16602 usba: unused label
[illumos-gate.git] / usr / src / uts / common / fs / zfs / dmu.c
blobfc682107a0f577bf3d00403f15e157c9ae2f2733
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright 2019 Joyent, Inc.
27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
29 * Copyright (c) 2018 DilOS
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dbuf.h>
36 #include <sys/dnode.h>
37 #include <sys/zfs_context.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dmu_traverse.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/zap.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/zio_compress.h>
50 #include <sys/sa.h>
51 #include <sys/zfeature.h>
52 #include <sys/abd.h>
53 #ifdef _KERNEL
54 #include <sys/vmsystm.h>
55 #include <sys/zfs_znode.h>
56 #endif
58 static xuio_stats_t xuio_stats = {
59 { "onloan_read_buf", KSTAT_DATA_UINT64 },
60 { "onloan_write_buf", KSTAT_DATA_UINT64 },
61 { "read_buf_copied", KSTAT_DATA_UINT64 },
62 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
63 { "write_buf_copied", KSTAT_DATA_UINT64 },
64 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
67 #define XUIOSTAT_INCR(stat, val) \
68 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
69 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
72 * Enable/disable nopwrite feature.
74 int zfs_nopwrite_enabled = 1;
77 * Tunable to control percentage of dirtied blocks from frees in one TXG.
78 * After this threshold is crossed, additional dirty blocks from frees
79 * wait until the next TXG.
80 * A value of zero will disable this throttle.
82 uint32_t zfs_per_txg_dirty_frees_percent = 30;
85 * This can be used for testing, to ensure that certain actions happen
86 * while in the middle of a remap (which might otherwise complete too
87 * quickly).
89 int zfs_object_remap_one_indirect_delay_ticks = 0;
92 * Limit the amount we can prefetch with one call to this amount. This
93 * helps to limit the amount of memory that can be used by prefetching.
94 * Larger objects should be prefetched a bit at a time.
96 uint64_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
100 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
101 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
102 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
103 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
104 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
105 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
106 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
107 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
108 { DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
109 { DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
110 { DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
111 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
112 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map" },
113 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
114 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
115 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
116 { DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
117 { DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
118 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
119 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
120 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
121 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
122 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
123 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
124 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
125 { DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
126 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
127 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
128 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
129 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
130 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
131 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
132 { DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
133 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
134 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
135 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
136 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones" },
137 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
138 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used"},
139 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/proj quota"},
140 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags" },
141 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
142 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
143 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
144 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
145 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
146 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
147 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
148 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
149 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
150 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
151 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
152 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
155 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 { byteswap_uint8_array, "uint8" },
157 { byteswap_uint16_array, "uint16" },
158 { byteswap_uint32_array, "uint32" },
159 { byteswap_uint64_array, "uint64" },
160 { zap_byteswap, "zap" },
161 { dnode_buf_byteswap, "dnode" },
162 { dmu_objset_byteswap, "objset" },
163 { zfs_znode_byteswap, "znode" },
164 { zfs_oldacl_byteswap, "oldacl" },
165 { zfs_acl_byteswap, "acl" }
169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170 void *tag, dmu_buf_t **dbp)
172 uint64_t blkid;
173 dmu_buf_impl_t *db;
175 rw_enter(&dn->dn_struct_rwlock, RW_READER);
176 blkid = dbuf_whichblock(dn, 0, offset);
177 db = dbuf_hold(dn, blkid, tag);
178 rw_exit(&dn->dn_struct_rwlock);
180 if (db == NULL) {
181 *dbp = NULL;
182 return (SET_ERROR(EIO));
185 *dbp = &db->db;
186 return (0);
189 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
190 void *tag, dmu_buf_t **dbp)
192 dnode_t *dn;
193 uint64_t blkid;
194 dmu_buf_impl_t *db;
195 int err;
197 err = dnode_hold(os, object, FTAG, &dn);
198 if (err)
199 return (err);
200 rw_enter(&dn->dn_struct_rwlock, RW_READER);
201 blkid = dbuf_whichblock(dn, 0, offset);
202 db = dbuf_hold(dn, blkid, tag);
203 rw_exit(&dn->dn_struct_rwlock);
204 dnode_rele(dn, FTAG);
206 if (db == NULL) {
207 *dbp = NULL;
208 return (SET_ERROR(EIO));
211 *dbp = &db->db;
212 return (err);
216 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
217 void *tag, dmu_buf_t **dbp, int flags)
219 int err;
220 int db_flags = DB_RF_CANFAIL;
222 if (flags & DMU_READ_NO_PREFETCH)
223 db_flags |= DB_RF_NOPREFETCH;
224 if (flags & DMU_READ_NO_DECRYPT)
225 db_flags |= DB_RF_NO_DECRYPT;
227 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
228 if (err == 0) {
229 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
230 err = dbuf_read(db, NULL, db_flags);
231 if (err != 0) {
232 dbuf_rele(db, tag);
233 *dbp = NULL;
237 return (err);
241 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
242 void *tag, dmu_buf_t **dbp, int flags)
244 int err;
245 int db_flags = DB_RF_CANFAIL;
247 if (flags & DMU_READ_NO_PREFETCH)
248 db_flags |= DB_RF_NOPREFETCH;
249 if (flags & DMU_READ_NO_DECRYPT)
250 db_flags |= DB_RF_NO_DECRYPT;
252 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
253 if (err == 0) {
254 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
255 err = dbuf_read(db, NULL, db_flags);
256 if (err != 0) {
257 dbuf_rele(db, tag);
258 *dbp = NULL;
262 return (err);
266 dmu_bonus_max(void)
268 return (DN_OLD_MAX_BONUSLEN);
272 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
274 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
275 dnode_t *dn;
276 int error;
278 DB_DNODE_ENTER(db);
279 dn = DB_DNODE(db);
281 if (dn->dn_bonus != db) {
282 error = SET_ERROR(EINVAL);
283 } else if (newsize < 0 || newsize > db_fake->db_size) {
284 error = SET_ERROR(EINVAL);
285 } else {
286 dnode_setbonuslen(dn, newsize, tx);
287 error = 0;
290 DB_DNODE_EXIT(db);
291 return (error);
295 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
297 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
298 dnode_t *dn;
299 int error;
301 DB_DNODE_ENTER(db);
302 dn = DB_DNODE(db);
304 if (!DMU_OT_IS_VALID(type)) {
305 error = SET_ERROR(EINVAL);
306 } else if (dn->dn_bonus != db) {
307 error = SET_ERROR(EINVAL);
308 } else {
309 dnode_setbonus_type(dn, type, tx);
310 error = 0;
313 DB_DNODE_EXIT(db);
314 return (error);
317 dmu_object_type_t
318 dmu_get_bonustype(dmu_buf_t *db_fake)
320 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
321 dnode_t *dn;
322 dmu_object_type_t type;
324 DB_DNODE_ENTER(db);
325 dn = DB_DNODE(db);
326 type = dn->dn_bonustype;
327 DB_DNODE_EXIT(db);
329 return (type);
333 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
335 dnode_t *dn;
336 int error;
338 error = dnode_hold(os, object, FTAG, &dn);
339 dbuf_rm_spill(dn, tx);
340 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
341 dnode_rm_spill(dn, tx);
342 rw_exit(&dn->dn_struct_rwlock);
343 dnode_rele(dn, FTAG);
344 return (error);
348 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
349 * has not yet been allocated a new bonus dbuf a will be allocated.
350 * Returns ENOENT, EIO, or 0.
352 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
353 uint32_t flags)
355 dmu_buf_impl_t *db;
356 int error;
357 uint32_t db_flags = DB_RF_MUST_SUCCEED;
359 if (flags & DMU_READ_NO_PREFETCH)
360 db_flags |= DB_RF_NOPREFETCH;
361 if (flags & DMU_READ_NO_DECRYPT)
362 db_flags |= DB_RF_NO_DECRYPT;
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus == NULL) {
366 rw_exit(&dn->dn_struct_rwlock);
367 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
368 if (dn->dn_bonus == NULL)
369 dbuf_create_bonus(dn);
371 db = dn->dn_bonus;
373 /* as long as the bonus buf is held, the dnode will be held */
374 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
375 VERIFY(dnode_add_ref(dn, db));
376 atomic_inc_32(&dn->dn_dbufs_count);
380 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
381 * hold and incrementing the dbuf count to ensure that dnode_move() sees
382 * a dnode hold for every dbuf.
