies
1568 * from it, and returns true. If no such buf exists, returns false.
1570 static boolean_t
1571 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1573 arc_buf_hdr_t *hdr = buf->b_hdr;
1574 boolean_t copied = B_FALSE;
1576 ASSERT(HDR_HAS_L1HDR(hdr));
1577 ASSERT3P(buf->b_data, !=, NULL);
1578 ASSERT(!ARC_BUF_COMPRESSED(buf));
1580 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1581 from = from->b_next) {
1582 /* can't use our own data buffer */
1583 if (from == buf) {
1584 continue;
1587 if (!ARC_BUF_COMPRESSED(from)) {
1588 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1589 copied = B_TRUE;
1590 break;
1595 * Note: With encryption support, the following assertion is no longer
1596 * necessarily valid. If we receive two back to back raw snapshots
1597 * (send -w), the second receive can use a hdr with a cksum already
1598 * calculated. This happens via:
1599 * dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
1600 * The rsend/send_mixed_raw test case exercises this code path.
1602 * There were no decompressed bufs, so there should not be a
1603 * checksum on the hdr either.
1604 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1607 return (copied);
1611 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1613 static uint64_t
1614 arc_hdr_size(arc_buf_hdr_t *hdr)
1616 uint64_t size;
1618 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1619 HDR_GET_PSIZE(hdr) > 0) {
1620 size = HDR_GET_PSIZE(hdr);
1621 } else {
1622 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1623 size = HDR_GET_LSIZE(hdr);
1625 return (size);
1628 static int
1629 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1631 int ret;
1632 uint64_t csize;
1633 uint64_t lsize = HDR_GET_LSIZE(hdr);
1634 uint64_t psize = HDR_GET_PSIZE(hdr);
1635 void *tmpbuf = NULL;
1636 abd_t *abd = hdr->b_l1hdr.b_pabd;
1638 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1639 ASSERT(HDR_AUTHENTICATED(hdr));
1640 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1643 * The MAC is calculated on the compressed data that is stored on disk.
1644 * However, if compressed arc is disabled we will only have the
1645 * decompressed data available to us now. Compress it into a temporary
1646 * abd so we can verify the MAC. The performance overhead of this will
1647 * be relatively low, since most objects in an encrypted objset will
1648 * be encrypted (instead of authenticated) anyway.
1650 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1651 !HDR_COMPRESSION_ENABLED(hdr)) {
1652 tmpbuf = zio_buf_alloc(lsize);
1653 abd = abd_get_from_buf(tmpbuf, lsize);
1654 abd_take_ownership_of_buf(abd, B_TRUE);
1656 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1657 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1658 ASSERT3U(csize, <=, psize);
1659 abd_zero_off(abd, csize, psize - csize);
1663 * Authentication is best effort. We authenticate whenever the key is
1664 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1666 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1667 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1668 ASSERT3U(lsize, ==, psize);
1669 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1670 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1671 } else {
1672 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1673 hdr->b_crypt_hdr.b_mac);
1676 if (ret == 0)
1677 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1678 else if (ret != ENOENT)
1679 goto error;
1681 if (tmpbuf != NULL)
1682 abd_free(abd);
1684 return (0);
1686 error:
1687 if (tmpbuf != NULL)
1688 abd_free(abd);
1690 return (ret);
1694 * This function will take a header that only has raw encrypted data in
1695 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1696 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1697 * also decompress the data.
1699 static int
1700 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1702 int ret;
1703 abd_t *cabd = NULL;
1704 void *tmp = NULL;
1705 boolean_t no_crypt = B_FALSE;
1706 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1708 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1709 ASSERT(HDR_ENCRYPTED(hdr));
1711 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
1713 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1714 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1715 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1716 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1717 if (ret != 0)
1718 goto error;
1720 if (no_crypt) {
1721 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1722 HDR_GET_PSIZE(hdr));
1726 * If this header has disabled arc compression but the b_pabd is
1727 * compressed after decrypting it, we need to decompress the newly
1728 * decrypted data.
1730 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1731 !HDR_COMPRESSION_ENABLED(hdr)) {
1733 * We want to make sure that we are correctly honoring the
1734 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1735 * and then loan a buffer from it, rather than allocating a
1736 * linear buffer and wrapping it in an abd later.
1738 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE);
1739 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1741 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1742 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1743 HDR_GET_LSIZE(hdr));
1744 if (ret != 0) {
1745 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1746 goto error;
1749 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1750 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1751 arc_hdr_size(hdr), hdr);
1752 hdr->b_l1hdr.b_pabd = cabd;
1755 return (0);
1757 error:
1758 arc_hdr_free_pabd(hdr, B_FALSE);
1759 if (cabd != NULL)
1760 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1762 return (ret);
1766 * This function is called during arc_buf_fill() to prepare the header's
1767 * abd plaintext pointer for use. This involves authenticated protected
1768 * data and decrypting encrypted data into the plaintext abd.
1770 static int
1771 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1772 const zbookmark_phys_t *zb, boolean_t noauth)
1774 int ret;
1776 ASSERT(HDR_PROTECTED(hdr));
1778 if (hash_lock != NULL)
1779 mutex_enter(hash_lock);
1781 if (HDR_NOAUTH(hdr) && !noauth) {
1783 * The caller requested authenticated data but our data has
1784 * not been authenticated yet. Verify the MAC now if we can.
1786 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1787 if (ret != 0)
1788 goto error;
1789 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1791 * If we only have the encrypted version of the data, but the
1792 * unencrypted version was requested we take this opportunity
1793 * to store the decrypted version in the header for future use.
1795 ret = arc_hdr_decrypt(hdr, spa, zb);
1796 if (ret != 0)
1797 goto error;
1800 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1802 if (hash_lock != NULL)
1803 mutex_exit(hash_lock);
1805 return (0);
1807 error:
1808 if (hash_lock != NULL)
1809 mutex_exit(hash_lock);
1811 return (ret);
1815 * This function is used by the dbuf code to decrypt bonus buffers in place.
1816 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1817 * block, so we use the hash lock here to protect against concurrent calls to
1818 * arc_buf_fill().
1820 /* ARGSUSED */
1821 static void
1822 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1824 arc_buf_hdr_t *hdr = buf->b_hdr;
1826 ASSERT(HDR_ENCRYPTED(hdr));
1827 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1829 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1831 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1832 arc_buf_size(buf));
1833 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1834 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1835 hdr->b_crypt_hdr.b_ebufcnt -= 1;
1839 * Given a buf that has a data buffer attached to it, this function will
1840 * efficiently fill the buf with data of the specified compression setting from
1841 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1842 * are already sharing a data buf, no copy is performed.
1844 * If the buf is marked as compressed but uncompressed data was requested, this
1845 * will allocate a new data buffer for the buf, remove that flag, and fill the
1846 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1847 * uncompressed data, and (since we haven't added support for it yet) if you
1848 * want compressed data your buf must already be marked as compressed and have
1849 * the correct-sized data buffer.
1851 static int
1852 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1853 arc_fill_flags_t flags)
1855 int error = 0;
1856 arc_buf_hdr_t *hdr = buf->b_hdr;
1857 boolean_t hdr_compressed =
1858 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1859 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1860 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1861 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1862 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1864 ASSERT3P(buf->b_data, !=, NULL);
1865 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1866 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1867 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1868 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1869 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1870 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1873 * If the caller wanted encrypted data we just need to copy it from
1874 * b_rabd and potentially byteswap it. We won't be able to do any
1875 * further transforms on it.
1877 if (encrypted) {
1878 ASSERT(HDR_HAS_RABD(hdr));
1879 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1880 HDR_GET_PSIZE(hdr));
1881 goto byteswap;
1885 * Adjust encrypted and authenticated headers to accomodate
1886 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
1887 * allowed to fail decryption due to keys not being loaded
1888 * without being marked as an IO error.
1890 if (HDR_PROTECTED(hdr)) {
1891 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
1892 zb, !!(flags & ARC_FILL_NOAUTH));
1893 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
1894 return (error);
1895 } else if (error != 0) {
1896 if (hash_lock != NULL)
1897 mutex_enter(hash_lock);
1898 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
1899 if (hash_lock != NULL)
1900 mutex_exit(hash_lock);
1901 return (error);
1906 * There is a special case here for dnode blocks which are
1907 * decrypting their bonus buffers. These blocks may request to
1908 * be decrypted in-place. This is necessary because there may
1909 * be many dnodes pointing into this buffer and there is
1910 * currently no method to synchronize replacing the backing
1911 * b_data buffer and updating all of the pointers. Here we use
1912 * the hash lock to ensure there are no races. If the need
1913 * arises for other types to be decrypted in-place, they must
1914 * add handling here as well.
1916 if ((flags & ARC_FILL_IN_PLACE) != 0) {
1917 ASSERT(!hdr_compressed);
1918 ASSERT(!compressed);
1919 ASSERT(!encrypted);
1921 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
1922 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1924 if (hash_lock != NULL)
1925 mutex_enter(hash_lock);
1926 arc_buf_untransform_in_place(buf, hash_lock);
1927 if (hash_lock != NULL)
1928 mutex_exit(hash_lock);
1930 /* Compute the hdr's checksum if necessary */
1931 arc_cksum_compute(buf);
1934 return (0);
1937 if (hdr_compressed == compressed) {
1938 if (!arc_buf_is_shared(buf)) {
1939 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1940 arc_buf_size(buf));
1942 } else {
1943 ASSERT(hdr_compressed);
1944 ASSERT(!compressed);
1945 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1948 * If the buf is sharing its data with the hdr, unlink it and
1949 * allocate a new data buffer for the buf.
1951 if (arc_buf_is_shared(buf)) {
1952 ASSERT(ARC_BUF_COMPRESSED(buf));
1954 /* We need to give the buf its own b_data */
1955 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1956 buf->b_data =
1957 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1958 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1960 /* Previously overhead was 0; just add new overhead */
1961 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1962 } else if (ARC_BUF_COMPRESSED(buf)) {
1963 /* We need to reallocate the buf's b_data */
1964 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1965 buf);
1966 buf->b_data =
1967 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1969 /* We increased the size of b_data; update overhead */
1970 ARCSTAT_INCR(arcstat_overhead_size,
1971 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1975 * Regardless of the buf's previous compression settings, it
1976 * should not be compressed at the end of this function.
1978 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1981 * Try copying the data from another buf which already has a
1982 * decompressed version. If that's not possible, it's time to
1983 * bite the bullet and decompress the data from the hdr.
1985 if (arc_buf_try_copy_decompressed_data(buf)) {
1986 /* Skip byteswapping and checksumming (already done) */
1987 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1988 return (0);
1989 } else {
1990 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1991 hdr->b_l1hdr.b_pabd, buf->b_data,
1992 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1995 * Absent hardware errors or software bugs, this should
1996 * be impossible, but log it anyway so we can debug it.
1998 if (error != 0) {
1999 zfs_dbgmsg(
2000 "hdr %p, compress %d, psize %d, lsize %d",
2001 hdr, arc_hdr_get_compress(hdr),
2002 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2003 if (hash_lock != NULL)
2004 mutex_enter(hash_lock);
2005 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2006 if (hash_lock != NULL)
2007 mutex_exit(hash_lock);
2008 return (SET_ERROR(EIO));
2013 byteswap:
2014 /* Byteswap the buf's data if necessary */
2015 if (bswap != DMU_BSWAP_NUMFUNCS) {
2016 ASSERT(!HDR_SHARED_DATA(hdr));
2017 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2018 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2021 /* Compute the hdr's checksum if necessary */
2022 arc_cksum_compute(buf);
2024 return (0);
2028 * If this function is being called to decrypt an encrypted buffer or verify an
2029 * authenticated one, the key must be loaded and a mapping must be made
2030 * available in the keystore via spa_keystore_create_mapping() or one of its
2031 * callers.
2034 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2035 boolean_t in_place)
2037 int ret;
2038 arc_fill_flags_t flags = 0;
2040 if (in_place)
2041 flags |= ARC_FILL_IN_PLACE;
2043 ret = arc_buf_fill(buf, spa, zb, flags);
2044 if (ret == ECKSUM) {
2046 * Convert authentication and decryption errors to EIO
2047 * (and generate an ereport) before leaving the ARC.
2049 ret = SET_ERROR(EIO);
2050 spa_log_error(spa, zb);
2051 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2052 spa, NULL, zb, NULL, 0, 0);
2055 return (ret);
2059 * Increment the amount of evictable space in the arc_state_t's refcount.
2060 * We account for the space used by the hdr and the arc buf individually
2061 * so that we can add and remove them from the refcount individually.
2063 static void
2064 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2066 arc_buf_contents_t type = arc_buf_type(hdr);
2068 ASSERT(HDR_HAS_L1HDR(hdr));
2070 if (GHOST_STATE(state)) {
2071 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2072 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2073 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2074 ASSERT(!HDR_HAS_RABD(hdr));
2075 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2076 HDR_GET_LSIZE(hdr), hdr);
2077 return;
2080 ASSERT(!GHOST_STATE(state));
2081 if (hdr->b_l1hdr.b_pabd != NULL) {
2082 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2083 arc_hdr_size(hdr), hdr);
2085 if (HDR_HAS_RABD(hdr)) {
2086 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2087 HDR_GET_PSIZE(hdr), hdr);
2089 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2090 buf = buf->b_next) {
2091 if (arc_buf_is_shared(buf))
2092 continue;
2093 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2094 arc_buf_size(buf), buf);
2099 * Decrement the amount of evictable space in the arc_state_t's refcount.
2100 * We account for the space used by the hdr and the arc buf individually
2101 * so that we can add and remove them from the refcount individually.
2103 static void
2104 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2106 arc_buf_contents_t type = arc_buf_type(hdr);
2108 ASSERT(HDR_HAS_L1HDR(hdr));
2110 if (GHOST_STATE(state)) {
2111 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2112 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2113 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2114 ASSERT(!HDR_HAS_RABD(hdr));
2115 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2116 HDR_GET_LSIZE(hdr), hdr);
2117 return;
2120 ASSERT(!GHOST_STATE(state));
2121 if (hdr->b_l1hdr.b_pabd != NULL) {
2122 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2123 arc_hdr_size(hdr), hdr);
2125 if (HDR_HAS_RABD(hdr)) {
2126 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2127 HDR_GET_PSIZE(hdr), hdr);
2129 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2130 buf = buf->b_next) {
2131 if (arc_buf_is_shared(buf))
2132 continue;
2133 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2134 arc_buf_size(buf), buf);
2139 * Add a reference to this hdr indicating that someone is actively
2140 * referencing that memory. When the refcount transitions from 0 to 1,
2141 * we remove it from the respective arc_state_t list to indicate that
2142 * it is not evictable.
2144 static void
2145 add_reference(arc_buf_hdr_t *hdr, void *tag)
2147 ASSERT(HDR_HAS_L1HDR(hdr));
2148 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2149 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2150 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2151 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2154 arc_state_t *state = hdr->b_l1hdr.b_state;
2156 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2157 (state != arc_anon)) {
2158 /* We don't use the L2-only state list. */
2159 if (state != arc_l2c_only) {
2160 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2161 hdr);
2162 arc_evictable_space_decrement(hdr, state);
2164 /* remove the prefetch flag if we get a reference */
2165 if (HDR_HAS_L2HDR(hdr))
2166 l2arc_hdr_arcstats_decrement_state(hdr);
2167 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2168 if (HDR_HAS_L2HDR(hdr))
2169 l2arc_hdr_arcstats_increment_state(hdr);
2174 * Remove a reference from this hdr. When the reference transitions from
2175 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2176 * list making it eligible for eviction.
2178 static int
2179 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2181 int cnt;
2182 arc_state_t *state = hdr->b_l1hdr.b_state;
2184 ASSERT(HDR_HAS_L1HDR(hdr));
2185 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2186 ASSERT(!GHOST_STATE(state));
2189 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2190 * check to prevent usage of the arc_l2c_only list.
2192 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2193 (state != arc_anon)) {
2194 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2195 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2196 arc_evictable_space_increment(hdr, state);
2198 return (cnt);
2202 * Move the supplied buffer to the indicated state. The hash lock
2203 * for the buffer must be held by the caller.
2205 static void
2206 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2207 kmutex_t *hash_lock)
2209 arc_state_t *old_state;
2210 int64_t refcnt;
2211 uint32_t bufcnt;
2212 boolean_t update_old, update_new;
2213 arc_buf_contents_t buftype = arc_buf_type(hdr);
2216 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2217 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2218 * L1 hdr doesn't always exist when we change state to arc_anon before
2219 * destroying a header, in which case reallocating to add the L1 hdr is
2220 * pointless.
2222 if (HDR_HAS_L1HDR(hdr)) {
2223 old_state = hdr->b_l1hdr.b_state;
2224 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2225 bufcnt = hdr->b_l1hdr.b_bufcnt;
2227 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2228 HDR_HAS_RABD(hdr));
2229 } else {
2230 old_state = arc_l2c_only;
2231 refcnt = 0;
2232 bufcnt = 0;
2233 update_old = B_FALSE;
2235 update_new = update_old;
2237 ASSERT(MUTEX_HELD(hash_lock));
2238 ASSERT3P(new_state, !=, old_state);
2239 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2240 ASSERT(old_state != arc_anon || bufcnt <= 1);
2243 * If this buffer is evictable, transfer it from the
2244 * old state list to the new state list.
2246 if (refcnt == 0) {
2247 if (old_state != arc_anon && old_state != arc_l2c_only) {
2248 ASSERT(HDR_HAS_L1HDR(hdr));
2249 multilist_remove(old_state->arcs_list[buftype], hdr);
2251 if (GHOST_STATE(old_state)) {
2252 ASSERT0(bufcnt);
2253 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2254 update_old = B_TRUE;
2256 arc_evictable_space_decrement(hdr, old_state);
2258 if (new_state != arc_anon && new_state != arc_l2c_only) {
2261 * An L1 header always exists here, since if we're
2262 * moving to some L1-cached state (i.e. not l2c_only or
2263 * anonymous), we realloc the header to add an L1hdr
2264 * beforehand.
2266 ASSERT(HDR_HAS_L1HDR(hdr));
2267 multilist_insert(new_state->arcs_list[buftype], hdr);
2269 if (GHOST_STATE(new_state)) {
2270 ASSERT0(bufcnt);
2271 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2272 update_new = B_TRUE;
2274 arc_evictable_space_increment(hdr, new_state);
2278 ASSERT(!HDR_EMPTY(hdr));
2279 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2280 buf_hash_remove(hdr);
2282 /* adjust state sizes (ignore arc_l2c_only) */
2284 if (update_new && new_state != arc_l2c_only) {
2285 ASSERT(HDR_HAS_L1HDR(hdr));
2286 if (GHOST_STATE(new_state)) {
2287 ASSERT0(bufcnt);
2290 * When moving a header to a ghost state, we first
2291 * remove all arc buffers. Thus, we'll have a
2292 * bufcnt of zero, and no arc buffer to use for
2293 * the reference. As a result, we use the arc
2294 * header pointer for the reference.
2296 (void) zfs_refcount_add_many(&new_state->arcs_size,
2297 HDR_GET_LSIZE(hdr), hdr);
2298 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2299 ASSERT(!HDR_HAS_RABD(hdr));
2300 } else {
2301 uint32_t buffers = 0;
2304 * Each individual buffer holds a unique reference,
2305 * thus we must remove each of these references one
2306 * at a time.
2308 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2309 buf = buf->b_next) {
2310 ASSERT3U(bufcnt, !=, 0);
2311 buffers++;
2314 * When the arc_buf_t is sharing the data
2315 * block with the hdr, the owner of the
2316 * reference belongs to the hdr. Only
2317 * add to the refcount if the arc_buf_t is
2318 * not shared.
2320 if (arc_buf_is_shared(buf))
2321 continue;
2323 (void) zfs_refcount_add_many(
2324 &new_state->arcs_size,
2325 arc_buf_size(buf), buf);
2327 ASSERT3U(bufcnt, ==, buffers);
2329 if (hdr->b_l1hdr.b_pabd != NULL) {
2330 (void) zfs_refcount_add_many(
2331 &new_state->arcs_size,
2332 arc_hdr_size(hdr), hdr);
2335 if (HDR_HAS_RABD(hdr)) {
2336 (void) zfs_refcount_add_many(
2337 &new_state->arcs_size,
2338 HDR_GET_PSIZE(hdr), hdr);
2343 if (update_old && old_state != arc_l2c_only) {
2344 ASSERT(HDR_HAS_L1HDR(hdr));
2345 if (GHOST_STATE(old_state)) {
2346 ASSERT0(bufcnt);
2347 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2348 ASSERT(!HDR_HAS_RABD(hdr));
2351 * When moving a header off of a ghost state,
2352 * the header will not contain any arc buffers.
2353 * We use the arc header pointer for the reference
2354 * which is exactly what we did when we put the
2355 * header on the ghost state.
2358 (void) zfs_refcount_remove_many(&old_state->arcs_size,
2359 HDR_GET_LSIZE(hdr), hdr);
2360 } else {
2361 uint32_t buffers = 0;
2364 * Each individual buffer holds a unique reference,
2365 * thus we must remove each of these references one
2366 * at a time.
2368 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2369 buf = buf->b_next) {
2370 ASSERT3U(bufcnt, !=, 0);
2371 buffers++;
2374 * When the arc_buf_t is sharing the data
2375 * block with the hdr, the owner of the
2376 * reference belongs to the hdr. Only
2377 * add to the refcount if the arc_buf_t is
2378 * not shared.
2380 if (arc_buf_is_shared(buf))
2381 continue;
2383 (void) zfs_refcount_remove_many(
2384 &old_state->arcs_size, arc_buf_size(buf),
2385 buf);
2387 ASSERT3U(bufcnt, ==, buffers);
2388 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2389 HDR_HAS_RABD(hdr));
2391 if (hdr->b_l1hdr.b_pabd != NULL) {
2392 (void) zfs_refcount_remove_many(
2393 &old_state->arcs_size, arc_hdr_size(hdr),
2394 hdr);
2397 if (HDR_HAS_RABD(hdr)) {
2398 (void) zfs_refcount_remove_many(
2399 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2400 hdr);
2405 if (HDR_HAS_L1HDR(hdr)) {
2406 hdr->b_l1hdr.b_state = new_state;
2408 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2409 l2arc_hdr_arcstats_decrement_state(hdr);
2410 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2411 l2arc_hdr_arcstats_increment_state(hdr);
2416 * L2 headers should never be on the L2 state list since they don't
2417 * have L1 headers allocated.
2419 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2420 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2423 void
2424 arc_space_consume(uint64_t space, arc_space_type_t type)
2426 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2428 switch (type) {
2429 case ARC_SPACE_DATA:
2430 aggsum_add(&astat_data_size, space);
2431 break;
2432 case ARC_SPACE_META:
2433 aggsum_add(&astat_metadata_size, space);
2434 break;
2435 case ARC_SPACE_OTHER:
2436 aggsum_add(&astat_other_size, space);
2437 break;
2438 case ARC_SPACE_HDRS:
2439 aggsum_add(&astat_hdr_size, space);
2440 break;
2441 case ARC_SPACE_L2HDRS:
2442 aggsum_add(&astat_l2_hdr_size, space);
2443 break;
2446 if (type != ARC_SPACE_DATA)
2447 aggsum_add(&arc_meta_used, space);
2449 aggsum_add(&arc_size, space);
2452 void
2453 arc_space_return(uint64_t space, arc_space_type_t type)
2455 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2457 switch (type) {
2458 case ARC_SPACE_DATA:
2459 aggsum_add(&astat_data_size, -space);
2460 break;
2461 case ARC_SPACE_META:
2462 aggsum_add(&astat_metadata_size, -space);
2463 break;
2464 case ARC_SPACE_OTHER:
2465 aggsum_add(&astat_other_size, -space);
2466 break;
2467 case ARC_SPACE_HDRS:
2468 aggsum_add(&astat_hdr_size, -space);
2469 break;
2470 case ARC_SPACE_L2HDRS:
2471 aggsum_add(&astat_l2_hdr_size, -space);
2472 break;
2475 if (type != ARC_SPACE_DATA) {
2476 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2478 * We use the upper bound here rather than the precise value
2479 * because the arc_meta_max value doesn't need to be
2480 * precise. It's only consumed by humans via arcstats.
2482 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2483 arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2484 aggsum_add(&arc_meta_used, -space);
2487 ASSERT(aggsum_compare(&arc_size, space) >= 0);
2488 aggsum_add(&arc_size, -space);
2492 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2493 * with the hdr's b_pabd.
2495 static boolean_t
2496 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2499 * The criteria for sharing a hdr's data are:
2500 * 1. the buffer is not encrypted
2501 * 2. the hdr's compression matches the buf's compression
2502 * 3. the hdr doesn't need to be byteswapped
2503 * 4. the hdr isn't already being shared
2504 * 5. the buf is either compressed or it is the last buf in the hdr list
2506 * Criterion #5 maintains the invariant that shared uncompressed
2507 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2508 * might ask, "if a compressed buf is allocated first, won't that be the
2509 * last thing in the list?", but in that case it's impossible to create
2510 * a shared uncompressed buf anyway (because the hdr must be compressed
2511 * to have the compressed buf). You might also think that #3 is
2512 * sufficient to make this guarantee, however it's possible
2513 * (specifically in the rare L2ARC write race mentioned in
2514 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2515 * is sharable, but wasn't at the time of its allocation. Rather than
2516 * allow a new shared uncompressed buf to be created and then shuffle
2517 * the list around to make it the last element, this simply disallows
2518 * sharing if the new buf isn't the first to be added.
2520 ASSERT3P(buf->b_hdr, ==, hdr);
2521 boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
2522 ZIO_COMPRESS_OFF;
2523 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2524 return (!ARC_BUF_ENCRYPTED(buf) &&
2525 buf_compressed == hdr_compressed &&
2526 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2527 !HDR_SHARED_DATA(hdr) &&
2528 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2532 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2533 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2534 * copy was made successfully, or an error code otherwise.
2536 static int
2537 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2538 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2539 boolean_t fill, arc_buf_t **ret)
2541 arc_buf_t *buf;
2542 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2544 ASSERT(HDR_HAS_L1HDR(hdr));
2545 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2546 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2547 hdr->b_type == ARC_BUFC_METADATA);
2548 ASSERT3P(ret, !=, NULL);
2549 ASSERT3P(*ret, ==, NULL);
2550 IMPLY(encrypted, compressed);
2552 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2553 buf->b_hdr = hdr;
2554 buf->b_data = NULL;
2555 buf->b_next = hdr->b_l1hdr.b_buf;
2556 buf->b_flags = 0;
2558 add_reference(hdr, tag);
2561 * We're about to change the hdr's b_flags. We must either
2562 * hold the hash_lock or be undiscoverable.
2564 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2567 * Only honor requests for compressed bufs if the hdr is actually
2568 * compressed. This must be overriden if the buffer is encrypted since
2569 * encrypted buffers cannot be decompressed.
2571 if (encrypted) {
2572 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2573 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2574 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2575 } else if (compressed &&
2576 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2577 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2578 flags |= ARC_FILL_COMPRESSED;
2581 if (noauth) {
2582 ASSERT0(encrypted);
2583 flags |= ARC_FILL_NOAUTH;
2587 * If the hdr's data can be shared then we share the data buffer and
2588 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2589 * allocate a new buffer to store the buf's data.
2591 * There are two additional restrictions here because we're sharing
2592 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2593 * actively involved in an L2ARC write, because if this buf is used by
2594 * an arc_write() then the hdr's data buffer will be released when the
2595 * write completes, even though the L2ARC write might still be using it.
2596 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2597 * need to be ABD-aware.
2599 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2600 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2602 /* Set up b_data and sharing */
2603 if (can_share) {
2604 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2605 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2606 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2607 } else {
2608 buf->b_data =
2609 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2610 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2612 VERIFY3P(buf->b_data, !=, NULL);
2614 hdr->b_l1hdr.b_buf = buf;
2615 hdr->b_l1hdr.b_bufcnt += 1;
2616 if (encrypted)
2617 hdr->b_crypt_hdr.b_ebufcnt += 1;
2620 * If the user wants the data from the hdr, we need to either copy or
2621 * decompress the data.
2623 if (fill) {
2624 ASSERT3P(zb, !=, NULL);
2625 return (arc_buf_fill(buf, spa, zb, flags));
2628 return (0);
2631 static char *arc_onloan_tag = "onloan";
2633 static inline void
2634 arc_loaned_bytes_update(int64_t delta)
2636 atomic_add_64(&arc_loaned_bytes, delta);
2638 /* assert that it did not wrap around */
2639 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2643 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2644 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2645 * buffers must be returned to the arc before they can be used by the DMU or
2646 * freed.
2648 arc_buf_t *
2649 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2651 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2652 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2654 arc_loaned_bytes_update(arc_buf_size(buf));
2656 return (buf);
2659 arc_buf_t *
2660 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2661 enum zio_compress compression_type)
2663 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2664 psize, lsize, compression_type);
2666 arc_loaned_bytes_update(arc_buf_size(buf));
2668 return (buf);
2671 arc_buf_t *
2672 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2673 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2674 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2675 enum zio_compress compression_type)
2677 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2678 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2680 atomic_add_64(&arc_loaned_bytes, psize);
2681 return (buf);
2685 * Performance tuning of L2ARC persistence:
2687 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
2688 * an L2ARC device (either at pool import or later) will attempt
2689 * to rebuild L2ARC buffer contents.
2690 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
2691 * whether log blocks are written to the L2ARC device. If the L2ARC
2692 * device is less than 1GB, the amount of data l2arc_evict()
2693 * evicts is significant compared to the amount of restored L2ARC
2694 * data. In this case do not write log blocks in L2ARC in order
2695 * not to waste space.
