4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
48 #include <sys/zfeature.h>
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
55 * Enable/disable nopwrite feature.
57 int zfs_nopwrite_enabled
= 1;
59 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
60 { DMU_BSWAP_UINT8
, TRUE
, "unallocated" },
61 { DMU_BSWAP_ZAP
, TRUE
, "object directory" },
62 { DMU_BSWAP_UINT64
, TRUE
, "object array" },
63 { DMU_BSWAP_UINT8
, TRUE
, "packed nvlist" },
64 { DMU_BSWAP_UINT64
, TRUE
, "packed nvlist size" },
65 { DMU_BSWAP_UINT64
, TRUE
, "bpobj" },
66 { DMU_BSWAP_UINT64
, TRUE
, "bpobj header" },
67 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map header" },
68 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map" },
69 { DMU_BSWAP_UINT64
, TRUE
, "ZIL intent log" },
70 { DMU_BSWAP_DNODE
, TRUE
, "DMU dnode" },
71 { DMU_BSWAP_OBJSET
, TRUE
, "DMU objset" },
72 { DMU_BSWAP_UINT64
, TRUE
, "DSL directory" },
73 { DMU_BSWAP_ZAP
, TRUE
, "DSL directory child map"},
74 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset snap map" },
75 { DMU_BSWAP_ZAP
, TRUE
, "DSL props" },
76 { DMU_BSWAP_UINT64
, TRUE
, "DSL dataset" },
77 { DMU_BSWAP_ZNODE
, TRUE
, "ZFS znode" },
78 { DMU_BSWAP_OLDACL
, TRUE
, "ZFS V0 ACL" },
79 { DMU_BSWAP_UINT8
, FALSE
, "ZFS plain file" },
80 { DMU_BSWAP_ZAP
, TRUE
, "ZFS directory" },
81 { DMU_BSWAP_ZAP
, TRUE
, "ZFS master node" },
82 { DMU_BSWAP_ZAP
, TRUE
, "ZFS delete queue" },
83 { DMU_BSWAP_UINT8
, FALSE
, "zvol object" },
84 { DMU_BSWAP_ZAP
, TRUE
, "zvol prop" },
85 { DMU_BSWAP_UINT8
, FALSE
, "other uint8[]" },
86 { DMU_BSWAP_UINT64
, FALSE
, "other uint64[]" },
87 { DMU_BSWAP_ZAP
, TRUE
, "other ZAP" },
88 { DMU_BSWAP_ZAP
, TRUE
, "persistent error log" },
89 { DMU_BSWAP_UINT8
, TRUE
, "SPA history" },
90 { DMU_BSWAP_UINT64
, TRUE
, "SPA history offsets" },
91 { DMU_BSWAP_ZAP
, TRUE
, "Pool properties" },
92 { DMU_BSWAP_ZAP
, TRUE
, "DSL permissions" },
93 { DMU_BSWAP_ACL
, TRUE
, "ZFS ACL" },
94 { DMU_BSWAP_UINT8
, TRUE
, "ZFS SYSACL" },
95 { DMU_BSWAP_UINT8
, TRUE
, "FUID table" },
96 { DMU_BSWAP_UINT64
, TRUE
, "FUID table size" },
97 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset next clones"},
98 { DMU_BSWAP_ZAP
, TRUE
, "scan work queue" },
99 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group used" },
100 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group quota" },
101 { DMU_BSWAP_ZAP
, TRUE
, "snapshot refcount tags"},
102 { DMU_BSWAP_ZAP
, TRUE
, "DDT ZAP algorithm" },
103 { DMU_BSWAP_ZAP
, TRUE
, "DDT statistics" },
104 { DMU_BSWAP_UINT8
, TRUE
, "System attributes" },
105 { DMU_BSWAP_ZAP
, TRUE
, "SA master node" },
106 { DMU_BSWAP_ZAP
, TRUE
, "SA attr registration" },
107 { DMU_BSWAP_ZAP
, TRUE
, "SA attr layouts" },
108 { DMU_BSWAP_ZAP
, TRUE
, "scan translations" },
109 { DMU_BSWAP_UINT8
, FALSE
, "deduplicated block" },
110 { DMU_BSWAP_ZAP
, TRUE
, "DSL deadlist map" },
111 { DMU_BSWAP_UINT64
, TRUE
, "DSL deadlist map hdr" },
112 { DMU_BSWAP_ZAP
, TRUE
, "DSL dir clones" },
113 { DMU_BSWAP_UINT64
, TRUE
, "bpobj subobj" }
116 const dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
117 { byteswap_uint8_array
, "uint8" },
118 { byteswap_uint16_array
, "uint16" },
119 { byteswap_uint32_array
, "uint32" },
120 { byteswap_uint64_array
, "uint64" },
121 { zap_byteswap
, "zap" },
122 { dnode_buf_byteswap
, "dnode" },
123 { dmu_objset_byteswap
, "objset" },
124 { zfs_znode_byteswap
, "znode" },
125 { zfs_oldacl_byteswap
, "oldacl" },
126 { zfs_acl_byteswap
, "acl" }
130 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
131 void *tag
, dmu_buf_t
**dbp
)
138 err
= dnode_hold(os
, object
, FTAG
, &dn
);
141 blkid
= dbuf_whichblock(dn
, 0, offset
);
142 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
143 db
= dbuf_hold(dn
, blkid
, tag
);
144 rw_exit(&dn
->dn_struct_rwlock
);
145 dnode_rele(dn
, FTAG
);
149 return (SET_ERROR(EIO
));
157 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
158 void *tag
, dmu_buf_t
**dbp
, int flags
)
161 int db_flags
= DB_RF_CANFAIL
;
163 if (flags
& DMU_READ_NO_PREFETCH
)
164 db_flags
|= DB_RF_NOPREFETCH
;
166 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
168 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
169 err
= dbuf_read(db
, NULL
, db_flags
);
182 return (DN_MAX_BONUSLEN
);
186 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
188 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
195 if (dn
->dn_bonus
!= db
) {
196 error
= SET_ERROR(EINVAL
);
197 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
198 error
= SET_ERROR(EINVAL
);
200 dnode_setbonuslen(dn
, newsize
, tx
);
209 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
211 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
218 if (!DMU_OT_IS_VALID(type
)) {
219 error
= SET_ERROR(EINVAL
);
220 } else if (dn
->dn_bonus
!= db
) {
221 error
= SET_ERROR(EINVAL
);
223 dnode_setbonus_type(dn
, type
, tx
);
232 dmu_get_bonustype(dmu_buf_t
*db_fake
)
234 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
236 dmu_object_type_t type
;
240 type
= dn
->dn_bonustype
;
247 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
252 error
= dnode_hold(os
, object
, FTAG
, &dn
);
253 dbuf_rm_spill(dn
, tx
);
254 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
255 dnode_rm_spill(dn
, tx
);
256 rw_exit(&dn
->dn_struct_rwlock
);
257 dnode_rele(dn
, FTAG
);
262 * returns ENOENT, EIO, or 0.