384 rw_exit(&dn->dn_struct_rwlock);
386 error = dbuf_read(db, NULL, db_flags);
387 if (error) {
388 dnode_evict_bonus(dn);
389 dbuf_rele(db, tag);
390 *dbp = NULL;
391 return (error);
394 *dbp = &db->db;
395 return (0);
399 * returns ENOENT, EIO, or 0.
402 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
403 dmu_buf_t **dbp)
405 dnode_t *dn;
406 dmu_buf_impl_t *db;
407 int error;
408 uint32_t db_flags = DB_RF_MUST_SUCCEED;
410 if (flags & DMU_READ_NO_PREFETCH)
411 db_flags |= DB_RF_NOPREFETCH;
412 if (flags & DMU_READ_NO_DECRYPT)
413 db_flags |= DB_RF_NO_DECRYPT;
415 error = dnode_hold(os, object, FTAG, &dn);
416 if (error)
417 return (error);
419 rw_enter(&dn->dn_struct_rwlock, RW_READER);
420 if (dn->dn_bonus == NULL) {
421 rw_exit(&dn->dn_struct_rwlock);
422 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
423 if (dn->dn_bonus == NULL)
424 dbuf_create_bonus(dn);
426 db = dn->dn_bonus;
428 /* as long as the bonus buf is held, the dnode will be held */
429 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
430 VERIFY(dnode_add_ref(dn, db));
431 atomic_inc_32(&dn->dn_dbufs_count);
435 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
436 * hold and incrementing the dbuf count to ensure that dnode_move() sees
437 * a dnode hold for every dbuf.
439 rw_exit(&dn->dn_struct_rwlock);
441 dnode_rele(dn, FTAG);
443 error = dbuf_read(db, NULL, db_flags);
444 if (error) {
445 dnode_evict_bonus(dn);
446 dbuf_rele(db, tag);
447 *dbp = NULL;
448 return (error);
451 *dbp = &db->db;
452 return (0);
456 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
458 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
462 * returns ENOENT, EIO, or 0.
464 * This interface will allocate a blank spill dbuf when a spill blk
465 * doesn't already exist on the dnode.
467 * if you only want to find an already existing spill db, then
468 * dmu_spill_hold_existing() should be used.
471 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
473 dmu_buf_impl_t *db = NULL;
474 int err;
476 if ((flags & DB_RF_HAVESTRUCT) == 0)
477 rw_enter(&dn->dn_struct_rwlock, RW_READER);
479 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
481 if ((flags & DB_RF_HAVESTRUCT) == 0)
482 rw_exit(&dn->dn_struct_rwlock);
484 ASSERT(db != NULL);
485 err = dbuf_read(db, NULL, flags);
486 if (err == 0)
487 *dbp = &db->db;
488 else
489 dbuf_rele(db, tag);
490 return (err);
494 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
496 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
497 dnode_t *dn;
498 int err;
500 DB_DNODE_ENTER(db);
501 dn = DB_DNODE(db);
503 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
504 err = SET_ERROR(EINVAL);
505 } else {
506 rw_enter(&dn->dn_struct_rwlock, RW_READER);
508 if (!dn->dn_have_spill) {
509 err = SET_ERROR(ENOENT);
510 } else {
511 err = dmu_spill_hold_by_dnode(dn,
512 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
515 rw_exit(&dn->dn_struct_rwlock);
518 DB_DNODE_EXIT(db);
519 return (err);
523 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
524 dmu_buf_t **dbp)
526 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
527 dnode_t *dn;
528 int err;
529 uint32_t db_flags = DB_RF_CANFAIL;
531 if (flags & DMU_READ_NO_DECRYPT)
532 db_flags |= DB_RF_NO_DECRYPT;
534 DB_DNODE_ENTER(db);
535 dn = DB_DNODE(db);
536 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
537 DB_DNODE_EXIT(db);
539 return (err);
543 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
544 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
545 * and can induce severe lock contention when writing to several files
546 * whose dnodes are in the same block.
549 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
550 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
552 dmu_buf_t **dbp;
553 uint64_t blkid, nblks, i;
554 uint32_t dbuf_flags;
555 int err;
556 zio_t *zio;
558 ASSERT(length <= DMU_MAX_ACCESS);
561 * Note: We directly notify the prefetch code of this read, so that
562 * we can tell it about the multi-block read. dbuf_read() only knows
563 * about the one block it is accessing.
565 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
566 DB_RF_NOPREFETCH;
568 rw_enter(&dn->dn_struct_rwlock, RW_READER);
569 if (dn->dn_datablkshift) {
570 int blkshift = dn->dn_datablkshift;
571 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
572 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
573 } else {
574 if (offset + length > dn->dn_datablksz) {
575 zfs_panic_recover("zfs: accessing past end of object "
576 "%llx/%llx (size=%u access=%llu+%llu)",
577 (longlong_t)dn->dn_objset->
578 os_dsl_dataset->ds_object,
579 (longlong_t)dn->dn_object, dn->dn_datablksz,
580 (longlong_t)offset, (longlong_t)length);
581 rw_exit(&dn->dn_struct_rwlock);
582 return (SET_ERROR(EIO));
584 nblks = 1;
586 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
588 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
589 blkid = dbuf_whichblock(dn, 0, offset);
590 for (i = 0; i < nblks; i++) {
591 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
592 if (db == NULL) {
593 rw_exit(&dn->dn_struct_rwlock);
594 dmu_buf_rele_array(dbp, nblks, tag);
595 zio_nowait(zio);
596 return (SET_ERROR(EIO));
599 /* initiate async i/o */
600 if (read)
601 (void) dbuf_read(db, zio, dbuf_flags);
602 dbp[i] = &db->db;
605 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
606 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
607 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
608 read && DNODE_IS_CACHEABLE(dn), B_TRUE);
610 rw_exit(&dn->dn_struct_rwlock);
612 /* wait for async i/o */
613 err = zio_wait(zio);
614 if (err) {
615 dmu_buf_rele_array(dbp, nblks, tag);
616 return (err);
619 /* wait for other io to complete */
620 if (read) {
621 for (i = 0; i < nblks; i++) {
622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
623 mutex_enter(&db->db_mtx);
624 while (db->db_state == DB_READ ||
625 db->db_state == DB_FILL)
626 cv_wait(&db->db_changed, &db->db_mtx);
627 if (db->db_state == DB_UNCACHED)
628 err = SET_ERROR(EIO);
629 mutex_exit(&db->db_mtx);
630 if (err) {
631 dmu_buf_rele_array(dbp, nblks, tag);
632 return (err);
637 *numbufsp = nblks;
638 *dbpp = dbp;
639 return (0);
642 static int
643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
644 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
646 dnode_t *dn;
647 int err;
649 err = dnode_hold(os, object, FTAG, &dn);
650 if (err)
651 return (err);
653 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
654 numbufsp, dbpp, DMU_READ_PREFETCH);
656 dnode_rele(dn, FTAG);
658 return (err);
662 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
663 uint64_t length, boolean_t read, void *tag, int *numbufsp,
664 dmu_buf_t ***dbpp)
666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
667 dnode_t *dn;
668 int err;
670 DB_DNODE_ENTER(db);
671 dn = DB_DNODE(db);
672 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
673 numbufsp, dbpp, DMU_READ_PREFETCH);
674 DB_DNODE_EXIT(db);
676 return (err);
679 void
680 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
682 int i;
683 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
685 if (numbufs == 0)
686 return;
688 for (i = 0; i < numbufs; i++) {
689 if (dbp[i])
690 dbuf_rele(dbp[i], tag);
693 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
697 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
698 * indirect blocks prefeteched will be those that point to the blocks containing
699 * the data starting at offset, and continuing to offset + len.
701 * Note that if the indirect blocks above the blocks being prefetched are not
702 * in cache, they will be asychronously read in.