2697 int l2arc_rebuild_enabled = B_TRUE;
2698 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
2700 /* L2ARC persistence rebuild control routines. */
2701 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
2702 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
2703 static int l2arc_rebuild(l2arc_dev_t *dev);
2705 /* L2ARC persistence read I/O routines. */
2706 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
2707 static int l2arc_log_blk_read(l2arc_dev_t *dev,
2708 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
2709 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
2710 zio_t *this_io, zio_t **next_io);
2711 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
2712 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
2713 static void l2arc_log_blk_fetch_abort(zio_t *zio);
2715 /* L2ARC persistence block restoration routines. */
2716 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
2717 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
2718 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
2719 l2arc_dev_t *dev);
2721 /* L2ARC persistence write I/O routines. */
2722 static void l2arc_dev_hdr_update(l2arc_dev_t *dev);
2723 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
2724 l2arc_write_callback_t *cb);
2726 /* L2ARC persistence auxilliary routines. */
2727 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
2728 const l2arc_log_blkptr_t *lbp);
2729 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
2730 const arc_buf_hdr_t *ab);
2731 boolean_t l2arc_range_check_overlap(uint64_t bottom,
2732 uint64_t top, uint64_t check);
2733 static void l2arc_blk_fetch_done(zio_t *zio);
2734 static inline uint64_t
2735 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
2738 * Return a loaned arc buffer to the arc.
2740 void
2741 arc_return_buf(arc_buf_t *buf, void *tag)
2743 arc_buf_hdr_t *hdr = buf->b_hdr;
2745 ASSERT3P(buf->b_data, !=, NULL);
2746 ASSERT(HDR_HAS_L1HDR(hdr));
2747 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2748 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2750 arc_loaned_bytes_update(-arc_buf_size(buf));
2753 /* Detach an arc_buf from a dbuf (tag) */
2754 void
2755 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2757 arc_buf_hdr_t *hdr = buf->b_hdr;
2759 ASSERT3P(buf->b_data, !=, NULL);
2760 ASSERT(HDR_HAS_L1HDR(hdr));
2761 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2762 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2764 arc_loaned_bytes_update(arc_buf_size(buf));
2767 static void
2768 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2770 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2772 df->l2df_abd = abd;
2773 df->l2df_size = size;
2774 df->l2df_type = type;
2775 mutex_enter(&l2arc_free_on_write_mtx);
2776 list_insert_head(l2arc_free_on_write, df);
2777 mutex_exit(&l2arc_free_on_write_mtx);
2780 static void
2781 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2783 arc_state_t *state = hdr->b_l1hdr.b_state;
2784 arc_buf_contents_t type = arc_buf_type(hdr);
2785 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2787 /* protected by hash lock, if in the hash table */
2788 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2789 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2790 ASSERT(state != arc_anon && state != arc_l2c_only);
2792 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2793 size, hdr);
2795 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2796 if (type == ARC_BUFC_METADATA) {
2797 arc_space_return(size, ARC_SPACE_META);
2798 } else {
2799 ASSERT(type == ARC_BUFC_DATA);
2800 arc_space_return(size, ARC_SPACE_DATA);
2803 if (free_rdata) {
2804 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2805 } else {
2806 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2811 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2812 * data buffer, we transfer the refcount ownership to the hdr and update
2813 * the appropriate kstats.
2815 static void
2816 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2818 /* LINTED */
2819 arc_state_t *state = hdr->b_l1hdr.b_state;
2821 ASSERT(arc_can_share(hdr, buf));
2822 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2823 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2824 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2827 * Start sharing the data buffer. We transfer the
2828 * refcount ownership to the hdr since it always owns
2829 * the refcount whenever an arc_buf_t is shared.
2831 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2832 arc_hdr_size(hdr), buf, hdr);
2833 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2834 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2835 HDR_ISTYPE_METADATA(hdr));
2836 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2837 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2840 * Since we've transferred ownership to the hdr we need
2841 * to increment its compressed and uncompressed kstats and
2842 * decrement the overhead size.
2844 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2845 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2846 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2849 static void
2850 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2852 /* LINTED */
2853 arc_state_t *state = hdr->b_l1hdr.b_state;
2855 ASSERT(arc_buf_is_shared(buf));
2856 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2857 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2860 * We are no longer sharing this buffer so we need
2861 * to transfer its ownership to the rightful owner.
2863 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2864 arc_hdr_size(hdr), hdr, buf);
2865 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2866 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2867 abd_put(hdr->b_l1hdr.b_pabd);
2868 hdr->b_l1hdr.b_pabd = NULL;
2869 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2872 * Since the buffer is no longer shared between
2873 * the arc buf and the hdr, count it as overhead.
2875 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2876 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2877 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2881 * Remove an arc_buf_t from the hdr's buf list and return the last
2882 * arc_buf_t on the list. If no buffers remain on the list then return
2883 * NULL.
2885 static arc_buf_t *
2886 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2888 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2889 arc_buf_t *lastbuf = NULL;
2891 ASSERT(HDR_HAS_L1HDR(hdr));
2892 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2895 * Remove the buf from the hdr list and locate the last
2896 * remaining buffer on the list.
2898 while (*bufp != NULL) {
2899 if (*bufp == buf)
2900 *bufp = buf->b_next;
2903 * If we've removed a buffer in the middle of
2904 * the list then update the lastbuf and update
2905 * bufp.
2907 if (*bufp != NULL) {
2908 lastbuf = *bufp;
2909 bufp = &(*bufp)->b_next;
2912 buf->b_next = NULL;
2913 ASSERT3P(lastbuf, !=, buf);
2914 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2915 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2916 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2918 return (lastbuf);
2922 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2923 * list and free it.
2925 static void
2926 arc_buf_destroy_impl(arc_buf_t *buf)
2928 arc_buf_hdr_t *hdr = buf->b_hdr;
2931 * Free up the data associated with the buf but only if we're not
2932 * sharing this with the hdr. If we are sharing it with the hdr, the
2933 * hdr is responsible for doing the free.
2935 if (buf->b_data != NULL) {
2937 * We're about to change the hdr's b_flags. We must either
2938 * hold the hash_lock or be undiscoverable.
2940 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2942 arc_cksum_verify(buf);
2943 arc_buf_unwatch(buf);
2945 if (arc_buf_is_shared(buf)) {
2946 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2947 } else {
2948 uint64_t size = arc_buf_size(buf);
2949 arc_free_data_buf(hdr, buf->b_data, size, buf);
2950 ARCSTAT_INCR(arcstat_overhead_size, -size);
2952 buf->b_data = NULL;
2954 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2955 hdr->b_l1hdr.b_bufcnt -= 1;
2957 if (ARC_BUF_ENCRYPTED(buf)) {
2958 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2961 * If we have no more encrypted buffers and we've
2962 * already gotten a copy of the decrypted data we can
2963 * free b_rabd to save some space.
2965 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
2966 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
2967 !HDR_IO_IN_PROGRESS(hdr)) {
2968 arc_hdr_free_pabd(hdr, B_TRUE);
2973 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2975 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2977 * If the current arc_buf_t is sharing its data buffer with the
2978 * hdr, then reassign the hdr's b_pabd to share it with the new
2979 * buffer at the end of the list. The shared buffer is always
2980 * the last one on the hdr's buffer list.
2982 * There is an equivalent case for compressed bufs, but since
2983 * they aren't guaranteed to be the last buf in the list and
2984 * that is an exceedingly rare case, we just allow that space be
2985 * wasted temporarily. We must also be careful not to share
2986 * encrypted buffers, since they cannot be shared.
2988 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
2989 /* Only one buf can be shared at once */
2990 VERIFY(!arc_buf_is_shared(lastbuf));
2991 /* hdr is uncompressed so can't have compressed buf */
2992 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2994 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2995 arc_hdr_free_pabd(hdr, B_FALSE);
2998 * We must setup a new shared block between the
2999 * last buffer and the hdr. The data would have
3000 * been allocated by the arc buf so we need to transfer
3001 * ownership to the hdr since it's now being shared.
3003 arc_share_buf(hdr, lastbuf);
3005 } else if (HDR_SHARED_DATA(hdr)) {
3007 * Uncompressed shared buffers are always at the end
3008 * of the list. Compressed buffers don't have the
3009 * same requirements. This makes it hard to
3010 * simply assert that the lastbuf is shared so
3011 * we rely on the hdr's compression flags to determine
3012 * if we have a compressed, shared buffer.
3014 ASSERT3P(lastbuf, !=, NULL);
3015 ASSERT(arc_buf_is_shared(lastbuf) ||
3016 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3020 * Free the checksum if we're removing the last uncompressed buf from
3021 * this hdr.
3023 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3024 arc_cksum_free(hdr);
3027 /* clean up the buf */
3028 buf->b_hdr = NULL;
3029 kmem_cache_free(buf_cache, buf);
3032 static void
3033 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags)
3035 uint64_t size;
3036 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3037 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0);
3039 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3040 ASSERT(HDR_HAS_L1HDR(hdr));
3041 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3042 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3044 if (alloc_rdata) {
3045 size = HDR_GET_PSIZE(hdr);
3046 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3047 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3048 do_adapt);
3049 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3050 } else {
3051 size = arc_hdr_size(hdr);
3052 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3053 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3054 do_adapt);
3055 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3058 ARCSTAT_INCR(arcstat_compressed_size, size);
3059 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3062 static void
3063 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3065 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3067 ASSERT(HDR_HAS_L1HDR(hdr));
3068 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3069 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3073 * If the hdr is currently being written to the l2arc then
3074 * we defer freeing the data by adding it to the l2arc_free_on_write
3075 * list. The l2arc will free the data once it's finished
3076 * writing it to the l2arc device.
3078 if (HDR_L2_WRITING(hdr)) {
3079 arc_hdr_free_on_write(hdr, free_rdata);
3080 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3081 } else if (free_rdata) {
3082 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3083 } else {
3084 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3085 size, hdr);
3088 if (free_rdata) {
3089 hdr->b_crypt_hdr.b_rabd = NULL;
3090 } else {
3091 hdr->b_l1hdr.b_pabd = NULL;
3094 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3095 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3097 ARCSTAT_INCR(arcstat_compressed_size, -size);
3098 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3101 static arc_buf_hdr_t *
3102 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3103 boolean_t protected, enum zio_compress compression_type,
3104 arc_buf_contents_t type, boolean_t alloc_rdata)
3106 arc_buf_hdr_t *hdr;
3107 int flags = ARC_HDR_DO_ADAPT;
3109 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3110 if (protected) {
3111 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3112 } else {
3113 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3115 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0;
3116 ASSERT(HDR_EMPTY(hdr));
3117 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3118 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3119 HDR_SET_PSIZE(hdr, psize);
3120 HDR_SET_LSIZE(hdr, lsize);
3121 hdr->b_spa = spa;
3122 hdr->b_type = type;
3123 hdr->b_flags = 0;
3124 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3125 arc_hdr_set_compress(hdr, compression_type);
3126 if (protected)
3127 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3129 hdr->b_l1hdr.b_state = arc_anon;
3130 hdr->b_l1hdr.b_arc_access = 0;
3131 hdr->b_l1hdr.b_bufcnt = 0;
3132 hdr->b_l1hdr.b_buf = NULL;
3135 * Allocate the hdr's buffer. This will contain either
3136 * the compressed or uncompressed data depending on the block
3137 * it references and compressed arc enablement.
3139 arc_hdr_alloc_pabd(hdr, flags);
3140 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3142 return (hdr);
3146 * Transition between the two allocation states for the arc_buf_hdr struct.
3147 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3148 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3149 * version is used when a cache buffer is only in the L2ARC in order to reduce
3150 * memory usage.
3152 static arc_buf_hdr_t *
3153 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3155 ASSERT(HDR_HAS_L2HDR(hdr));
3157 arc_buf_hdr_t *nhdr;
3158 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3160 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3161 (old == hdr_l2only_cache && new == hdr_full_cache));
3164 * if the caller wanted a new full header and the header is to be
3165 * encrypted we will actually allocate the header from the full crypt
3166 * cache instead. The same applies to freeing from the old cache.
3168 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3169 new = hdr_full_crypt_cache;
3170 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3171 old = hdr_full_crypt_cache;
3173 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3175 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3176 buf_hash_remove(hdr);
3178 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3180 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3181 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3183 * arc_access and arc_change_state need to be aware that a
3184 * header has just come out of L2ARC, so we set its state to
3185 * l2c_only even though it's about to change.
3187 nhdr->b_l1hdr.b_state = arc_l2c_only;
3189 /* Verify previous threads set to NULL before freeing */
3190 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3191 ASSERT(!HDR_HAS_RABD(hdr));
3192 } else {
3193 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3194 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3195 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3198 * If we've reached here, We must have been called from
3199 * arc_evict_hdr(), as such we should have already been
3200 * removed from any ghost list we were previously on
3201 * (which protects us from racing with arc_evict_state),
3202 * thus no locking is needed during this check.
3204 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3207 * A buffer must not be moved into the arc_l2c_only
3208 * state if it's not finished being written out to the
3209 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3210 * might try to be accessed, even though it was removed.
3212 VERIFY(!HDR_L2_WRITING(hdr));
3213 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3214 ASSERT(!HDR_HAS_RABD(hdr));
3216 #ifdef ZFS_DEBUG
3217 if (hdr->b_l1hdr.b_thawed != NULL) {
3218 kmem_free(hdr->b_l1hdr.b_thawed, 1);
3219 hdr->b_l1hdr.b_thawed = NULL;
3221 #endif
3223 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3226 * The header has been reallocated so we need to re-insert it into any
3227 * lists it was on.
3229 (void) buf_hash_insert(nhdr, NULL);
3231 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3233 mutex_enter(&dev->l2ad_mtx);
3236 * We must place the realloc'ed header back into the list at
3237 * the same spot. Otherwise, if it's placed earlier in the list,
3238 * l2arc_write_buffers() could find it during the function's
3239 * write phase, and try to write it out to the l2arc.
3241 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3242 list_remove(&dev->l2ad_buflist, hdr);
3244 mutex_exit(&dev->l2ad_mtx);
3247 * Since we're using the pointer address as the tag when
3248 * incrementing and decrementing the l2ad_alloc refcount, we
3249 * must remove the old pointer (that we're about to destroy) and
3250 * add the new pointer to the refcount. Otherwise we'd remove
3251 * the wrong pointer address when calling arc_hdr_destroy() later.
3254 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3255 hdr);
3256 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3257 nhdr);
3259 buf_discard_identity(hdr);
3260 kmem_cache_free(old, hdr);
3262 return (nhdr);
3266 * This function allows an L1 header to be reallocated as a crypt
3267 * header and vice versa. If we are going to a crypt header, the
3268 * new fields will be zeroed out.
3270 static arc_buf_hdr_t *
3271 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3273 arc_buf_hdr_t *nhdr;
3274 arc_buf_t *buf;
3275 kmem_cache_t *ncache, *ocache;
3278 * This function requires that hdr is in the arc_anon state.
3279 * Therefore it won't have any L2ARC data for us to worry about
3280 * copying.
3282 ASSERT(HDR_HAS_L1HDR(hdr));
3283 ASSERT(!HDR_HAS_L2HDR(hdr));
3284 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3285 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3286 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3287 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3288 ASSERT3P(hdr->b_hash_next, ==, NULL);
3290 if (need_crypt) {
3291 ncache = hdr_full_crypt_cache;
3292 ocache = hdr_full_cache;
3293 } else {
3294 ncache = hdr_full_cache;
3295 ocache = hdr_full_crypt_cache;
3298 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3301 * Copy all members that aren't locks or condvars to the new header.
3302 * No lists are pointing to us (as we asserted above), so we don't
3303 * need to worry about the list nodes.
3305 nhdr->b_dva = hdr->b_dva;
3306 nhdr->b_birth = hdr->b_birth;
3307 nhdr->b_type = hdr->b_type;
3308 nhdr->b_flags = hdr->b_flags;
3309 nhdr->b_psize = hdr->b_psize;
3310 nhdr->b_lsize = hdr->b_lsize;
3311 nhdr->b_spa = hdr->b_spa;
3312 nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3313 nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3314 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3315 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3316 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3317 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3318 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3319 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3320 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3321 #ifdef ZFS_DEBUG
3322 if (hdr->b_l1hdr.b_thawed != NULL) {
3323 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3324 hdr->b_l1hdr.b_thawed = NULL;
3326 #endif
3329 * This refcount_add() exists only to ensure that the individual
3330 * arc buffers always point to a header that is referenced, avoiding
3331 * a small race condition that could trigger ASSERTs.
3333 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3334 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3335 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3336 mutex_enter(&buf->b_evict_lock);
3337 buf->b_hdr = nhdr;
3338 mutex_exit(&buf->b_evict_lock);
3340 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3341 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3342 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3345 * We have already asserted that we are not on any ghost lists, and we
3346 * are never called to switch from a crypt to non-crypt header
3347 * with a non-NULL rabd (this is asserted below).
3348 * This leaves the hdr's b_pabd buffer to deal with.
3350 if (hdr->b_l1hdr.b_pabd != NULL) {
3351 zfs_refcount_transfer_ownership_many(
3352 &hdr->b_l1hdr.b_state->arcs_size, arc_hdr_size(hdr),
3353 hdr, nhdr);
3356 if (need_crypt) {
3357 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3358 } else {
3359 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3362 /* unset all members of the original hdr */
3363 bzero(&hdr->b_dva, sizeof (dva_t));
3364 hdr->b_birth = 0;
3365 hdr->b_type = ARC_BUFC_INVALID;
3366 hdr->b_flags = 0;
3367 hdr->b_psize = 0;
3368 hdr->b_lsize = 0;
3369 hdr->b_spa = 0;
3370 hdr->b_l2hdr.b_dev = NULL;
3371 hdr->b_l2hdr.b_daddr = 0;
3372 hdr->b_l1hdr.b_freeze_cksum = NULL;
3373 hdr->b_l1hdr.b_buf = NULL;
3374 hdr->b_l1hdr.b_bufcnt = 0;
3375 hdr->b_l1hdr.b_byteswap = 0;
3376 hdr->b_l1hdr.b_state = NULL;
3377 hdr->b_l1hdr.b_arc_access = 0;
3378 hdr->b_l1hdr.b_acb = NULL;
3379 hdr->b_l1hdr.b_pabd = NULL;
3381 if (ocache == hdr_full_crypt_cache) {
3382 ASSERT(!HDR_HAS_RABD(hdr));
3383 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3384 hdr->b_crypt_hdr.b_ebufcnt = 0;
3385 hdr->b_crypt_hdr.b_dsobj = 0;
3386 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3387 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3388 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3391 buf_discard_identity(hdr);
3392 kmem_cache_free(ocache, hdr);
3394 return (nhdr);
3398 * This function is used by the send / receive code to convert a newly
3399 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3400 * is also used to allow the root objset block to be uupdated without altering
3401 * its embedded MACs. Both block types will always be uncompressed so we do not
3402 * have to worry about compression type or psize.
3404 void
3405 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3406 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3407 const uint8_t *mac)
3409 arc_buf_hdr_t *hdr = buf->b_hdr;
3411 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3412 ASSERT(HDR_HAS_L1HDR(hdr));
3413 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3415 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3416 if (!HDR_PROTECTED(hdr))
3417 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3418 hdr->b_crypt_hdr.b_dsobj = dsobj;
3419 hdr->b_crypt_hdr.b_ot = ot;
3420 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3421 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3422 if (!arc_hdr_has_uncompressed_buf(hdr))
3423 arc_cksum_free(hdr);
3425 if (salt != NULL)
3426 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3427 if (iv != NULL)
3428 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3429 if (mac != NULL)
3430 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3434 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3435 * The buf is returned thawed since we expect the consumer to modify it.
3437 arc_buf_t *
3438 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3440 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3441 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3443 arc_buf_t *buf = NULL;
3444 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3445 B_FALSE, B_FALSE, &buf));
3446 arc_buf_thaw(buf);
3448 return (buf);
3452 * Allocates an ARC buf header that's in an evicted & L2-cached state.
3453 * This is used during l2arc reconstruction to make empty ARC buffers
3454 * which circumvent the regular disk->arc->l2arc path and instead come
3455 * into being in the reverse order, i.e. l2arc->arc.
3457 arc_buf_hdr_t *
3458 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
3459 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
3460 enum zio_compress compress, boolean_t protected,
3461 boolean_t prefetch, arc_state_type_t arcs_state)
3463 arc_buf_hdr_t *hdr;
3465 ASSERT(size != 0);
3466 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
3467 hdr->b_birth = birth;
3468 hdr->b_type = type;
3469 hdr->b_flags = 0;
3470 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
3471 HDR_SET_LSIZE(hdr, size);
3472 HDR_SET_PSIZE(hdr, psize);
3473 arc_hdr_set_compress(hdr, compress);
3474 if (protected)
3475 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3476 if (prefetch)
3477 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
3478 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
3480 hdr->b_dva = dva;
3482 hdr->b_l2hdr.b_dev = dev;
3483 hdr->b_l2hdr.b_daddr = daddr;
3484 hdr->b_l2hdr.b_arcs_state = arcs_state;
3486 return (hdr);
3490 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3491 * for bufs containing metadata.
3493 arc_buf_t *
3494 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3495 enum zio_compress compression_type)
3497 ASSERT3U(lsize, >, 0);
3498 ASSERT3U(lsize, >=, psize);
3499 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3500 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3502 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3503 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3505 arc_buf_t *buf = NULL;
3506 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3507 B_TRUE, B_FALSE, B_FALSE, &buf));
3508 arc_buf_thaw(buf);
3509 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3511 if (!arc_buf_is_shared(buf)) {
3513 * To ensure that the hdr has the correct data in it if we call
3514 * arc_untransform() on this buf before it's been written to
3515 * disk, it's easiest if we just set up sharing between the
3516 * buf and the hdr.
3518 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3519 arc_hdr_free_pabd(hdr, B_FALSE);
3520 arc_share_buf(hdr, buf);
3523 return (buf);
3526 arc_buf_t *
3527 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3528 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3529 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3530 enum zio_compress compression_type)
3532 arc_buf_hdr_t *hdr;
3533 arc_buf_t *buf;
3534 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3535 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3537 ASSERT3U(lsize, >, 0);
3538 ASSERT3U(lsize, >=, psize);
3539 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3540 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3542 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3543 compression_type, type, B_TRUE);
3545 hdr->b_crypt_hdr.b_dsobj = dsobj;
3546 hdr->b_crypt_hdr.b_ot = ot;
3547 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3548 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3549 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3550 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3551 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3554 * This buffer will be considered encrypted even if the ot is not an
3555 * encrypted type. It will become authenticated instead in
3556 * arc_write_ready().
3558 buf = NULL;
3559 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3560 B_FALSE, B_FALSE, &buf));
3561 arc_buf_thaw(buf);
3562 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3564 return (buf);
3567 static void
3568 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3569 boolean_t state_only)
3571 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3572 l2arc_dev_t *dev = l2hdr->b_dev;
3573 uint64_t lsize = HDR_GET_LSIZE(hdr);
3574 uint64_t psize = HDR_GET_PSIZE(hdr);
3575 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3576 arc_buf_contents_t type = hdr->b_type;
3577 int64_t lsize_s;
3578 int64_t psize_s;
3579 int64_t asize_s;
3581 if (incr) {
3582 lsize_s = lsize;
3583 psize_s = psize;
3584 asize_s = asize;
3585 } else {
3586 lsize_s = -lsize;
3587 psize_s = -psize;
3588 asize_s = -asize;
3591 /* If the buffer is a prefetch, count it as such. */
3592 if (HDR_PREFETCH(hdr)) {
3593 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3594 } else {
3596 * We use the value stored in the L2 header upon initial
3597 * caching in L2ARC. This value will be updated in case
3598 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3599 * metadata (log entry) cannot currently be updated. Having
3600 * the ARC state in the L2 header solves the problem of a
3601 * possibly absent L1 header (apparent in buffers restored
3602 * from persistent L2ARC).
3604 switch (hdr->b_l2hdr.b_arcs_state) {
3605 case ARC_STATE_MRU_GHOST:
3606 case ARC_STATE_MRU:
3607 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3608 break;
3609 case ARC_STATE_MFU_GHOST:
3610 case ARC_STATE_MFU:
3611 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3612 break;
3613 default:
3614 break;
3618 if (state_only)
3619 return;
3621 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3622 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3624 switch (type) {
3625 case ARC_BUFC_DATA:
3626 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3627 break;
3628 case ARC_BUFC_METADATA:
3629 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3630 break;
3631 default:
3632 break;
3637 static void
3638 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3640 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3641 l2arc_dev_t *dev = l2hdr->b_dev;
3642 uint64_t psize = HDR_GET_PSIZE(hdr);
3643 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3645 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3646 ASSERT(HDR_HAS_L2HDR(hdr));
3648 list_remove(&dev->l2ad_buflist, hdr);
3650 l2arc_hdr_arcstats_decrement(hdr);
3651 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3653 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3654 hdr);
3655 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3658 static void
3659 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3661 if (HDR_HAS_L1HDR(hdr)) {
3662 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3663 hdr->b_l1hdr.b_bufcnt > 0);
3664 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3665 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3667 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3668 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3670 if (HDR_HAS_L2HDR(hdr)) {
3671 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3672 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3674 if (!buflist_held)
3675 mutex_enter(&dev->l2ad_mtx);
3678 * Even though we checked this conditional above, we
3679 * need to check this again now that we have the
3680 * l2ad_mtx. This is because we could be racing with
3681 * another thread calling l2arc_evict() which might have
3682 * destroyed this header's L2 portion as we were waiting
3683 * to acquire the l2ad_mtx. If that happens, we don't
3684 * want to re-destroy the header's L2 portion.
3686 if (HDR_HAS_L2HDR(hdr))
3687 arc_hdr_l2hdr_destroy(hdr);
3689 if (!buflist_held)
3690 mutex_exit(&dev->l2ad_mtx);
3694 * The header's identity can only be safely discarded once it is no
3695 * longer discoverable. This requires removing it from the hash table
3696 * and the l2arc header list. After this point the hash lock can not
3697 * be used to protect the header.
3699 if (!HDR_EMPTY(hdr))
3700 buf_discard_identity(hdr);
3702 if (HDR_HAS_L1HDR(hdr)) {
3703 arc_cksum_free(hdr);
3705 while (hdr->b_l1hdr.b_buf != NULL)
3706 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3708 #ifdef ZFS_DEBUG
3709 if (hdr->b_l1hdr.b_thawed != NULL) {
3710 kmem_free(hdr->b_l1hdr.b_thawed, 1);
3711 hdr->b_l1hdr.b_thawed = NULL;
3713 #endif
3715 if (hdr->b_l1hdr.b_pabd != NULL)
3716 arc_hdr_free_pabd(hdr, B_FALSE);
3718 if (HDR_HAS_RABD(hdr))
3719 arc_hdr_free_pabd(hdr, B_TRUE);
3722 ASSERT3P(hdr->b_hash_next, ==, NULL);
3723 if (HDR_HAS_L1HDR(hdr)) {
3724 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3725 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3727 if (!HDR_PROTECTED(hdr)) {
3728 kmem_cache_free(hdr_full_cache, hdr);
3729 } else {
3730 kmem_cache_free(hdr_full_crypt_cache, hdr);
3732 } else {
3733 kmem_cache_free(hdr_l2only_cache, hdr);
3737 void
3738 arc_buf_destroy(arc_buf_t *buf, void* tag)
3740 arc_buf_hdr_t *hdr = buf->b_hdr;
3742 if (hdr->b_l1hdr.b_state == arc_anon) {
3743 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3744 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3745 VERIFY0(remove_reference(hdr, NULL, tag));
3746 arc_hdr_destroy(hdr);
3747 return;
3750 kmutex_t *hash_lock = HDR_LOCK(hdr);
3751 mutex_enter(hash_lock);
3753 ASSERT3P(hdr, ==, buf->b_hdr);
3754 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3755 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3756 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3757 ASSERT3P(buf->b_data, !=, NULL);
3759 (void) remove_reference(hdr, hash_lock, tag);
3760 arc_buf_destroy_impl(buf);
3761 mutex_exit(hash_lock);
3765 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3766 * state of the header is dependent on its state prior to entering this
3767 * function. The following transitions are possible:
3769 * - arc_mru -> arc_mru_ghost
3770 * - arc_mfu -> arc_mfu_ghost
3771 * - arc_mru_ghost -> arc_l2c_only
3772 * - arc_mru_ghost -> deleted
3773 * - arc_mfu_ghost -> arc_l2c_only
3774 * - arc_mfu_ghost -> deleted
3776 static int64_t
3777 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3779 arc_state_t *evicted_state, *state;
3780 int64_t bytes_evicted = 0;
3781 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3782 zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3784 ASSERT(MUTEX_HELD(hash_lock));
3785 ASSERT(HDR_HAS_L1HDR(hdr));
3787 state = hdr->b_l1hdr.b_state;
3788 if (GHOST_STATE(state)) {
3789 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3790 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3793 * l2arc_write_buffers() relies on a header's L1 portion
3794 * (i.e. its b_pabd field) during its write phase.
3795 * Thus, we cannot push a header onto the arc_l2c_only
3796 * state (removing its L1 piece) until the header is
3797 * done being written to the l2arc.
3799 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3800 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3801 return (bytes_evicted);
3804 ARCSTAT_BUMP(arcstat_deleted);
3805 bytes_evicted += HDR_GET_LSIZE(hdr);
3807 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3809 if (HDR_HAS_L2HDR(hdr)) {
3810 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3811 ASSERT(!HDR_HAS_RABD(hdr));
3813 * This buffer is cached on the 2nd Level ARC;
3814 * don't destroy the header.
3816 arc_change_state(arc_l2c_only, hdr, hash_lock);
3818 * dropping from L1+L2 cached to L2-only,
3819 * realloc to remove the L1 header.