265 dmu_bonus_hold(objset_t
*os
, uint64_t object
, void *tag
, dmu_buf_t
**dbp
)
271 error
= dnode_hold(os
, object
, FTAG
, &dn
);
275 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
276 if (dn
->dn_bonus
== NULL
) {
277 rw_exit(&dn
->dn_struct_rwlock
);
278 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
279 if (dn
->dn_bonus
== NULL
)
280 dbuf_create_bonus(dn
);
284 /* as long as the bonus buf is held, the dnode will be held */
285 if (refcount_add(&db
->db_holds
, tag
) == 1) {
286 VERIFY(dnode_add_ref(dn
, db
));
287 atomic_inc_32(&dn
->dn_dbufs_count
);
291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 * a dnode hold for every dbuf.
295 rw_exit(&dn
->dn_struct_rwlock
);
297 dnode_rele(dn
, FTAG
);
299 VERIFY(0 == dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
));
306 * returns ENOENT, EIO, or 0.
308 * This interface will allocate a blank spill dbuf when a spill blk
309 * doesn't already exist on the dnode.
311 * if you only want to find an already existing spill db, then
312 * dmu_spill_hold_existing() should be used.
315 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, void *tag
, dmu_buf_t
**dbp
)
317 dmu_buf_impl_t
*db
= NULL
;
320 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
321 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
323 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
325 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
326 rw_exit(&dn
->dn_struct_rwlock
);
329 err
= dbuf_read(db
, NULL
, flags
);
338 dmu_spill_hold_existing(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
340 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
347 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
348 err
= SET_ERROR(EINVAL
);
350 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
352 if (!dn
->dn_have_spill
) {
353 err
= SET_ERROR(ENOENT
);
355 err
= dmu_spill_hold_by_dnode(dn
,
356 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
359 rw_exit(&dn
->dn_struct_rwlock
);
367 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
369 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
375 err
= dmu_spill_hold_by_dnode(dn
, DB_RF_CANFAIL
, tag
, dbp
);
382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384 * and can induce severe lock contention when writing to several files
385 * whose dnodes are in the same block.
388 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
389 boolean_t read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
, uint32_t flags
)
392 uint64_t blkid
, nblks
, i
;
397 ASSERT(length
<= DMU_MAX_ACCESS
);
400 * Note: We directly notify the prefetch code of this read, so that
401 * we can tell it about the multi-block read. dbuf_read() only knows
402 * about the one block it is accessing.
404 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
407 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
408 if (dn
->dn_datablkshift
) {
409 int blkshift
= dn
->dn_datablkshift
;
410 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
411 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
413 if (offset
+ length
> dn
->dn_datablksz
) {
414 zfs_panic_recover("zfs: accessing past end of object "
415 "%llx/%llx (size=%u access=%llu+%llu)",
416 (longlong_t
)dn
->dn_objset
->
417 os_dsl_dataset
->ds_object
,
418 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
419 (longlong_t
)offset
, (longlong_t
)length
);
420 rw_exit(&dn
->dn_struct_rwlock
);
421 return (SET_ERROR(EIO
));
425 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
427 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
428 blkid
= dbuf_whichblock(dn
, 0, offset
);
429 for (i
= 0; i
< nblks
; i
++) {
430 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
432 rw_exit(&dn
->dn_struct_rwlock
);
433 dmu_buf_rele_array(dbp
, nblks
, tag
);
435 return (SET_ERROR(EIO
));
438 /* initiate async i/o */
440 (void) dbuf_read(db
, zio
, dbuf_flags
);
444 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 && read
&&
445 length
< zfetch_array_rd_sz
) {
446 dmu_zfetch(&dn
->dn_zfetch
, blkid
, nblks
);
448 rw_exit(&dn
->dn_struct_rwlock
);
450 /* wait for async i/o */
453 dmu_buf_rele_array(dbp
, nblks
, tag
);
457 /* wait for other io to complete */
459 for (i
= 0; i
< nblks
; i
++) {
460 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
461 mutex_enter(&db
->db_mtx
);
462 while (db
->db_state
== DB_READ
||
463 db
->db_state
== DB_FILL
)
464 cv_wait(&db
->db_changed
, &db
->db_mtx
);
465 if (db
->db_state
== DB_UNCACHED
)
466 err
= SET_ERROR(EIO
);
467 mutex_exit(&db
->db_mtx
);
469 dmu_buf_rele_array(dbp
, nblks
, tag
);
481 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
482 uint64_t length
, int read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
)
487 err
= dnode_hold(os
, object
, FTAG
, &dn
);
491 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
492 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
494 dnode_rele(dn
, FTAG
);
500 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
501 uint64_t length
, boolean_t read
, void *tag
, int *numbufsp
,
504 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
510 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
511 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
518 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, void *tag
)
521 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
526 for (i
= 0; i
< numbufs
; i
++) {
528 dbuf_rele(dbp
[i
], tag
);
531 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
535 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
536 * indirect blocks prefeteched will be those that point to the blocks containing
537 * the data starting at offset, and continuing to offset + len.