704 void
705 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
706 uint64_t len, zio_priority_t pri)
708 dnode_t *dn;
709 uint64_t blkid;
710 int nblks, err;
712 if (len == 0) { /* they're interested in the bonus buffer */
713 dn = DMU_META_DNODE(os);
715 if (object == 0 || object >= DN_MAX_OBJECT)
716 return;
718 rw_enter(&dn->dn_struct_rwlock, RW_READER);
719 blkid = dbuf_whichblock(dn, level,
720 object * sizeof (dnode_phys_t));
721 dbuf_prefetch(dn, level, blkid, pri, 0);
722 rw_exit(&dn->dn_struct_rwlock);
723 return;
727 * See comment before the definition of dmu_prefetch_max.
729 len = MIN(len, dmu_prefetch_max);
732 * XXX - Note, if the dnode for the requested object is not
733 * already cached, we will do a *synchronous* read in the
734 * dnode_hold() call. The same is true for any indirects.
736 err = dnode_hold(os, object, FTAG, &dn);
737 if (err != 0)
738 return;
741 * offset + len - 1 is the last byte we want to prefetch for, and offset
742 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
743 * last block we want to prefetch, and dbuf_whichblock(dn, level,
744 * offset) is the first. Then the number we need to prefetch is the
745 * last - first + 1.
747 rw_enter(&dn->dn_struct_rwlock, RW_READER);
748 if (level > 0 || dn->dn_datablkshift != 0) {
749 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
750 dbuf_whichblock(dn, level, offset) + 1;
751 } else {
752 nblks = (offset < dn->dn_datablksz);
755 if (nblks != 0) {
756 blkid = dbuf_whichblock(dn, level, offset);
757 for (int i = 0; i < nblks; i++)
758 dbuf_prefetch(dn, level, blkid + i, pri, 0);
760 rw_exit(&dn->dn_struct_rwlock);
762 dnode_rele(dn, FTAG);
766 * Get the next "chunk" of file data to free. We traverse the file from
767 * the end so that the file gets shorter over time (if we crashes in the
768 * middle, this will leave us in a better state). We find allocated file
769 * data by simply searching the allocated level 1 indirects.
771 * On input, *start should be the first offset that does not need to be
772 * freed (e.g. "offset + length"). On return, *start will be the first
773 * offset that should be freed.
775 static int
776 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
778 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
779 /* bytes of data covered by a level-1 indirect block */
780 uint64_t iblkrange =
781 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
783 ASSERT3U(minimum, <=, *start);
785 if (*start - minimum <= iblkrange * maxblks) {
786 *start = minimum;
787 return (0);
789 ASSERT(ISP2(iblkrange));
791 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
792 int err;
795 * dnode_next_offset(BACKWARDS) will find an allocated L1
796 * indirect block at or before the input offset. We must
797 * decrement *start so that it is at the end of the region
798 * to search.
800 (*start)--;
801 err = dnode_next_offset(dn,
802 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
804 /* if there are no indirect blocks before start, we are done */
805 if (err == ESRCH) {
806 *start = minimum;
807 break;
808 } else if (err != 0) {
809 return (err);
812 /* set start to the beginning of this L1 indirect */
813 *start = P2ALIGN(*start, iblkrange);
815 if (*start < minimum)
816 *start = minimum;
817 return (0);
821 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
822 * otherwise return false.
823 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
825 /*ARGSUSED*/
826 static boolean_t
827 dmu_objset_zfs_unmounting(objset_t *os)
829 #ifdef _KERNEL
830 if (dmu_objset_type(os) == DMU_OST_ZFS)
831 return (zfs_get_vfs_flag_unmounted(os));
832 #endif
833 return (B_FALSE);
836 static int
837 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
838 uint64_t length)
840 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
841 int err;
842 uint64_t dirty_frees_threshold;
843 dsl_pool_t *dp = dmu_objset_pool(os);
845 if (offset >= object_size)
846 return (0);
848 if (zfs_per_txg_dirty_frees_percent <= 100)
849 dirty_frees_threshold =
850 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
851 else
852 dirty_frees_threshold = zfs_dirty_data_max / 4;
854 if (length == DMU_OBJECT_END || offset + length > object_size)
855 length = object_size - offset;
857 while (length != 0) {
858 uint64_t chunk_end, chunk_begin, chunk_len;
859 uint64_t long_free_dirty_all_txgs = 0;
860 dmu_tx_t *tx;
862 if (dmu_objset_zfs_unmounting(dn->dn_objset))
863 return (SET_ERROR(EINTR));
865 chunk_end = chunk_begin = offset + length;
867 /* move chunk_begin backwards to the beginning of this chunk */
868 err = get_next_chunk(dn, &chunk_begin, offset);
869 if (err)
870 return (err);
871 ASSERT3U(chunk_begin, >=, offset);
872 ASSERT3U(chunk_begin, <=, chunk_end);
874 chunk_len = chunk_end - chunk_begin;
876 mutex_enter(&dp->dp_lock);
877 for (int t = 0; t < TXG_SIZE; t++) {
878 long_free_dirty_all_txgs +=
879 dp->dp_long_free_dirty_pertxg[t];
881 mutex_exit(&dp->dp_lock);
884 * To avoid filling up a TXG with just frees wait for
885 * the next TXG to open before freeing more chunks if
886 * we have reached the threshold of frees
888 if (dirty_frees_threshold != 0 &&
889 long_free_dirty_all_txgs >= dirty_frees_threshold) {
890 txg_wait_open(dp, 0, B_TRUE);
891 continue;
894 tx = dmu_tx_create(os);
895 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
898 * Mark this transaction as typically resulting in a net
899 * reduction in space used.
901 dmu_tx_mark_netfree(tx);
902 err = dmu_tx_assign(tx, TXG_WAIT);
903 if (err) {
904 dmu_tx_abort(tx);
905 return (err);
908 mutex_enter(&dp->dp_lock);
909 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
910 chunk_len;
911 mutex_exit(&dp->dp_lock);
912 DTRACE_PROBE3(free__long__range,
913 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
914 uint64_t, dmu_tx_get_txg(tx));
915 dnode_free_range(dn, chunk_begin, chunk_len, tx);
917 dmu_tx_commit(tx);
919 length -= chunk_len;
921 return (0);
925 dmu_free_long_range(objset_t *os, uint64_t object,
926 uint64_t offset, uint64_t length)
928 dnode_t *dn;
929 int err;
931 err = dnode_hold(os, object, FTAG, &dn);
932 if (err != 0)
933 return (err);
934 err = dmu_free_long_range_impl(os, dn, offset, length);
937 * It is important to zero out the maxblkid when freeing the entire
938 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
939 * will take the fast path, and (b) dnode_reallocate() can verify
940 * that the entire file has been freed.
942 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
943 dn->dn_maxblkid = 0;
945 dnode_rele(dn, FTAG);
946 return (err);
950 dmu_free_long_object(objset_t *os, uint64_t object)
952 dmu_tx_t *tx;
953 int err;
955 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
956 if (err != 0)
957 return (err);
959 tx = dmu_tx_create(os);
960 dmu_tx_hold_bonus(tx, object);
961 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
962 dmu_tx_mark_netfree(tx);
963 err = dmu_tx_assign(tx, TXG_WAIT);
964 if (err == 0) {
965 if (err == 0)
966 err = dmu_object_free(os, object, tx);
968 dmu_tx_commit(tx);
969 } else {
970 dmu_tx_abort(tx);
973 return (err);
977 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
978 uint64_t size, dmu_tx_t *tx)
980 dnode_t *dn;
981 int err = dnode_hold(os, object, FTAG, &dn);
982 if (err)
983 return (err);
984 ASSERT(offset < UINT64_MAX);
985 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
986 dnode_free_range(dn, offset, size, tx);
987 dnode_rele(dn, FTAG);
988 return (0);
991 static int
992 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
993 void *buf, uint32_t flags)
995 dmu_buf_t **dbp;
996 int numbufs, err = 0;
999 * Deal with odd block sizes, where there can't be data past the first
1000 * block. If we ever do the tail block optimization, we will need to
1001 * handle that here as well.
1003 if (dn->dn_maxblkid == 0) {
1004 int newsz = offset > dn->dn_datablksz ? 0 :
1005 MIN(size, dn->dn_datablksz - offset);
1006 bzero((char *)buf + newsz, size - newsz);
1007 size = newsz;
1010 while (size > 0) {
1011 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1012 int i;
1015 * NB: we could do this block-at-a-time, but it's nice
1016 * to be reading in parallel.