3821 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3822 hdr_l2only_cache);
3823 } else {
3824 arc_change_state(arc_anon, hdr, hash_lock);
3825 arc_hdr_destroy(hdr);
3827 return (bytes_evicted);
3830 ASSERT(state == arc_mru || state == arc_mfu);
3831 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3833 /* prefetch buffers have a minimum lifespan */
3834 if (HDR_IO_IN_PROGRESS(hdr) ||
3835 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3836 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3837 ARCSTAT_BUMP(arcstat_evict_skip);
3838 return (bytes_evicted);
3841 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3842 while (hdr->b_l1hdr.b_buf) {
3843 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3844 if (!mutex_tryenter(&buf->b_evict_lock)) {
3845 ARCSTAT_BUMP(arcstat_mutex_miss);
3846 break;
3848 if (buf->b_data != NULL)
3849 bytes_evicted += HDR_GET_LSIZE(hdr);
3850 mutex_exit(&buf->b_evict_lock);
3851 arc_buf_destroy_impl(buf);
3854 if (HDR_HAS_L2HDR(hdr)) {
3855 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3856 } else {
3857 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3858 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3859 HDR_GET_LSIZE(hdr));
3861 switch (state->arcs_state) {
3862 case ARC_STATE_MRU:
3863 ARCSTAT_INCR(
3864 arcstat_evict_l2_eligible_mru,
3865 HDR_GET_LSIZE(hdr));
3866 break;
3867 case ARC_STATE_MFU:
3868 ARCSTAT_INCR(
3869 arcstat_evict_l2_eligible_mfu,
3870 HDR_GET_LSIZE(hdr));
3871 break;
3872 default:
3873 break;
3875 } else {
3876 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3877 HDR_GET_LSIZE(hdr));
3881 if (hdr->b_l1hdr.b_bufcnt == 0) {
3882 arc_cksum_free(hdr);
3884 bytes_evicted += arc_hdr_size(hdr);
3887 * If this hdr is being evicted and has a compressed
3888 * buffer then we discard it here before we change states.
3889 * This ensures that the accounting is updated correctly
3890 * in arc_free_data_impl().
3892 if (hdr->b_l1hdr.b_pabd != NULL)
3893 arc_hdr_free_pabd(hdr, B_FALSE);
3895 if (HDR_HAS_RABD(hdr))
3896 arc_hdr_free_pabd(hdr, B_TRUE);
3898 arc_change_state(evicted_state, hdr, hash_lock);
3899 ASSERT(HDR_IN_HASH_TABLE(hdr));
3900 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3901 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3904 return (bytes_evicted);
3907 static uint64_t
3908 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3909 uint64_t spa, int64_t bytes)
3911 multilist_sublist_t *mls;
3912 uint64_t bytes_evicted = 0;
3913 arc_buf_hdr_t *hdr;
3914 kmutex_t *hash_lock;
3915 int evict_count = 0;
3917 ASSERT3P(marker, !=, NULL);
3918 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3920 mls = multilist_sublist_lock(ml, idx);
3922 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3923 hdr = multilist_sublist_prev(mls, marker)) {
3924 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3925 (evict_count >= zfs_arc_evict_batch_limit))
3926 break;
3929 * To keep our iteration location, move the marker
3930 * forward. Since we're not holding hdr's hash lock, we
3931 * must be very careful and not remove 'hdr' from the
3932 * sublist. Otherwise, other consumers might mistake the
3933 * 'hdr' as not being on a sublist when they call the
3934 * multilist_link_active() function (they all rely on
3935 * the hash lock protecting concurrent insertions and
3936 * removals). multilist_sublist_move_forward() was
3937 * specifically implemented to ensure this is the case
3938 * (only 'marker' will be removed and re-inserted).
3940 multilist_sublist_move_forward(mls, marker);
3943 * The only case where the b_spa field should ever be
3944 * zero, is the marker headers inserted by
3945 * arc_evict_state(). It's possible for multiple threads
3946 * to be calling arc_evict_state() concurrently (e.g.
3947 * dsl_pool_close() and zio_inject_fault()), so we must
3948 * skip any markers we see from these other threads.
3950 if (hdr->b_spa == 0)
3951 continue;
3953 /* we're only interested in evicting buffers of a certain spa */
3954 if (spa != 0 && hdr->b_spa != spa) {
3955 ARCSTAT_BUMP(arcstat_evict_skip);
3956 continue;
3959 hash_lock = HDR_LOCK(hdr);
3962 * We aren't calling this function from any code path
3963 * that would already be holding a hash lock, so we're
3964 * asserting on this assumption to be defensive in case
3965 * this ever changes. Without this check, it would be
3966 * possible to incorrectly increment arcstat_mutex_miss
3967 * below (e.g. if the code changed such that we called
3968 * this function with a hash lock held).
3970 ASSERT(!MUTEX_HELD(hash_lock));
3972 if (mutex_tryenter(hash_lock)) {
3973 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3974 mutex_exit(hash_lock);
3976 bytes_evicted += evicted;
3979 * If evicted is zero, arc_evict_hdr() must have
3980 * decided to skip this header, don't increment
3981 * evict_count in this case.
3983 if (evicted != 0)
3984 evict_count++;
3987 * If arc_size isn't overflowing, signal any
3988 * threads that might happen to be waiting.
3990 * For each header evicted, we wake up a single
3991 * thread. If we used cv_broadcast, we could
3992 * wake up "too many" threads causing arc_size
3993 * to significantly overflow arc_c; since
3994 * arc_get_data_impl() doesn't check for overflow
3995 * when it's woken up (it doesn't because it's
3996 * possible for the ARC to be overflowing while
3997 * full of un-evictable buffers, and the
3998 * function should proceed in this case).
4000 * If threads are left sleeping, due to not
4001 * using cv_broadcast here, they will be woken
4002 * up via cv_broadcast in arc_adjust_cb() just
4003 * before arc_adjust_zthr sleeps.
4005 mutex_enter(&arc_adjust_lock);
4006 if (!arc_is_overflowing())
4007 cv_signal(&arc_adjust_waiters_cv);
4008 mutex_exit(&arc_adjust_lock);
4009 } else {
4010 ARCSTAT_BUMP(arcstat_mutex_miss);
4014 multilist_sublist_unlock(mls);
4016 return (bytes_evicted);
4020 * Evict buffers from the given arc state, until we've removed the
4021 * specified number of bytes. Move the removed buffers to the
4022 * appropriate evict state.
4024 * This function makes a "best effort". It skips over any buffers
4025 * it can't get a hash_lock on, and so, may not catch all candidates.
4026 * It may also return without evicting as much space as requested.
4028 * If bytes is specified using the special value ARC_EVICT_ALL, this
4029 * will evict all available (i.e. unlocked and evictable) buffers from
4030 * the given arc state; which is used by arc_flush().
4032 static uint64_t
4033 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4034 arc_buf_contents_t type)
4036 uint64_t total_evicted = 0;
4037 multilist_t *ml = state->arcs_list[type];
4038 int num_sublists;
4039 arc_buf_hdr_t **markers;
4041 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4043 num_sublists = multilist_get_num_sublists(ml);
4046 * If we've tried to evict from each sublist, made some
4047 * progress, but still have not hit the target number of bytes
4048 * to evict, we want to keep trying. The markers allow us to
4049 * pick up where we left off for each individual sublist, rather
4050 * than starting from the tail each time.
4052 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4053 for (int i = 0; i < num_sublists; i++) {
4054 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4057 * A b_spa of 0 is used to indicate that this header is
4058 * a marker. This fact is used in arc_adjust_type() and
4059 * arc_evict_state_impl().
4061 markers[i]->b_spa = 0;
4063 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4064 multilist_sublist_insert_tail(mls, markers[i]);
4065 multilist_sublist_unlock(mls);
4069 * While we haven't hit our target number of bytes to evict, or
4070 * we're evicting all available buffers.
4072 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4074 * Start eviction using a randomly selected sublist,
4075 * this is to try and evenly balance eviction across all
4076 * sublists. Always starting at the same sublist
4077 * (e.g. index 0) would cause evictions to favor certain
4078 * sublists over others.
4080 int sublist_idx = multilist_get_random_index(ml);
4081 uint64_t scan_evicted = 0;
4083 for (int i = 0; i < num_sublists; i++) {
4084 uint64_t bytes_remaining;
4085 uint64_t bytes_evicted;
4087 if (bytes == ARC_EVICT_ALL)
4088 bytes_remaining = ARC_EVICT_ALL;
4089 else if (total_evicted < bytes)
4090 bytes_remaining = bytes - total_evicted;
4091 else
4092 break;
4094 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4095 markers[sublist_idx], spa, bytes_remaining);
4097 scan_evicted += bytes_evicted;
4098 total_evicted += bytes_evicted;
4100 /* we've reached the end, wrap to the beginning */
4101 if (++sublist_idx >= num_sublists)
4102 sublist_idx = 0;
4106 * If we didn't evict anything during this scan, we have
4107 * no reason to believe we'll evict more during another
4108 * scan, so break the loop.
4110 if (scan_evicted == 0) {
4111 /* This isn't possible, let's make that obvious */
4112 ASSERT3S(bytes, !=, 0);
4115 * When bytes is ARC_EVICT_ALL, the only way to
4116 * break the loop is when scan_evicted is zero.
4117 * In that case, we actually have evicted enough,
4118 * so we don't want to increment the kstat.
4120 if (bytes != ARC_EVICT_ALL) {
4121 ASSERT3S(total_evicted, <, bytes);
4122 ARCSTAT_BUMP(arcstat_evict_not_enough);
4125 break;
4129 for (int i = 0; i < num_sublists; i++) {
4130 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4131 multilist_sublist_remove(mls, markers[i]);
4132 multilist_sublist_unlock(mls);
4134 kmem_cache_free(hdr_full_cache, markers[i]);
4136 kmem_free(markers, sizeof (*markers) * num_sublists);
4138 return (total_evicted);
4142 * Flush all "evictable" data of the given type from the arc state
4143 * specified. This will not evict any "active" buffers (i.e. referenced).
4145 * When 'retry' is set to B_FALSE, the function will make a single pass
4146 * over the state and evict any buffers that it can. Since it doesn't
4147 * continually retry the eviction, it might end up leaving some buffers
4148 * in the ARC due to lock misses.
4150 * When 'retry' is set to B_TRUE, the function will continually retry the
4151 * eviction until *all* evictable buffers have been removed from the
4152 * state. As a result, if concurrent insertions into the state are
4153 * allowed (e.g. if the ARC isn't shutting down), this function might
4154 * wind up in an infinite loop, continually trying to evict buffers.
4156 static uint64_t
4157 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4158 boolean_t retry)
4160 uint64_t evicted = 0;
4162 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4163 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4165 if (!retry)
4166 break;
4169 return (evicted);
4173 * Evict the specified number of bytes from the state specified,
4174 * restricting eviction to the spa and type given. This function
4175 * prevents us from trying to evict more from a state's list than
4176 * is "evictable", and to skip evicting altogether when passed a
4177 * negative value for "bytes". In contrast, arc_evict_state() will
4178 * evict everything it can, when passed a negative value for "bytes".
4180 static uint64_t
4181 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4182 arc_buf_contents_t type)
4184 int64_t delta;
4186 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4187 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4188 bytes);
4189 return (arc_evict_state(state, spa, delta, type));
4192 return (0);
4196 * Evict metadata buffers from the cache, such that arc_meta_used is
4197 * capped by the arc_meta_limit tunable.
4199 static uint64_t
4200 arc_adjust_meta(uint64_t meta_used)
4202 uint64_t total_evicted = 0;
4203 int64_t target;
4206 * If we're over the meta limit, we want to evict enough
4207 * metadata to get back under the meta limit. We don't want to
4208 * evict so much that we drop the MRU below arc_p, though. If
4209 * we're over the meta limit more than we're over arc_p, we
4210 * evict some from the MRU here, and some from the MFU below.
4212 target = MIN((int64_t)(meta_used - arc_meta_limit),
4213 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4214 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4216 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4219 * Similar to the above, we want to evict enough bytes to get us
4220 * below the meta limit, but not so much as to drop us below the
4221 * space allotted to the MFU (which is defined as arc_c - arc_p).
4223 target = MIN((int64_t)(meta_used - arc_meta_limit),
4224 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4225 (arc_c - arc_p)));
4227 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4229 return (total_evicted);
4233 * Return the type of the oldest buffer in the given arc state
4235 * This function will select a random sublist of type ARC_BUFC_DATA and
4236 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4237 * is compared, and the type which contains the "older" buffer will be
4238 * returned.
4240 static arc_buf_contents_t
4241 arc_adjust_type(arc_state_t *state)
4243 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4244 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4245 int data_idx = multilist_get_random_index(data_ml);
4246 int meta_idx = multilist_get_random_index(meta_ml);
4247 multilist_sublist_t *data_mls;
4248 multilist_sublist_t *meta_mls;
4249 arc_buf_contents_t type;
4250 arc_buf_hdr_t *data_hdr;
4251 arc_buf_hdr_t *meta_hdr;
4254 * We keep the sublist lock until we're finished, to prevent
4255 * the headers from being destroyed via arc_evict_state().
4257 data_mls = multilist_sublist_lock(data_ml, data_idx);
4258 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4261 * These two loops are to ensure we skip any markers that
4262 * might be at the tail of the lists due to arc_evict_state().
4265 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4266 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4267 if (data_hdr->b_spa != 0)
4268 break;
4271 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4272 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4273 if (meta_hdr->b_spa != 0)
4274 break;
4277 if (data_hdr == NULL && meta_hdr == NULL) {
4278 type = ARC_BUFC_DATA;
4279 } else if (data_hdr == NULL) {
4280 ASSERT3P(meta_hdr, !=, NULL);
4281 type = ARC_BUFC_METADATA;
4282 } else if (meta_hdr == NULL) {
4283 ASSERT3P(data_hdr, !=, NULL);
4284 type = ARC_BUFC_DATA;
4285 } else {
4286 ASSERT3P(data_hdr, !=, NULL);
4287 ASSERT3P(meta_hdr, !=, NULL);
4289 /* The headers can't be on the sublist without an L1 header */
4290 ASSERT(HDR_HAS_L1HDR(data_hdr));
4291 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4293 if (data_hdr->b_l1hdr.b_arc_access <
4294 meta_hdr->b_l1hdr.b_arc_access) {
4295 type = ARC_BUFC_DATA;
4296 } else {
4297 type = ARC_BUFC_METADATA;
4301 multilist_sublist_unlock(meta_mls);
4302 multilist_sublist_unlock(data_mls);
4304 return (type);
4308 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4310 static uint64_t
4311 arc_adjust(void)
4313 uint64_t total_evicted = 0;
4314 uint64_t bytes;
4315 int64_t target;
4316 uint64_t asize = aggsum_value(&arc_size);
4317 uint64_t ameta = aggsum_value(&arc_meta_used);
4320 * If we're over arc_meta_limit, we want to correct that before
4321 * potentially evicting data buffers below.
4323 total_evicted += arc_adjust_meta(ameta);
4326 * Adjust MRU size
4328 * If we're over the target cache size, we want to evict enough
4329 * from the list to get back to our target size. We don't want
4330 * to evict too much from the MRU, such that it drops below
4331 * arc_p. So, if we're over our target cache size more than
4332 * the MRU is over arc_p, we'll evict enough to get back to
4333 * arc_p here, and then evict more from the MFU below.
4335 target = MIN((int64_t)(asize - arc_c),
4336 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4337 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4340 * If we're below arc_meta_min, always prefer to evict data.
4341 * Otherwise, try to satisfy the requested number of bytes to
4342 * evict from the type which contains older buffers; in an
4343 * effort to keep newer buffers in the cache regardless of their
4344 * type. If we cannot satisfy the number of bytes from this
4345 * type, spill over into the next type.
4347 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4348 ameta > arc_meta_min) {
4349 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4350 total_evicted += bytes;
4353 * If we couldn't evict our target number of bytes from
4354 * metadata, we try to get the rest from data.
4356 target -= bytes;
4358 total_evicted +=
4359 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4360 } else {
4361 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4362 total_evicted += bytes;
4365 * If we couldn't evict our target number of bytes from
4366 * data, we try to get the rest from metadata.
4368 target -= bytes;
4370 total_evicted +=
4371 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4375 * Adjust MFU size
4377 * Now that we've tried to evict enough from the MRU to get its
4378 * size back to arc_p, if we're still above the target cache
4379 * size, we evict the rest from the MFU.
4381 target = asize - arc_c;
4383 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4384 ameta > arc_meta_min) {
4385 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4386 total_evicted += bytes;
4389 * If we couldn't evict our target number of bytes from
4390 * metadata, we try to get the rest from data.
4392 target -= bytes;
4394 total_evicted +=
4395 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4396 } else {
4397 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4398 total_evicted += bytes;
4401 * If we couldn't evict our target number of bytes from
4402 * data, we try to get the rest from data.
4404 target -= bytes;
4406 total_evicted +=
4407 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4411 * Adjust ghost lists
4413 * In addition to the above, the ARC also defines target values
4414 * for the ghost lists. The sum of the mru list and mru ghost
4415 * list should never exceed the target size of the cache, and
4416 * the sum of the mru list, mfu list, mru ghost list, and mfu
4417 * ghost list should never exceed twice the target size of the
4418 * cache. The following logic enforces these limits on the ghost
4419 * caches, and evicts from them as needed.
4421 target = zfs_refcount_count(&arc_mru->arcs_size) +
4422 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4424 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4425 total_evicted += bytes;
4427 target -= bytes;
4429 total_evicted +=
4430 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4433 * We assume the sum of the mru list and mfu list is less than
4434 * or equal to arc_c (we enforced this above), which means we
4435 * can use the simpler of the two equations below:
4437 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4438 * mru ghost + mfu ghost <= arc_c
4440 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4441 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4443 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4444 total_evicted += bytes;
4446 target -= bytes;
4448 total_evicted +=
4449 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4451 return (total_evicted);
4454 void
4455 arc_flush(spa_t *spa, boolean_t retry)
4457 uint64_t guid = 0;
4460 * If retry is B_TRUE, a spa must not be specified since we have
4461 * no good way to determine if all of a spa's buffers have been
4462 * evicted from an arc state.
4464 ASSERT(!retry || spa == 0);
4466 if (spa != NULL)
4467 guid = spa_load_guid(spa);
4469 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4470 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4472 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4473 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4475 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4476 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4478 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4479 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4482 static void
4483 arc_reduce_target_size(int64_t to_free)
4485 uint64_t asize = aggsum_value(&arc_size);
4486 if (arc_c > arc_c_min) {
4488 if (arc_c > arc_c_min + to_free)
4489 atomic_add_64(&arc_c, -to_free);
4490 else
4491 arc_c = arc_c_min;
4493 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4494 if (asize < arc_c)
4495 arc_c = MAX(asize, arc_c_min);
4496 if (arc_p > arc_c)
4497 arc_p = (arc_c >> 1);
4498 ASSERT(arc_c >= arc_c_min);
4499 ASSERT((int64_t)arc_p >= 0);
4502 if (asize > arc_c) {
4503 /* See comment in arc_adjust_cb_check() on why lock+flag */
4504 mutex_enter(&arc_adjust_lock);
4505 arc_adjust_needed = B_TRUE;
4506 mutex_exit(&arc_adjust_lock);
4507 zthr_wakeup(arc_adjust_zthr);
4511 typedef enum free_memory_reason_t {
4512 FMR_UNKNOWN,
4513 FMR_NEEDFREE,
4514 FMR_LOTSFREE,
4515 FMR_SWAPFS_MINFREE,
4516 FMR_PAGES_PP_MAXIMUM,
4517 FMR_HEAP_ARENA,
4518 FMR_ZIO_ARENA,
4519 } free_memory_reason_t;
4521 int64_t last_free_memory;
4522 free_memory_reason_t last_free_reason;
4525 * Additional reserve of pages for pp_reserve.
4527 int64_t arc_pages_pp_reserve = 64;
4530 * Additional reserve of pages for swapfs.
4532 int64_t arc_swapfs_reserve = 64;
4535 * Return the amount of memory that can be consumed before reclaim will be
4536 * needed. Positive if there is sufficient free memory, negative indicates
4537 * the amount of memory that needs to be freed up.
4539 static int64_t
4540 arc_available_memory(void)
4542 int64_t lowest = INT64_MAX;
4543 int64_t n;
4544 free_memory_reason_t r = FMR_UNKNOWN;
4546 #ifdef _KERNEL
4547 if (needfree > 0) {
4548 n = PAGESIZE * (-needfree);
4549 if (n < lowest) {
4550 lowest = n;
4551 r = FMR_NEEDFREE;
4556 * check that we're out of range of the pageout scanner. It starts to
4557 * schedule paging if freemem is less than lotsfree and needfree.
4558 * lotsfree is the high-water mark for pageout, and needfree is the
4559 * number of needed free pages. We add extra pages here to make sure
4560 * the scanner doesn't start up while we're freeing memory.
4562 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4563 if (n < lowest) {
4564 lowest = n;
4565 r = FMR_LOTSFREE;
4569 * check to make sure that swapfs has enough space so that anon
4570 * reservations can still succeed. anon_resvmem() checks that the
4571 * availrmem is greater than swapfs_minfree, and the number of reserved
4572 * swap pages. We also add a bit of extra here just to prevent
4573 * circumstances from getting really dire.
4575 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4576 desfree - arc_swapfs_reserve);
4577 if (n < lowest) {
4578 lowest = n;
4579 r = FMR_SWAPFS_MINFREE;
4584 * Check that we have enough availrmem that memory locking (e.g., via
4585 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4586 * stores the number of pages that cannot be locked; when availrmem
4587 * drops below pages_pp_maximum, page locking mechanisms such as
4588 * page_pp_lock() will fail.)
4590 n = PAGESIZE * (availrmem - pages_pp_maximum -
4591 arc_pages_pp_reserve);
4592 if (n < lowest) {
4593 lowest = n;
4594 r = FMR_PAGES_PP_MAXIMUM;
4599 * If zio data pages are being allocated out of a separate heap segment,
4600 * then enforce that the size of available vmem for this arena remains
4601 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4603 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4604 * memory (in the zio_arena) free, which can avoid memory
4605 * fragmentation issues.
4607 if (zio_arena != NULL) {
4608 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4609 (vmem_size(zio_arena, VMEM_ALLOC) >>
4610 arc_zio_arena_free_shift);
4611 if (n < lowest) {
4612 lowest = n;
4613 r = FMR_ZIO_ARENA;
4616 #else
4617 /* Every 100 calls, free a small amount */
4618 if (spa_get_random(100) == 0)
4619 lowest = -1024;
4620 #endif
4622 last_free_memory = lowest;
4623 last_free_reason = r;
4625 return (lowest);
4630 * Determine if the system is under memory pressure and is asking
4631 * to reclaim memory. A return value of B_TRUE indicates that the system
4632 * is under memory pressure and that the arc should adjust accordingly.
4634 static boolean_t
4635 arc_reclaim_needed(void)
4637 return (arc_available_memory() < 0);
4640 static void
4641 arc_kmem_reap_soon(void)
4643 size_t i;
4644 kmem_cache_t *prev_cache = NULL;
4645 kmem_cache_t *prev_data_cache = NULL;
4646 extern kmem_cache_t *zio_buf_cache[];
4647 extern kmem_cache_t *zio_data_buf_cache[];
4648 extern kmem_cache_t *zfs_btree_leaf_cache;
4649 extern kmem_cache_t *abd_chunk_cache;
4651 #ifdef _KERNEL
4652 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4654 * We are exceeding our meta-data cache limit.
4655 * Purge some DNLC entries to release holds on meta-data.
4657 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4659 #endif
4661 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4662 if (zio_buf_cache[i] != prev_cache) {
4663 prev_cache = zio_buf_cache[i];
4664 kmem_cache_reap_soon(zio_buf_cache[i]);
4666 if (zio_data_buf_cache[i] != prev_data_cache) {
4667 prev_data_cache = zio_data_buf_cache[i];
4668 kmem_cache_reap_soon(zio_data_buf_cache[i]);
4671 kmem_cache_reap_soon(abd_chunk_cache);
4672 kmem_cache_reap_soon(buf_cache);
4673 kmem_cache_reap_soon(hdr_full_cache);
4674 kmem_cache_reap_soon(hdr_l2only_cache);
4675 kmem_cache_reap_soon(zfs_btree_leaf_cache);
4677 if (zio_arena != NULL) {
4679 * Ask the vmem arena to reclaim unused memory from its
4680 * quantum caches.
4682 vmem_qcache_reap(zio_arena);
4686 /* ARGSUSED */
4687 static boolean_t
4688 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4691 * This is necessary in order for the mdb ::arc dcmd to
4692 * show up to date information. Since the ::arc command
4693 * does not call the kstat's update function, without
4694 * this call, the command may show stale stats for the
4695 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4696 * with this change, the data might be up to 1 second
4697 * out of date(the arc_adjust_zthr has a maximum sleep
4698 * time of 1 second); but that should suffice. The
4699 * arc_state_t structures can be queried directly if more
4700 * accurate information is needed.
4702 if (arc_ksp != NULL)
4703 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4706 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4707 * rather than checking if we are overflowing here, so that we are
4708 * sure to not leave arc_get_data_impl() waiting on
4709 * arc_adjust_waiters_cv. If we have become "not overflowing" since
4710 * arc_get_data_impl() checked, we need to wake it up. We could
4711 * broadcast the CV here, but arc_get_data_impl() may have not yet
4712 * gone to sleep. We would need to use a mutex to ensure that this
4713 * function doesn't broadcast until arc_get_data_impl() has gone to
4714 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of
4715 * such a lock would necessarily be incorrect with respect to the
4716 * zthr_lock, which is held before this function is called, and is
4717 * held by arc_get_data_impl() when it calls zthr_wakeup().
4719 return (arc_adjust_needed);
4723 * Keep arc_size under arc_c by running arc_adjust which evicts data
4724 * from the ARC.
4726 /* ARGSUSED */
4727 static void
4728 arc_adjust_cb(void *arg, zthr_t *zthr)
4730 uint64_t evicted = 0;
4732 /* Evict from cache */
4733 evicted = arc_adjust();
4736 * If evicted is zero, we couldn't evict anything
4737 * via arc_adjust(). This could be due to hash lock
4738 * collisions, but more likely due to the majority of
4739 * arc buffers being unevictable. Therefore, even if
4740 * arc_size is above arc_c, another pass is unlikely to
4741 * be helpful and could potentially cause us to enter an
4742 * infinite loop. Additionally, zthr_iscancelled() is
4743 * checked here so that if the arc is shutting down, the
4744 * broadcast will wake any remaining arc adjust waiters.
4746 mutex_enter(&arc_adjust_lock);
4747 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4748 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4749 if (!arc_adjust_needed) {
4751 * We're either no longer overflowing, or we
4752 * can't evict anything more, so we should wake
4753 * up any waiters.
4755 cv_broadcast(&arc_adjust_waiters_cv);
4757 mutex_exit(&arc_adjust_lock);
4760 /* ARGSUSED */
4761 static boolean_t
4762 arc_reap_cb_check(void *arg, zthr_t *zthr)
4764 int64_t free_memory = arc_available_memory();
4767 * If a kmem reap is already active, don't schedule more. We must
4768 * check for this because kmem_cache_reap_soon() won't actually
4769 * block on the cache being reaped (this is to prevent callers from
4770 * becoming implicitly blocked by a system-wide kmem reap -- which,
4771 * on a system with many, many full magazines, can take minutes).
4773 if (!kmem_cache_reap_active() &&
4774 free_memory < 0) {
4775 arc_no_grow = B_TRUE;
4776 arc_warm = B_TRUE;
4778 * Wait at least zfs_grow_retry (default 60) seconds
4779 * before considering growing.
4781 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4782 return (B_TRUE);
4783 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4784 arc_no_grow = B_TRUE;
4785 } else if (gethrtime() >= arc_growtime) {
4786 arc_no_grow = B_FALSE;
4789 return (B_FALSE);
4793 * Keep enough free memory in the system by reaping the ARC's kmem
4794 * caches. To cause more slabs to be reapable, we may reduce the
4795 * target size of the cache (arc_c), causing the arc_adjust_cb()
4796 * to free more buffers.
4798 /* ARGSUSED */
4799 static void
4800 arc_reap_cb(void *arg, zthr_t *zthr)
4802 int64_t free_memory;
4805 * Kick off asynchronous kmem_reap()'s of all our caches.
4807 arc_kmem_reap_soon();
4810 * Wait at least arc_kmem_cache_reap_retry_ms between
4811 * arc_kmem_reap_soon() calls. Without this check it is possible to
4812 * end up in a situation where we spend lots of time reaping
4813 * caches, while we're near arc_c_min. Waiting here also gives the
4814 * subsequent free memory check a chance of finding that the
4815 * asynchronous reap has already freed enough memory, and we don't
4816 * need to call arc_reduce_target_size().
4818 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4821 * Reduce the target size as needed to maintain the amount of free
4822 * memory in the system at a fraction of the arc_size (1/128th by
4823 * default). If oversubscribed (free_memory < 0) then reduce the
4824 * target arc_size by the deficit amount plus the fractional
4825 * amount. If free memory is positive but less then the fractional
4826 * amount, reduce by what is needed to hit the fractional amount.
4828 free_memory = arc_available_memory();
4830 int64_t to_free =
4831 (arc_c >> arc_shrink_shift) - free_memory;
4832 if (to_free > 0) {
4833 #ifdef _KERNEL
4834 to_free = MAX(to_free, ptob(needfree));
4835 #endif
4836 arc_reduce_target_size(to_free);
4841 * Adapt arc info given the number of bytes we are trying to add and
4842 * the state that we are coming from. This function is only called
4843 * when we are adding new content to the cache.
4845 static void
4846 arc_adapt(int bytes, arc_state_t *state)
4848 int mult;
4849 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4850 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4851 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4853 ASSERT(bytes > 0);
4855 * Adapt the target size of the MRU list:
4856 * - if we just hit in the MRU ghost list, then increase
4857 * the target size of the MRU list.
4858 * - if we just hit in the MFU ghost list, then increase
4859 * the target size of the MFU list by decreasing the
4860 * target size of the MRU list.