539 * Note that if the indirect blocks above the blocks being prefetched are not in
540 * cache, they will be asychronously read in.
543 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
544 uint64_t len
, zio_priority_t pri
)
550 if (len
== 0) { /* they're interested in the bonus buffer */
551 dn
= DMU_META_DNODE(os
);
553 if (object
== 0 || object
>= DN_MAX_OBJECT
)
556 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
557 blkid
= dbuf_whichblock(dn
, level
,
558 object
* sizeof (dnode_phys_t
));
559 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
560 rw_exit(&dn
->dn_struct_rwlock
);
565 * XXX - Note, if the dnode for the requested object is not
566 * already cached, we will do a *synchronous* read in the
567 * dnode_hold() call. The same is true for any indirects.
569 err
= dnode_hold(os
, object
, FTAG
, &dn
);
573 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
575 * offset + len - 1 is the last byte we want to prefetch for, and offset
576 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
577 * last block we want to prefetch, and dbuf_whichblock(dn, level,
578 * offset) is the first. Then the number we need to prefetch is the
581 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
582 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
583 dbuf_whichblock(dn
, level
, offset
) + 1;
585 nblks
= (offset
< dn
->dn_datablksz
);
589 blkid
= dbuf_whichblock(dn
, level
, offset
);
590 for (int i
= 0; i
< nblks
; i
++)
591 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
594 rw_exit(&dn
->dn_struct_rwlock
);
596 dnode_rele(dn
, FTAG
);
600 * Get the next "chunk" of file data to free. We traverse the file from
601 * the end so that the file gets shorter over time (if we crashes in the
602 * middle, this will leave us in a better state). We find allocated file
603 * data by simply searching the allocated level 1 indirects.
605 * On input, *start should be the first offset that does not need to be
606 * freed (e.g. "offset + length"). On return, *start will be the first
607 * offset that should be freed.
610 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
)
612 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
613 /* bytes of data covered by a level-1 indirect block */
615 dn
->dn_datablksz
* EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
617 ASSERT3U(minimum
, <=, *start
);
619 if (*start
- minimum
<= iblkrange
* maxblks
) {
623 ASSERT(ISP2(iblkrange
));
625 for (uint64_t blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
629 * dnode_next_offset(BACKWARDS) will find an allocated L1
630 * indirect block at or before the input offset. We must
631 * decrement *start so that it is at the end of the region
635 err
= dnode_next_offset(dn
,
636 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
638 /* if there are no indirect blocks before start, we are done */
642 } else if (err
!= 0) {
646 /* set start to the beginning of this L1 indirect */
647 *start
= P2ALIGN(*start
, iblkrange
);
649 if (*start
< minimum
)
655 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
658 uint64_t object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
661 if (offset
>= object_size
)
664 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
665 length
= object_size
- offset
;
667 while (length
!= 0) {
668 uint64_t chunk_end
, chunk_begin
;
670 chunk_end
= chunk_begin
= offset
+ length
;
672 /* move chunk_begin backwards to the beginning of this chunk */
673 err
= get_next_chunk(dn
, &chunk_begin
, offset
);
676 ASSERT3U(chunk_begin
, >=, offset
);
677 ASSERT3U(chunk_begin
, <=, chunk_end
);
679 dmu_tx_t
*tx
= dmu_tx_create(os
);
680 dmu_tx_hold_free(tx
, dn
->dn_object
,
681 chunk_begin
, chunk_end
- chunk_begin
);
684 * Mark this transaction as typically resulting in a net
685 * reduction in space used.
687 dmu_tx_mark_netfree(tx
);
688 err
= dmu_tx_assign(tx
, TXG_WAIT
);
693 dnode_free_range(dn
, chunk_begin
, chunk_end
- chunk_begin
, tx
);
696 length
-= chunk_end
- chunk_begin
;
702 dmu_free_long_range(objset_t
*os
, uint64_t object
,
703 uint64_t offset
, uint64_t length
)
708 err
= dnode_hold(os
, object
, FTAG
, &dn
);
711 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
714 * It is important to zero out the maxblkid when freeing the entire
715 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
716 * will take the fast path, and (b) dnode_reallocate() can verify
717 * that the entire file has been freed.