1018 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1019 TRUE, FTAG, &numbufs, &dbp, flags);
1020 if (err)
1021 break;
1023 for (i = 0; i < numbufs; i++) {
1024 int tocpy;
1025 int bufoff;
1026 dmu_buf_t *db = dbp[i];
1028 ASSERT(size > 0);
1030 bufoff = offset - db->db_offset;
1031 tocpy = (int)MIN(db->db_size - bufoff, size);
1033 bcopy((char *)db->db_data + bufoff, buf, tocpy);
1035 offset += tocpy;
1036 size -= tocpy;
1037 buf = (char *)buf + tocpy;
1039 dmu_buf_rele_array(dbp, numbufs, FTAG);
1041 return (err);
1045 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1046 void *buf, uint32_t flags)
1048 dnode_t *dn;
1049 int err;
1051 err = dnode_hold(os, object, FTAG, &dn);
1052 if (err != 0)
1053 return (err);
1055 err = dmu_read_impl(dn, offset, size, buf, flags);
1056 dnode_rele(dn, FTAG);
1057 return (err);
1061 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1062 uint32_t flags)
1064 return (dmu_read_impl(dn, offset, size, buf, flags));
1067 static void
1068 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1069 const void *buf, dmu_tx_t *tx)
1071 int i;
1073 for (i = 0; i < numbufs; i++) {
1074 int tocpy;
1075 int bufoff;
1076 dmu_buf_t *db = dbp[i];
1078 ASSERT(size > 0);
1080 bufoff = offset - db->db_offset;
1081 tocpy = (int)MIN(db->db_size - bufoff, size);
1083 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1085 if (tocpy == db->db_size)
1086 dmu_buf_will_fill(db, tx);
1087 else
1088 dmu_buf_will_dirty(db, tx);
1090 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
1092 if (tocpy == db->db_size)
1093 dmu_buf_fill_done(db, tx);
1095 offset += tocpy;
1096 size -= tocpy;
1097 buf = (char *)buf + tocpy;
1101 void
1102 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1103 const void *buf, dmu_tx_t *tx)
1105 dmu_buf_t **dbp;
1106 int numbufs;
1108 if (size == 0)
1109 return;
1111 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1112 FALSE, FTAG, &numbufs, &dbp));
1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1114 dmu_buf_rele_array(dbp, numbufs, FTAG);
1117 void
1118 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1119 const void *buf, dmu_tx_t *tx)
1121 dmu_buf_t **dbp;
1122 int numbufs;
1124 if (size == 0)
1125 return;
1127 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1128 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1129 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1130 dmu_buf_rele_array(dbp, numbufs, FTAG);
1133 static int
1134 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1135 uint64_t last_removal_txg, uint64_t offset)
1137 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1138 int err = 0;
1140 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1141 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1142 ASSERT3P(dbuf, !=, NULL);
1145 * If the block hasn't been written yet, this default will ensure
1146 * we don't try to remap it.
1148 uint64_t birth = UINT64_MAX;
1149 ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1150 if (dbuf->db_blkptr != NULL)
1151 birth = dbuf->db_blkptr->blk_birth;
1152 rw_exit(&dn->dn_struct_rwlock);
1155 * If this L1 was already written after the last removal, then we've
1156 * already tried to remap it.
1158 if (birth <= last_removal_txg &&
1159 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1160 dbuf_can_remap(dbuf)) {
1161 dmu_tx_t *tx = dmu_tx_create(os);
1162 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1163 err = dmu_tx_assign(tx, TXG_WAIT);
1164 if (err == 0) {
1165 (void) dbuf_dirty(dbuf, tx);
1166 dmu_tx_commit(tx);
1167 } else {
1168 dmu_tx_abort(tx);
1172 dbuf_rele(dbuf, FTAG);
1174 delay(zfs_object_remap_one_indirect_delay_ticks);
1176 return (err);
1180 * Remap all blockpointers in the object, if possible, so that they reference
1181 * only concrete vdevs.
1183 * To do this, iterate over the L0 blockpointers and remap any that reference
1184 * an indirect vdev. Note that we only examine L0 blockpointers; since we
1185 * cannot guarantee that we can remap all blockpointer anyways (due to split
1186 * blocks), we do not want to make the code unnecessarily complicated to
1187 * catch the unlikely case that there is an L1 block on an indirect vdev that
1188 * contains no indirect blockpointers.
1191 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1192 uint64_t last_removal_txg)
1194 uint64_t offset, l1span;
1195 int err;
1196 dnode_t *dn;
1198 err = dnode_hold(os, object, FTAG, &dn);
1199 if (err != 0) {
1200 return (err);
1203 if (dn->dn_nlevels <= 1) {
1204 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1205 err = SET_ERROR(EINTR);
1209 * If the dnode has no indirect blocks, we cannot dirty them.
1210 * We still want to remap the blkptr(s) in the dnode if
1211 * appropriate, so mark it as dirty.
1213 if (err == 0 && dnode_needs_remap(dn)) {
1214 dmu_tx_t *tx = dmu_tx_create(os);
1215 dmu_tx_hold_bonus(tx, dn->dn_object);
1216 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1217 dnode_setdirty(dn, tx);
1218 dmu_tx_commit(tx);
1219 } else {
1220 dmu_tx_abort(tx);
1224 dnode_rele(dn, FTAG);
1225 return (err);
1228 offset = 0;
1229 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1230 dn->dn_datablkshift);
1232 * Find the next L1 indirect that is not a hole.
1234 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1235 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1236 err = SET_ERROR(EINTR);
1237 break;
1239 if ((err = dmu_object_remap_one_indirect(os, dn,
1240 last_removal_txg, offset)) != 0) {
1241 break;
1243 offset += l1span;
1246 dnode_rele(dn, FTAG);
1247 return (err);
1250 void
1251 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1252 dmu_tx_t *tx)
1254 dmu_buf_t **dbp;
1255 int numbufs, i;
1257 if (size == 0)
1258 return;
1260 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1261 FALSE, FTAG, &numbufs, &dbp));
1263 for (i = 0; i < numbufs; i++) {
1264 dmu_buf_t *db = dbp[i];
1266 dmu_buf_will_not_fill(db, tx);
1268 dmu_buf_rele_array(dbp, numbufs, FTAG);
1271 void
1272 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1273 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1274 int compressed_size, int byteorder, dmu_tx_t *tx)
1276 dmu_buf_t *db;
1278 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1279 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1280 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1281 FTAG, &db));
1283 dmu_buf_write_embedded(db,
1284 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1285 uncompressed_size, compressed_size, byteorder, tx);
1287 dmu_buf_rele(db, FTAG);
1291 * DMU support for xuio
1293 kstat_t *xuio_ksp = NULL;
1296 dmu_xuio_init(xuio_t *xuio, int nblk)
1298 dmu_xuio_t *priv;
1299 uio_t *uio = &xuio->xu_uio;
1301 uio->uio_iovcnt = nblk;
1302 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1304 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1305 priv->cnt = nblk;
1306 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1307 priv->iovp = uio->uio_iov;
1308 XUIO_XUZC_PRIV(xuio) = priv;
1310 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1311 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1312 else
1313 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1315 return (0);
1318 void
1319 dmu_xuio_fini(xuio_t *xuio)
1321 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1322 int nblk = priv->cnt;
1324 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1325 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1326 kmem_free(priv, sizeof (dmu_xuio_t));
1328 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1329 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1330 else
1331 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1335 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1336 * and increase priv->next by 1.