4862 if (state == arc_mru_ghost) {
4863 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4864 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4866 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4867 } else if (state == arc_mfu_ghost) {
4868 uint64_t delta;
4870 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4871 mult = MIN(mult, 10);
4873 delta = MIN(bytes * mult, arc_p);
4874 arc_p = MAX(arc_p_min, arc_p - delta);
4876 ASSERT((int64_t)arc_p >= 0);
4879 * Wake reap thread if we do not have any available memory
4881 if (arc_reclaim_needed()) {
4882 zthr_wakeup(arc_reap_zthr);
4883 return;
4887 if (arc_no_grow)
4888 return;
4890 if (arc_c >= arc_c_max)
4891 return;
4894 * If we're within (2 * maxblocksize) bytes of the target
4895 * cache size, increment the target cache size
4897 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4898 0) {
4899 atomic_add_64(&arc_c, (int64_t)bytes);
4900 if (arc_c > arc_c_max)
4901 arc_c = arc_c_max;
4902 else if (state == arc_anon)
4903 atomic_add_64(&arc_p, (int64_t)bytes);
4904 if (arc_p > arc_c)
4905 arc_p = arc_c;
4907 ASSERT((int64_t)arc_p >= 0);
4911 * Check if arc_size has grown past our upper threshold, determined by
4912 * zfs_arc_overflow_shift.
4914 static boolean_t
4915 arc_is_overflowing(void)
4917 /* Always allow at least one block of overflow */
4918 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4919 arc_c >> zfs_arc_overflow_shift);
4922 * We just compare the lower bound here for performance reasons. Our
4923 * primary goals are to make sure that the arc never grows without
4924 * bound, and that it can reach its maximum size. This check
4925 * accomplishes both goals. The maximum amount we could run over by is
4926 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4927 * in the ARC. In practice, that's in the tens of MB, which is low
4928 * enough to be safe.
4930 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4933 static abd_t *
4934 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
4935 boolean_t do_adapt)
4937 arc_buf_contents_t type = arc_buf_type(hdr);
4939 arc_get_data_impl(hdr, size, tag, do_adapt);
4940 if (type == ARC_BUFC_METADATA) {
4941 return (abd_alloc(size, B_TRUE));
4942 } else {
4943 ASSERT(type == ARC_BUFC_DATA);
4944 return (abd_alloc(size, B_FALSE));
4948 static void *
4949 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4951 arc_buf_contents_t type = arc_buf_type(hdr);
4953 arc_get_data_impl(hdr, size, tag, B_TRUE);
4954 if (type == ARC_BUFC_METADATA) {
4955 return (zio_buf_alloc(size));
4956 } else {
4957 ASSERT(type == ARC_BUFC_DATA);
4958 return (zio_data_buf_alloc(size));
4963 * Allocate a block and return it to the caller. If we are hitting the
4964 * hard limit for the cache size, we must sleep, waiting for the eviction
4965 * thread to catch up. If we're past the target size but below the hard
4966 * limit, we'll only signal the reclaim thread and continue on.
4968 static void
4969 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
4970 boolean_t do_adapt)
4972 arc_state_t *state = hdr->b_l1hdr.b_state;
4973 arc_buf_contents_t type = arc_buf_type(hdr);
4975 if (do_adapt)
4976 arc_adapt(size, state);
4979 * If arc_size is currently overflowing, and has grown past our
4980 * upper limit, we must be adding data faster than the evict
4981 * thread can evict. Thus, to ensure we don't compound the
4982 * problem by adding more data and forcing arc_size to grow even
4983 * further past its target size, we halt and wait for the
4984 * eviction thread to catch up.
4986 * It's also possible that the reclaim thread is unable to evict
4987 * enough buffers to get arc_size below the overflow limit (e.g.
4988 * due to buffers being un-evictable, or hash lock collisions).
4989 * In this case, we want to proceed regardless if we're
4990 * overflowing; thus we don't use a while loop here.
4992 if (arc_is_overflowing()) {
4993 mutex_enter(&arc_adjust_lock);
4996 * Now that we've acquired the lock, we may no longer be
4997 * over the overflow limit, lets check.
4999 * We're ignoring the case of spurious wake ups. If that
5000 * were to happen, it'd let this thread consume an ARC
5001 * buffer before it should have (i.e. before we're under
5002 * the overflow limit and were signalled by the reclaim
5003 * thread). As long as that is a rare occurrence, it
5004 * shouldn't cause any harm.
5006 if (arc_is_overflowing()) {
5007 arc_adjust_needed = B_TRUE;
5008 zthr_wakeup(arc_adjust_zthr);
5009 (void) cv_wait(&arc_adjust_waiters_cv,
5010 &arc_adjust_lock);
5012 mutex_exit(&arc_adjust_lock);
5015 VERIFY3U(hdr->b_type, ==, type);
5016 if (type == ARC_BUFC_METADATA) {
5017 arc_space_consume(size, ARC_SPACE_META);
5018 } else {
5019 arc_space_consume(size, ARC_SPACE_DATA);
5023 * Update the state size. Note that ghost states have a
5024 * "ghost size" and so don't need to be updated.
5026 if (!GHOST_STATE(state)) {
5028 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5031 * If this is reached via arc_read, the link is
5032 * protected by the hash lock. If reached via
5033 * arc_buf_alloc, the header should not be accessed by
5034 * any other thread. And, if reached via arc_read_done,
5035 * the hash lock will protect it if it's found in the
5036 * hash table; otherwise no other thread should be
5037 * trying to [add|remove]_reference it.
5039 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5040 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5041 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5042 size, tag);
5046 * If we are growing the cache, and we are adding anonymous
5047 * data, and we have outgrown arc_p, update arc_p
5049 if (aggsum_compare(&arc_size, arc_c) < 0 &&
5050 hdr->b_l1hdr.b_state == arc_anon &&
5051 (zfs_refcount_count(&arc_anon->arcs_size) +
5052 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5053 arc_p = MIN(arc_c, arc_p + size);
5057 static void
5058 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5060 arc_free_data_impl(hdr, size, tag);
5061 abd_free(abd);
5064 static void
5065 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5067 arc_buf_contents_t type = arc_buf_type(hdr);
5069 arc_free_data_impl(hdr, size, tag);
5070 if (type == ARC_BUFC_METADATA) {
5071 zio_buf_free(buf, size);
5072 } else {
5073 ASSERT(type == ARC_BUFC_DATA);
5074 zio_data_buf_free(buf, size);
5079 * Free the arc data buffer.
5081 static void
5082 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5084 arc_state_t *state = hdr->b_l1hdr.b_state;
5085 arc_buf_contents_t type = arc_buf_type(hdr);
5087 /* protected by hash lock, if in the hash table */
5088 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5089 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5090 ASSERT(state != arc_anon && state != arc_l2c_only);
5092 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5093 size, tag);
5095 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5097 VERIFY3U(hdr->b_type, ==, type);
5098 if (type == ARC_BUFC_METADATA) {
5099 arc_space_return(size, ARC_SPACE_META);
5100 } else {
5101 ASSERT(type == ARC_BUFC_DATA);
5102 arc_space_return(size, ARC_SPACE_DATA);
5107 * This routine is called whenever a buffer is accessed.
5108 * NOTE: the hash lock is dropped in this function.
5110 static void
5111 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5113 clock_t now;
5115 ASSERT(MUTEX_HELD(hash_lock));
5116 ASSERT(HDR_HAS_L1HDR(hdr));
5118 if (hdr->b_l1hdr.b_state == arc_anon) {
5120 * This buffer is not in the cache, and does not
5121 * appear in our "ghost" list. Add the new buffer
5122 * to the MRU state.
5125 ASSERT0(hdr->b_l1hdr.b_arc_access);
5126 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5127 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5128 arc_change_state(arc_mru, hdr, hash_lock);
5130 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5131 now = ddi_get_lbolt();
5134 * If this buffer is here because of a prefetch, then either:
5135 * - clear the flag if this is a "referencing" read
5136 * (any subsequent access will bump this into the MFU state).
5137 * or
5138 * - move the buffer to the head of the list if this is
5139 * another prefetch (to make it less likely to be evicted).
5141 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5142 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5143 /* link protected by hash lock */
5144 ASSERT(multilist_link_active(
5145 &hdr->b_l1hdr.b_arc_node));
5146 } else {
5147 if (HDR_HAS_L2HDR(hdr))
5148 l2arc_hdr_arcstats_decrement_state(hdr);
5149 arc_hdr_clear_flags(hdr,
5150 ARC_FLAG_PREFETCH |
5151 ARC_FLAG_PRESCIENT_PREFETCH);
5152 ARCSTAT_BUMP(arcstat_mru_hits);
5153 if (HDR_HAS_L2HDR(hdr))
5154 l2arc_hdr_arcstats_increment_state(hdr);
5156 hdr->b_l1hdr.b_arc_access = now;
5157 return;
5161 * This buffer has been "accessed" only once so far,
5162 * but it is still in the cache. Move it to the MFU
5163 * state.
5165 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5167 * More than 125ms have passed since we
5168 * instantiated this buffer. Move it to the
5169 * most frequently used state.
5171 hdr->b_l1hdr.b_arc_access = now;
5172 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5173 arc_change_state(arc_mfu, hdr, hash_lock);
5175 ARCSTAT_BUMP(arcstat_mru_hits);
5176 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5177 arc_state_t *new_state;
5179 * This buffer has been "accessed" recently, but
5180 * was evicted from the cache. Move it to the
5181 * MFU state.
5183 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5184 new_state = arc_mru;
5185 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5186 if (HDR_HAS_L2HDR(hdr))
5187 l2arc_hdr_arcstats_decrement_state(hdr);
5188 arc_hdr_clear_flags(hdr,
5189 ARC_FLAG_PREFETCH |
5190 ARC_FLAG_PRESCIENT_PREFETCH);
5191 if (HDR_HAS_L2HDR(hdr))
5192 l2arc_hdr_arcstats_increment_state(hdr);
5194 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5195 } else {
5196 new_state = arc_mfu;
5197 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5200 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5201 arc_change_state(new_state, hdr, hash_lock);
5203 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5204 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5206 * This buffer has been accessed more than once and is
5207 * still in the cache. Keep it in the MFU state.
5209 * NOTE: an add_reference() that occurred when we did
5210 * the arc_read() will have kicked this off the list.
5211 * If it was a prefetch, we will explicitly move it to
5212 * the head of the list now.
5214 ARCSTAT_BUMP(arcstat_mfu_hits);
5215 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5216 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5217 arc_state_t *new_state = arc_mfu;
5219 * This buffer has been accessed more than once but has
5220 * been evicted from the cache. Move it back to the
5221 * MFU state.
5224 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5226 * This is a prefetch access...
5227 * move this block back to the MRU state.
5229 new_state = arc_mru;
5232 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5233 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5234 arc_change_state(new_state, hdr, hash_lock);
5236 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5237 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5239 * This buffer is on the 2nd Level ARC.
5242 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5243 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5244 arc_change_state(arc_mfu, hdr, hash_lock);
5245 } else {
5246 ASSERT(!"invalid arc state");
5251 * This routine is called by dbuf_hold() to update the arc_access() state
5252 * which otherwise would be skipped for entries in the dbuf cache.
5254 void
5255 arc_buf_access(arc_buf_t *buf)
5257 mutex_enter(&buf->b_evict_lock);
5258 arc_buf_hdr_t *hdr = buf->b_hdr;
5261 * Avoid taking the hash_lock when possible as an optimization.
5262 * The header must be checked again under the hash_lock in order
5263 * to handle the case where it is concurrently being released.
5265 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5266 mutex_exit(&buf->b_evict_lock);
5267 return;
5270 kmutex_t *hash_lock = HDR_LOCK(hdr);
5271 mutex_enter(hash_lock);
5273 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5274 mutex_exit(hash_lock);
5275 mutex_exit(&buf->b_evict_lock);
5276 ARCSTAT_BUMP(arcstat_access_skip);
5277 return;
5280 mutex_exit(&buf->b_evict_lock);
5282 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5283 hdr->b_l1hdr.b_state == arc_mfu);
5285 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5286 arc_access(hdr, hash_lock);
5287 mutex_exit(hash_lock);
5289 ARCSTAT_BUMP(arcstat_hits);
5290 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5291 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5294 /* a generic arc_read_done_func_t which you can use */
5295 /* ARGSUSED */
5296 void
5297 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5298 arc_buf_t *buf, void *arg)
5300 if (buf == NULL)
5301 return;
5303 bcopy(buf->b_data, arg, arc_buf_size(buf));
5304 arc_buf_destroy(buf, arg);
5307 /* a generic arc_read_done_func_t */
5308 void
5309 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5310 arc_buf_t *buf, void *arg)
5312 arc_buf_t **bufp = arg;
5314 if (buf == NULL) {
5315 ASSERT(zio == NULL || zio->io_error != 0);
5316 *bufp = NULL;
5317 } else {
5318 ASSERT(zio == NULL || zio->io_error == 0);
5319 *bufp = buf;
5320 ASSERT(buf->b_data != NULL);
5324 static void
5325 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5327 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5328 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5329 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5330 } else {
5331 if (HDR_COMPRESSION_ENABLED(hdr)) {
5332 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5333 BP_GET_COMPRESS(bp));
5335 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5336 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5337 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5342 * XXX this should be changed to return an error, and callers
5343 * re-read from disk on failure (on nondebug bits).
5345 static void
5346 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5348 arc_hdr_verify(hdr, bp);
5349 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5350 return;
5351 int err = 0;
5352 abd_t *abd = NULL;
5353 if (BP_IS_ENCRYPTED(bp)) {
5354 if (HDR_HAS_RABD(hdr)) {
5355 abd = hdr->b_crypt_hdr.b_rabd;
5357 } else if (HDR_COMPRESSION_ENABLED(hdr)) {
5358 abd = hdr->b_l1hdr.b_pabd;
5360 if (abd != NULL) {
5362 * The offset is only used for labels, which are not
5363 * cached in the ARC, so it doesn't matter what we
5364 * pass for the offset parameter.
5366 int psize = HDR_GET_PSIZE(hdr);
5367 err = zio_checksum_error_impl(spa, bp,
5368 BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5369 if (err != 0) {
5371 * Use abd_copy_to_buf() rather than
5372 * abd_borrow_buf_copy() so that we are sure to
5373 * include the buf in crash dumps.
5375 void *buf = kmem_alloc(psize, KM_SLEEP);
5376 abd_copy_to_buf(buf, abd, psize);
5377 panic("checksum of cached data doesn't match BP "
5378 "err=%u hdr=%p bp=%p abd=%p buf=%p",
5379 err, (void *)hdr, (void *)bp, (void *)abd, buf);
5384 static void
5385 arc_read_done(zio_t *zio)
5387 blkptr_t *bp = zio->io_bp;
5388 arc_buf_hdr_t *hdr = zio->io_private;
5389 kmutex_t *hash_lock = NULL;
5390 arc_callback_t *callback_list;
5391 arc_callback_t *acb;
5392 boolean_t freeable = B_FALSE;
5395 * The hdr was inserted into hash-table and removed from lists
5396 * prior to starting I/O. We should find this header, since
5397 * it's in the hash table, and it should be legit since it's
5398 * not possible to evict it during the I/O. The only possible
5399 * reason for it not to be found is if we were freed during the
5400 * read.
5402 if (HDR_IN_HASH_TABLE(hdr)) {
5403 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5404 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5405 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5406 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5407 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5409 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5410 &hash_lock);
5412 ASSERT((found == hdr &&
5413 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5414 (found == hdr && HDR_L2_READING(hdr)));
5415 ASSERT3P(hash_lock, !=, NULL);
5418 if (BP_IS_PROTECTED(bp)) {
5419 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5420 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5421 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5422 hdr->b_crypt_hdr.b_iv);
5424 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5425 void *tmpbuf;
5427 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5428 sizeof (zil_chain_t));
5429 zio_crypt_decode_mac_zil(tmpbuf,
5430 hdr->b_crypt_hdr.b_mac);
5431 abd_return_buf(zio->io_abd, tmpbuf,
5432 sizeof (zil_chain_t));
5433 } else {
5434 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5438 if (zio->io_error == 0) {
5439 /* byteswap if necessary */
5440 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5441 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5442 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5443 } else {
5444 hdr->b_l1hdr.b_byteswap =
5445 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5447 } else {
5448 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5452 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5454 callback_list = hdr->b_l1hdr.b_acb;
5455 ASSERT3P(callback_list, !=, NULL);
5457 if (hash_lock && zio->io_error == 0 &&
5458 hdr->b_l1hdr.b_state == arc_anon) {
5460 * Only call arc_access on anonymous buffers. This is because
5461 * if we've issued an I/O for an evicted buffer, we've already
5462 * called arc_access (to prevent any simultaneous readers from
5463 * getting confused).
5465 arc_access(hdr, hash_lock);
5469 * If a read request has a callback (i.e. acb_done is not NULL), then we
5470 * make a buf containing the data according to the parameters which were
5471 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5472 * aren't needlessly decompressing the data multiple times.
5474 int callback_cnt = 0;
5475 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5476 if (!acb->acb_done)
5477 continue;
5479 callback_cnt++;
5481 if (zio->io_error != 0)
5482 continue;
5484 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5485 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5486 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5487 &acb->acb_buf);
5490 * Assert non-speculative zios didn't fail because an
5491 * encryption key wasn't loaded
5493 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5494 error != EACCES);
5497 * If we failed to decrypt, report an error now (as the zio
5498 * layer would have done if it had done the transforms).
5500 if (error == ECKSUM) {
5501 ASSERT(BP_IS_PROTECTED(bp));
5502 error = SET_ERROR(EIO);
5503 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5504 spa_log_error(zio->io_spa, &acb->acb_zb);
5505 (void) zfs_ereport_post(
5506 FM_EREPORT_ZFS_AUTHENTICATION,
5507 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5511 if (error != 0) {
5513 * Decompression failed. Set io_error
5514 * so that when we call acb_done (below),
5515 * we will indicate that the read failed.
5516 * Note that in the unusual case where one
5517 * callback is compressed and another
5518 * uncompressed, we will mark all of them
5519 * as failed, even though the uncompressed
5520 * one can't actually fail. In this case,
5521 * the hdr will not be anonymous, because
5522 * if there are multiple callbacks, it's
5523 * because multiple threads found the same
5524 * arc buf in the hash table.
5526 zio->io_error = error;
5531 * If there are multiple callbacks, we must have the hash lock,
5532 * because the only way for multiple threads to find this hdr is
5533 * in the hash table. This ensures that if there are multiple
5534 * callbacks, the hdr is not anonymous. If it were anonymous,
5535 * we couldn't use arc_buf_destroy() in the error case below.
5537 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5539 hdr->b_l1hdr.b_acb = NULL;
5540 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5541 if (callback_cnt == 0)
5542 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5544 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5545 callback_list != NULL);
5547 if (zio->io_error == 0) {
5548 arc_hdr_verify(hdr, zio->io_bp);
5549 } else {
5550 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5551 if (hdr->b_l1hdr.b_state != arc_anon)
5552 arc_change_state(arc_anon, hdr, hash_lock);
5553 if (HDR_IN_HASH_TABLE(hdr))
5554 buf_hash_remove(hdr);
5555 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5559 * Broadcast before we drop the hash_lock to avoid the possibility
5560 * that the hdr (and hence the cv) might be freed before we get to
5561 * the cv_broadcast().
5563 cv_broadcast(&hdr->b_l1hdr.b_cv);
5565 if (hash_lock != NULL) {
5566 mutex_exit(hash_lock);
5567 } else {
5569 * This block was freed while we waited for the read to
5570 * complete. It has been removed from the hash table and
5571 * moved to the anonymous state (so that it won't show up
5572 * in the cache).
5574 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5575 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5578 /* execute each callback and free its structure */
5579 while ((acb = callback_list) != NULL) {
5581 if (acb->acb_done != NULL) {
5582 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5584 * If arc_buf_alloc_impl() fails during
5585 * decompression, the buf will still be
5586 * allocated, and needs to be freed here.
5588 arc_buf_destroy(acb->acb_buf, acb->acb_private);
5589 acb->acb_buf = NULL;
5591 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5592 acb->acb_buf, acb->acb_private);
5595 if (acb->acb_zio_dummy != NULL) {
5596 acb->acb_zio_dummy->io_error = zio->io_error;
5597 zio_nowait(acb->acb_zio_dummy);
5600 callback_list = acb->acb_next;
5601 kmem_free(acb, sizeof (arc_callback_t));
5604 if (freeable)
5605 arc_hdr_destroy(hdr);
5609 * "Read" the block at the specified DVA (in bp) via the
5610 * cache. If the block is found in the cache, invoke the provided
5611 * callback immediately and return. Note that the `zio' parameter
5612 * in the callback will be NULL in this case, since no IO was
5613 * required. If the block is not in the cache pass the read request
5614 * on to the spa with a substitute callback function, so that the
5615 * requested block will be added to the cache.
5617 * If a read request arrives for a block that has a read in-progress,
5618 * either wait for the in-progress read to complete (and return the
5619 * results); or, if this is a read with a "done" func, add a record
5620 * to the read to invoke the "done" func when the read completes,
5621 * and return; or just return.
5623 * arc_read_done() will invoke all the requested "done" functions
5624 * for readers of this block.
5627 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5628 void *private, zio_priority_t priority, int zio_flags,
5629 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5631 arc_buf_hdr_t *hdr = NULL;
5632 kmutex_t *hash_lock = NULL;
5633 zio_t *rzio;
5634 uint64_t guid = spa_load_guid(spa);
5635 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5636 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5637 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5638 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5639 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5640 int rc = 0;
5642 ASSERT(!BP_IS_EMBEDDED(bp) ||
5643 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5645 top:
5646 if (!BP_IS_EMBEDDED(bp)) {
5648 * Embedded BP's have no DVA and require no I/O to "read".
5649 * Create an anonymous arc buf to back it.
5651 hdr = buf_hash_find(guid, bp, &hash_lock);
5655 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5656 * we maintain encrypted data seperately from compressed / uncompressed
5657 * data. If the user is requesting raw encrypted data and we don't have
5658 * that in the header we will read from disk to guarantee that we can
5659 * get it even if the encryption keys aren't loaded.
5661 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5662 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5663 arc_buf_t *buf = NULL;
5664 *arc_flags |= ARC_FLAG_CACHED;
5666 if (HDR_IO_IN_PROGRESS(hdr)) {
5667 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5669 ASSERT3P(head_zio, !=, NULL);
5670 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5671 priority == ZIO_PRIORITY_SYNC_READ) {
5673 * This is a sync read that needs to wait for
5674 * an in-flight async read. Request that the
5675 * zio have its priority upgraded.
5677 zio_change_priority(head_zio, priority);
5678 DTRACE_PROBE1(arc__async__upgrade__sync,
5679 arc_buf_hdr_t *, hdr);
5680 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5682 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5683 arc_hdr_clear_flags(hdr,
5684 ARC_FLAG_PREDICTIVE_PREFETCH);
5687 if (*arc_flags & ARC_FLAG_WAIT) {
5688 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5689 mutex_exit(hash_lock);
5690 goto top;
5692 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5694 if (done) {
5695 arc_callback_t *acb = NULL;
5697 acb = kmem_zalloc(sizeof (arc_callback_t),
5698 KM_SLEEP);
5699 acb->acb_done = done;
5700 acb->acb_private = private;
5701 acb->acb_compressed = compressed_read;
5702 acb->acb_encrypted = encrypted_read;
5703 acb->acb_noauth = noauth_read;
5704 acb->acb_zb = *zb;
5705 if (pio != NULL)
5706 acb->acb_zio_dummy = zio_null(pio,
5707 spa, NULL, NULL, NULL, zio_flags);
5709 ASSERT3P(acb->acb_done, !=, NULL);
5710 acb->acb_zio_head = head_zio;
5711 acb->acb_next = hdr->b_l1hdr.b_acb;
5712 hdr->b_l1hdr.b_acb = acb;
5713 mutex_exit(hash_lock);
5714 return (0);
5716 mutex_exit(hash_lock);
5717 return (0);
5720 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5721 hdr->b_l1hdr.b_state == arc_mfu);
5723 if (done) {
5724 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5726 * This is a demand read which does not have to
5727 * wait for i/o because we did a predictive
5728 * prefetch i/o for it, which has completed.
5730 DTRACE_PROBE1(
5731 arc__demand__hit__predictive__prefetch,
5732 arc_buf_hdr_t *, hdr);
5733 ARCSTAT_BUMP(
5734 arcstat_demand_hit_predictive_prefetch);
5735 arc_hdr_clear_flags(hdr,
5736 ARC_FLAG_PREDICTIVE_PREFETCH);
5739 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5740 ARCSTAT_BUMP(
5741 arcstat_demand_hit_prescient_prefetch);
5742 arc_hdr_clear_flags(hdr,
5743 ARC_FLAG_PRESCIENT_PREFETCH);
5746 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5748 arc_hdr_verify_checksum(spa, hdr, bp);
5750 /* Get a buf with the desired data in it. */
5751 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5752 encrypted_read, compressed_read, noauth_read,
5753 B_TRUE, &buf);
5754 if (rc == ECKSUM) {
5756 * Convert authentication and decryption errors
5757 * to EIO (and generate an ereport if needed)
5758 * before leaving the ARC.
5760 rc = SET_ERROR(EIO);
5761 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5762 spa_log_error(spa, zb);
5763 (void) zfs_ereport_post(
5764 FM_EREPORT_ZFS_AUTHENTICATION,
5765 spa, NULL, zb, NULL, 0, 0);
5768 if (rc != 0) {
5769 (void) remove_reference(hdr, hash_lock,
5770 private);
5771 arc_buf_destroy_impl(buf);
5772 buf = NULL;
5774 /* assert any errors weren't due to unloaded keys */
5775 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5776 rc != EACCES);
5777 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5778 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5779 if (HDR_HAS_L2HDR(hdr))
5780 l2arc_hdr_arcstats_decrement_state(hdr);
5781 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5782 if (HDR_HAS_L2HDR(hdr))
5783 l2arc_hdr_arcstats_increment_state(hdr);
5785 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5786 arc_access(hdr, hash_lock);
5787 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5788 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5789 if (*arc_flags & ARC_FLAG_L2CACHE)
5790 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5791 mutex_exit(hash_lock);
5792 ARCSTAT_BUMP(arcstat_hits);
5793 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5794 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5795 data, metadata, hits);
5797 if (done)
5798 done(NULL, zb, bp, buf, private);
5799 } else {
5800 uint64_t lsize = BP_GET_LSIZE(bp);
5801 uint64_t psize = BP_GET_PSIZE(bp);
5802 arc_callback_t *acb;
5803 vdev_t *vd = NULL;
5804 uint64_t addr = 0;
5805 boolean_t devw = B_FALSE;
5806 uint64_t size;
5807 abd_t *hdr_abd;
5808 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5810 if (hdr == NULL) {
5811 /* this block is not in the cache */
5812 arc_buf_hdr_t *exists = NULL;
5813 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5814 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5815 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
5816 encrypted_read);
5818 if (!BP_IS_EMBEDDED(bp)) {
5819 hdr->b_dva = *BP_IDENTITY(bp);
5820 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5821 exists = buf_hash_insert(hdr, &hash_lock);
5823 if (exists != NULL) {
5824 /* somebody beat us to the hash insert */
5825 mutex_exit(hash_lock);
5826 buf_discard_identity(hdr);
5827 arc_hdr_destroy(hdr);
5828 goto top; /* restart the IO request */
5830 } else {
5832 * This block is in the ghost cache or encrypted data
5833 * was requested and we didn't have it. If it was
5834 * L2-only (and thus didn't have an L1 hdr),
5835 * we realloc the header to add an L1 hdr.
5837 if (!HDR_HAS_L1HDR(hdr)) {
5838 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5839 hdr_full_cache);
5842 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5843 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5844 ASSERT(!HDR_HAS_RABD(hdr));
5845 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5846 ASSERT0(zfs_refcount_count(
5847 &hdr->b_l1hdr.b_refcnt));
5848 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5849 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5850 } else if (HDR_IO_IN_PROGRESS(hdr)) {
5852 * If this header already had an IO in progress
5853 * and we are performing another IO to fetch
5854 * encrypted data we must wait until the first
5855 * IO completes so as not to confuse
5856 * arc_read_done(). This should be very rare
5857 * and so the performance impact shouldn't
5858 * matter.
5860 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5861 mutex_exit(hash_lock);
5862 goto top;
5866 * This is a delicate dance that we play here.
5867 * This hdr might be in the ghost list so we access
5868 * it to move it out of the ghost list before we
5869 * initiate the read. If it's a prefetch then
5870 * it won't have a callback so we'll remove the
5871 * reference that arc_buf_alloc_impl() created. We
5872 * do this after we've called arc_access() to
5873 * avoid hitting an assert in remove_reference().
5875 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
5876 arc_access(hdr, hash_lock);
5877 arc_hdr_alloc_pabd(hdr, alloc_flags);
5880 if (encrypted_read) {
5881 ASSERT(HDR_HAS_RABD(hdr));
5882 size = HDR_GET_PSIZE(hdr);
5883 hdr_abd = hdr->b_crypt_hdr.b_rabd;
5884 zio_flags |= ZIO_FLAG_RAW;
5885 } else {
5886 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5887 size = arc_hdr_size(hdr);
5888 hdr_abd = hdr->b_l1hdr.b_pabd;
5890 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5891 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5895 * For authenticated bp's, we do not ask the ZIO layer
5896 * to authenticate them since this will cause the entire
5897 * IO to fail if the key isn't loaded. Instead, we
5898 * defer authentication until arc_buf_fill(), which will
5899 * verify the data when the key is available.