719 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
722 dnode_rele(dn
, FTAG
);
727 dmu_free_long_object(objset_t
*os
, uint64_t object
)
732 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
736 tx
= dmu_tx_create(os
);
737 dmu_tx_hold_bonus(tx
, object
);
738 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
739 dmu_tx_mark_netfree(tx
);
740 err
= dmu_tx_assign(tx
, TXG_WAIT
);
742 err
= dmu_object_free(os
, object
, tx
);
752 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
753 uint64_t size
, dmu_tx_t
*tx
)
756 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
759 ASSERT(offset
< UINT64_MAX
);
760 ASSERT(size
== -1ULL || size
<= UINT64_MAX
- offset
);
761 dnode_free_range(dn
, offset
, size
, tx
);
762 dnode_rele(dn
, FTAG
);
767 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
768 void *buf
, uint32_t flags
)
774 err
= dnode_hold(os
, object
, FTAG
, &dn
);
779 * Deal with odd block sizes, where there can't be data past the first
780 * block. If we ever do the tail block optimization, we will need to
781 * handle that here as well.
783 if (dn
->dn_maxblkid
== 0) {
784 int newsz
= offset
> dn
->dn_datablksz
? 0 :
785 MIN(size
, dn
->dn_datablksz
- offset
);
786 bzero((char *)buf
+ newsz
, size
- newsz
);
791 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
795 * NB: we could do this block-at-a-time, but it's nice
796 * to be reading in parallel.
798 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
799 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
803 for (i
= 0; i
< numbufs
; i
++) {
806 dmu_buf_t
*db
= dbp
[i
];
810 bufoff
= offset
- db
->db_offset
;
811 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
813 bcopy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
817 buf
= (char *)buf
+ tocpy
;
819 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
821 dnode_rele(dn
, FTAG
);
826 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
827 const void *buf
, dmu_tx_t
*tx
)
835 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
836 FALSE
, FTAG
, &numbufs
, &dbp
));
838 for (i
= 0; i
< numbufs
; i
++) {
841 dmu_buf_t
*db
= dbp
[i
];
845 bufoff
= offset
- db
->db_offset
;
846 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
848 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
850 if (tocpy
== db
->db_size
)
851 dmu_buf_will_fill(db
, tx
);
853 dmu_buf_will_dirty(db
, tx
);
855 bcopy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
857 if (tocpy
== db
->db_size
)
858 dmu_buf_fill_done(db
, tx
);
862 buf
= (char *)buf
+ tocpy
;
864 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
868 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
877 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
878 FALSE
, FTAG
, &numbufs
, &dbp
));
880 for (i
= 0; i
< numbufs
; i
++) {
881 dmu_buf_t
*db
= dbp
[i
];
883 dmu_buf_will_not_fill(db
, tx
);
885 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
889 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
890 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
891 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
895 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
896 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
897 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
900 dmu_buf_write_embedded(db
,
901 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
902 uncompressed_size
, compressed_size
, byteorder
, tx
);
904 dmu_buf_rele(db
, FTAG
);
908 * DMU support for xuio
910 kstat_t
*xuio_ksp
= NULL
;
913 dmu_xuio_init(xuio_t
*xuio
, int nblk
)
916 uio_t
*uio
= &xuio
->xu_uio
;
918 uio
->uio_iovcnt
= nblk
;
919 uio
->uio_iov
= kmem_zalloc(nblk
* sizeof (iovec_t
), KM_SLEEP
);
921 priv
= kmem_zalloc(sizeof (dmu_xuio_t
), KM_SLEEP
);
923 priv
->bufs
= kmem_zalloc(nblk
* sizeof (arc_buf_t
*), KM_SLEEP
);
924 priv
->iovp
= uio
->uio_iov
;
925 XUIO_XUZC_PRIV(xuio
) = priv
;
927 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
928 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, nblk
);
930 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, nblk
);
936 dmu_xuio_fini(xuio_t
*xuio
)
938 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
939 int nblk
= priv
->cnt
;
941 kmem_free(priv
->iovp
, nblk
* sizeof (iovec_t
));
942 kmem_free(priv
->bufs
, nblk
* sizeof (arc_buf_t
*));
943 kmem_free(priv
, sizeof (dmu_xuio_t
));
945 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
946 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, -nblk
);
948 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, -nblk
);
952 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
953 * and increase priv->next by 1.
956 dmu_xuio_add(xuio_t
*xuio
, arc_buf_t
*abuf
, offset_t off
, size_t n
)
959 uio_t
*uio
= &xuio
->xu_uio
;
960 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
961 int i
= priv
->next
++;
963 ASSERT(i
< priv
->cnt
);
964 ASSERT(off
+ n
<= arc_buf_size(abuf
));
965 iov
= uio
->uio_iov
+ i
;
966 iov
->iov_base
= (char *)abuf
->b_data
+ off
;
968 priv
->bufs
[i
] = abuf
;
973 dmu_xuio_cnt(xuio_t
*xuio
)
975 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
980 dmu_xuio_arcbuf(xuio_t
*xuio
, int i
)
982 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
984 ASSERT(i
< priv
->cnt
);
985 return (priv
->bufs
[i
]);
989 dmu_xuio_clear(xuio_t
*xuio
, int i
)
991 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
993 ASSERT(i
< priv
->cnt
);
994 priv
->bufs
[i
] = NULL
;
1000 xuio_ksp
= kstat_create("zfs", 0, "xuio_stats", "misc",
1001 KSTAT_TYPE_NAMED
, sizeof (xuio_stats
) / sizeof (kstat_named_t
),
1002 KSTAT_FLAG_VIRTUAL
);
1003 if (xuio_ksp
!= NULL
) {
1004 xuio_ksp
->ks_data
= &xuio_stats
;
1005 kstat_install(xuio_ksp
);
1010 xuio_stat_fini(void)
1012 if (xuio_ksp
!= NULL
) {
1013 kstat_delete(xuio_ksp
);
1019 xuio_stat_wbuf_copied()
1021 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1025 xuio_stat_wbuf_nocopy()
1027 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy
);
1032 dmu_read_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
)
1035 int numbufs
, i
, err
;
1036 xuio_t
*xuio
= NULL
;
1039 * NB: we could do this block-at-a-time, but it's nice
1040 * to be reading in parallel.