1339 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1341 struct iovec *iov;
1342 uio_t *uio = &xuio->xu_uio;
1343 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1344 int i = priv->next++;
1346 ASSERT(i < priv->cnt);
1347 ASSERT(off + n <= arc_buf_lsize(abuf));
1348 iov = uio->uio_iov + i;
1349 iov->iov_base = (char *)abuf->b_data + off;
1350 iov->iov_len = n;
1351 priv->bufs[i] = abuf;
1352 return (0);
1356 dmu_xuio_cnt(xuio_t *xuio)
1358 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1359 return (priv->cnt);
1362 arc_buf_t *
1363 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1365 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1367 ASSERT(i < priv->cnt);
1368 return (priv->bufs[i]);
1371 void
1372 dmu_xuio_clear(xuio_t *xuio, int i)
1374 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1376 ASSERT(i < priv->cnt);
1377 priv->bufs[i] = NULL;
1380 static void
1381 xuio_stat_init(void)
1383 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1384 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1385 KSTAT_FLAG_VIRTUAL);
1386 if (xuio_ksp != NULL) {
1387 xuio_ksp->ks_data = &xuio_stats;
1388 kstat_install(xuio_ksp);
1392 static void
1393 xuio_stat_fini(void)
1395 if (xuio_ksp != NULL) {
1396 kstat_delete(xuio_ksp);
1397 xuio_ksp = NULL;
1401 void
1402 xuio_stat_wbuf_copied(void)
1404 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1407 void
1408 xuio_stat_wbuf_nocopy(void)
1410 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1413 #ifdef _KERNEL
1415 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1417 dmu_buf_t **dbp;
1418 int numbufs, i, err;
1419 xuio_t *xuio = NULL;
1422 * NB: we could do this block-at-a-time, but it's nice
1423 * to be reading in parallel.
1425 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1426 TRUE, FTAG, &numbufs, &dbp, 0);
1427 if (err)
1428 return (err);
1430 if (uio->uio_extflg == UIO_XUIO)
1431 xuio = (xuio_t *)uio;
1433 for (i = 0; i < numbufs; i++) {
1434 int tocpy;
1435 int bufoff;
1436 dmu_buf_t *db = dbp[i];
1438 ASSERT(size > 0);
1440 bufoff = uio->uio_loffset - db->db_offset;
1441 tocpy = (int)MIN(db->db_size - bufoff, size);
1443 if (xuio) {
1444 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1445 arc_buf_t *dbuf_abuf = dbi->db_buf;
1446 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1447 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1448 if (!err) {
1449 uio->uio_resid -= tocpy;
1450 uio->uio_loffset += tocpy;
1453 if (abuf == dbuf_abuf)
1454 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1455 else
1456 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1457 } else {
1458 err = uiomove((char *)db->db_data + bufoff, tocpy,
1459 UIO_READ, uio);
1461 if (err)
1462 break;
1464 size -= tocpy;
1466 dmu_buf_rele_array(dbp, numbufs, FTAG);
1468 return (err);
1472 * Read 'size' bytes into the uio buffer.
1473 * From object zdb->db_object.
1474 * Starting at offset uio->uio_loffset.
1476 * If the caller already has a dbuf in the target object
1477 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1478 * because we don't have to find the dnode_t for the object.
1481 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1484 dnode_t *dn;
1485 int err;
1487 if (size == 0)
1488 return (0);
1490 DB_DNODE_ENTER(db);
1491 dn = DB_DNODE(db);
1492 err = dmu_read_uio_dnode(dn, uio, size);
1493 DB_DNODE_EXIT(db);
1495 return (err);
1499 * Read 'size' bytes into the uio buffer.
1500 * From the specified object
1501 * Starting at offset uio->uio_loffset.
1504 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1506 dnode_t *dn;
1507 int err;
1509 if (size == 0)
1510 return (0);
1512 err = dnode_hold(os, object, FTAG, &dn);
1513 if (err)
1514 return (err);
1516 err = dmu_read_uio_dnode(dn, uio, size);
1518 dnode_rele(dn, FTAG);
1520 return (err);
1524 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1526 dmu_buf_t **dbp;
1527 int numbufs;
1528 int err = 0;
1529 int i;
1531 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1532 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1533 if (err)
1534 return (err);
1536 for (i = 0; i < numbufs; i++) {
1537 int tocpy;
1538 int bufoff;
1539 dmu_buf_t *db = dbp[i];
1541 ASSERT(size > 0);
1543 bufoff = uio->uio_loffset - db->db_offset;
1544 tocpy = (int)MIN(db->db_size - bufoff, size);
1546 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1548 if (tocpy == db->db_size)
1549 dmu_buf_will_fill(db, tx);
1550 else
1551 dmu_buf_will_dirty(db, tx);
1554 * XXX uiomove could block forever (eg. nfs-backed
1555 * pages). There needs to be a uiolockdown() function
1556 * to lock the pages in memory, so that uiomove won't
1557 * block.
1559 err = uiomove((char *)db->db_data + bufoff, tocpy,
1560 UIO_WRITE, uio);
1562 if (tocpy == db->db_size)
1563 dmu_buf_fill_done(db, tx);
1565 if (err)
1566 break;
1568 size -= tocpy;
1571 dmu_buf_rele_array(dbp, numbufs, FTAG);
1572 return (err);
1576 * Write 'size' bytes from the uio buffer.
1577 * To object zdb->db_object.
1578 * Starting at offset uio->uio_loffset.
1580 * If the caller already has a dbuf in the target object
1581 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1582 * because we don't have to find the dnode_t for the object.
1585 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1586 dmu_tx_t *tx)
1588 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1589 dnode_t *dn;
1590 int err;
1592 if (size == 0)
1593 return (0);
1595 DB_DNODE_ENTER(db);
1596 dn = DB_DNODE(db);
1597 err = dmu_write_uio_dnode(dn, uio, size, tx);
1598 DB_DNODE_EXIT(db);
1600 return (err);
1604 * Write 'size' bytes from the uio buffer.
1605 * To the specified object.
1606 * Starting at offset uio->uio_loffset.
1609 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1610 dmu_tx_t *tx)
1612 dnode_t *dn;
1613 int err;
1615 if (size == 0)
1616 return (0);
1618 err = dnode_hold(os, object, FTAG, &dn);
1619 if (err)
1620 return (err);
1622 err = dmu_write_uio_dnode(dn, uio, size, tx);
1624 dnode_rele(dn, FTAG);
1626 return (err);
1630 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1631 page_t *pp, dmu_tx_t *tx)
1633 dmu_buf_t **dbp;
1634 int numbufs, i;
1635 int err;
1637 if (size == 0)
1638 return (0);
1640 err = dmu_buf_hold_array(os, object, offset, size,
1641 FALSE, FTAG, &numbufs, &dbp);
1642 if (err)
1643 return (err);
1645 for (i = 0; i < numbufs; i++) {
1646 int tocpy, copied, thiscpy;
1647 int bufoff;
1648 dmu_buf_t *db = dbp[i];
1649 caddr_t va;
1651 ASSERT(size > 0);
1652 ASSERT3U(db->db_size, >=, PAGESIZE);
1654 bufoff = offset - db->db_offset;
1655 tocpy = (int)MIN(db->db_size - bufoff, size);
1657 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1659 if (tocpy == db->db_size)
1660 dmu_buf_will_fill(db, tx);
1661 else
1662 dmu_buf_will_dirty(db, tx);
1664 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1665 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1666 thiscpy = MIN(PAGESIZE, tocpy - copied);
1667 va = zfs_map_page(pp, S_READ);
1668 bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1669 zfs_unmap_page(pp, va);
1670 pp = pp->p_next;
1671 bufoff += PAGESIZE;
1674 if (tocpy == db->db_size)
1675 dmu_buf_fill_done(db, tx);
1677 offset += tocpy;
1678 size -= tocpy;
1680 dmu_buf_rele_array(dbp, numbufs, FTAG);
1681 return (err);
1683 #endif
1686 * Allocate a loaned anonymous arc buffer.
1688 arc_buf_t *
1689 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1691 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1693 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1697 * Free a loaned arc buffer.