5901 if (BP_IS_AUTHENTICATED(bp))
5902 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5905 if (*arc_flags & ARC_FLAG_PREFETCH &&
5906 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5907 if (HDR_HAS_L2HDR(hdr))
5908 l2arc_hdr_arcstats_decrement_state(hdr);
5909 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5910 if (HDR_HAS_L2HDR(hdr))
5911 l2arc_hdr_arcstats_increment_state(hdr);
5913 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5914 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5916 if (*arc_flags & ARC_FLAG_L2CACHE)
5917 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5918 if (BP_IS_AUTHENTICATED(bp))
5919 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5920 if (BP_GET_LEVEL(bp) > 0)
5921 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5922 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5923 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5924 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5926 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5927 acb->acb_done = done;
5928 acb->acb_private = private;
5929 acb->acb_compressed = compressed_read;
5930 acb->acb_encrypted = encrypted_read;
5931 acb->acb_noauth = noauth_read;
5932 acb->acb_zb = *zb;
5934 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5935 hdr->b_l1hdr.b_acb = acb;
5936 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5938 if (HDR_HAS_L2HDR(hdr) &&
5939 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5940 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5941 addr = hdr->b_l2hdr.b_daddr;
5943 * Lock out L2ARC device removal.
5945 if (vdev_is_dead(vd) ||
5946 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5947 vd = NULL;
5951 * We count both async reads and scrub IOs as asynchronous so
5952 * that both can be upgraded in the event of a cache hit while
5953 * the read IO is still in-flight.
5955 if (priority == ZIO_PRIORITY_ASYNC_READ ||
5956 priority == ZIO_PRIORITY_SCRUB)
5957 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5958 else
5959 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5962 * At this point, we have a level 1 cache miss. Try again in
5963 * L2ARC if possible.
5965 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5967 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5968 uint64_t, lsize, zbookmark_phys_t *, zb);
5969 ARCSTAT_BUMP(arcstat_misses);
5970 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5971 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5972 data, metadata, misses);
5974 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5976 * Read from the L2ARC if the following are true:
5977 * 1. The L2ARC vdev was previously cached.
5978 * 2. This buffer still has L2ARC metadata.
5979 * 3. This buffer isn't currently writing to the L2ARC.
5980 * 4. The L2ARC entry wasn't evicted, which may
5981 * also have invalidated the vdev.
5982 * 5. This isn't prefetch or l2arc_noprefetch is 0.
5984 if (HDR_HAS_L2HDR(hdr) &&
5985 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5986 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5987 l2arc_read_callback_t *cb;
5988 abd_t *abd;
5989 uint64_t asize;
5991 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5992 ARCSTAT_BUMP(arcstat_l2_hits);
5994 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5995 KM_SLEEP);
5996 cb->l2rcb_hdr = hdr;
5997 cb->l2rcb_bp = *bp;
5998 cb->l2rcb_zb = *zb;
5999 cb->l2rcb_flags = zio_flags;
6002 * When Compressed ARC is disabled, but the
6003 * L2ARC block is compressed, arc_hdr_size()
6004 * will have returned LSIZE rather than PSIZE.
6006 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6007 !HDR_COMPRESSION_ENABLED(hdr) &&
6008 HDR_GET_PSIZE(hdr) != 0) {
6009 size = HDR_GET_PSIZE(hdr);
6012 asize = vdev_psize_to_asize(vd, size);
6013 if (asize != size) {
6014 abd = abd_alloc_for_io(asize,
6015 HDR_ISTYPE_METADATA(hdr));
6016 cb->l2rcb_abd = abd;
6017 } else {
6018 abd = hdr_abd;
6021 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6022 addr + asize <= vd->vdev_psize -
6023 VDEV_LABEL_END_SIZE);
6026 * l2arc read. The SCL_L2ARC lock will be
6027 * released by l2arc_read_done().
6028 * Issue a null zio if the underlying buffer
6029 * was squashed to zero size by compression.
6031 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6032 ZIO_COMPRESS_EMPTY);
6033 rzio = zio_read_phys(pio, vd, addr,
6034 asize, abd,
6035 ZIO_CHECKSUM_OFF,
6036 l2arc_read_done, cb, priority,
6037 zio_flags | ZIO_FLAG_DONT_CACHE |
6038 ZIO_FLAG_CANFAIL |
6039 ZIO_FLAG_DONT_PROPAGATE |
6040 ZIO_FLAG_DONT_RETRY, B_FALSE);
6041 acb->acb_zio_head = rzio;
6043 if (hash_lock != NULL)
6044 mutex_exit(hash_lock);
6046 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6047 zio_t *, rzio);
6048 ARCSTAT_INCR(arcstat_l2_read_bytes,
6049 HDR_GET_PSIZE(hdr));
6051 if (*arc_flags & ARC_FLAG_NOWAIT) {
6052 zio_nowait(rzio);
6053 return (0);
6056 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6057 if (zio_wait(rzio) == 0)
6058 return (0);
6060 /* l2arc read error; goto zio_read() */
6061 if (hash_lock != NULL)
6062 mutex_enter(hash_lock);
6063 } else {
6064 DTRACE_PROBE1(l2arc__miss,
6065 arc_buf_hdr_t *, hdr);
6066 ARCSTAT_BUMP(arcstat_l2_misses);
6067 if (HDR_L2_WRITING(hdr))
6068 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6069 spa_config_exit(spa, SCL_L2ARC, vd);
6071 } else {
6072 if (vd != NULL)
6073 spa_config_exit(spa, SCL_L2ARC, vd);
6074 if (l2arc_ndev != 0) {
6075 DTRACE_PROBE1(l2arc__miss,
6076 arc_buf_hdr_t *, hdr);
6077 ARCSTAT_BUMP(arcstat_l2_misses);
6081 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6082 arc_read_done, hdr, priority, zio_flags, zb);
6083 acb->acb_zio_head = rzio;
6085 if (hash_lock != NULL)
6086 mutex_exit(hash_lock);
6088 if (*arc_flags & ARC_FLAG_WAIT)
6089 return (zio_wait(rzio));
6091 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6092 zio_nowait(rzio);
6094 return (rc);
6098 * Notify the arc that a block was freed, and thus will never be used again.
6100 void
6101 arc_freed(spa_t *spa, const blkptr_t *bp)
6103 arc_buf_hdr_t *hdr;
6104 kmutex_t *hash_lock;
6105 uint64_t guid = spa_load_guid(spa);
6107 ASSERT(!BP_IS_EMBEDDED(bp));
6109 hdr = buf_hash_find(guid, bp, &hash_lock);
6110 if (hdr == NULL)
6111 return;
6114 * We might be trying to free a block that is still doing I/O
6115 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6116 * dmu_sync-ed block). If this block is being prefetched, then it
6117 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6118 * until the I/O completes. A block may also have a reference if it is
6119 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6120 * have written the new block to its final resting place on disk but
6121 * without the dedup flag set. This would have left the hdr in the MRU
6122 * state and discoverable. When the txg finally syncs it detects that
6123 * the block was overridden in open context and issues an override I/O.
6124 * Since this is a dedup block, the override I/O will determine if the
6125 * block is already in the DDT. If so, then it will replace the io_bp
6126 * with the bp from the DDT and allow the I/O to finish. When the I/O
6127 * reaches the done callback, dbuf_write_override_done, it will
6128 * check to see if the io_bp and io_bp_override are identical.
6129 * If they are not, then it indicates that the bp was replaced with
6130 * the bp in the DDT and the override bp is freed. This allows
6131 * us to arrive here with a reference on a block that is being
6132 * freed. So if we have an I/O in progress, or a reference to
6133 * this hdr, then we don't destroy the hdr.
6135 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6136 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6137 arc_change_state(arc_anon, hdr, hash_lock);
6138 arc_hdr_destroy(hdr);
6139 mutex_exit(hash_lock);
6140 } else {
6141 mutex_exit(hash_lock);
6147 * Release this buffer from the cache, making it an anonymous buffer. This
6148 * must be done after a read and prior to modifying the buffer contents.
6149 * If the buffer has more than one reference, we must make
6150 * a new hdr for the buffer.
6152 void
6153 arc_release(arc_buf_t *buf, void *tag)
6156 * It would be nice to assert that if its DMU metadata (level >
6157 * 0 || it's the dnode file), then it must be syncing context.
6158 * But we don't know that information at this level.
6161 mutex_enter(&buf->b_evict_lock);
6163 arc_buf_hdr_t *hdr = buf->b_hdr;
6165 ASSERT(HDR_HAS_L1HDR(hdr));
6168 * We don't grab the hash lock prior to this check, because if
6169 * the buffer's header is in the arc_anon state, it won't be
6170 * linked into the hash table.
6172 if (hdr->b_l1hdr.b_state == arc_anon) {
6173 mutex_exit(&buf->b_evict_lock);
6175 * If we are called from dmu_convert_mdn_block_to_raw(),
6176 * a write might be in progress. This is OK because
6177 * the caller won't change the content of this buffer,
6178 * only the flags (via arc_convert_to_raw()).
6180 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6181 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6182 ASSERT(!HDR_HAS_L2HDR(hdr));
6183 ASSERT(HDR_EMPTY(hdr));
6185 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6186 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6187 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6189 hdr->b_l1hdr.b_arc_access = 0;
6192 * If the buf is being overridden then it may already
6193 * have a hdr that is not empty.
6195 buf_discard_identity(hdr);
6196 arc_buf_thaw(buf);
6198 return;
6201 kmutex_t *hash_lock = HDR_LOCK(hdr);
6202 mutex_enter(hash_lock);
6205 * Wait for any other IO for this hdr, as additional
6206 * buf(s) could be about to appear, in which case
6207 * we would not want to transition hdr to arc_anon.
6209 while (HDR_IO_IN_PROGRESS(hdr)) {
6210 DTRACE_PROBE1(arc_release__io, arc_buf_hdr_t *, hdr);
6211 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6215 * This assignment is only valid as long as the hash_lock is
6216 * held, we must be careful not to reference state or the
6217 * b_state field after dropping the lock.
6219 arc_state_t *state = hdr->b_l1hdr.b_state;
6220 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6221 ASSERT3P(state, !=, arc_anon);
6223 /* this buffer is not on any list */
6224 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6226 if (HDR_HAS_L2HDR(hdr)) {
6227 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6230 * We have to recheck this conditional again now that
6231 * we're holding the l2ad_mtx to prevent a race with
6232 * another thread which might be concurrently calling
6233 * l2arc_evict(). In that case, l2arc_evict() might have
6234 * destroyed the header's L2 portion as we were waiting
6235 * to acquire the l2ad_mtx.
6237 if (HDR_HAS_L2HDR(hdr))
6238 arc_hdr_l2hdr_destroy(hdr);
6240 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6244 * Do we have more than one buf?
6246 if (hdr->b_l1hdr.b_bufcnt > 1) {
6247 arc_buf_hdr_t *nhdr;
6248 uint64_t spa = hdr->b_spa;
6249 uint64_t psize = HDR_GET_PSIZE(hdr);
6250 uint64_t lsize = HDR_GET_LSIZE(hdr);
6251 boolean_t protected = HDR_PROTECTED(hdr);
6252 enum zio_compress compress = arc_hdr_get_compress(hdr);
6253 arc_buf_contents_t type = arc_buf_type(hdr);
6254 VERIFY3U(hdr->b_type, ==, type);
6256 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6257 (void) remove_reference(hdr, hash_lock, tag);
6259 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6260 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6261 ASSERT(ARC_BUF_LAST(buf));
6265 * Pull the data off of this hdr and attach it to
6266 * a new anonymous hdr. Also find the last buffer
6267 * in the hdr's buffer list.
6269 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6270 ASSERT3P(lastbuf, !=, NULL);
6273 * If the current arc_buf_t and the hdr are sharing their data
6274 * buffer, then we must stop sharing that block.
6276 if (arc_buf_is_shared(buf)) {
6277 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6278 VERIFY(!arc_buf_is_shared(lastbuf));
6281 * First, sever the block sharing relationship between
6282 * buf and the arc_buf_hdr_t.
6284 arc_unshare_buf(hdr, buf);
6287 * Now we need to recreate the hdr's b_pabd. Since we
6288 * have lastbuf handy, we try to share with it, but if
6289 * we can't then we allocate a new b_pabd and copy the
6290 * data from buf into it.
6292 if (arc_can_share(hdr, lastbuf)) {
6293 arc_share_buf(hdr, lastbuf);
6294 } else {
6295 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6296 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6297 buf->b_data, psize);
6299 VERIFY3P(lastbuf->b_data, !=, NULL);
6300 } else if (HDR_SHARED_DATA(hdr)) {
6302 * Uncompressed shared buffers are always at the end
6303 * of the list. Compressed buffers don't have the
6304 * same requirements. This makes it hard to
6305 * simply assert that the lastbuf is shared so
6306 * we rely on the hdr's compression flags to determine
6307 * if we have a compressed, shared buffer.
6309 ASSERT(arc_buf_is_shared(lastbuf) ||
6310 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6311 ASSERT(!ARC_BUF_SHARED(buf));
6313 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6314 ASSERT3P(state, !=, arc_l2c_only);
6316 (void) zfs_refcount_remove_many(&state->arcs_size,
6317 arc_buf_size(buf), buf);
6319 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6320 ASSERT3P(state, !=, arc_l2c_only);
6321 (void) zfs_refcount_remove_many(
6322 &state->arcs_esize[type],
6323 arc_buf_size(buf), buf);
6326 hdr->b_l1hdr.b_bufcnt -= 1;
6327 if (ARC_BUF_ENCRYPTED(buf))
6328 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6330 arc_cksum_verify(buf);
6331 arc_buf_unwatch(buf);
6333 /* if this is the last uncompressed buf free the checksum */
6334 if (!arc_hdr_has_uncompressed_buf(hdr))
6335 arc_cksum_free(hdr);
6337 mutex_exit(hash_lock);
6340 * Allocate a new hdr. The new hdr will contain a b_pabd
6341 * buffer which will be freed in arc_write().
6343 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6344 compress, type, HDR_HAS_RABD(hdr));
6345 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6346 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6347 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6348 VERIFY3U(nhdr->b_type, ==, type);
6349 ASSERT(!HDR_SHARED_DATA(nhdr));
6351 nhdr->b_l1hdr.b_buf = buf;
6352 nhdr->b_l1hdr.b_bufcnt = 1;
6353 if (ARC_BUF_ENCRYPTED(buf))
6354 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6355 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6356 buf->b_hdr = nhdr;
6358 mutex_exit(&buf->b_evict_lock);
6359 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6360 arc_buf_size(buf), buf);
6361 } else {
6362 mutex_exit(&buf->b_evict_lock);
6363 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6364 /* protected by hash lock, or hdr is on arc_anon */
6365 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6366 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6367 arc_change_state(arc_anon, hdr, hash_lock);
6368 hdr->b_l1hdr.b_arc_access = 0;
6370 mutex_exit(hash_lock);
6371 buf_discard_identity(hdr);
6372 arc_buf_thaw(buf);
6377 arc_released(arc_buf_t *buf)
6379 int released;
6381 mutex_enter(&buf->b_evict_lock);
6382 released = (buf->b_data != NULL &&
6383 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6384 mutex_exit(&buf->b_evict_lock);
6385 return (released);
6388 #ifdef ZFS_DEBUG
6390 arc_referenced(arc_buf_t *buf)
6392 int referenced;
6394 mutex_enter(&buf->b_evict_lock);
6395 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6396 mutex_exit(&buf->b_evict_lock);
6397 return (referenced);
6399 #endif
6401 static void
6402 arc_write_ready(zio_t *zio)
6404 arc_write_callback_t *callback = zio->io_private;
6405 arc_buf_t *buf = callback->awcb_buf;
6406 arc_buf_hdr_t *hdr = buf->b_hdr;
6407 blkptr_t *bp = zio->io_bp;
6408 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6410 ASSERT(HDR_HAS_L1HDR(hdr));
6411 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6412 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6415 * If we're reexecuting this zio because the pool suspended, then
6416 * cleanup any state that was previously set the first time the
6417 * callback was invoked.
6419 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6420 arc_cksum_free(hdr);
6421 arc_buf_unwatch(buf);
6422 if (hdr->b_l1hdr.b_pabd != NULL) {
6423 if (arc_buf_is_shared(buf)) {
6424 arc_unshare_buf(hdr, buf);
6425 } else {
6426 arc_hdr_free_pabd(hdr, B_FALSE);
6430 if (HDR_HAS_RABD(hdr))
6431 arc_hdr_free_pabd(hdr, B_TRUE);
6433 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6434 ASSERT(!HDR_HAS_RABD(hdr));
6435 ASSERT(!HDR_SHARED_DATA(hdr));
6436 ASSERT(!arc_buf_is_shared(buf));
6438 callback->awcb_ready(zio, buf, callback->awcb_private);
6440 if (HDR_IO_IN_PROGRESS(hdr))
6441 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6443 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6445 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6446 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6448 if (BP_IS_PROTECTED(bp)) {
6449 /* ZIL blocks are written through zio_rewrite */
6450 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6451 ASSERT(HDR_PROTECTED(hdr));
6453 if (BP_SHOULD_BYTESWAP(bp)) {
6454 if (BP_GET_LEVEL(bp) > 0) {
6455 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6456 } else {
6457 hdr->b_l1hdr.b_byteswap =
6458 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6460 } else {
6461 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6464 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6465 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6466 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6467 hdr->b_crypt_hdr.b_iv);
6468 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6472 * If this block was written for raw encryption but the zio layer
6473 * ended up only authenticating it, adjust the buffer flags now.
6475 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6476 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6477 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6478 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6479 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6480 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6481 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6482 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6485 /* this must be done after the buffer flags are adjusted */
6486 arc_cksum_compute(buf);
6488 enum zio_compress compress;
6489 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6490 compress = ZIO_COMPRESS_OFF;
6491 } else {
6492 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6493 compress = BP_GET_COMPRESS(bp);
6495 HDR_SET_PSIZE(hdr, psize);
6496 arc_hdr_set_compress(hdr, compress);
6498 if (zio->io_error != 0 || psize == 0)
6499 goto out;
6502 * Fill the hdr with data. If the buffer is encrypted we have no choice
6503 * but to copy the data into b_rabd. If the hdr is compressed, the data
6504 * we want is available from the zio, otherwise we can take it from
6505 * the buf.
6507 * We might be able to share the buf's data with the hdr here. However,
6508 * doing so would cause the ARC to be full of linear ABDs if we write a
6509 * lot of shareable data. As a compromise, we check whether scattered
6510 * ABDs are allowed, and assume that if they are then the user wants
6511 * the ARC to be primarily filled with them regardless of the data being
6512 * written. Therefore, if they're allowed then we allocate one and copy
6513 * the data into it; otherwise, we share the data directly if we can.
6515 if (ARC_BUF_ENCRYPTED(buf)) {
6516 ASSERT3U(psize, >, 0);
6517 ASSERT(ARC_BUF_COMPRESSED(buf));
6518 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6519 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6520 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6522 * Ideally, we would always copy the io_abd into b_pabd, but the
6523 * user may have disabled compressed ARC, thus we must check the
6524 * hdr's compression setting rather than the io_bp's.
6526 if (BP_IS_ENCRYPTED(bp)) {
6527 ASSERT3U(psize, >, 0);
6528 arc_hdr_alloc_pabd(hdr,
6529 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6530 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6531 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6532 !ARC_BUF_COMPRESSED(buf)) {
6533 ASSERT3U(psize, >, 0);
6534 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6535 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6536 } else {
6537 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6538 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6539 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6540 arc_buf_size(buf));
6542 } else {
6543 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6544 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6545 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6546 arc_share_buf(hdr, buf);
6549 out:
6550 arc_hdr_verify(hdr, bp);
6553 static void
6554 arc_write_children_ready(zio_t *zio)
6556 arc_write_callback_t *callback = zio->io_private;
6557 arc_buf_t *buf = callback->awcb_buf;
6559 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6563 * The SPA calls this callback for each physical write that happens on behalf
6564 * of a logical write. See the comment in dbuf_write_physdone() for details.
6566 static void
6567 arc_write_physdone(zio_t *zio)
6569 arc_write_callback_t *cb = zio->io_private;
6570 if (cb->awcb_physdone != NULL)
6571 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6574 static void
6575 arc_write_done(zio_t *zio)
6577 arc_write_callback_t *callback = zio->io_private;
6578 arc_buf_t *buf = callback->awcb_buf;
6579 arc_buf_hdr_t *hdr = buf->b_hdr;
6581 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6583 if (zio->io_error == 0) {
6584 arc_hdr_verify(hdr, zio->io_bp);
6586 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6587 buf_discard_identity(hdr);
6588 } else {
6589 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6590 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6592 } else {
6593 ASSERT(HDR_EMPTY(hdr));
6597 * If the block to be written was all-zero or compressed enough to be
6598 * embedded in the BP, no write was performed so there will be no
6599 * dva/birth/checksum. The buffer must therefore remain anonymous
6600 * (and uncached).
6602 if (!HDR_EMPTY(hdr)) {
6603 arc_buf_hdr_t *exists;
6604 kmutex_t *hash_lock;
6606 ASSERT3U(zio->io_error, ==, 0);
6608 arc_cksum_verify(buf);
6610 exists = buf_hash_insert(hdr, &hash_lock);
6611 if (exists != NULL) {
6613 * This can only happen if we overwrite for
6614 * sync-to-convergence, because we remove
6615 * buffers from the hash table when we arc_free().
6617 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6618 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6619 panic("bad overwrite, hdr=%p exists=%p",
6620 (void *)hdr, (void *)exists);
6621 ASSERT(zfs_refcount_is_zero(
6622 &exists->b_l1hdr.b_refcnt));
6623 arc_change_state(arc_anon, exists, hash_lock);
6624 arc_hdr_destroy(exists);
6625 mutex_exit(hash_lock);
6626 exists = buf_hash_insert(hdr, &hash_lock);
6627 ASSERT3P(exists, ==, NULL);
6628 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6629 /* nopwrite */
6630 ASSERT(zio->io_prop.zp_nopwrite);
6631 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6632 panic("bad nopwrite, hdr=%p exists=%p",
6633 (void *)hdr, (void *)exists);
6634 } else {
6635 /* Dedup */
6636 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6637 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6638 ASSERT(BP_GET_DEDUP(zio->io_bp));
6639 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6642 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6643 /* if it's not anon, we are doing a scrub */
6644 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6645 arc_access(hdr, hash_lock);
6646 mutex_exit(hash_lock);
6647 } else {
6648 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6651 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6652 callback->awcb_done(zio, buf, callback->awcb_private);
6654 abd_put(zio->io_abd);
6655 kmem_free(callback, sizeof (arc_write_callback_t));
6658 zio_t *
6659 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6660 boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6661 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6662 arc_write_done_func_t *done, void *private, zio_priority_t priority,
6663 int zio_flags, const zbookmark_phys_t *zb)
6665 arc_buf_hdr_t *hdr = buf->b_hdr;
6666 arc_write_callback_t *callback;
6667 zio_t *zio;
6668 zio_prop_t localprop = *zp;
6670 ASSERT3P(ready, !=, NULL);
6671 ASSERT3P(done, !=, NULL);
6672 ASSERT(!HDR_IO_ERROR(hdr));
6673 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6674 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6675 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6676 if (l2arc)
6677 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6679 if (ARC_BUF_ENCRYPTED(buf)) {
6680 ASSERT(ARC_BUF_COMPRESSED(buf));
6681 localprop.zp_encrypt = B_TRUE;
6682 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6683 /* CONSTCOND */
6684 localprop.zp_byteorder =
6685 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6686 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6687 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6688 ZIO_DATA_SALT_LEN);
6689 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6690 ZIO_DATA_IV_LEN);
6691 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6692 ZIO_DATA_MAC_LEN);
6693 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6694 localprop.zp_nopwrite = B_FALSE;
6695 localprop.zp_copies =
6696 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6698 zio_flags |= ZIO_FLAG_RAW;
6699 } else if (ARC_BUF_COMPRESSED(buf)) {
6700 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6701 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6702 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6705 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6706 callback->awcb_ready = ready;
6707 callback->awcb_children_ready = children_ready;
6708 callback->awcb_physdone = physdone;
6709 callback->awcb_done = done;
6710 callback->awcb_private = private;
6711 callback->awcb_buf = buf;
6714 * The hdr's b_pabd is now stale, free it now. A new data block
6715 * will be allocated when the zio pipeline calls arc_write_ready().
6717 if (hdr->b_l1hdr.b_pabd != NULL) {
6719 * If the buf is currently sharing the data block with
6720 * the hdr then we need to break that relationship here.
6721 * The hdr will remain with a NULL data pointer and the
6722 * buf will take sole ownership of the block.
6724 if (arc_buf_is_shared(buf)) {
6725 arc_unshare_buf(hdr, buf);
6726 } else {
6727 arc_hdr_free_pabd(hdr, B_FALSE);
6729 VERIFY3P(buf->b_data, !=, NULL);
6732 if (HDR_HAS_RABD(hdr))
6733 arc_hdr_free_pabd(hdr, B_TRUE);
6735 if (!(zio_flags & ZIO_FLAG_RAW))
6736 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6738 ASSERT(!arc_buf_is_shared(buf));
6739 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6741 zio = zio_write(pio, spa, txg, bp,
6742 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6743 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6744 (children_ready != NULL) ? arc_write_children_ready : NULL,
6745 arc_write_physdone, arc_write_done, callback,
6746 priority, zio_flags, zb);
6748 return (zio);
6751 static int
6752 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6754 #ifdef _KERNEL
6755 uint64_t available_memory = ptob(freemem);
6758 if (freemem > physmem * arc_lotsfree_percent / 100)
6759 return (0);
6761 if (txg > spa->spa_lowmem_last_txg) {
6762 spa->spa_lowmem_last_txg = txg;
6763 spa->spa_lowmem_page_load = 0;
6766 * If we are in pageout, we know that memory is already tight,
6767 * the arc is already going to be evicting, so we just want to
6768 * continue to let page writes occur as quickly as possible.
6770 if (curproc == proc_pageout) {
6771 if (spa->spa_lowmem_page_load >
6772 MAX(ptob(minfree), available_memory) / 4)
6773 return (SET_ERROR(ERESTART));
6774 /* Note: reserve is inflated, so we deflate */
6775 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6776 return (0);
6777 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6778 /* memory is low, delay before restarting */
6779 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6780 return (SET_ERROR(EAGAIN));
6782 spa->spa_lowmem_page_load = 0;
6783 #endif /* _KERNEL */
6784 return (0);
6788 * In more extreme cases, return B_TRUE if system memory is tight enough
6789 * that ZFS should defer work requiring new allocations.
6791 boolean_t
6792 arc_memory_is_low(void)
6794 #ifdef _KERNEL
6795 if (freemem < minfree + needfree)
6796 return (B_TRUE);
6797 #endif /* _KERNEL */
6798 return (B_FALSE);
6801 void
6802 arc_tempreserve_clear(uint64_t reserve)
6804 atomic_add_64(&arc_tempreserve, -reserve);
6805 ASSERT((int64_t)arc_tempreserve >= 0);
6809 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6811 int error;
6812 uint64_t anon_size;
6814 if (reserve > arc_c/4 && !arc_no_grow)
6815 arc_c = MIN(arc_c_max, reserve * 4);
6816 if (reserve > arc_c)
6817 return (SET_ERROR(ENOMEM));
6820 * Don't count loaned bufs as in flight dirty data to prevent long
6821 * network delays from blocking transactions that are ready to be
6822 * assigned to a txg.
6825 /* assert that it has not wrapped around */
6826 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6828 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6829 arc_loaned_bytes), 0);
6832 * Writes will, almost always, require additional memory allocations
6833 * in order to compress/encrypt/etc the data. We therefore need to
6834 * make sure that there is sufficient available memory for this.
6836 error = arc_memory_throttle(spa, reserve, txg);
6837 if (error != 0)
6838 return (error);
6841 * Throttle writes when the amount of dirty data in the cache
6842 * gets too large. We try to keep the cache less than half full
6843 * of dirty blocks so that our sync times don't grow too large.
6845 * In the case of one pool being built on another pool, we want
6846 * to make sure we don't end up throttling the lower (backing)
6847 * pool when the upper pool is the majority contributor to dirty
6848 * data. To insure we make forward progress during throttling, we
6849 * also check the current pool's net dirty data and only throttle
6850 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6851 * data in the cache.
6853 * Note: if two requests come in concurrently, we might let them
6854 * both succeed, when one of them should fail. Not a huge deal.
6856 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6857 uint64_t spa_dirty_anon = spa_dirty_data(spa);
6859 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6860 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6861 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6862 uint64_t meta_esize =
6863 zfs_refcount_count(
6864 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6865 uint64_t data_esize =
6866 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6867 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6868 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6869 arc_tempreserve >> 10, meta_esize >> 10,
6870 data_esize >> 10, reserve >> 10, arc_c >> 10);
6871 return (SET_ERROR(ERESTART));
6873 atomic_add_64(&arc_tempreserve, reserve);
6874 return (0);
6877 static void
6878 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6879 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6881 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6882 evict_data->value.ui64 =
6883 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6884 evict_metadata->value.ui64 =
6885 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6888 static int
6889 arc_kstat_update(kstat_t *ksp, int rw)
6891 arc_stats_t *as = ksp->ks_data;
6893 if (rw == KSTAT_WRITE) {
6894 return (EACCES);
6895 } else {
6896 arc_kstat_update_state(arc_anon,
6897 &as->arcstat_anon_size,
6898 &as->arcstat_anon_evictable_data,
6899 &as->arcstat_anon_evictable_metadata);
6900 arc_kstat_update_state(arc_mru,
6901 &as->arcstat_mru_size,
6902 &as->arcstat_mru_evictable_data,
6903 &as->arcstat_mru_evictable_metadata);
6904 arc_kstat_update_state(arc_mru_ghost,
6905 &as->arcstat_mru_ghost_size,
6906 &as->arcstat_mru_ghost_evictable_data,
6907 &as->arcstat_mru_ghost_evictable_metadata);
6908 arc_kstat_update_state(arc_mfu,
6909 &as->arcstat_mfu_size,
6910 &as->arcstat_mfu_evictable_data,
6911 &as->arcstat_mfu_evictable_metadata);
6912 arc_kstat_update_state(arc_mfu_ghost,
6913 &as->arcstat_mfu_ghost_size,
6914 &as->arcstat_mfu_ghost_evictable_data,
6915 &as->arcstat_mfu_ghost_evictable_metadata);
6917 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6918 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6919 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6920 ARCSTAT(arcstat_metadata_size) =
6921 aggsum_value(&astat_metadata_size);
6922 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6923 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6924 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6927 return (0);
6931 * This function *must* return indices evenly distributed between all
6932 * sublists of the multilist. This is needed due to how the ARC eviction
6933 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6934 * distributed between all sublists and uses this assumption when
6935 * deciding which sublist to evict from and how much to evict from it.