1042 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1043 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1047 if (uio
->uio_extflg
== UIO_XUIO
)
1048 xuio
= (xuio_t
*)uio
;
1050 for (i
= 0; i
< numbufs
; i
++) {
1053 dmu_buf_t
*db
= dbp
[i
];
1057 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1058 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1061 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
1062 arc_buf_t
*dbuf_abuf
= dbi
->db_buf
;
1063 arc_buf_t
*abuf
= dbuf_loan_arcbuf(dbi
);
1064 err
= dmu_xuio_add(xuio
, abuf
, bufoff
, tocpy
);
1066 uio
->uio_resid
-= tocpy
;
1067 uio
->uio_loffset
+= tocpy
;
1070 if (abuf
== dbuf_abuf
)
1071 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy
);
1073 XUIOSTAT_BUMP(xuiostat_rbuf_copied
);
1075 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1083 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1089 * Read 'size' bytes into the uio buffer.
1090 * From object zdb->db_object.
1091 * Starting at offset uio->uio_loffset.
1093 * If the caller already has a dbuf in the target object
1094 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1095 * because we don't have to find the dnode_t for the object.
1098 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
)
1100 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1109 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1116 * Read 'size' bytes into the uio buffer.
1117 * From the specified object
1118 * Starting at offset uio->uio_loffset.
1121 dmu_read_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
)
1129 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1133 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1135 dnode_rele(dn
, FTAG
);
1141 dmu_write_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1148 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1149 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1153 for (i
= 0; i
< numbufs
; i
++) {
1156 dmu_buf_t
*db
= dbp
[i
];
1160 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1161 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1163 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1165 if (tocpy
== db
->db_size
)
1166 dmu_buf_will_fill(db
, tx
);
1168 dmu_buf_will_dirty(db
, tx
);
1171 * XXX uiomove could block forever (eg. nfs-backed
1172 * pages). There needs to be a uiolockdown() function
1173 * to lock the pages in memory, so that uiomove won't
1176 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1179 if (tocpy
== db
->db_size
)
1180 dmu_buf_fill_done(db
, tx
);
1188 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1193 * Write 'size' bytes from the uio buffer.
1194 * To object zdb->db_object.
1195 * Starting at offset uio->uio_loffset.
1197 * If the caller already has a dbuf in the target object
1198 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1199 * because we don't have to find the dnode_t for the object.
1202 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
,
1205 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1214 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1221 * Write 'size' bytes from the uio buffer.
1222 * To the specified object.
1223 * Starting at offset uio->uio_loffset.
1226 dmu_write_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
,
1235 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1239 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1241 dnode_rele(dn
, FTAG
);
1247 dmu_write_pages(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1248 page_t
*pp
, dmu_tx_t
*tx
)
1257 err
= dmu_buf_hold_array(os
, object
, offset
, size
,
1258 FALSE
, FTAG
, &numbufs
, &dbp
);
1262 for (i
= 0; i
< numbufs
; i
++) {
1263 int tocpy
, copied
, thiscpy
;
1265 dmu_buf_t
*db
= dbp
[i
];
1269 ASSERT3U(db
->db_size
, >=, PAGESIZE
);
1271 bufoff
= offset
- db
->db_offset
;
1272 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1274 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1276 if (tocpy
== db
->db_size
)
1277 dmu_buf_will_fill(db
, tx
);
1279 dmu_buf_will_dirty(db
, tx
);
1281 for (copied
= 0; copied
< tocpy
; copied
+= PAGESIZE
) {
1282 ASSERT3U(pp
->p_offset
, ==, db
->db_offset
+ bufoff
);
1283 thiscpy
= MIN(PAGESIZE
, tocpy
- copied
);
1284 va
= zfs_map_page(pp
, S_READ
);
1285 bcopy(va
, (char *)db
->db_data
+ bufoff
, thiscpy
);
1286 zfs_unmap_page(pp
, va
);
1291 if (tocpy
== db
->db_size
)
1292 dmu_buf_fill_done(db
, tx
);
1297 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1303 * Allocate a loaned anonymous arc buffer.
1306 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1308 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1310 return (arc_loan_buf(db
->db_objset
->os_spa
, size
));
1314 * Free a loaned arc buffer.
1317 dmu_return_arcbuf(arc_buf_t
*buf
)
1319 arc_return_buf(buf
, FTAG
);
1320 VERIFY(arc_buf_remove_ref(buf
, FTAG
));
1324 * When possible directly assign passed loaned arc buffer to a dbuf.
1325 * If this is not possible copy the contents of passed arc buf via
1329 dmu_assign_arcbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1332 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1335 uint32_t blksz
= (uint32_t)arc_buf_size(buf
);
1338 DB_DNODE_ENTER(dbuf
);
1339 dn
= DB_DNODE(dbuf
);
1340 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1341 blkid
= dbuf_whichblock(dn
, 0, offset
);
1342 VERIFY((db
= dbuf_hold(dn
, blkid
, FTAG
)) != NULL
);
1343 rw_exit(&dn
->dn_struct_rwlock
);
1344 DB_DNODE_EXIT(dbuf
);
1347 * We can only assign if the offset is aligned, the arc buf is the
1348 * same size as the dbuf, and the dbuf is not metadata. It
1349 * can't be metadata because the loaned arc buf comes from the
1350 * user-data kmem arena.