1699 void
1700 dmu_return_arcbuf(arc_buf_t *buf)
1702 arc_return_buf(buf, FTAG);
1703 arc_buf_destroy(buf, FTAG);
1706 void
1707 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1708 dmu_buf_t *handle, dmu_tx_t *tx)
1710 dmu_buf_t *dst_handle;
1711 dmu_buf_impl_t *dstdb;
1712 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1713 dmu_object_type_t type;
1714 arc_buf_t *abuf;
1715 uint64_t datalen;
1716 boolean_t byteorder;
1717 uint8_t salt[ZIO_DATA_SALT_LEN];
1718 uint8_t iv[ZIO_DATA_IV_LEN];
1719 uint8_t mac[ZIO_DATA_MAC_LEN];
1721 ASSERT3P(srcdb->db_buf, !=, NULL);
1723 /* hold the db that we want to write to */
1724 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1725 DMU_READ_NO_DECRYPT));
1726 dstdb = (dmu_buf_impl_t *)dst_handle;
1727 datalen = arc_buf_size(srcdb->db_buf);
1729 DB_DNODE_ENTER(dstdb);
1730 type = DB_DNODE(dstdb)->dn_type;
1731 DB_DNODE_EXIT(dstdb);
1733 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1734 if (arc_is_encrypted(srcdb->db_buf)) {
1735 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1736 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1737 byteorder, salt, iv, mac, type,
1738 datalen, arc_buf_lsize(srcdb->db_buf),
1739 arc_get_compression(srcdb->db_buf));
1740 } else {
1741 /* we won't get a compressed db back from dmu_buf_hold() */
1742 ASSERT3U(arc_get_compression(srcdb->db_buf),
1743 ==, ZIO_COMPRESS_OFF);
1744 abuf = arc_loan_buf(os->os_spa,
1745 DMU_OT_IS_METADATA(type), datalen);
1748 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1750 /* copy the data to the new buffer and assign it to the dstdb */
1751 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1752 dbuf_assign_arcbuf(dstdb, abuf, tx);
1753 dmu_buf_rele(dst_handle, FTAG);
1757 * When possible directly assign passed loaned arc buffer to a dbuf.
1758 * If this is not possible copy the contents of passed arc buf via
1759 * dmu_write().
1762 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1763 dmu_tx_t *tx)
1765 dmu_buf_impl_t *db;
1766 objset_t *os = dn->dn_objset;
1767 uint64_t object = dn->dn_object;
1768 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1769 uint64_t blkid;
1771 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1772 blkid = dbuf_whichblock(dn, 0, offset);
1773 db = dbuf_hold(dn, blkid, FTAG);
1774 if (db == NULL)
1775 return (SET_ERROR(EIO));
1776 rw_exit(&dn->dn_struct_rwlock);
1779 * We can only assign if the offset is aligned, the arc buf is the
1780 * same size as the dbuf, and the dbuf is not metadata.
1782 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1783 dbuf_assign_arcbuf(db, buf, tx);
1784 dbuf_rele(db, FTAG);
1785 } else {
1786 /* compressed bufs must always be assignable to their dbuf */
1787 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1788 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1790 os = dn->dn_objset;
1791 object = dn->dn_object;
1792 dbuf_rele(db, FTAG);
1793 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1794 dmu_return_arcbuf(buf);
1795 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1798 return (0);
1802 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1803 dmu_tx_t *tx)
1805 int err;
1806 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1808 DB_DNODE_ENTER(dbuf);
1809 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1810 DB_DNODE_EXIT(dbuf);
1812 return (err);
1815 typedef struct {
1816 dbuf_dirty_record_t *dsa_dr;
1817 dmu_sync_cb_t *dsa_done;
1818 zgd_t *dsa_zgd;
1819 dmu_tx_t *dsa_tx;
1820 } dmu_sync_arg_t;
1822 /* ARGSUSED */
1823 static void
1824 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1826 dmu_sync_arg_t *dsa = varg;
1827 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1828 blkptr_t *bp = zio->io_bp;
1830 if (zio->io_error == 0) {
1831 if (BP_IS_HOLE(bp)) {
1833 * A block of zeros may compress to a hole, but the
1834 * block size still needs to be known for replay.
1836 BP_SET_LSIZE(bp, db->db_size);
1837 } else if (!BP_IS_EMBEDDED(bp)) {
1838 ASSERT(BP_GET_LEVEL(bp) == 0);
1839 BP_SET_FILL(bp, 1);
1844 static void
1845 dmu_sync_late_arrival_ready(zio_t *zio)
1847 dmu_sync_ready(zio, NULL, zio->io_private);
1850 /* ARGSUSED */
1851 static void
1852 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1854 dmu_sync_arg_t *dsa = varg;
1855 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1856 dmu_buf_impl_t *db = dr->dr_dbuf;
1857 zgd_t *zgd = dsa->dsa_zgd;
1860 * Record the vdev(s) backing this blkptr so they can be flushed after
1861 * the writes for the lwb have completed.
1863 if (zio->io_error == 0) {
1864 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1867 mutex_enter(&db->db_mtx);
1868 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1869 if (zio->io_error == 0) {
1870 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1871 if (dr->dt.dl.dr_nopwrite) {
1872 blkptr_t *bp = zio->io_bp;
1873 blkptr_t *bp_orig = &zio->io_bp_orig;
1874 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1876 ASSERT(BP_EQUAL(bp, bp_orig));
1877 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1878 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1879 ASSERT(zio_checksum_table[chksum].ci_flags &
1880 ZCHECKSUM_FLAG_NOPWRITE);
1882 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1883 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1884 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1887 * Old style holes are filled with all zeros, whereas
1888 * new-style holes maintain their lsize, type, level,
1889 * and birth time (see zio_write_compress). While we
1890 * need to reset the BP_SET_LSIZE() call that happened
1891 * in dmu_sync_ready for old style holes, we do *not*
1892 * want to wipe out the information contained in new
1893 * style holes. Thus, only zero out the block pointer if
1894 * it's an old style hole.
1896 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1897 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1898 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1899 } else {
1900 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1902 cv_broadcast(&db->db_changed);
1903 mutex_exit(&db->db_mtx);
1905 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1907 kmem_free(dsa, sizeof (*dsa));
1910 static void
1911 dmu_sync_late_arrival_done(zio_t *zio)
1913 blkptr_t *bp = zio->io_bp;
1914 dmu_sync_arg_t *dsa = zio->io_private;
1915 blkptr_t *bp_orig = &zio->io_bp_orig;
1916 zgd_t *zgd = dsa->dsa_zgd;
1918 if (zio->io_error == 0) {
1920 * Record the vdev(s) backing this blkptr so they can be
1921 * flushed after the writes for the lwb have completed.
1923 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1925 if (!BP_IS_HOLE(bp)) {
1926 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1927 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1928 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1929 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1930 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1934 dmu_tx_commit(dsa->dsa_tx);
1936 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1938 abd_put(zio->io_abd);
1939 kmem_free(dsa, sizeof (*dsa));
1942 static int
1943 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1944 zio_prop_t *zp, zbookmark_phys_t *zb)
1946 dmu_sync_arg_t *dsa;
1947 dmu_tx_t *tx;
1949 tx = dmu_tx_create(os);
1950 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1951 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1952 dmu_tx_abort(tx);
1953 /* Make zl_get_data do txg_waited_synced() */
1954 return (SET_ERROR(EIO));
1958 * In order to prevent the zgd's lwb from being free'd prior to
1959 * dmu_sync_late_arrival_done() being called, we have to ensure
1960 * the lwb's "max txg" takes this tx's txg into account.
1962 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1964 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1965 dsa->dsa_dr = NULL;
1966 dsa->dsa_done = done;
1967 dsa->dsa_zgd = zgd;
1968 dsa->dsa_tx = tx;
1971 * Since we are currently syncing this txg, it's nontrivial to
1972 * determine what BP to nopwrite against, so we disable nopwrite.
1974 * When syncing, the db_blkptr is initially the BP of the previous
1975 * txg. We can not nopwrite against it because it will be changed
1976 * (this is similar to the non-late-arrival case where the dbuf is
1977 * dirty in a future txg).
1979 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1980 * We can not nopwrite against it because although the BP will not
1981 * (typically) be changed, the data has not yet been persisted to this
1982 * location.
1984 * Finally, when dbuf_write_done() is called, it is theoretically
1985 * possible to always nopwrite, because the data that was written in
1986 * this txg is the same data that we are trying to write. However we
1987 * would need to check that this dbuf is not dirty in any future
1988 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1989 * don't nopwrite in this case.
1991 zp->zp_nopwrite = B_FALSE;
1993 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1994 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1995 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1996 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1997 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1999 return (0);
2003 * Intent log support: sync the block associated with db to disk.
2004 * N.B. and XXX: the caller is responsible for making sure that the
2005 * data isn't changing while dmu_sync() is writing it.
2007 * Return values:
2009 * EEXIST: this txg has already been synced, so there's nothing to do.