6937 unsigned int
6938 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6940 arc_buf_hdr_t *hdr = obj;
6943 * We rely on b_dva to generate evenly distributed index
6944 * numbers using buf_hash below. So, as an added precaution,
6945 * let's make sure we never add empty buffers to the arc lists.
6947 ASSERT(!HDR_EMPTY(hdr));
6950 * The assumption here, is the hash value for a given
6951 * arc_buf_hdr_t will remain constant throughout its lifetime
6952 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6953 * Thus, we don't need to store the header's sublist index
6954 * on insertion, as this index can be recalculated on removal.
6956 * Also, the low order bits of the hash value are thought to be
6957 * distributed evenly. Otherwise, in the case that the multilist
6958 * has a power of two number of sublists, each sublists' usage
6959 * would not be evenly distributed.
6961 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6962 multilist_get_num_sublists(ml));
6965 static void
6966 arc_state_init(void)
6968 arc_anon = &ARC_anon;
6969 arc_mru = &ARC_mru;
6970 arc_mru_ghost = &ARC_mru_ghost;
6971 arc_mfu = &ARC_mfu;
6972 arc_mfu_ghost = &ARC_mfu_ghost;
6973 arc_l2c_only = &ARC_l2c_only;
6975 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6976 multilist_create(sizeof (arc_buf_hdr_t),
6977 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6978 arc_state_multilist_index_func);
6979 arc_mru->arcs_list[ARC_BUFC_DATA] =
6980 multilist_create(sizeof (arc_buf_hdr_t),
6981 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6982 arc_state_multilist_index_func);
6983 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6984 multilist_create(sizeof (arc_buf_hdr_t),
6985 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6986 arc_state_multilist_index_func);
6987 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6988 multilist_create(sizeof (arc_buf_hdr_t),
6989 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6990 arc_state_multilist_index_func);
6991 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6992 multilist_create(sizeof (arc_buf_hdr_t),
6993 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6994 arc_state_multilist_index_func);
6995 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6996 multilist_create(sizeof (arc_buf_hdr_t),
6997 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6998 arc_state_multilist_index_func);
6999 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7000 multilist_create(sizeof (arc_buf_hdr_t),
7001 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7002 arc_state_multilist_index_func);
7003 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7004 multilist_create(sizeof (arc_buf_hdr_t),
7005 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7006 arc_state_multilist_index_func);
7007 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7008 multilist_create(sizeof (arc_buf_hdr_t),
7009 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7010 arc_state_multilist_index_func);
7011 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7012 multilist_create(sizeof (arc_buf_hdr_t),
7013 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7014 arc_state_multilist_index_func);
7016 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7017 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7018 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7019 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7020 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7021 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7022 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7023 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7024 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7025 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7026 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7027 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7029 zfs_refcount_create(&arc_anon->arcs_size);
7030 zfs_refcount_create(&arc_mru->arcs_size);
7031 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7032 zfs_refcount_create(&arc_mfu->arcs_size);
7033 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7034 zfs_refcount_create(&arc_l2c_only->arcs_size);
7036 aggsum_init(&arc_meta_used, 0);
7037 aggsum_init(&arc_size, 0);
7038 aggsum_init(&astat_data_size, 0);
7039 aggsum_init(&astat_metadata_size, 0);
7040 aggsum_init(&astat_hdr_size, 0);
7041 aggsum_init(&astat_other_size, 0);
7042 aggsum_init(&astat_l2_hdr_size, 0);
7044 arc_anon->arcs_state = ARC_STATE_ANON;
7045 arc_mru->arcs_state = ARC_STATE_MRU;
7046 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7047 arc_mfu->arcs_state = ARC_STATE_MFU;
7048 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7049 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7052 static void
7053 arc_state_fini(void)
7055 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7056 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7057 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7058 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7059 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7060 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7061 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7062 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7063 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7064 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7065 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7066 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7068 zfs_refcount_destroy(&arc_anon->arcs_size);
7069 zfs_refcount_destroy(&arc_mru->arcs_size);
7070 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7071 zfs_refcount_destroy(&arc_mfu->arcs_size);
7072 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7073 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7075 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7076 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7077 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7078 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7079 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7080 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7081 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7082 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7083 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7084 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7086 aggsum_fini(&arc_meta_used);
7087 aggsum_fini(&arc_size);
7088 aggsum_fini(&astat_data_size);
7089 aggsum_fini(&astat_metadata_size);
7090 aggsum_fini(&astat_hdr_size);
7091 aggsum_fini(&astat_other_size);
7092 aggsum_fini(&astat_l2_hdr_size);
7096 uint64_t
7097 arc_max_bytes(void)
7099 return (arc_c_max);
7102 void
7103 arc_init(void)
7106 * allmem is "all memory that we could possibly use".
7108 #ifdef _KERNEL
7109 uint64_t allmem = ptob(physmem - swapfs_minfree);
7110 #else
7111 uint64_t allmem = (physmem * PAGESIZE) / 2;
7112 #endif
7113 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7114 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7117 * Set the minimum cache size to 1/64 of all memory, with a hard
7118 * minimum of 64MB.
7120 arc_c_min = MAX(allmem / 64, 64 << 20);
7122 * In a system with a lot of physical memory this will still result in
7123 * an ARC size floor that is quite large in absolute terms. Cap the
7124 * growth of the value at 1GB.
7126 arc_c_min = MIN(arc_c_min, 1 << 30);
7128 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
7129 if (allmem >= 1 << 30)
7130 arc_c_max = allmem - (1 << 30);
7131 else
7132 arc_c_max = arc_c_min;
7133 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
7136 * In userland, there's only the memory pressure that we artificially
7137 * create (see arc_available_memory()). Don't let arc_c get too
7138 * small, because it can cause transactions to be larger than
7139 * arc_c, causing arc_tempreserve_space() to fail.
7141 #ifndef _KERNEL
7142 arc_c_min = arc_c_max / 2;
7143 #endif
7146 * Allow the tunables to override our calculations if they are
7147 * reasonable (ie. over 64MB)
7149 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
7150 arc_c_max = zfs_arc_max;
7151 arc_c_min = MIN(arc_c_min, arc_c_max);
7153 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
7154 arc_c_min = zfs_arc_min;
7156 arc_c = arc_c_max;
7157 arc_p = (arc_c >> 1);
7159 /* limit meta-data to 1/4 of the arc capacity */
7160 arc_meta_limit = arc_c_max / 4;
7162 #ifdef _KERNEL
7164 * Metadata is stored in the kernel's heap. Don't let us
7165 * use more than half the heap for the ARC.
7167 arc_meta_limit = MIN(arc_meta_limit,
7168 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7169 #endif
7171 /* Allow the tunable to override if it is reasonable */
7172 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7173 arc_meta_limit = zfs_arc_meta_limit;
7175 if (zfs_arc_meta_min > 0) {
7176 arc_meta_min = zfs_arc_meta_min;
7177 } else {
7178 arc_meta_min = arc_c_min / 2;
7181 if (zfs_arc_grow_retry > 0)
7182 arc_grow_retry = zfs_arc_grow_retry;
7184 if (zfs_arc_shrink_shift > 0)
7185 arc_shrink_shift = zfs_arc_shrink_shift;
7188 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7190 if (arc_no_grow_shift >= arc_shrink_shift)
7191 arc_no_grow_shift = arc_shrink_shift - 1;
7193 if (zfs_arc_p_min_shift > 0)
7194 arc_p_min_shift = zfs_arc_p_min_shift;
7196 /* if kmem_flags are set, lets try to use less memory */
7197 if (kmem_debugging())
7198 arc_c = arc_c / 2;
7199 if (arc_c < arc_c_min)
7200 arc_c = arc_c_min;
7202 arc_state_init();
7205 * The arc must be "uninitialized", so that hdr_recl() (which is
7206 * registered by buf_init()) will not access arc_reap_zthr before
7207 * it is created.
7209 ASSERT(!arc_initialized);
7210 buf_init();
7212 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7213 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7215 if (arc_ksp != NULL) {
7216 arc_ksp->ks_data = &arc_stats;
7217 arc_ksp->ks_update = arc_kstat_update;
7218 kstat_install(arc_ksp);
7221 arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7222 arc_adjust_cb, NULL);
7223 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7224 arc_reap_cb, NULL, SEC2NSEC(1));
7226 arc_initialized = B_TRUE;
7227 arc_warm = B_FALSE;
7230 * Calculate maximum amount of dirty data per pool.
7232 * If it has been set by /etc/system, take that.
7233 * Otherwise, use a percentage of physical memory defined by
7234 * zfs_dirty_data_max_percent (default 10%) with a cap at
7235 * zfs_dirty_data_max_max (default 4GB).
7237 if (zfs_dirty_data_max == 0) {
7238 zfs_dirty_data_max = physmem * PAGESIZE *
7239 zfs_dirty_data_max_percent / 100;
7240 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7241 zfs_dirty_data_max_max);
7245 void
7246 arc_fini(void)
7248 /* Use B_TRUE to ensure *all* buffers are evicted */
7249 arc_flush(NULL, B_TRUE);
7251 arc_initialized = B_FALSE;
7253 if (arc_ksp != NULL) {
7254 kstat_delete(arc_ksp);
7255 arc_ksp = NULL;
7258 (void) zthr_cancel(arc_adjust_zthr);
7259 zthr_destroy(arc_adjust_zthr);
7261 (void) zthr_cancel(arc_reap_zthr);
7262 zthr_destroy(arc_reap_zthr);
7264 mutex_destroy(&arc_adjust_lock);
7265 cv_destroy(&arc_adjust_waiters_cv);
7268 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7269 * trigger the release of kmem magazines, which can callback to
7270 * arc_space_return() which accesses aggsums freed in act_state_fini().
7272 buf_fini();
7273 arc_state_fini();
7275 ASSERT0(arc_loaned_bytes);
7279 * Level 2 ARC
7281 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7282 * It uses dedicated storage devices to hold cached data, which are populated
7283 * using large infrequent writes. The main role of this cache is to boost
7284 * the performance of random read workloads. The intended L2ARC devices
7285 * include short-stroked disks, solid state disks, and other media with
7286 * substantially faster read latency than disk.
7288 * +-----------------------+
7289 * | ARC |
7290 * +-----------------------+
7291 * | ^ ^
7292 * | | |
7293 * l2arc_feed_thread() arc_read()
7294 * | | |
7295 * | l2arc read |
7296 * V | |
7297 * +---------------+ |
7298 * | L2ARC | |
7299 * +---------------+ |
7300 * | ^ |
7301 * l2arc_write() | |
7302 * | | |
7303 * V | |
7304 * +-------+ +-------+
7305 * | vdev | | vdev |
7306 * | cache | | cache |
7307 * +-------+ +-------+
7308 * +=========+ .-----.
7309 * : L2ARC : |-_____-|
7310 * : devices : | Disks |
7311 * +=========+ `-_____-'
7313 * Read requests are satisfied from the following sources, in order:
7315 * 1) ARC
7316 * 2) vdev cache of L2ARC devices
7317 * 3) L2ARC devices
7318 * 4) vdev cache of disks
7319 * 5) disks
7321 * Some L2ARC device types exhibit extremely slow write performance.
7322 * To accommodate for this there are some significant differences between
7323 * the L2ARC and traditional cache design:
7325 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7326 * the ARC behave as usual, freeing buffers and placing headers on ghost
7327 * lists. The ARC does not send buffers to the L2ARC during eviction as
7328 * this would add inflated write latencies for all ARC memory pressure.
7330 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7331 * It does this by periodically scanning buffers from the eviction-end of
7332 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7333 * not already there. It scans until a headroom of buffers is satisfied,
7334 * which itself is a buffer for ARC eviction. If a compressible buffer is
7335 * found during scanning and selected for writing to an L2ARC device, we
7336 * temporarily boost scanning headroom during the next scan cycle to make
7337 * sure we adapt to compression effects (which might significantly reduce
7338 * the data volume we write to L2ARC). The thread that does this is
7339 * l2arc_feed_thread(), illustrated below; example sizes are included to
7340 * provide a better sense of ratio than this diagram:
7342 * head --> tail
7343 * +---------------------+----------+
7344 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7345 * +---------------------+----------+ | o L2ARC eligible
7346 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7347 * +---------------------+----------+ |
7348 * 15.9 Gbytes ^ 32 Mbytes |
7349 * headroom |
7350 * l2arc_feed_thread()
7352 * l2arc write hand <--[oooo]--'
7353 * | 8 Mbyte
7354 * | write max
7356 * +==============================+
7357 * L2ARC dev |####|#|###|###| |####| ... |
7358 * +==============================+
7359 * 32 Gbytes
7361 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7362 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7363 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7364 * safe to say that this is an uncommon case, since buffers at the end of
7365 * the ARC lists have moved there due to inactivity.
7367 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7368 * then the L2ARC simply misses copying some buffers. This serves as a
7369 * pressure valve to prevent heavy read workloads from both stalling the ARC
7370 * with waits and clogging the L2ARC with writes. This also helps prevent
7371 * the potential for the L2ARC to churn if it attempts to cache content too
7372 * quickly, such as during backups of the entire pool.
7374 * 5. After system boot and before the ARC has filled main memory, there are
7375 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7376 * lists can remain mostly static. Instead of searching from tail of these
7377 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7378 * for eligible buffers, greatly increasing its chance of finding them.
7380 * The L2ARC device write speed is also boosted during this time so that
7381 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7382 * there are no L2ARC reads, and no fear of degrading read performance
7383 * through increased writes.
7385 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7386 * the vdev queue can aggregate them into larger and fewer writes. Each
7387 * device is written to in a rotor fashion, sweeping writes through
7388 * available space then repeating.
7390 * 7. The L2ARC does not store dirty content. It never needs to flush
7391 * write buffers back to disk based storage.
7393 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7394 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7396 * The performance of the L2ARC can be tweaked by a number of tunables, which
7397 * may be necessary for different workloads:
7399 * l2arc_write_max max write bytes per interval
7400 * l2arc_write_boost extra write bytes during device warmup
7401 * l2arc_noprefetch skip caching prefetched buffers
7402 * l2arc_headroom number of max device writes to precache
7403 * l2arc_headroom_boost when we find compressed buffers during ARC
7404 * scanning, we multiply headroom by this
7405 * percentage factor for the next scan cycle,
7406 * since more compressed buffers are likely to
7407 * be present
7408 * l2arc_feed_secs seconds between L2ARC writing
7410 * Tunables may be removed or added as future performance improvements are
7411 * integrated, and also may become zpool properties.
7413 * There are three key functions that control how the L2ARC warms up:
7415 * l2arc_write_eligible() check if a buffer is eligible to cache
7416 * l2arc_write_size() calculate how much to write
7417 * l2arc_write_interval() calculate sleep delay between writes
7419 * These three functions determine what to write, how much, and how quickly
7420 * to send writes.
7422 * L2ARC persistence:
7424 * When writing buffers to L2ARC, we periodically add some metadata to
7425 * make sure we can pick them up after reboot, thus dramatically reducing
7426 * the impact that any downtime has on the performance of storage systems
7427 * with large caches.
7429 * The implementation works fairly simply by integrating the following two
7430 * modifications:
7432 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7433 * which is an additional piece of metadata which describes what's been
7434 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
7435 * main ARC buffers. There are 2 linked-lists of log blocks headed by
7436 * dh_start_lbps[2]. We alternate which chain we append to, so they are
7437 * time-wise and offset-wise interleaved, but that is an optimization rather
7438 * than for correctness. The log block also includes a pointer to the
7439 * previous block in its chain.
7441 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7442 * for our header bookkeeping purposes. This contains a device header,
7443 * which contains our top-level reference structures. We update it each
7444 * time we write a new log block, so that we're able to locate it in the
7445 * L2ARC device. If this write results in an inconsistent device header
7446 * (e.g. due to power failure), we detect this by verifying the header's
7447 * checksum and simply fail to reconstruct the L2ARC after reboot.
7449 * Implementation diagram:
7451 * +=== L2ARC device (not to scale) ======================================+
7452 * | ___two newest log block pointers__.__________ |
7453 * | / \dh_start_lbps[1] |
7454 * | / \ \dh_start_lbps[0]|
7455 * |.___/__. V V |
7456 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7457 * || hdr| ^ /^ /^ / / |
7458 * |+------+ ...--\-------/ \-----/--\------/ / |
7459 * | \--------------/ \--------------/ |
7460 * +======================================================================+
7462 * As can be seen on the diagram, rather than using a simple linked list,
7463 * we use a pair of linked lists with alternating elements. This is a
7464 * performance enhancement due to the fact that we only find out the
7465 * address of the next log block access once the current block has been
7466 * completely read in. Obviously, this hurts performance, because we'd be
7467 * keeping the device's I/O queue at only a 1 operation deep, thus
7468 * incurring a large amount of I/O round-trip latency. Having two lists
7469 * allows us to fetch two log blocks ahead of where we are currently
7470 * rebuilding L2ARC buffers.
7472 * On-device data structures:
7474 * L2ARC device header: l2arc_dev_hdr_phys_t
7475 * L2ARC log block: l2arc_log_blk_phys_t
7477 * L2ARC reconstruction:
7479 * When writing data, we simply write in the standard rotary fashion,
7480 * evicting buffers as we go and simply writing new data over them (writing
7481 * a new log block every now and then). This obviously means that once we
7482 * loop around the end of the device, we will start cutting into an already
7483 * committed log block (and its referenced data buffers), like so:
7485 * current write head__ __old tail
7486 * \ /
7487 * V V
7488 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
7489 * ^ ^^^^^^^^^___________________________________
7490 * | \
7491 * <<nextwrite>> may overwrite this blk and/or its bufs --'
7493 * When importing the pool, we detect this situation and use it to stop
7494 * our scanning process (see l2arc_rebuild).
7496 * There is one significant caveat to consider when rebuilding ARC contents
7497 * from an L2ARC device: what about invalidated buffers? Given the above
7498 * construction, we cannot update blocks which we've already written to amend
7499 * them to remove buffers which were invalidated. Thus, during reconstruction,
7500 * we might be populating the cache with buffers for data that's not on the
7501 * main pool anymore, or may have been overwritten!
7503 * As it turns out, this isn't a problem. Every arc_read request includes
7504 * both the DVA and, crucially, the birth TXG of the BP the caller is
7505 * looking for. So even if the cache were populated by completely rotten
7506 * blocks for data that had been long deleted and/or overwritten, we'll
7507 * never actually return bad data from the cache, since the DVA with the
7508 * birth TXG uniquely identify a block in space and time - once created,
7509 * a block is immutable on disk. The worst thing we have done is wasted
7510 * some time and memory at l2arc rebuild to reconstruct outdated ARC
7511 * entries that will get dropped from the l2arc as it is being updated
7512 * with new blocks.
7514 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7515 * hand are not restored. This is done by saving the offset (in bytes)
7516 * l2arc_evict() has evicted to in the L2ARC device header and taking it
7517 * into account when restoring buffers.
7520 static boolean_t
7521 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7524 * A buffer is *not* eligible for the L2ARC if it:
7525 * 1. belongs to a different spa.
7526 * 2. is already cached on the L2ARC.
7527 * 3. has an I/O in progress (it may be an incomplete read).
7528 * 4. is flagged not eligible (zfs property).
7529 * 5. is a prefetch and l2arc_noprefetch is set.
7531 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7532 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) ||
7533 (l2arc_noprefetch && HDR_PREFETCH(hdr)))
7534 return (B_FALSE);
7536 return (B_TRUE);
7539 static uint64_t
7540 l2arc_write_size(l2arc_dev_t *dev)
7542 uint64_t size, dev_size;
7545 * Make sure our globals have meaningful values in case the user
7546 * altered them.
7548 size = l2arc_write_max;
7549 if (size == 0) {
7550 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7551 "be greater than zero, resetting it to the default (%d)",
7552 L2ARC_WRITE_SIZE);
7553 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7556 if (arc_warm == B_FALSE)
7557 size += l2arc_write_boost;
7560 * Make sure the write size does not exceed the size of the cache
7561 * device. This is important in l2arc_evict(), otherwise infinite
7562 * iteration can occur.
7564 dev_size = dev->l2ad_end - dev->l2ad_start;
7565 if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) {
7566 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7567 "plus the overhead of log blocks (persistent L2ARC, "
7568 "%" PRIu64 " bytes) exceeds the size of the cache device "
7569 "(guid %" PRIu64 "), resetting them to the default (%d)",
7570 l2arc_log_blk_overhead(size, dev),
7571 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7572 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7574 if (arc_warm == B_FALSE)
7575 size += l2arc_write_boost;
7578 return (size);
7582 static clock_t
7583 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7585 clock_t interval, next, now;
7588 * If the ARC lists are busy, increase our write rate; if the
7589 * lists are stale, idle back. This is achieved by checking
7590 * how much we previously wrote - if it was more than half of
7591 * what we wanted, schedule the next write much sooner.
7593 if (l2arc_feed_again && wrote > (wanted / 2))
7594 interval = (hz * l2arc_feed_min_ms) / 1000;
7595 else
7596 interval = hz * l2arc_feed_secs;
7598 now = ddi_get_lbolt();
7599 next = MAX(now, MIN(now + interval, began + interval));
7601 return (next);
7605 * Cycle through L2ARC devices. This is how L2ARC load balances.
7606 * If a device is returned, this also returns holding the spa config lock.
7608 static l2arc_dev_t *
7609 l2arc_dev_get_next(void)
7611 l2arc_dev_t *first, *next = NULL;
7614 * Lock out the removal of spas (spa_namespace_lock), then removal
7615 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7616 * both locks will be dropped and a spa config lock held instead.
7618 mutex_enter(&spa_namespace_lock);
7619 mutex_enter(&l2arc_dev_mtx);
7621 /* if there are no vdevs, there is nothing to do */
7622 if (l2arc_ndev == 0)
7623 goto out;
7625 first = NULL;
7626 next = l2arc_dev_last;
7627 do {
7628 /* loop around the list looking for a non-faulted vdev */
7629 if (next == NULL) {
7630 next = list_head(l2arc_dev_list);
7631 } else {
7632 next = list_next(l2arc_dev_list, next);
7633 if (next == NULL)
7634 next = list_head(l2arc_dev_list);
7637 /* if we have come back to the start, bail out */
7638 if (first == NULL)
7639 first = next;
7640 else if (next == first)
7641 break;
7643 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
7645 /* if we were unable to find any usable vdevs, return NULL */
7646 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
7647 next = NULL;
7649 l2arc_dev_last = next;
7651 out:
7652 mutex_exit(&l2arc_dev_mtx);
7655 * Grab the config lock to prevent the 'next' device from being
7656 * removed while we are writing to it.
7658 if (next != NULL)
7659 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7660 mutex_exit(&spa_namespace_lock);
7662 return (next);
7666 * Free buffers that were tagged for destruction.
7668 static void
7669 l2arc_do_free_on_write()
7671 list_t *buflist;
7672 l2arc_data_free_t *df, *df_prev;
7674 mutex_enter(&l2arc_free_on_write_mtx);
7675 buflist = l2arc_free_on_write;
7677 for (df = list_tail(buflist); df; df = df_prev) {
7678 df_prev = list_prev(buflist, df);
7679 ASSERT3P(df->l2df_abd, !=, NULL);
7680 abd_free(df->l2df_abd);
7681 list_remove(buflist, df);
7682 kmem_free(df, sizeof (l2arc_data_free_t));
7685 mutex_exit(&l2arc_free_on_write_mtx);
7689 * A write to a cache device has completed. Update all headers to allow
7690 * reads from these buffers to begin.
7692 static void
7693 l2arc_write_done(zio_t *zio)
7695 l2arc_write_callback_t *cb;
7696 l2arc_lb_abd_buf_t *abd_buf;
7697 l2arc_lb_ptr_buf_t *lb_ptr_buf;
7698 l2arc_dev_t *dev;
7699 l2arc_dev_hdr_phys_t *l2dhdr;
7700 list_t *buflist;
7701 arc_buf_hdr_t *head, *hdr, *hdr_prev;
7702 kmutex_t *hash_lock;
7703 int64_t bytes_dropped = 0;
7705 cb = zio->io_private;
7706 ASSERT3P(cb, !=, NULL);
7707 dev = cb->l2wcb_dev;
7708 l2dhdr = dev->l2ad_dev_hdr;
7709 ASSERT3P(dev, !=, NULL);
7710 head = cb->l2wcb_head;
7711 ASSERT3P(head, !=, NULL);
7712 buflist = &dev->l2ad_buflist;
7713 ASSERT3P(buflist, !=, NULL);
7714 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7715 l2arc_write_callback_t *, cb);
7718 * All writes completed, or an error was hit.
7720 top:
7721 mutex_enter(&dev->l2ad_mtx);
7722 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7723 hdr_prev = list_prev(buflist, hdr);
7725 hash_lock = HDR_LOCK(hdr);
7728 * We cannot use mutex_enter or else we can deadlock
7729 * with l2arc_write_buffers (due to swapping the order
7730 * the hash lock and l2ad_mtx are taken).
7732 if (!mutex_tryenter(hash_lock)) {
7734 * Missed the hash lock. We must retry so we
7735 * don't leave the ARC_FLAG_L2_WRITING bit set.
7737 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7740 * We don't want to rescan the headers we've
7741 * already marked as having been written out, so
7742 * we reinsert the head node so we can pick up
7743 * where we left off.
7745 list_remove(buflist, head);
7746 list_insert_after(buflist, hdr, head);
7748 mutex_exit(&dev->l2ad_mtx);
7751 * We wait for the hash lock to become available
7752 * to try and prevent busy waiting, and increase
7753 * the chance we'll be able to acquire the lock
7754 * the next time around.
7756 mutex_enter(hash_lock);
7757 mutex_exit(hash_lock);
7758 goto top;
7762 * We could not have been moved into the arc_l2c_only
7763 * state while in-flight due to our ARC_FLAG_L2_WRITING
7764 * bit being set. Let's just ensure that's being enforced.
7766 ASSERT(HDR_HAS_L1HDR(hdr));
7768 if (zio->io_error != 0) {
7770 * Error - drop L2ARC entry.
7772 list_remove(buflist, hdr);
7773 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7775 uint64_t psize = HDR_GET_PSIZE(hdr);
7776 l2arc_hdr_arcstats_decrement(hdr);
7778 bytes_dropped +=
7779 vdev_psize_to_asize(dev->l2ad_vdev, psize);
7780 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7781 arc_hdr_size(hdr), hdr);
7785 * Allow ARC to begin reads and ghost list evictions to
7786 * this L2ARC entry.
7788 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7790 mutex_exit(hash_lock);
7794 * Free the allocated abd buffers for writing the log blocks.
7795 * If the zio failed reclaim the allocated space and remove the
7796 * pointers to these log blocks from the log block pointer list
7797 * of the L2ARC device.
7799 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
7800 abd_free(abd_buf->abd);
7801 zio_buf_free(abd_buf, sizeof (*abd_buf));
7802 if (zio->io_error != 0) {
7803 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
7805 * L2BLK_GET_PSIZE returns aligned size for log
7806 * blocks.
7808 uint64_t asize =
7809 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
7810 bytes_dropped += asize;
7811 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
7812 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
7813 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
7814 lb_ptr_buf);
7815 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
7816 kmem_free(lb_ptr_buf->lb_ptr,
7817 sizeof (l2arc_log_blkptr_t));
7818 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
7821 list_destroy(&cb->l2wcb_abd_list);
7823 if (zio->io_error != 0) {
7824 ARCSTAT_BUMP(arcstat_l2_writes_error);
7827 * Restore the lbps array in the header to its previous state.
7828 * If the list of log block pointers is empty, zero out the
7829 * log block pointers in the device header.
7831 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
7832 for (int i = 0; i < 2; i++) {
7833 if (lb_ptr_buf == NULL) {
7835 * If the list is empty zero out the device
7836 * header. Otherwise zero out the second log
7837 * block pointer in the header.
7839 if (i == 0) {
7840 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
7841 } else {
7842 bzero(&l2dhdr->dh_start_lbps[i],
7843 sizeof (l2arc_log_blkptr_t));
7845 break;
7847 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
7848 sizeof (l2arc_log_blkptr_t));
7849 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
7850 lb_ptr_buf);
7854 atomic_inc_64(&l2arc_writes_done);
7855 list_remove(buflist, head);
7856 ASSERT(!HDR_HAS_L1HDR(head));
7857 kmem_cache_free(hdr_l2only_cache, head);
7858 mutex_exit(&dev->l2ad_mtx);
7860 ASSERT(dev->l2ad_vdev != NULL);
7861 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7863 l2arc_do_free_on_write();
7865 kmem_free(cb, sizeof (l2arc_write_callback_t));
7868 static int
7869 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7871 int ret;
7872 spa_t *spa = zio->io_spa;
7873 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7874 blkptr_t *bp = zio->io_bp;
7875 uint8_t salt[ZIO_DATA_SALT_LEN];
7876 uint8_t iv[ZIO_DATA_IV_LEN];
7877 uint8_t mac[ZIO_DATA_MAC_LEN];
7878 boolean_t no_crypt = B_FALSE;
7881 * ZIL data is never be written to the L2ARC, so we don't need
7882 * special handling for its unique MAC storage.