1352 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
&&
1353 DBUF_GET_BUFC_TYPE(db
) == ARC_BUFC_DATA
) {
1354 dbuf_assign_arcbuf(db
, buf
, tx
);
1355 dbuf_rele(db
, FTAG
);
1360 DB_DNODE_ENTER(dbuf
);
1361 dn
= DB_DNODE(dbuf
);
1363 object
= dn
->dn_object
;
1364 DB_DNODE_EXIT(dbuf
);
1366 dbuf_rele(db
, FTAG
);
1367 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1368 dmu_return_arcbuf(buf
);
1369 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1374 dbuf_dirty_record_t
*dsa_dr
;
1375 dmu_sync_cb_t
*dsa_done
;
1382 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1384 dmu_sync_arg_t
*dsa
= varg
;
1385 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1386 blkptr_t
*bp
= zio
->io_bp
;
1388 if (zio
->io_error
== 0) {
1389 if (BP_IS_HOLE(bp
)) {
1391 * A block of zeros may compress to a hole, but the
1392 * block size still needs to be known for replay.
1394 BP_SET_LSIZE(bp
, db
->db_size
);
1395 } else if (!BP_IS_EMBEDDED(bp
)) {
1396 ASSERT(BP_GET_LEVEL(bp
) == 0);
1403 dmu_sync_late_arrival_ready(zio_t
*zio
)
1405 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1410 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1412 dmu_sync_arg_t
*dsa
= varg
;
1413 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1414 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1416 mutex_enter(&db
->db_mtx
);
1417 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1418 if (zio
->io_error
== 0) {
1419 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1420 if (dr
->dt
.dl
.dr_nopwrite
) {
1421 blkptr_t
*bp
= zio
->io_bp
;
1422 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1423 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1425 ASSERT(BP_EQUAL(bp
, bp_orig
));
1426 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1427 ASSERT(zio_checksum_table
[chksum
].ci_flags
&
1428 ZCHECKSUM_FLAG_NOPWRITE
);
1430 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1431 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1432 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1435 * Old style holes are filled with all zeros, whereas
1436 * new-style holes maintain their lsize, type, level,
1437 * and birth time (see zio_write_compress). While we
1438 * need to reset the BP_SET_LSIZE() call that happened
1439 * in dmu_sync_ready for old style holes, we do *not*
1440 * want to wipe out the information contained in new
1441 * style holes. Thus, only zero out the block pointer if
1442 * it's an old style hole.
1444 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1445 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1446 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1448 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1450 cv_broadcast(&db
->db_changed
);
1451 mutex_exit(&db
->db_mtx
);
1453 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1455 kmem_free(dsa
, sizeof (*dsa
));
1459 dmu_sync_late_arrival_done(zio_t
*zio
)
1461 blkptr_t
*bp
= zio
->io_bp
;
1462 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1463 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1465 if (zio
->io_error
== 0 && !BP_IS_HOLE(bp
)) {
1467 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1468 * then there is nothing to do here. Otherwise, free the
1469 * newly allocated block in this txg.
1471 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
1472 ASSERT(BP_EQUAL(bp
, bp_orig
));
1474 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1475 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1476 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1477 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1481 dmu_tx_commit(dsa
->dsa_tx
);
1483 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1485 kmem_free(dsa
, sizeof (*dsa
));
1489 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1490 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1492 dmu_sync_arg_t
*dsa
;
1495 tx
= dmu_tx_create(os
);
1496 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1497 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1499 /* Make zl_get_data do txg_waited_synced() */
1500 return (SET_ERROR(EIO
));
1503 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1505 dsa
->dsa_done
= done
;
1509 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1510 zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
, zp
,
1511 dmu_sync_late_arrival_ready
, NULL
, dmu_sync_late_arrival_done
, dsa
,
1512 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
1518 * Intent log support: sync the block associated with db to disk.
1519 * N.B. and XXX: the caller is responsible for making sure that the
1520 * data isn't changing while dmu_sync() is writing it.
1524 * EEXIST: this txg has already been synced, so there's nothing to do.
1525 * The caller should not log the write.
1527 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1528 * The caller should not log the write.
1530 * EALREADY: this block is already in the process of being synced.
1531 * The caller should track its progress (somehow).
1533 * EIO: could not do the I/O.
1534 * The caller should do a txg_wait_synced().
1536 * 0: the I/O has been initiated.
1537 * The caller should log this blkptr in the done callback.
1538 * It is possible that the I/O will fail, in which case
1539 * the error will be reported to the done callback and
1540 * propagated to pio from zio_done().
1543 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1545 blkptr_t
*bp
= zgd
->zgd_bp
;
1546 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1547 objset_t
*os
= db
->db_objset
;
1548 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1549 dbuf_dirty_record_t
*dr
;
1550 dmu_sync_arg_t
*dsa
;
1551 zbookmark_phys_t zb
;
1555 ASSERT(pio
!= NULL
);
1558 SET_BOOKMARK(&zb
, ds
->ds_object
,
1559 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1563 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1567 * If we're frozen (running ziltest), we always need to generate a bp.