2010 * The caller should not log the write.
2012 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2013 * The caller should not log the write.
2015 * EALREADY: this block is already in the process of being synced.
2016 * The caller should track its progress (somehow).
2018 * EIO: could not do the I/O.
2019 * The caller should do a txg_wait_synced().
2021 * 0: the I/O has been initiated.
2022 * The caller should log this blkptr in the done callback.
2023 * It is possible that the I/O will fail, in which case
2024 * the error will be reported to the done callback and
2025 * propagated to pio from zio_done().
2028 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2030 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2031 objset_t *os = db->db_objset;
2032 dsl_dataset_t *ds = os->os_dsl_dataset;
2033 dbuf_dirty_record_t *dr;
2034 dmu_sync_arg_t *dsa;
2035 zbookmark_phys_t zb;
2036 zio_prop_t zp;
2037 dnode_t *dn;
2039 ASSERT(pio != NULL);
2040 ASSERT(txg != 0);
2042 SET_BOOKMARK(&zb, ds->ds_object,
2043 db->db.db_object, db->db_level, db->db_blkid);
2045 DB_DNODE_ENTER(db);
2046 dn = DB_DNODE(db);
2047 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
2048 DB_DNODE_EXIT(db);
2051 * If we're frozen (running ziltest), we always need to generate a bp.
2053 if (txg > spa_freeze_txg(os->os_spa))
2054 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2057 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2058 * and us. If we determine that this txg is not yet syncing,
2059 * but it begins to sync a moment later, that's OK because the
2060 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2062 mutex_enter(&db->db_mtx);
2064 if (txg <= spa_last_synced_txg(os->os_spa)) {
2066 * This txg has already synced. There's nothing to do.
2068 mutex_exit(&db->db_mtx);
2069 return (SET_ERROR(EEXIST));
2072 if (txg <= spa_syncing_txg(os->os_spa)) {
2074 * This txg is currently syncing, so we can't mess with
2075 * the dirty record anymore; just write a new log block.
2077 mutex_exit(&db->db_mtx);
2078 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2081 dr = db->db_last_dirty;
2082 while (dr && dr->dr_txg != txg)
2083 dr = dr->dr_next;
2085 if (dr == NULL) {
2087 * There's no dr for this dbuf, so it must have been freed.
2088 * There's no need to log writes to freed blocks, so we're done.
2090 mutex_exit(&db->db_mtx);
2091 return (SET_ERROR(ENOENT));
2094 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
2096 if (db->db_blkptr != NULL) {
2098 * We need to fill in zgd_bp with the current blkptr so that
2099 * the nopwrite code can check if we're writing the same
2100 * data that's already on disk. We can only nopwrite if we
2101 * are sure that after making the copy, db_blkptr will not
2102 * change until our i/o completes. We ensure this by
2103 * holding the db_mtx, and only allowing nopwrite if the
2104 * block is not already dirty (see below). This is verified
2105 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2106 * not changed.
2108 *zgd->zgd_bp = *db->db_blkptr;
2112 * Assume the on-disk data is X, the current syncing data (in
2113 * txg - 1) is Y, and the current in-memory data is Z (currently
2114 * in dmu_sync).
2116 * We usually want to perform a nopwrite if X and Z are the
2117 * same. However, if Y is different (i.e. the BP is going to
2118 * change before this write takes effect), then a nopwrite will
2119 * be incorrect - we would override with X, which could have
2120 * been freed when Y was written.
2122 * (Note that this is not a concern when we are nop-writing from
2123 * syncing context, because X and Y must be identical, because
2124 * all previous txgs have been synced.)
2126 * Therefore, we disable nopwrite if the current BP could change
2127 * before this TXG. There are two ways it could change: by
2128 * being dirty (dr_next is non-NULL), or by being freed
2129 * (dnode_block_freed()). This behavior is verified by
2130 * zio_done(), which VERIFYs that the override BP is identical
2131 * to the on-disk BP.
2133 DB_DNODE_ENTER(db);
2134 dn = DB_DNODE(db);
2135 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
2136 zp.zp_nopwrite = B_FALSE;
2137 DB_DNODE_EXIT(db);
2139 ASSERT(dr->dr_txg == txg);
2140 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2141 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2143 * We have already issued a sync write for this buffer,
2144 * or this buffer has already been synced. It could not
2145 * have been dirtied since, or we would have cleared the state.
2147 mutex_exit(&db->db_mtx);
2148 return (SET_ERROR(EALREADY));
2151 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2152 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2153 mutex_exit(&db->db_mtx);
2155 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2156 dsa->dsa_dr = dr;
2157 dsa->dsa_done = done;
2158 dsa->dsa_zgd = zgd;
2159 dsa->dsa_tx = NULL;
2161 zio_nowait(arc_write(pio, os->os_spa, txg,
2162 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
2163 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
2164 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
2166 return (0);
2170 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2172 dnode_t *dn;
2173 int err;
2175 err = dnode_hold(os, object, FTAG, &dn);
2176 if (err)
2177 return (err);
2178 err = dnode_set_nlevels(dn, nlevels, tx);
2179 dnode_rele(dn, FTAG);
2180 return (err);
2184 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2185 dmu_tx_t *tx)
2187 dnode_t *dn;
2188 int err;
2190 err = dnode_hold(os, object, FTAG, &dn);
2191 if (err)
2192 return (err);
2193 err = dnode_set_blksz(dn, size, ibs, tx);
2194 dnode_rele(dn, FTAG);
2195 return (err);
2199 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2200 dmu_tx_t *tx)
2202 dnode_t *dn;
2203 int err;
2205 err = dnode_hold(os, object, FTAG, &dn);
2206 if (err)
2207 return (err);
2208 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2209 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2210 rw_exit(&dn->dn_struct_rwlock);
2211 dnode_rele(dn, FTAG);
2212 return (0);
2215 void
2216 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2217 dmu_tx_t *tx)
2219 dnode_t *dn;
2222 * Send streams include each object's checksum function. This
2223 * check ensures that the receiving system can understand the
2224 * checksum function transmitted.
2226 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2228 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2229 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2230 dn->dn_checksum = checksum;
2231 dnode_setdirty(dn, tx);
2232 dnode_rele(dn, FTAG);
2235 void
2236 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2237 dmu_tx_t *tx)
2239 dnode_t *dn;
2242 * Send streams include each object's compression function. This
2243 * check ensures that the receiving system can understand the
2244 * compression function transmitted.
2246 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2248 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2249 dn->dn_compress = compress;
2250 dnode_setdirty(dn, tx);
2251 dnode_rele(dn, FTAG);
2255 * When the "redundant_metadata" property is set to "most", only indirect
2256 * blocks of this level and higher will have an additional ditto block.
2258 int zfs_redundant_metadata_most_ditto_level = 2;
2260 void
2261 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2263 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2264 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2265 (wp & WP_SPILL));
2266 enum zio_checksum checksum = os->os_checksum;
2267 enum zio_compress compress = os->os_compress;
2268 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2269 boolean_t dedup = B_FALSE;
2270 boolean_t nopwrite = B_FALSE;
2271 boolean_t dedup_verify = os->os_dedup_verify;
2272 boolean_t encrypt = B_FALSE;
2273 int copies = os->os_copies;
2276 * We maintain different write policies for each of the following
2277 * types of data:
2278 * 1. metadata
2279 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2280 * 3. all other level 0 blocks
2282 if (ismd) {
2284 * XXX -- we should design a compression algorithm
2285 * that specializes in arrays of bps.
2287 compress = zio_compress_select(os->os_spa,
2288 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2291 * Metadata always gets checksummed. If the data
2292 * checksum is multi-bit correctable, and it's not a
2293 * ZBT-style checksum, then it's suitable for metadata
2294 * as well. Otherwise, the metadata checksum defaults
2295 * to fletcher4.