7884 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7885 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7886 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7889 * If the data was encrypted, decrypt it now. Note that
7890 * we must check the bp here and not the hdr, since the
7891 * hdr does not have its encryption parameters updated
7892 * until arc_read_done().
7894 if (BP_IS_ENCRYPTED(bp)) {
7895 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
7896 B_TRUE);
7898 zio_crypt_decode_params_bp(bp, salt, iv);
7899 zio_crypt_decode_mac_bp(bp, mac);
7901 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7902 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7903 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7904 hdr->b_l1hdr.b_pabd, &no_crypt);
7905 if (ret != 0) {
7906 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7907 goto error;
7911 * If we actually performed decryption, replace b_pabd
7912 * with the decrypted data. Otherwise we can just throw
7913 * our decryption buffer away.
7915 if (!no_crypt) {
7916 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7917 arc_hdr_size(hdr), hdr);
7918 hdr->b_l1hdr.b_pabd = eabd;
7919 zio->io_abd = eabd;
7920 } else {
7921 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7926 * If the L2ARC block was compressed, but ARC compression
7927 * is disabled we decompress the data into a new buffer and
7928 * replace the existing data.
7930 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
7931 !HDR_COMPRESSION_ENABLED(hdr)) {
7932 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
7933 B_TRUE);
7934 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
7936 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
7937 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
7938 HDR_GET_LSIZE(hdr));
7939 if (ret != 0) {
7940 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7941 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
7942 goto error;
7945 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7946 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7947 arc_hdr_size(hdr), hdr);
7948 hdr->b_l1hdr.b_pabd = cabd;
7949 zio->io_abd = cabd;
7950 zio->io_size = HDR_GET_LSIZE(hdr);
7953 return (0);
7955 error:
7956 return (ret);
7961 * A read to a cache device completed. Validate buffer contents before
7962 * handing over to the regular ARC routines.
7964 static void
7965 l2arc_read_done(zio_t *zio)
7967 int tfm_error = 0;
7968 l2arc_read_callback_t *cb = zio->io_private;
7969 arc_buf_hdr_t *hdr;
7970 kmutex_t *hash_lock;
7971 boolean_t valid_cksum;
7972 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
7973 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
7975 ASSERT3P(zio->io_vd, !=, NULL);
7976 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7978 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7980 ASSERT3P(cb, !=, NULL);
7981 hdr = cb->l2rcb_hdr;
7982 ASSERT3P(hdr, !=, NULL);
7984 hash_lock = HDR_LOCK(hdr);
7985 mutex_enter(hash_lock);
7986 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7989 * If the data was read into a temporary buffer,
7990 * move it and free the buffer.
7992 if (cb->l2rcb_abd != NULL) {
7993 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7994 if (zio->io_error == 0) {
7995 if (using_rdata) {
7996 abd_copy(hdr->b_crypt_hdr.b_rabd,
7997 cb->l2rcb_abd, arc_hdr_size(hdr));
7998 } else {
7999 abd_copy(hdr->b_l1hdr.b_pabd,
8000 cb->l2rcb_abd, arc_hdr_size(hdr));
8005 * The following must be done regardless of whether
8006 * there was an error:
8007 * - free the temporary buffer
8008 * - point zio to the real ARC buffer
8009 * - set zio size accordingly
8010 * These are required because zio is either re-used for
8011 * an I/O of the block in the case of the error
8012 * or the zio is passed to arc_read_done() and it
8013 * needs real data.
8015 abd_free(cb->l2rcb_abd);
8016 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8018 if (using_rdata) {
8019 ASSERT(HDR_HAS_RABD(hdr));
8020 zio->io_abd = zio->io_orig_abd =
8021 hdr->b_crypt_hdr.b_rabd;
8022 } else {
8023 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8024 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8028 ASSERT3P(zio->io_abd, !=, NULL);
8031 * Check this survived the L2ARC journey.
8033 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8034 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8035 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8036 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8038 valid_cksum = arc_cksum_is_equal(hdr, zio);
8041 * b_rabd will always match the data as it exists on disk if it is
8042 * being used. Therefore if we are reading into b_rabd we do not
8043 * attempt to untransform the data.
8045 if (valid_cksum && !using_rdata)
8046 tfm_error = l2arc_untransform(zio, cb);
8048 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8049 !HDR_L2_EVICTED(hdr)) {
8050 mutex_exit(hash_lock);
8051 zio->io_private = hdr;
8052 arc_read_done(zio);
8053 } else {
8055 * Buffer didn't survive caching. Increment stats and
8056 * reissue to the original storage device.
8058 if (zio->io_error != 0) {
8059 ARCSTAT_BUMP(arcstat_l2_io_error);
8060 } else {
8061 zio->io_error = SET_ERROR(EIO);
8063 if (!valid_cksum || tfm_error != 0)
8064 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8067 * If there's no waiter, issue an async i/o to the primary
8068 * storage now. If there *is* a waiter, the caller must
8069 * issue the i/o in a context where it's OK to block.
8071 if (zio->io_waiter == NULL) {
8072 zio_t *pio = zio_unique_parent(zio);
8073 void *abd = (using_rdata) ?
8074 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8076 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8078 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8079 abd, zio->io_size, arc_read_done,
8080 hdr, zio->io_priority, cb->l2rcb_flags,
8081 &cb->l2rcb_zb);
8084 * Original ZIO will be freed, so we need to update
8085 * ARC header with the new ZIO pointer to be used
8086 * by zio_change_priority() in arc_read().
8088 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8089 acb != NULL; acb = acb->acb_next)
8090 acb->acb_zio_head = zio;
8092 mutex_exit(hash_lock);
8093 zio_nowait(zio);
8094 } else {
8095 mutex_exit(hash_lock);
8099 kmem_free(cb, sizeof (l2arc_read_callback_t));
8103 * This is the list priority from which the L2ARC will search for pages to
8104 * cache. This is used within loops (0..3) to cycle through lists in the
8105 * desired order. This order can have a significant effect on cache
8106 * performance.
8108 * Currently the metadata lists are hit first, MFU then MRU, followed by
8109 * the data lists. This function returns a locked list, and also returns
8110 * the lock pointer.
8112 static multilist_sublist_t *
8113 l2arc_sublist_lock(int list_num)
8115 multilist_t *ml = NULL;
8116 unsigned int idx;
8118 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8120 switch (list_num) {
8121 case 0:
8122 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8123 break;
8124 case 1:
8125 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8126 break;
8127 case 2:
8128 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8129 break;
8130 case 3:
8131 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8132 break;
8133 default:
8134 return (NULL);
8138 * Return a randomly-selected sublist. This is acceptable
8139 * because the caller feeds only a little bit of data for each
8140 * call (8MB). Subsequent calls will result in different
8141 * sublists being selected.
8143 idx = multilist_get_random_index(ml);
8144 return (multilist_sublist_lock(ml, idx));
8148 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8149 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8150 * overhead in processing to make sure there is enough headroom available
8151 * when writing buffers.
8153 static inline uint64_t
8154 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8156 if (dev->l2ad_log_entries == 0) {
8157 return (0);
8158 } else {
8159 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8161 uint64_t log_blocks = (log_entries +
8162 dev->l2ad_log_entries - 1) /
8163 dev->l2ad_log_entries;
8165 return (vdev_psize_to_asize(dev->l2ad_vdev,
8166 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8171 * Evict buffers from the device write hand to the distance specified in
8172 * bytes. This distance may span populated buffers, it may span nothing.
8173 * This is clearing a region on the L2ARC device ready for writing.
8174 * If the 'all' boolean is set, every buffer is evicted.
8176 static void
8177 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8179 list_t *buflist;
8180 arc_buf_hdr_t *hdr, *hdr_prev;
8181 kmutex_t *hash_lock;
8182 uint64_t taddr;
8183 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8184 boolean_t rerun;
8186 buflist = &dev->l2ad_buflist;
8189 * We need to add in the worst case scenario of log block overhead.
8191 distance += l2arc_log_blk_overhead(distance, dev);
8193 top:
8194 rerun = B_FALSE;
8195 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8197 * When there is no space to accommodate upcoming writes,
8198 * evict to the end. Then bump the write and evict hands
8199 * to the start and iterate. This iteration does not
8200 * happen indefinitely as we make sure in
8201 * l2arc_write_size() that when the write hand is reset,
8202 * the write size does not exceed the end of the device.
8204 rerun = B_TRUE;
8205 taddr = dev->l2ad_end;
8206 } else {
8207 taddr = dev->l2ad_hand + distance;
8209 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8210 uint64_t, taddr, boolean_t, all);
8213 * This check has to be placed after deciding whether to iterate
8214 * (rerun).
8216 if (!all && dev->l2ad_first) {
8218 * This is the first sweep through the device. There is
8219 * nothing to evict.
8221 goto out;
8225 * When rebuilding L2ARC we retrieve the evict hand from the header of
8226 * the device. Of note, l2arc_evict() does not actually delete buffers
8227 * from the cache device, but keeping track of the evict hand will be
8228 * useful when TRIM is implemented.
8230 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8232 retry:
8233 mutex_enter(&dev->l2ad_mtx);
8235 * We have to account for evicted log blocks. Run vdev_space_update()
8236 * on log blocks whose offset (in bytes) is before the evicted offset
8237 * (in bytes) by searching in the list of pointers to log blocks
8238 * present in the L2ARC device.
8240 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8241 lb_ptr_buf = lb_ptr_buf_prev) {
8243 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8245 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8246 uint64_t asize = L2BLK_GET_PSIZE(
8247 (lb_ptr_buf->lb_ptr)->lbp_prop);
8250 * We don't worry about log blocks left behind (ie
8251 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8252 * will never write more than l2arc_evict() evicts.
8254 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8255 break;
8256 } else {
8257 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
8258 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8259 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8260 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8261 lb_ptr_buf);
8262 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8263 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8264 kmem_free(lb_ptr_buf->lb_ptr,
8265 sizeof (l2arc_log_blkptr_t));
8266 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8270 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8271 hdr_prev = list_prev(buflist, hdr);
8273 ASSERT(!HDR_EMPTY(hdr));
8274 hash_lock = HDR_LOCK(hdr);
8277 * We cannot use mutex_enter or else we can deadlock
8278 * with l2arc_write_buffers (due to swapping the order
8279 * the hash lock and l2ad_mtx are taken).
8281 if (!mutex_tryenter(hash_lock)) {
8283 * Missed the hash lock. Retry.
8285 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8286 mutex_exit(&dev->l2ad_mtx);
8287 mutex_enter(hash_lock);
8288 mutex_exit(hash_lock);
8289 goto retry;
8293 * A header can't be on this list if it doesn't have L2 header.
8295 ASSERT(HDR_HAS_L2HDR(hdr));
8297 /* Ensure this header has finished being written. */
8298 ASSERT(!HDR_L2_WRITING(hdr));
8299 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8301 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8302 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8304 * We've evicted to the target address,
8305 * or the end of the device.
8307 mutex_exit(hash_lock);
8308 break;
8311 if (!HDR_HAS_L1HDR(hdr)) {
8312 ASSERT(!HDR_L2_READING(hdr));
8314 * This doesn't exist in the ARC. Destroy.
8315 * arc_hdr_destroy() will call list_remove()
8316 * and decrement arcstat_l2_lsize.
8318 arc_change_state(arc_anon, hdr, hash_lock);
8319 arc_hdr_destroy(hdr);
8320 } else {
8321 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8322 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8324 * Invalidate issued or about to be issued
8325 * reads, since we may be about to write
8326 * over this location.
8328 if (HDR_L2_READING(hdr)) {
8329 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8330 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8333 arc_hdr_l2hdr_destroy(hdr);
8335 mutex_exit(hash_lock);
8337 mutex_exit(&dev->l2ad_mtx);
8339 out:
8341 * We need to check if we evict all buffers, otherwise we may iterate
8342 * unnecessarily.
8344 if (!all && rerun) {
8346 * Bump device hand to the device start if it is approaching the
8347 * end. l2arc_evict() has already evicted ahead for this case.
8349 dev->l2ad_hand = dev->l2ad_start;
8350 dev->l2ad_evict = dev->l2ad_start;
8351 dev->l2ad_first = B_FALSE;
8352 goto top;
8355 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8356 if (!dev->l2ad_first)
8357 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8361 * Handle any abd transforms that might be required for writing to the L2ARC.
8362 * If successful, this function will always return an abd with the data
8363 * transformed as it is on disk in a new abd of asize bytes.
8365 static int
8366 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8367 abd_t **abd_out)
8369 int ret;
8370 void *tmp = NULL;
8371 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8372 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8373 uint64_t psize = HDR_GET_PSIZE(hdr);
8374 uint64_t size = arc_hdr_size(hdr);
8375 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8376 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8377 dsl_crypto_key_t *dck = NULL;
8378 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8379 boolean_t no_crypt = B_FALSE;
8381 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8382 !HDR_COMPRESSION_ENABLED(hdr)) ||
8383 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8384 ASSERT3U(psize, <=, asize);
8387 * If this data simply needs its own buffer, we simply allocate it
8388 * and copy the data. This may be done to eliminate a dependency on a
8389 * shared buffer or to reallocate the buffer to match asize.
8391 if (HDR_HAS_RABD(hdr) && asize != psize) {
8392 ASSERT3U(asize, >=, psize);
8393 to_write = abd_alloc_for_io(asize, ismd);
8394 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8395 if (psize != asize)
8396 abd_zero_off(to_write, psize, asize - psize);
8397 goto out;
8400 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8401 !HDR_ENCRYPTED(hdr)) {
8402 ASSERT3U(size, ==, psize);
8403 to_write = abd_alloc_for_io(asize, ismd);
8404 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8405 if (size != asize)
8406 abd_zero_off(to_write, size, asize - size);
8407 goto out;
8410 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8411 cabd = abd_alloc_for_io(asize, ismd);
8412 tmp = abd_borrow_buf(cabd, asize);
8414 psize = zio_compress_data(compress, to_write, tmp, size);
8415 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8416 if (psize < asize)
8417 bzero((char *)tmp + psize, asize - psize);
8418 psize = HDR_GET_PSIZE(hdr);
8419 abd_return_buf_copy(cabd, tmp, asize);
8420 to_write = cabd;
8423 if (HDR_ENCRYPTED(hdr)) {
8424 eabd = abd_alloc_for_io(asize, ismd);
8427 * If the dataset was disowned before the buffer
8428 * made it to this point, the key to re-encrypt
8429 * it won't be available. In this case we simply
8430 * won't write the buffer to the L2ARC.
8432 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8433 FTAG, &dck);
8434 if (ret != 0)
8435 goto error;
8437 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8438 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8439 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8440 &no_crypt);
8441 if (ret != 0)
8442 goto error;
8444 if (no_crypt)
8445 abd_copy(eabd, to_write, psize);
8447 if (psize != asize)
8448 abd_zero_off(eabd, psize, asize - psize);
8450 /* assert that the MAC we got here matches the one we saved */
8451 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8452 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8454 if (to_write == cabd)
8455 abd_free(cabd);
8457 to_write = eabd;
8460 out:
8461 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8462 *abd_out = to_write;
8463 return (0);
8465 error:
8466 if (dck != NULL)
8467 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8468 if (cabd != NULL)
8469 abd_free(cabd);
8470 if (eabd != NULL)
8471 abd_free(eabd);
8473 *abd_out = NULL;
8474 return (ret);
8477 static void
8478 l2arc_blk_fetch_done(zio_t *zio)
8480 l2arc_read_callback_t *cb;
8482 cb = zio->io_private;
8483 if (cb->l2rcb_abd != NULL)
8484 abd_put(cb->l2rcb_abd);
8485 kmem_free(cb, sizeof (l2arc_read_callback_t));
8489 * Find and write ARC buffers to the L2ARC device.
8491 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8492 * for reading until they have completed writing.
8493 * The headroom_boost is an in-out parameter used to maintain headroom boost
8494 * state between calls to this function.
8496 * Returns the number of bytes actually written (which may be smaller than
8497 * the delta by which the device hand has changed due to alignment and the
8498 * writing of log blocks).
8500 static uint64_t
8501 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8503 arc_buf_hdr_t *hdr, *hdr_prev, *head;
8504 uint64_t write_asize, write_psize, write_lsize, headroom;
8505 boolean_t full;
8506 l2arc_write_callback_t *cb = NULL;
8507 zio_t *pio, *wzio;
8508 uint64_t guid = spa_load_guid(spa);
8509 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
8511 ASSERT3P(dev->l2ad_vdev, !=, NULL);
8513 pio = NULL;
8514 write_lsize = write_asize = write_psize = 0;
8515 full = B_FALSE;
8516 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8517 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8520 * Copy buffers for L2ARC writing.
8522 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8524 * If try == 1 or 3, we cache MRU metadata and data
8525 * respectively.
8527 if (l2arc_mfuonly) {
8528 if (try == 1 || try == 3)
8529 continue;
8532 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8533 uint64_t passed_sz = 0;
8535 VERIFY3P(mls, !=, NULL);
8538 * L2ARC fast warmup.
8540 * Until the ARC is warm and starts to evict, read from the
8541 * head of the ARC lists rather than the tail.
8543 if (arc_warm == B_FALSE)
8544 hdr = multilist_sublist_head(mls);
8545 else
8546 hdr = multilist_sublist_tail(mls);
8548 headroom = target_sz * l2arc_headroom;
8549 if (zfs_compressed_arc_enabled)
8550 headroom = (headroom * l2arc_headroom_boost) / 100;
8552 for (; hdr; hdr = hdr_prev) {
8553 kmutex_t *hash_lock;
8554 abd_t *to_write = NULL;
8556 if (arc_warm == B_FALSE)
8557 hdr_prev = multilist_sublist_next(mls, hdr);
8558 else
8559 hdr_prev = multilist_sublist_prev(mls, hdr);
8561 hash_lock = HDR_LOCK(hdr);
8562 if (!mutex_tryenter(hash_lock)) {
8564 * Skip this buffer rather than waiting.
8566 continue;
8569 passed_sz += HDR_GET_LSIZE(hdr);
8570 if (l2arc_headroom != 0 && passed_sz > headroom) {
8572 * Searched too far.
8574 mutex_exit(hash_lock);
8575 break;
8578 if (!l2arc_write_eligible(guid, hdr)) {
8579 mutex_exit(hash_lock);
8580 continue;
8583 ASSERT(HDR_HAS_L1HDR(hdr));
8585 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8586 ASSERT3U(arc_hdr_size(hdr), >, 0);
8587 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8588 HDR_HAS_RABD(hdr));
8589 uint64_t psize = HDR_GET_PSIZE(hdr);
8590 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8591 psize);
8593 if ((write_asize + asize) > target_sz) {
8594 full = B_TRUE;
8595 mutex_exit(hash_lock);
8596 break;
8600 * We rely on the L1 portion of the header below, so
8601 * it's invalid for this header to have been evicted out
8602 * of the ghost cache, prior to being written out. The
8603 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8605 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8608 * If this header has b_rabd, we can use this since it
8609 * must always match the data exactly as it exists on
8610 * disk. Otherwise, the L2ARC can normally use the
8611 * hdr's data, but if we're sharing data between the
8612 * hdr and one of its bufs, L2ARC needs its own copy of
8613 * the data so that the ZIO below can't race with the
8614 * buf consumer. To ensure that this copy will be
8615 * available for the lifetime of the ZIO and be cleaned
8616 * up afterwards, we add it to the l2arc_free_on_write
8617 * queue. If we need to apply any transforms to the
8618 * data (compression, encryption) we will also need the
8619 * extra buffer.
8621 if (HDR_HAS_RABD(hdr) && psize == asize) {
8622 to_write = hdr->b_crypt_hdr.b_rabd;
8623 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8624 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8625 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8626 psize == asize) {
8627 to_write = hdr->b_l1hdr.b_pabd;
8628 } else {
8629 int ret;
8630 arc_buf_contents_t type = arc_buf_type(hdr);
8632 ret = l2arc_apply_transforms(spa, hdr, asize,
8633 &to_write);
8634 if (ret != 0) {
8635 arc_hdr_clear_flags(hdr,
8636 ARC_FLAG_L2_WRITING);
8637 mutex_exit(hash_lock);
8638 continue;
8641 l2arc_free_abd_on_write(to_write, asize, type);
8644 if (pio == NULL) {
8646 * Insert a dummy header on the buflist so
8647 * l2arc_write_done() can find where the
8648 * write buffers begin without searching.
8650 mutex_enter(&dev->l2ad_mtx);
8651 list_insert_head(&dev->l2ad_buflist, head);
8652 mutex_exit(&dev->l2ad_mtx);
8654 cb = kmem_alloc(
8655 sizeof (l2arc_write_callback_t), KM_SLEEP);
8656 cb->l2wcb_dev = dev;
8657 cb->l2wcb_head = head;
8659 * Create a list to save allocated abd buffers
8660 * for l2arc_log_blk_commit().
8662 list_create(&cb->l2wcb_abd_list,
8663 sizeof (l2arc_lb_abd_buf_t),
8664 offsetof(l2arc_lb_abd_buf_t, node));
8665 pio = zio_root(spa, l2arc_write_done, cb,
8666 ZIO_FLAG_CANFAIL);
8669 hdr->b_l2hdr.b_dev = dev;
8670 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8671 hdr->b_l2hdr.b_arcs_state =
8672 hdr->b_l1hdr.b_state->arcs_state;
8673 arc_hdr_set_flags(hdr,
8674 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8676 mutex_enter(&dev->l2ad_mtx);
8677 list_insert_head(&dev->l2ad_buflist, hdr);
8678 mutex_exit(&dev->l2ad_mtx);
8680 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
8681 arc_hdr_size(hdr), hdr);
8683 wzio = zio_write_phys(pio, dev->l2ad_vdev,
8684 hdr->b_l2hdr.b_daddr, asize, to_write,
8685 ZIO_CHECKSUM_OFF, NULL, hdr,
8686 ZIO_PRIORITY_ASYNC_WRITE,
8687 ZIO_FLAG_CANFAIL, B_FALSE);
8689 write_lsize += HDR_GET_LSIZE(hdr);
8690 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8691 zio_t *, wzio);
8693 write_psize += psize;
8694 write_asize += asize;
8695 dev->l2ad_hand += asize;
8696 l2arc_hdr_arcstats_increment(hdr);
8697 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8699 mutex_exit(hash_lock);
8702 * Append buf info to current log and commit if full.
8703 * arcstat_l2_{size,asize} kstats are updated
8704 * internally.
8706 if (l2arc_log_blk_insert(dev, hdr))
8707 l2arc_log_blk_commit(dev, pio, cb);
8709 (void) zio_nowait(wzio);
8712 multilist_sublist_unlock(mls);
8714 if (full == B_TRUE)
8715 break;
8718 /* No buffers selected for writing? */
8719 if (pio == NULL) {
8720 ASSERT0(write_lsize);
8721 ASSERT(!HDR_HAS_L1HDR(head));
8722 kmem_cache_free(hdr_l2only_cache, head);
8725 * Although we did not write any buffers l2ad_evict may
8726 * have advanced.
8728 if (dev->l2ad_evict != l2dhdr->dh_evict)
8729 l2arc_dev_hdr_update(dev);
8731 return (0);
8734 if (!dev->l2ad_first)
8735 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8737 ASSERT3U(write_asize, <=, target_sz);
8738 ARCSTAT_BUMP(arcstat_l2_writes_sent);
8739 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8741 dev->l2ad_writing = B_TRUE;
8742 (void) zio_wait(pio);
8743 dev->l2ad_writing = B_FALSE;
8746 * Update the device header after the zio completes as
8747 * l2arc_write_done() may have updated the memory holding the log block
8748 * pointers in the device header.
8750 l2arc_dev_hdr_update(dev);
8752 return (write_asize);
8755 static boolean_t
8756 l2arc_hdr_limit_reached(void)
8758 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size);
8760 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
8761 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
8765 * This thread feeds the L2ARC at regular intervals. This is the beating
8766 * heart of the L2ARC.
8768 /* ARGSUSED */
8769 static void
8770 l2arc_feed_thread(void *unused)
8772 callb_cpr_t cpr;
8773 l2arc_dev_t *dev;
8774 spa_t *spa;
8775 uint64_t size, wrote;
8776 clock_t begin, next = ddi_get_lbolt();
8778 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8780 mutex_enter(&l2arc_feed_thr_lock);
8782 while (l2arc_thread_exit == 0) {
8783 CALLB_CPR_SAFE_BEGIN(&cpr);
8784 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8785 next);
8786 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8787 next = ddi_get_lbolt() + hz;
8790 * Quick check for L2ARC devices.
8792 mutex_enter(&l2arc_dev_mtx);
8793 if (l2arc_ndev == 0) {
8794 mutex_exit(&l2arc_dev_mtx);
8795 continue;
8797 mutex_exit(&l2arc_dev_mtx);
8798 begin = ddi_get_lbolt();
8801 * This selects the next l2arc device to write to, and in
8802 * doing so the next spa to feed from: dev->l2ad_spa. This
8803 * will return NULL if there are now no l2arc devices or if
8804 * they are all faulted.
8806 * If a device is returned, its spa's config lock is also
8807 * held to prevent device removal. l2arc_dev_get_next()
8808 * will grab and release l2arc_dev_mtx.
8810 if ((dev = l2arc_dev_get_next()) == NULL)
8811 continue;
8813 spa = dev->l2ad_spa;
8814 ASSERT3P(spa, !=, NULL);
8817 * If the pool is read-only then force the feed thread to
8818 * sleep a little longer.
8820 if (!spa_writeable(spa)) {
8821 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8822 spa_config_exit(spa, SCL_L2ARC, dev);
8823 continue;
8827 * Avoid contributing to memory pressure.
8829 if (l2arc_hdr_limit_reached()) {
8830 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8831 spa_config_exit(spa, SCL_L2ARC, dev);
8832 continue;
8835 ARCSTAT_BUMP(arcstat_l2_feeds);
8837 size = l2arc_write_size(dev);
8840 * Evict L2ARC buffers that will be overwritten.
8842 l2arc_evict(dev, size, B_FALSE);
8845 * Write ARC buffers.
8847 wrote = l2arc_write_buffers(spa, dev, size);
8850 * Calculate interval between writes.
8852 next = l2arc_write_interval(begin, size, wrote);
8853 spa_config_exit(spa, SCL_L2ARC, dev);
8856 l2arc_thread_exit = 0;
8857 cv_broadcast(&l2arc_feed_thr_cv);
8858 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
8859 thread_exit();
8862 boolean_t
8863 l2arc_vdev_present(vdev_t *vd)
8865 return (l2arc_vdev_get(vd) != NULL);
8869 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
8870 * the vdev_t isn't an L2ARC device.
8872 static l2arc_dev_t *
8873 l2arc_vdev_get(vdev_t *vd)
8875 l2arc_dev_t *dev;
8877 mutex_enter(&l2arc_dev_mtx);
8878 for (dev = list_head(l2arc_dev_list); dev != NULL;
8879 dev = list_next(l2arc_dev_list, dev)) {
8880 if (dev->l2ad_vdev == vd)
8881 break;
8883 mutex_exit(&l2arc_dev_mtx);
8885 return (dev);
8889 * Add a vdev for use by the L2ARC. By this point the spa has already
8890 * validated the vdev and opened it.
8892 void
8893 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8895 l2arc_dev_t *adddev;
8896 uint64_t l2dhdr_asize;
8898 ASSERT(!l2arc_vdev_present(vd));
8901 * Create a new l2arc device entry.
8903 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8904 adddev->l2ad_spa = spa;
8905 adddev->l2ad_vdev = vd;
8906 /* leave extra size for an l2arc device header */
8907 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
8908 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
8909 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
8910 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8911 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
8912 adddev->l2ad_hand = adddev->l2ad_start;
8913 adddev->l2ad_evict = adddev->l2ad_start;
8914 adddev->l2ad_first = B_TRUE;
8915 adddev->l2ad_writing = B_FALSE;
8916 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
8918 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8920 * This is a list of all ARC buffers that are still valid on the
8921 * device.
8923 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8924 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8927 * This is a list of pointers to log blocks that are still present
8928 * on the device.
8930 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
8931 offsetof(l2arc_lb_ptr_buf_t, node));
8933 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8934 zfs_refcount_create(&adddev->l2ad_alloc);
8935 zfs_refcount_create(&adddev->l2ad_lb_asize);
8936 zfs_refcount_create(&adddev->l2ad_lb_count);
8939 * Add device to global list
8941 mutex_enter(&l2arc_dev_mtx);
8942 list_insert_head(l2arc_dev_list, adddev);
8943 atomic_inc_64(&l2arc_ndev);
8944 mutex_exit(&l2arc_dev_mtx);
8947 * Decide if vdev is eligible for L2ARC rebuild
8949 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
8952 void
8953 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
8955 l2arc_dev_t *dev = NULL;
8956 l2arc_dev_hdr_phys_t *l2dhdr;
8957 uint64_t l2dhdr_asize;
8958 spa_t *spa;
8960 dev = l2arc_vdev_get(vd);
8961 ASSERT3P(dev, !=, NULL);
8962 spa = dev->l2ad_spa;
8963 l2dhdr = dev->l2ad_dev_hdr;
8964 l2dhdr_asize = dev->l2ad_dev_hdr_asize;
8967 * The L2ARC has to hold at least the payload of one log block for
8968 * them to be restored (persistent L2ARC). The payload of a log block
8969 * depends on the amount of its log entries. We always write log blocks
8970 * with 1022 entries. How many of them are committed or restored depends
8971 * on the size of the L2ARC device. Thus the maximum payload of
8972 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
8973 * is less than that, we reduce the amount of committed and restored
8974 * log entries per block so as to enable persistence.
8976 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
8977 dev->l2ad_log_entries = 0;
8978 } else {
8979 dev->l2ad_log_entries = MIN((dev->l2ad_end -
8980 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
8981 L2ARC_LOG_BLK_MAX_ENTRIES);
8985 * Read the device header, if an error is returned do not rebuild L2ARC.