1569 if (txg
> spa_freeze_txg(os
->os_spa
))
1570 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1573 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1574 * and us. If we determine that this txg is not yet syncing,
1575 * but it begins to sync a moment later, that's OK because the
1576 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1578 mutex_enter(&db
->db_mtx
);
1580 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1582 * This txg has already synced. There's nothing to do.
1584 mutex_exit(&db
->db_mtx
);
1585 return (SET_ERROR(EEXIST
));
1588 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1590 * This txg is currently syncing, so we can't mess with
1591 * the dirty record anymore; just write a new log block.
1593 mutex_exit(&db
->db_mtx
);
1594 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1597 dr
= db
->db_last_dirty
;
1598 while (dr
&& dr
->dr_txg
!= txg
)
1603 * There's no dr for this dbuf, so it must have been freed.
1604 * There's no need to log writes to freed blocks, so we're done.
1606 mutex_exit(&db
->db_mtx
);
1607 return (SET_ERROR(ENOENT
));
1610 ASSERT(dr
->dr_next
== NULL
|| dr
->dr_next
->dr_txg
< txg
);
1613 * Assume the on-disk data is X, the current syncing data (in
1614 * txg - 1) is Y, and the current in-memory data is Z (currently
1617 * We usually want to perform a nopwrite if X and Z are the
1618 * same. However, if Y is different (i.e. the BP is going to
1619 * change before this write takes effect), then a nopwrite will
1620 * be incorrect - we would override with X, which could have
1621 * been freed when Y was written.
1623 * (Note that this is not a concern when we are nop-writing from
1624 * syncing context, because X and Y must be identical, because
1625 * all previous txgs have been synced.)
1627 * Therefore, we disable nopwrite if the current BP could change
1628 * before this TXG. There are two ways it could change: by
1629 * being dirty (dr_next is non-NULL), or by being freed
1630 * (dnode_block_freed()). This behavior is verified by
1631 * zio_done(), which VERIFYs that the override BP is identical
1632 * to the on-disk BP.
1636 if (dr
->dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1637 zp
.zp_nopwrite
= B_FALSE
;
1640 ASSERT(dr
->dr_txg
== txg
);
1641 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1642 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1644 * We have already issued a sync write for this buffer,
1645 * or this buffer has already been synced. It could not
1646 * have been dirtied since, or we would have cleared the state.
1648 mutex_exit(&db
->db_mtx
);
1649 return (SET_ERROR(EALREADY
));
1652 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1653 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1654 mutex_exit(&db
->db_mtx
);
1656 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1658 dsa
->dsa_done
= done
;
1662 zio_nowait(arc_write(pio
, os
->os_spa
, txg
,
1663 bp
, dr
->dt
.dl
.dr_data
, DBUF_IS_L2CACHEABLE(db
),
1664 DBUF_IS_L2COMPRESSIBLE(db
), &zp
, dmu_sync_ready
,
1665 NULL
, dmu_sync_done
, dsa
, ZIO_PRIORITY_SYNC_WRITE
,
1666 ZIO_FLAG_CANFAIL
, &zb
));
1672 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1678 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1681 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1682 dnode_rele(dn
, FTAG
);
1687 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1693 * Send streams include each object's checksum function. This
1694 * check ensures that the receiving system can understand the
1695 * checksum function transmitted.
1697 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1699 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1700 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1701 dn
->dn_checksum
= checksum
;
1702 dnode_setdirty(dn
, tx
);
1703 dnode_rele(dn
, FTAG
);
1707 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1713 * Send streams include each object's compression function. This
1714 * check ensures that the receiving system can understand the
1715 * compression function transmitted.
1717 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1719 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1720 dn
->dn_compress
= compress
;
1721 dnode_setdirty(dn
, tx
);
1722 dnode_rele(dn
, FTAG
);
1725 int zfs_mdcomp_disable
= 0;
1728 * When the "redundant_metadata" property is set to "most", only indirect
1729 * blocks of this level and higher will have an additional ditto block.
1731 int zfs_redundant_metadata_most_ditto_level
= 2;
1734 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1736 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1737 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1739 enum zio_checksum checksum
= os
->os_checksum
;
1740 enum zio_compress compress
= os
->os_compress
;
1741 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1742 boolean_t dedup
= B_FALSE
;
1743 boolean_t nopwrite
= B_FALSE
;
1744 boolean_t dedup_verify
= os
->os_dedup_verify
;
1745 int copies
= os
->os_copies
;
1748 * We maintain different write policies for each of the following
1751 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1752 * 3. all other level 0 blocks
1755 if (zfs_mdcomp_disable
) {
1756 compress
= ZIO_COMPRESS_EMPTY
;
1759 * XXX -- we should design a compression algorithm
1760 * that specializes in arrays of bps.