2297 if (!(zio_checksum_table[checksum].ci_flags &
2298 ZCHECKSUM_FLAG_METADATA) ||
2299 (zio_checksum_table[checksum].ci_flags &
2300 ZCHECKSUM_FLAG_EMBEDDED))
2301 checksum = ZIO_CHECKSUM_FLETCHER_4;
2303 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2304 (os->os_redundant_metadata ==
2305 ZFS_REDUNDANT_METADATA_MOST &&
2306 (level >= zfs_redundant_metadata_most_ditto_level ||
2307 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2308 copies++;
2309 } else if (wp & WP_NOFILL) {
2310 ASSERT(level == 0);
2313 * If we're writing preallocated blocks, we aren't actually
2314 * writing them so don't set any policy properties. These
2315 * blocks are currently only used by an external subsystem
2316 * outside of zfs (i.e. dump) and not written by the zio
2317 * pipeline.
2319 compress = ZIO_COMPRESS_OFF;
2320 checksum = ZIO_CHECKSUM_NOPARITY;
2321 } else {
2322 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2323 compress);
2325 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2326 zio_checksum_select(dn->dn_checksum, checksum) :
2327 dedup_checksum;
2330 * Determine dedup setting. If we are in dmu_sync(),
2331 * we won't actually dedup now because that's all
2332 * done in syncing context; but we do want to use the
2333 * dedup checkum. If the checksum is not strong
2334 * enough to ensure unique signatures, force
2335 * dedup_verify.
2337 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2338 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2339 if (!(zio_checksum_table[checksum].ci_flags &
2340 ZCHECKSUM_FLAG_DEDUP))
2341 dedup_verify = B_TRUE;
2345 * Enable nopwrite if we have secure enough checksum
2346 * algorithm (see comment in zio_nop_write) and
2347 * compression is enabled. We don't enable nopwrite if
2348 * dedup is enabled as the two features are mutually
2349 * exclusive.
2351 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2352 ZCHECKSUM_FLAG_NOPWRITE) &&
2353 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2357 * All objects in an encrypted objset are protected from modification
2358 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2359 * in the bp, so we cannot use all copies. Encrypted objects are also
2360 * not subject to nopwrite since writing the same data will still
2361 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2362 * to avoid ambiguity in the dedup code since the DDT does not store
2363 * object types.
2365 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2366 encrypt = B_TRUE;
2368 if (DMU_OT_IS_ENCRYPTED(type)) {
2369 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2370 nopwrite = B_FALSE;
2371 } else {
2372 dedup = B_FALSE;
2375 if (level <= 0 &&
2376 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2377 compress = ZIO_COMPRESS_EMPTY;
2381 zp->zp_compress = compress;
2382 zp->zp_checksum = checksum;
2383 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2384 zp->zp_level = level;
2385 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2386 zp->zp_dedup = dedup;
2387 zp->zp_dedup_verify = dedup && dedup_verify;
2388 zp->zp_nopwrite = nopwrite;
2389 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2390 os->os_zpl_special_smallblock : 0;
2391 zp->zp_encrypt = encrypt;
2392 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2393 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2394 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2395 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2399 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2401 dnode_t *dn;
2402 int err;
2405 * Sync any current changes before
2406 * we go trundling through the block pointers.
2408 err = dmu_object_wait_synced(os, object);
2409 if (err) {
2410 return (err);
2413 err = dnode_hold(os, object, FTAG, &dn);
2414 if (err) {
2415 return (err);
2418 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2419 dnode_rele(dn, FTAG);
2421 return (err);
2425 * Given the ZFS object, if it contains any dirty nodes
2426 * this function flushes all dirty blocks to disk. This
2427 * ensures the DMU object info is updated. A more efficient
2428 * future version might just find the TXG with the maximum
2429 * ID and wait for that to be synced.
2432 dmu_object_wait_synced(objset_t *os, uint64_t object)
2434 dnode_t *dn;
2435 int error, i;
2437 error = dnode_hold(os, object, FTAG, &dn);
2438 if (error) {
2439 return (error);
2442 mutex_enter(&dn->dn_mtx);
2443 for (i = 0; i < TXG_SIZE; i++) {
2444 if (list_link_active(&dn->dn_dirty_link[i]) ||
2445 !list_is_empty(&dn->dn_dirty_records[i])) {
2446 break;
2449 mutex_exit(&dn->dn_mtx);
2451 dnode_rele(dn, FTAG);
2452 if (i != TXG_SIZE) {
2453 txg_wait_synced(dmu_objset_pool(os), 0);
2456 return (0);
2459 void
2460 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2462 dnode_phys_t *dnp;
2464 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2465 mutex_enter(&dn->dn_mtx);
2467 dnp = dn->dn_phys;
2469 doi->doi_data_block_size = dn->dn_datablksz;
2470 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2471 1ULL << dn->dn_indblkshift : 0;
2472 doi->doi_type = dn->dn_type;
2473 doi->doi_bonus_type = dn->dn_bonustype;
2474 doi->doi_bonus_size = dn->dn_bonuslen;
2475 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2476 doi->doi_indirection = dn->dn_nlevels;
2477 doi->doi_checksum = dn->dn_checksum;
2478 doi->doi_compress = dn->dn_compress;
2479 doi->doi_nblkptr = dn->dn_nblkptr;
2480 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2481 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2482 doi->doi_fill_count = 0;
2483 for (int i = 0; i < dnp->dn_nblkptr; i++)
2484 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2486 mutex_exit(&dn->dn_mtx);
2487 rw_exit(&dn->dn_struct_rwlock);
2491 * Get information on a DMU object.
2492 * If doi is NULL, just indicates whether the object exists.
2495 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2497 dnode_t *dn;
2498 int err = dnode_hold(os, object, FTAG, &dn);
2500 if (err)
2501 return (err);
2503 if (doi != NULL)
2504 dmu_object_info_from_dnode(dn, doi);
2506 dnode_rele(dn, FTAG);
2507 return (0);
2511 * As above, but faster; can be used when you have a held dbuf in hand.
2513 void
2514 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2516 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2518 DB_DNODE_ENTER(db);
2519 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2520 DB_DNODE_EXIT(db);
2524 * Faster still when you only care about the size.
2525 * This is specifically optimized for zfs_getattr().
2527 void
2528 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2529 u_longlong_t *nblk512)
2531 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2532 dnode_t *dn;
2534 DB_DNODE_ENTER(db);
2535 dn = DB_DNODE(db);
2537 *blksize = dn->dn_datablksz;
2538 /* add in number of slots used for the dnode itself */
2539 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2540 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2541 DB_DNODE_EXIT(db);
2544 void
2545 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2547 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2548 dnode_t *dn;
2550 DB_DNODE_ENTER(db);
2551 dn = DB_DNODE(db);
2552 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2553 DB_DNODE_EXIT(db);
2556 void
2557 byteswap_uint64_array(void *vbuf, size_t size)
2559 uint64_t *buf = vbuf;
2560 size_t count = size >> 3;
2561 int i;
2563 ASSERT((size & 7) == 0);
2565 for (i = 0; i < count; i++)
2566 buf[i] = BSWAP_64(buf[i]);
2569 void
2570 byteswap_uint32_array(void *vbuf, size_t size)
2572 uint32_t *buf = vbuf;
2573 size_t count = size >> 2;
2574 int i;
2576 ASSERT((size & 3) == 0);
2578 for (i = 0; i < count; i++)
2579 buf[i] = BSWAP_32(buf[i]);
2582 void
2583 byteswap_uint16_array(void *vbuf, size_t size)
2585 uint16_t *buf = vbuf;
2586 size_t count = size >> 1;
2587 int i;
2589 ASSERT((size & 1) == 0);
2591 for (i = 0; i < count; i++)
2592 buf[i] = BSWAP_16(buf[i]);
2595 /* ARGSUSED */
2596 void
2597 byteswap_uint8_array(void *vbuf, size_t size)
2601 void
2602 dmu_init(void)
2604 abd_init();
2605 zfs_dbgmsg_init();
2606 sa_cache_init();
2607 xuio_stat_init();
2608 dmu_objset_init();
2609 dnode_init();
2610 zfetch_init();
2611 l2arc_init();
2612 arc_init();
2613 dbuf_init();
2616 void
2617 dmu_fini(void)
2619 arc_fini(); /* arc depends on l2arc, so arc must go first */
2620 l2arc_fini();
2621 zfetch_fini();
2622 dbuf_fini();
2623 dnode_fini();
2624 dmu_objset_fini();
2625 xuio_stat_fini();
2626 sa_cache_fini();
2627 zfs_dbgmsg_fini();
2628 abd_fini();