8987 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
8989 * If we are onlining a cache device (vdev_reopen) that was
8990 * still present (l2arc_vdev_present()) and rebuild is enabled,
8991 * we should evict all ARC buffers and pointers to log blocks
8992 * and reclaim their space before restoring its contents to
8993 * L2ARC.
8995 if (reopen) {
8996 if (!l2arc_rebuild_enabled) {
8997 return;
8998 } else {
8999 l2arc_evict(dev, 0, B_TRUE);
9000 /* start a new log block */
9001 dev->l2ad_log_ent_idx = 0;
9002 dev->l2ad_log_blk_payload_asize = 0;
9003 dev->l2ad_log_blk_payload_start = 0;
9007 * Just mark the device as pending for a rebuild. We won't
9008 * be starting a rebuild in line here as it would block pool
9009 * import. Instead spa_load_impl will hand that off to an
9010 * async task which will call l2arc_spa_rebuild_start.
9012 dev->l2ad_rebuild = B_TRUE;
9013 } else if (spa_writeable(spa)) {
9015 * In this case create a new header. We zero out the memory
9016 * holding the header to reset dh_start_lbps.
9018 bzero(l2dhdr, l2dhdr_asize);
9019 l2arc_dev_hdr_update(dev);
9024 * Remove a vdev from the L2ARC.
9026 void
9027 l2arc_remove_vdev(vdev_t *vd)
9029 l2arc_dev_t *remdev = NULL;
9032 * Find the device by vdev
9034 remdev = l2arc_vdev_get(vd);
9035 ASSERT3P(remdev, !=, NULL);
9038 * Cancel any ongoing or scheduled rebuild.
9040 mutex_enter(&l2arc_rebuild_thr_lock);
9041 if (remdev->l2ad_rebuild_began == B_TRUE) {
9042 remdev->l2ad_rebuild_cancel = B_TRUE;
9043 while (remdev->l2ad_rebuild == B_TRUE)
9044 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9046 mutex_exit(&l2arc_rebuild_thr_lock);
9049 * Remove device from global list
9051 mutex_enter(&l2arc_dev_mtx);
9052 list_remove(l2arc_dev_list, remdev);
9053 l2arc_dev_last = NULL; /* may have been invalidated */
9054 atomic_dec_64(&l2arc_ndev);
9055 mutex_exit(&l2arc_dev_mtx);
9058 * Clear all buflists and ARC references. L2ARC device flush.
9060 l2arc_evict(remdev, 0, B_TRUE);
9061 list_destroy(&remdev->l2ad_buflist);
9062 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9063 list_destroy(&remdev->l2ad_lbptr_list);
9064 mutex_destroy(&remdev->l2ad_mtx);
9065 zfs_refcount_destroy(&remdev->l2ad_alloc);
9066 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9067 zfs_refcount_destroy(&remdev->l2ad_lb_count);
9068 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9069 kmem_free(remdev, sizeof (l2arc_dev_t));
9072 void
9073 l2arc_init(void)
9075 l2arc_thread_exit = 0;
9076 l2arc_ndev = 0;
9077 l2arc_writes_sent = 0;
9078 l2arc_writes_done = 0;
9080 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9081 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9082 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9083 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9084 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9085 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9087 l2arc_dev_list = &L2ARC_dev_list;
9088 l2arc_free_on_write = &L2ARC_free_on_write;
9089 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9090 offsetof(l2arc_dev_t, l2ad_node));
9091 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9092 offsetof(l2arc_data_free_t, l2df_list_node));
9095 void
9096 l2arc_fini(void)
9099 * This is called from dmu_fini(), which is called from spa_fini();
9100 * Because of this, we can assume that all l2arc devices have
9101 * already been removed when the pools themselves were removed.
9104 l2arc_do_free_on_write();
9106 mutex_destroy(&l2arc_feed_thr_lock);
9107 cv_destroy(&l2arc_feed_thr_cv);
9108 mutex_destroy(&l2arc_rebuild_thr_lock);
9109 cv_destroy(&l2arc_rebuild_thr_cv);
9110 mutex_destroy(&l2arc_dev_mtx);
9111 mutex_destroy(&l2arc_free_on_write_mtx);
9113 list_destroy(l2arc_dev_list);
9114 list_destroy(l2arc_free_on_write);
9117 void
9118 l2arc_start(void)
9120 if (!(spa_mode_global & FWRITE))
9121 return;
9123 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9124 TS_RUN, minclsyspri);
9127 void
9128 l2arc_stop(void)
9130 if (!(spa_mode_global & FWRITE))
9131 return;
9133 mutex_enter(&l2arc_feed_thr_lock);
9134 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9135 l2arc_thread_exit = 1;
9136 while (l2arc_thread_exit != 0)
9137 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9138 mutex_exit(&l2arc_feed_thr_lock);
9142 * Punches out rebuild threads for the L2ARC devices in a spa. This should
9143 * be called after pool import from the spa async thread, since starting
9144 * these threads directly from spa_import() will make them part of the
9145 * "zpool import" context and delay process exit (and thus pool import).
9147 void
9148 l2arc_spa_rebuild_start(spa_t *spa)
9150 ASSERT(MUTEX_HELD(&spa_namespace_lock));
9153 * Locate the spa's l2arc devices and kick off rebuild threads.
9155 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9156 l2arc_dev_t *dev =
9157 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9158 if (dev == NULL) {
9159 /* Don't attempt a rebuild if the vdev is UNAVAIL */
9160 continue;
9162 mutex_enter(&l2arc_rebuild_thr_lock);
9163 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9164 dev->l2ad_rebuild_began = B_TRUE;
9165 (void) thread_create(NULL, 0,
9166 (void (*)(void *))l2arc_dev_rebuild_start,
9167 dev, 0, &p0, TS_RUN, minclsyspri);
9169 mutex_exit(&l2arc_rebuild_thr_lock);
9174 * Main entry point for L2ARC rebuilding.
9176 static void
9177 l2arc_dev_rebuild_start(l2arc_dev_t *dev)
9179 VERIFY(!dev->l2ad_rebuild_cancel);
9180 VERIFY(dev->l2ad_rebuild);
9181 (void) l2arc_rebuild(dev);
9182 mutex_enter(&l2arc_rebuild_thr_lock);
9183 dev->l2ad_rebuild_began = B_FALSE;
9184 dev->l2ad_rebuild = B_FALSE;
9185 mutex_exit(&l2arc_rebuild_thr_lock);
9187 thread_exit();
9191 * This function implements the actual L2ARC metadata rebuild. It:
9192 * starts reading the log block chain and restores each block's contents
9193 * to memory (reconstructing arc_buf_hdr_t's).
9195 * Operation stops under any of the following conditions:
9197 * 1) We reach the end of the log block chain.
9198 * 2) We encounter *any* error condition (cksum errors, io errors)
9200 static int
9201 l2arc_rebuild(l2arc_dev_t *dev)
9203 vdev_t *vd = dev->l2ad_vdev;
9204 spa_t *spa = vd->vdev_spa;
9205 int err = 0;
9206 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9207 l2arc_log_blk_phys_t *this_lb, *next_lb;
9208 zio_t *this_io = NULL, *next_io = NULL;
9209 l2arc_log_blkptr_t lbps[2];
9210 l2arc_lb_ptr_buf_t *lb_ptr_buf;
9211 boolean_t lock_held;
9213 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9214 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9217 * We prevent device removal while issuing reads to the device,
9218 * then during the rebuilding phases we drop this lock again so
9219 * that a spa_unload or device remove can be initiated - this is
9220 * safe, because the spa will signal us to stop before removing
9221 * our device and wait for us to stop.
9223 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9224 lock_held = B_TRUE;
9227 * Retrieve the persistent L2ARC device state.
9228 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9230 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9231 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9232 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9233 dev->l2ad_start);
9234 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9237 * In case the zfs module parameter l2arc_rebuild_enabled is false
9238 * we do not start the rebuild process.
9240 if (!l2arc_rebuild_enabled)
9241 goto out;
9243 /* Prepare the rebuild process */
9244 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9246 /* Start the rebuild process */
9247 for (;;) {
9248 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9249 break;
9251 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9252 this_lb, next_lb, this_io, &next_io)) != 0)
9253 goto out;
9256 * Our memory pressure valve. If the system is running low
9257 * on memory, rather than swamping memory with new ARC buf
9258 * hdrs, we opt not to rebuild the L2ARC. At this point,
9259 * however, we have already set up our L2ARC dev to chain in
9260 * new metadata log blocks, so the user may choose to offline/
9261 * online the L2ARC dev at a later time (or re-import the pool)
9262 * to reconstruct it (when there's less memory pressure).
9264 if (l2arc_hdr_limit_reached()) {
9265 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9266 cmn_err(CE_NOTE, "System running low on memory, "
9267 "aborting L2ARC rebuild.");
9268 err = SET_ERROR(ENOMEM);
9269 goto out;
9272 spa_config_exit(spa, SCL_L2ARC, vd);
9273 lock_held = B_FALSE;
9276 * Now that we know that the next_lb checks out alright, we
9277 * can start reconstruction from this log block.
9278 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9280 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9281 l2arc_log_blk_restore(dev, this_lb, asize);
9284 * log block restored, include its pointer in the list of
9285 * pointers to log blocks present in the L2ARC device.
9287 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9288 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9289 KM_SLEEP);
9290 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9291 sizeof (l2arc_log_blkptr_t));
9292 mutex_enter(&dev->l2ad_mtx);
9293 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9294 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9295 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9296 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9297 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9298 mutex_exit(&dev->l2ad_mtx);
9299 vdev_space_update(vd, asize, 0, 0);
9301 /* BEGIN CSTYLED */
9303 * Protection against loops of log blocks:
9305 * l2ad_hand l2ad_evict
9306 * V V
9307 * l2ad_start |=======================================| l2ad_end
9308 * -----|||----|||---|||----|||
9309 * (3) (2) (1) (0)
9310 * ---|||---|||----|||---|||
9311 * (7) (6) (5) (4)
9313 * In this situation the pointer of log block (4) passes
9314 * l2arc_log_blkptr_valid() but the log block should not be
9315 * restored as it is overwritten by the payload of log block
9316 * (0). Only log blocks (0)-(3) should be restored. We check
9317 * whether l2ad_evict lies in between the payload starting
9318 * offset of the next log block (lbps[1].lbp_payload_start)
9319 * and the payload starting offset of the present log block
9320 * (lbps[0].lbp_payload_start). If true and this isn't the
9321 * first pass, we are looping from the beginning and we should
9322 * stop.
9324 /* END CSTYLED */
9325 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9326 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9327 !dev->l2ad_first)
9328 goto out;
9330 for (;;) {
9331 mutex_enter(&l2arc_rebuild_thr_lock);
9332 if (dev->l2ad_rebuild_cancel) {
9333 dev->l2ad_rebuild = B_FALSE;
9334 cv_signal(&l2arc_rebuild_thr_cv);
9335 mutex_exit(&l2arc_rebuild_thr_lock);
9336 err = SET_ERROR(ECANCELED);
9337 goto out;
9339 mutex_exit(&l2arc_rebuild_thr_lock);
9340 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9341 RW_READER)) {
9342 lock_held = B_TRUE;
9343 break;
9346 * L2ARC config lock held by somebody in writer,
9347 * possibly due to them trying to remove us. They'll
9348 * likely to want us to shut down, so after a little
9349 * delay, we check l2ad_rebuild_cancel and retry
9350 * the lock again.
9352 delay(1);
9356 * Continue with the next log block.
9358 lbps[0] = lbps[1];
9359 lbps[1] = this_lb->lb_prev_lbp;
9360 PTR_SWAP(this_lb, next_lb);
9361 this_io = next_io;
9362 next_io = NULL;
9365 if (this_io != NULL)
9366 l2arc_log_blk_fetch_abort(this_io);
9367 out:
9368 if (next_io != NULL)
9369 l2arc_log_blk_fetch_abort(next_io);
9370 kmem_free(this_lb, sizeof (*this_lb));
9371 kmem_free(next_lb, sizeof (*next_lb));
9373 if (!l2arc_rebuild_enabled) {
9374 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9375 "disabled");
9376 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9377 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9378 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9379 "successful, restored %llu blocks",
9380 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9381 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9383 * No error but also nothing restored, meaning the lbps array
9384 * in the device header points to invalid/non-present log
9385 * blocks. Reset the header.
9387 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9388 "no valid log blocks");
9389 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9390 l2arc_dev_hdr_update(dev);
9391 } else if (err == ECANCELED) {
9393 * In case the rebuild was canceled do not log to spa history
9394 * log as the pool may be in the process of being removed.
9396 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9397 zfs_refcount_count(&dev->l2ad_lb_count));
9398 } else if (err != 0) {
9399 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9400 "aborted, restored %llu blocks",
9401 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9404 if (lock_held)
9405 spa_config_exit(spa, SCL_L2ARC, vd);
9407 return (err);
9411 * Attempts to read the device header on the provided L2ARC device and writes
9412 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9413 * error code is returned.
9415 static int
9416 l2arc_dev_hdr_read(l2arc_dev_t *dev)
9418 int err;
9419 uint64_t guid;
9420 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9421 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9422 abd_t *abd;
9424 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9426 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9428 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9429 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9430 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
9431 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9432 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9433 ZIO_FLAG_SPECULATIVE, B_FALSE));
9435 abd_put(abd);
9437 if (err != 0) {
9438 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9439 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9440 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9441 return (err);
9444 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9445 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9447 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9448 l2dhdr->dh_spa_guid != guid ||
9449 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9450 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9451 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9452 l2dhdr->dh_end != dev->l2ad_end ||
9453 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9454 l2dhdr->dh_evict)) {
9456 * Attempt to rebuild a device containing no actual dev hdr
9457 * or containing a header from some other pool or from another
9458 * version of persistent L2ARC.
9460 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9461 return (SET_ERROR(ENOTSUP));
9464 return (0);
9468 * Reads L2ARC log blocks from storage and validates their contents.
9470 * This function implements a simple fetcher to make sure that while
9471 * we're processing one buffer the L2ARC is already fetching the next
9472 * one in the chain.
9474 * The arguments this_lp and next_lp point to the current and next log block
9475 * address in the block chain. Similarly, this_lb and next_lb hold the
9476 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9478 * The `this_io' and `next_io' arguments are used for block fetching.
9479 * When issuing the first blk IO during rebuild, you should pass NULL for
9480 * `this_io'. This function will then issue a sync IO to read the block and
9481 * also issue an async IO to fetch the next block in the block chain. The
9482 * fetched IO is returned in `next_io'. On subsequent calls to this
9483 * function, pass the value returned in `next_io' from the previous call
9484 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9485 * Prior to the call, you should initialize your `next_io' pointer to be
9486 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9488 * On success, this function returns 0, otherwise it returns an appropriate
9489 * error code. On error the fetching IO is aborted and cleared before
9490 * returning from this function. Therefore, if we return `success', the
9491 * caller can assume that we have taken care of cleanup of fetch IOs.
9493 static int
9494 l2arc_log_blk_read(l2arc_dev_t *dev,
9495 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9496 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9497 zio_t *this_io, zio_t **next_io)
9499 int err = 0;
9500 zio_cksum_t cksum;
9501 abd_t *abd = NULL;
9502 uint64_t asize;
9504 ASSERT(this_lbp != NULL && next_lbp != NULL);
9505 ASSERT(this_lb != NULL && next_lb != NULL);
9506 ASSERT(next_io != NULL && *next_io == NULL);
9507 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9510 * Check to see if we have issued the IO for this log block in a
9511 * previous run. If not, this is the first call, so issue it now.
9513 if (this_io == NULL) {
9514 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9515 this_lb);
9519 * Peek to see if we can start issuing the next IO immediately.
9521 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9523 * Start issuing IO for the next log block early - this
9524 * should help keep the L2ARC device busy while we
9525 * decompress and restore this log block.
9527 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9528 next_lb);
9531 /* Wait for the IO to read this log block to complete */
9532 if ((err = zio_wait(this_io)) != 0) {
9533 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9534 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9535 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9536 dev->l2ad_vdev->vdev_guid);
9537 goto cleanup;
9541 * Make sure the buffer checks out.
9542 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9544 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9545 fletcher_4_native(this_lb, asize, NULL, &cksum);
9546 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9547 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9548 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9549 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9550 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9551 dev->l2ad_hand, dev->l2ad_evict);
9552 err = SET_ERROR(ECKSUM);
9553 goto cleanup;
9556 /* Now we can take our time decoding this buffer */
9557 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9558 case ZIO_COMPRESS_OFF:
9559 break;
9560 case ZIO_COMPRESS_LZ4:
9561 abd = abd_alloc_for_io(asize, B_TRUE);
9562 abd_copy_from_buf_off(abd, this_lb, 0, asize);
9563 if ((err = zio_decompress_data(
9564 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9565 abd, this_lb, asize, sizeof (*this_lb))) != 0) {
9566 err = SET_ERROR(EINVAL);
9567 goto cleanup;
9569 break;
9570 default:
9571 err = SET_ERROR(EINVAL);
9572 goto cleanup;
9574 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9575 byteswap_uint64_array(this_lb, sizeof (*this_lb));
9576 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9577 err = SET_ERROR(EINVAL);
9578 goto cleanup;
9580 cleanup:
9581 /* Abort an in-flight fetch I/O in case of error */
9582 if (err != 0 && *next_io != NULL) {
9583 l2arc_log_blk_fetch_abort(*next_io);
9584 *next_io = NULL;
9586 if (abd != NULL)
9587 abd_free(abd);
9588 return (err);
9592 * Restores the payload of a log block to ARC. This creates empty ARC hdr
9593 * entries which only contain an l2arc hdr, essentially restoring the
9594 * buffers to their L2ARC evicted state. This function also updates space
9595 * usage on the L2ARC vdev to make sure it tracks restored buffers.
9597 static void
9598 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
9599 uint64_t lb_asize)
9601 uint64_t size = 0, asize = 0;
9602 uint64_t log_entries = dev->l2ad_log_entries;
9605 * Usually arc_adapt() is called only for data, not headers, but
9606 * since we may allocate significant amount of memory here, let ARC
9607 * grow its arc_c.
9609 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
9611 for (int i = log_entries - 1; i >= 0; i--) {
9613 * Restore goes in the reverse temporal direction to preserve
9614 * correct temporal ordering of buffers in the l2ad_buflist.
9615 * l2arc_hdr_restore also does a list_insert_tail instead of
9616 * list_insert_head on the l2ad_buflist:
9618 * LIST l2ad_buflist LIST
9619 * HEAD <------ (time) ------ TAIL
9620 * direction +-----+-----+-----+-----+-----+ direction
9621 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
9622 * fill +-----+-----+-----+-----+-----+
9623 * ^ ^
9624 * | |
9625 * | |
9626 * l2arc_feed_thread l2arc_rebuild
9627 * will place new bufs here restores bufs here
9629 * During l2arc_rebuild() the device is not used by
9630 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
9632 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
9633 asize += vdev_psize_to_asize(dev->l2ad_vdev,
9634 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
9635 l2arc_hdr_restore(&lb->lb_entries[i], dev);
9639 * Record rebuild stats:
9640 * size Logical size of restored buffers in the L2ARC
9641 * asize Aligned size of restored buffers in the L2ARC
9643 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
9644 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
9645 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
9646 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
9647 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
9648 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
9652 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
9653 * into a state indicating that it has been evicted to L2ARC.
9655 static void
9656 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
9658 arc_buf_hdr_t *hdr, *exists;
9659 kmutex_t *hash_lock;
9660 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
9661 uint64_t asize;
9664 * Do all the allocation before grabbing any locks, this lets us
9665 * sleep if memory is full and we don't have to deal with failed
9666 * allocations.
9668 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
9669 dev, le->le_dva, le->le_daddr,
9670 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
9671 L2BLK_GET_COMPRESS((le)->le_prop),
9672 L2BLK_GET_PROTECTED((le)->le_prop),
9673 L2BLK_GET_PREFETCH((le)->le_prop),
9674 L2BLK_GET_STATE((le)->le_prop));
9675 asize = vdev_psize_to_asize(dev->l2ad_vdev,
9676 L2BLK_GET_PSIZE((le)->le_prop));
9679 * vdev_space_update() has to be called before arc_hdr_destroy() to
9680 * avoid underflow since the latter also calls vdev_space_update().
9682 l2arc_hdr_arcstats_increment(hdr);
9683 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9685 mutex_enter(&dev->l2ad_mtx);
9686 list_insert_tail(&dev->l2ad_buflist, hdr);
9687 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
9688 mutex_exit(&dev->l2ad_mtx);
9690 exists = buf_hash_insert(hdr, &hash_lock);
9691 if (exists) {
9692 /* Buffer was already cached, no need to restore it. */
9693 arc_hdr_destroy(hdr);
9695 * If the buffer is already cached, check whether it has
9696 * L2ARC metadata. If not, enter them and update the flag.
9697 * This is important is case of onlining a cache device, since
9698 * we previously evicted all L2ARC metadata from ARC.
9700 if (!HDR_HAS_L2HDR(exists)) {
9701 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
9702 exists->b_l2hdr.b_dev = dev;
9703 exists->b_l2hdr.b_daddr = le->le_daddr;
9704 exists->b_l2hdr.b_arcs_state =
9705 L2BLK_GET_STATE((le)->le_prop);
9706 mutex_enter(&dev->l2ad_mtx);
9707 list_insert_tail(&dev->l2ad_buflist, exists);
9708 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9709 arc_hdr_size(exists), exists);
9710 mutex_exit(&dev->l2ad_mtx);
9711 l2arc_hdr_arcstats_increment(exists);
9712 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9714 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
9717 mutex_exit(hash_lock);
9721 * Starts an asynchronous read IO to read a log block. This is used in log
9722 * block reconstruction to start reading the next block before we are done
9723 * decoding and reconstructing the current block, to keep the l2arc device
9724 * nice and hot with read IO to process.
9725 * The returned zio will contain newly allocated memory buffers for the IO
9726 * data which should then be freed by the caller once the zio is no longer
9727 * needed (i.e. due to it having completed). If you wish to abort this
9728 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
9729 * care of disposing of the allocated buffers correctly.
9731 static zio_t *
9732 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
9733 l2arc_log_blk_phys_t *lb)
9735 uint32_t asize;
9736 zio_t *pio;
9737 l2arc_read_callback_t *cb;
9739 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9740 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9741 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
9743 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
9744 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
9745 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
9746 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
9747 ZIO_FLAG_DONT_RETRY);
9748 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
9749 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9750 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9751 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
9753 return (pio);
9757 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
9758 * buffers allocated for it.
9760 static void
9761 l2arc_log_blk_fetch_abort(zio_t *zio)
9763 (void) zio_wait(zio);
9767 * Creates a zio to update the device header on an l2arc device.
9769 static void
9770 l2arc_dev_hdr_update(l2arc_dev_t *dev)
9772 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9773 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9774 abd_t *abd;
9775 int err;
9777 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
9779 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
9780 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
9781 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9782 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
9783 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
9784 l2dhdr->dh_evict = dev->l2ad_evict;
9785 l2dhdr->dh_start = dev->l2ad_start;
9786 l2dhdr->dh_end = dev->l2ad_end;
9787 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
9788 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
9789 l2dhdr->dh_flags = 0;
9790 if (dev->l2ad_first)
9791 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
9793 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9795 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
9796 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
9797 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
9799 abd_put(abd);
9801 if (err != 0) {
9802 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
9803 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9808 * Commits a log block to the L2ARC device. This routine is invoked from
9809 * l2arc_write_buffers when the log block fills up.
9810 * This function allocates some memory to temporarily hold the serialized
9811 * buffer to be written. This is then released in l2arc_write_done.
9813 static void
9814 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
9816 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
9817 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9818 uint64_t psize, asize;
9819 zio_t *wzio;
9820 l2arc_lb_abd_buf_t *abd_buf;
9821 uint8_t *tmpbuf;
9822 l2arc_lb_ptr_buf_t *lb_ptr_buf;
9824 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
9826 tmpbuf = zio_buf_alloc(sizeof (*lb));
9827 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
9828 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
9829 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9830 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
9832 /* link the buffer into the block chain */
9833 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
9834 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
9837 * l2arc_log_blk_commit() may be called multiple times during a single
9838 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
9839 * so we can free them in l2arc_write_done() later on.
9841 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
9843 /* try to compress the buffer */
9844 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
9845 abd_buf->abd, tmpbuf, sizeof (*lb));
9847 /* a log block is never entirely zero */
9848 ASSERT(psize != 0);
9849 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
9850 ASSERT(asize <= sizeof (*lb));
9853 * Update the start log block pointer in the device header to point
9854 * to the log block we're about to write.
9856 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
9857 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
9858 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
9859 dev->l2ad_log_blk_payload_asize;
9860 l2dhdr->dh_start_lbps[0].lbp_payload_start =
9861 dev->l2ad_log_blk_payload_start;
9862 _NOTE(CONSTCOND)
9863 L2BLK_SET_LSIZE(
9864 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
9865 L2BLK_SET_PSIZE(
9866 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
9867 L2BLK_SET_CHECKSUM(
9868 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9869 ZIO_CHECKSUM_FLETCHER_4);
9870 if (asize < sizeof (*lb)) {
9871 /* compression succeeded */
9872 bzero(tmpbuf + psize, asize - psize);
9873 L2BLK_SET_COMPRESS(
9874 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9875 ZIO_COMPRESS_LZ4);
9876 } else {
9877 /* compression failed */
9878 bcopy(lb, tmpbuf, sizeof (*lb));
9879 L2BLK_SET_COMPRESS(
9880 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9881 ZIO_COMPRESS_OFF);
9884 /* checksum what we're about to write */
9885 fletcher_4_native(tmpbuf, asize, NULL,
9886 &l2dhdr->dh_start_lbps[0].lbp_cksum);
9888 abd_put(abd_buf->abd);
9890 /* perform the write itself */
9891 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
9892 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
9893 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
9894 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9895 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
9896 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
9897 (void) zio_nowait(wzio);
9899 dev->l2ad_hand += asize;
9901 * Include the committed log block's pointer in the list of pointers
9902 * to log blocks present in the L2ARC device.
9904 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
9905 sizeof (l2arc_log_blkptr_t));
9906 mutex_enter(&dev->l2ad_mtx);
9907 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
9908 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9909 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9910 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9911 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9912 mutex_exit(&dev->l2ad_mtx);
9913 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9915 /* bump the kstats */
9916 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
9917 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
9918 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
9919 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
9920 dev->l2ad_log_blk_payload_asize / asize);
9922 /* start a new log block */
9923 dev->l2ad_log_ent_idx = 0;
9924 dev->l2ad_log_blk_payload_asize = 0;
9925 dev->l2ad_log_blk_payload_start = 0;
9929 * Validates an L2ARC log block address to make sure that it can be read
9930 * from the provided L2ARC device.
9932 boolean_t
9933 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
9935 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9936 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9937 uint64_t end = lbp->lbp_daddr + asize - 1;
9938 uint64_t start = lbp->lbp_payload_start;
9939 boolean_t evicted = B_FALSE;
9941 /* BEGIN CSTYLED */
9943 * A log block is valid if all of the following conditions are true:
9944 * - it fits entirely (including its payload) between l2ad_start and
9945 * l2ad_end
9946 * - it has a valid size
9947 * - neither the log block itself nor part of its payload was evicted
9948 * by l2arc_evict():
9950 * l2ad_hand l2ad_evict
9951 * | | lbp_daddr
9952 * | start | | end
9953 * | | | | |
9954 * V V V V V
9955 * l2ad_start ============================================ l2ad_end
9956 * --------------------------||||
9957 * ^ ^
9958 * | log block
9959 * payload
9961 /* END CSTYLED */
9962 evicted =
9963 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
9964 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
9965 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
9966 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
9968 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
9969 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
9970 (!evicted || dev->l2ad_first));
9974 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
9975 * the device. The buffer being inserted must be present in L2ARC.
9976 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
9977 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
9979 static boolean_t
9980 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
9982 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
9983 l2arc_log_ent_phys_t *le;
9985 if (dev->l2ad_log_entries == 0)
9986 return (B_FALSE);
9988 int index = dev->l2ad_log_ent_idx++;
9990 ASSERT3S(index, <, dev->l2ad_log_entries);
9991 ASSERT(HDR_HAS_L2HDR(hdr));
9993 le = &lb->lb_entries[index];
9994 bzero(le, sizeof (*le));
9995 le->le_dva = hdr->b_dva;
9996 le->le_birth = hdr->b_birth;
9997 le->le_daddr = hdr->b_l2hdr.b_daddr;
9998 if (index == 0)
9999 dev->l2ad_log_blk_payload_start = le->le_daddr;
10000 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10001 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10002 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10003 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10004 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10005 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10006 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10008 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10009 HDR_GET_PSIZE(hdr));
10011 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10015 * Checks whether a given L2ARC device address sits in a time-sequential
10016 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10017 * just do a range comparison, we need to handle the situation in which the
10018 * range wraps around the end of the L2ARC device. Arguments:
10019 * bottom -- Lower end of the range to check (written to earlier).
10020 * top -- Upper end of the range to check (written to later).
10021 * check -- The address for which we want to determine if it sits in
10022 * between the top and bottom.
10024 * The 3-way conditional below represents the following cases:
10026 * bottom < top : Sequentially ordered case:
10027 * <check>--------+-------------------+
10028 * | (overlap here?) |
10029 * L2ARC dev V V
10030 * |---------------<bottom>============<top>--------------|
10032 * bottom > top: Looped-around case:
10033 * <check>--------+------------------+
10034 * | (overlap here?) |
10035 * L2ARC dev V V
10036 * |===============<top>---------------<bottom>===========|
10037 * ^ ^
10038 * | (or here?) |
10039 * +---------------+---------<check>
10041 * top == bottom : Just a single address comparison.
10043 boolean_t
10044 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10046 if (bottom < top)
10047 return (bottom <= check && check <= top);
10048 else if (bottom > top)
10049 return (check <= top || bottom <= check);
10050 else
10051 return (check == top);