1762 compress
= zio_compress_select(os
->os_spa
,
1763 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1767 * Metadata always gets checksummed. If the data
1768 * checksum is multi-bit correctable, and it's not a
1769 * ZBT-style checksum, then it's suitable for metadata
1770 * as well. Otherwise, the metadata checksum defaults
1773 if (!(zio_checksum_table
[checksum
].ci_flags
&
1774 ZCHECKSUM_FLAG_METADATA
) ||
1775 (zio_checksum_table
[checksum
].ci_flags
&
1776 ZCHECKSUM_FLAG_EMBEDDED
))
1777 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
1779 if (os
->os_redundant_metadata
== ZFS_REDUNDANT_METADATA_ALL
||
1780 (os
->os_redundant_metadata
==
1781 ZFS_REDUNDANT_METADATA_MOST
&&
1782 (level
>= zfs_redundant_metadata_most_ditto_level
||
1783 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))))
1785 } else if (wp
& WP_NOFILL
) {
1789 * If we're writing preallocated blocks, we aren't actually
1790 * writing them so don't set any policy properties. These
1791 * blocks are currently only used by an external subsystem
1792 * outside of zfs (i.e. dump) and not written by the zio
1795 compress
= ZIO_COMPRESS_OFF
;
1796 checksum
= ZIO_CHECKSUM_NOPARITY
;
1798 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
1801 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
1802 zio_checksum_select(dn
->dn_checksum
, checksum
) :
1806 * Determine dedup setting. If we are in dmu_sync(),
1807 * we won't actually dedup now because that's all
1808 * done in syncing context; but we do want to use the
1809 * dedup checkum. If the checksum is not strong
1810 * enough to ensure unique signatures, force
1813 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
1814 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
1815 if (!(zio_checksum_table
[checksum
].ci_flags
&
1816 ZCHECKSUM_FLAG_DEDUP
))
1817 dedup_verify
= B_TRUE
;
1821 * Enable nopwrite if we have secure enough checksum
1822 * algorithm (see comment in zio_nop_write) and
1823 * compression is enabled. We don't enable nopwrite if
1824 * dedup is enabled as the two features are mutually
1827 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
1828 ZCHECKSUM_FLAG_NOPWRITE
) &&
1829 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
1832 zp
->zp_checksum
= checksum
;
1833 zp
->zp_compress
= compress
;
1834 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
1835 zp
->zp_level
= level
;
1836 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
1837 zp
->zp_dedup
= dedup
;
1838 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
1839 zp
->zp_nopwrite
= nopwrite
;
1843 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
1849 * Sync any current changes before
1850 * we go trundling through the block pointers.
1852 err
= dmu_object_wait_synced(os
, object
);
1857 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1862 err
= dnode_next_offset(dn
, (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
1863 dnode_rele(dn
, FTAG
);
1869 * Given the ZFS object, if it contains any dirty nodes
1870 * this function flushes all dirty blocks to disk. This
1871 * ensures the DMU object info is updated. A more efficient
1872 * future version might just find the TXG with the maximum
1873 * ID and wait for that to be synced.
1876 dmu_object_wait_synced(objset_t
*os
, uint64_t object
) {
1880 error
= dnode_hold(os
, object
, FTAG
, &dn
);
1885 for (i
= 0; i
< TXG_SIZE
; i
++) {
1886 if (list_link_active(&dn
->dn_dirty_link
[i
])) {
1890 dnode_rele(dn
, FTAG
);
1891 if (i
!= TXG_SIZE
) {
1892 txg_wait_synced(dmu_objset_pool(os
), 0);
1899 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
1903 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1904 mutex_enter(&dn
->dn_mtx
);
1908 doi
->doi_data_block_size
= dn
->dn_datablksz
;
1909 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
1910 1ULL << dn
->dn_indblkshift
: 0;
1911 doi
->doi_type
= dn
->dn_type
;
1912 doi
->doi_bonus_type
= dn
->dn_bonustype
;
1913 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
1914 doi
->doi_indirection
= dn
->dn_nlevels
;
1915 doi
->doi_checksum
= dn
->dn_checksum
;
1916 doi
->doi_compress
= dn
->dn_compress
;
1917 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
1918 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
1919 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
1920 doi
->doi_fill_count
= 0;
1921 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
1922 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
1924 mutex_exit(&dn
->dn_mtx
);
1925 rw_exit(&dn
->dn_struct_rwlock
);
1929 * Get information on a DMU object.
1930 * If doi is NULL, just indicates whether the object exists.
1933 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
1936 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
1942 dmu_object_info_from_dnode(dn
, doi
);
1944 dnode_rele(dn
, FTAG
);
1949 * As above, but faster; can be used when you have a held dbuf in hand.
1952 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
1954 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1957 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
1962 * Faster still when you only care about the size.
1963 * This is specifically optimized for zfs_getattr().
1966 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
1967 u_longlong_t
*nblk512
)
1969 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1975 *blksize
= dn
->dn_datablksz
;
1976 /* add 1 for dnode space */
1977 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
1978 SPA_MINBLOCKSHIFT
) + 1;
1983 byteswap_uint64_array(void *vbuf
, size_t size
)
1985 uint64_t *buf
= vbuf
;
1986 size_t count
= size
>> 3;
1989 ASSERT((size
& 7) == 0);
1991 for (i
= 0; i
< count
; i
++)
1992 buf
[i
] = BSWAP_64(buf
[i
]);
1996 byteswap_uint32_array(void *vbuf
, size_t size
)
1998 uint32_t *buf
= vbuf
;
1999 size_t count
= size
>> 2;
2002 ASSERT((size
& 3) == 0);
2004 for (i
= 0; i
< count
; i
++)
2005 buf
[i
] = BSWAP_32(buf
[i
]);
2009 byteswap_uint16_array(void *vbuf
, size_t size
)
2011 uint16_t *buf
= vbuf
;
2012 size_t count
= size
>> 1;
2015 ASSERT((size
& 1) == 0);
2017 for (i
= 0; i
< count
; i
++)
2018 buf
[i
] = BSWAP_16(buf
[i
]);
2023 byteswap_uint8_array(void *vbuf
, size_t size
)
2044 arc_fini(); /* arc depends on l2arc, so arc must go first */