Prepared t_mdatoms for using vector
[gromacs.git] / src / gromacs / mdlib / mdatoms.cpp
blob9f144e27ccaec8f5b64020a2c04ed15d9205dec5
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "mdatoms.h"
41 #include <cmath>
43 #include <memory>
45 #include "gromacs/compat/make_unique.h"
46 #include "gromacs/math/functions.h"
47 #include "gromacs/mdlib/gmx_omp_nthreads.h"
48 #include "gromacs/mdlib/qmmm.h"
49 #include "gromacs/mdtypes/inputrec.h"
50 #include "gromacs/mdtypes/md_enums.h"
51 #include "gromacs/topology/mtop_lookup.h"
52 #include "gromacs/topology/mtop_util.h"
53 #include "gromacs/topology/topology.h"
54 #include "gromacs/utility/alignedallocator.h"
55 #include "gromacs/utility/exceptions.h"
56 #include "gromacs/utility/smalloc.h"
58 #define ALMOST_ZERO 1e-30
60 namespace gmx
63 MDAtoms::MDAtoms()
64 : mdatoms_(nullptr)
68 std::unique_ptr<MDAtoms>
69 makeMDAtoms(FILE *fp, const gmx_mtop_t &mtop, const t_inputrec &ir)
71 auto mdAtoms = compat::make_unique<MDAtoms>();
72 t_mdatoms *md;
73 snew(md, 1);
74 mdAtoms->mdatoms_.reset(md);
76 md->nenergrp = mtop.groups.grps[egcENER].nr;
77 md->bVCMgrps = (mtop.groups.grps[egcVCM].nr > 1);
79 /* Determine the total system mass and perturbed atom counts */
80 double totalMassA = 0.0;
81 double totalMassB = 0.0;
83 gmx_mtop_atomloop_block_t aloop = gmx_mtop_atomloop_block_init(&mtop);
84 const t_atom *atom;
85 int nmol;
86 while (gmx_mtop_atomloop_block_next(aloop, &atom, &nmol))
88 totalMassA += nmol*atom->m;
89 totalMassB += nmol*atom->mB;
91 if (ir.efep != efepNO && PERTURBED(*atom))
93 md->nPerturbed++;
94 if (atom->mB != atom->m)
96 md->nMassPerturbed += nmol;
98 if (atom->qB != atom->q)
100 md->nChargePerturbed += nmol;
102 if (atom->typeB != atom->type)
104 md->nTypePerturbed += nmol;
109 md->tmassA = totalMassA;
110 md->tmassB = totalMassB;
112 if (ir.efep != efepNO && fp)
114 fprintf(fp,
115 "There are %d atoms and %d charges for free energy perturbation\n",
116 md->nPerturbed, md->nChargePerturbed);
119 md->havePartiallyFrozenAtoms = FALSE;
120 for (int g = 0; g < ir.opts.ngfrz; g++)
122 for (int d = YY; d < DIM; d++)
124 if (ir.opts.nFreeze[d] != ir.opts.nFreeze[XX])
126 md->havePartiallyFrozenAtoms = TRUE;
131 md->bOrires = gmx_mtop_ftype_count(&mtop, F_ORIRES);
133 return mdAtoms;
136 } // namespace
138 void atoms2md(const gmx_mtop_t *mtop, const t_inputrec *ir,
139 int nindex, const int *index,
140 int homenr,
141 gmx::MDAtoms *mdAtoms)
143 gmx_bool bLJPME;
144 const t_grpopts *opts;
145 const gmx_groups_t *groups;
146 int nthreads gmx_unused;
148 bLJPME = EVDW_PME(ir->vdwtype);
150 opts = &ir->opts;
152 groups = &mtop->groups;
154 auto md = mdAtoms->mdatoms();
155 /* nindex>=0 indicates DD where we use an index */
156 if (nindex >= 0)
158 md->nr = nindex;
160 else
162 md->nr = mtop->natoms;
165 if (md->nr > md->nalloc)
167 md->nalloc = over_alloc_dd(md->nr);
169 if (md->nMassPerturbed)
171 srenew(md->massA, md->nalloc);
172 srenew(md->massB, md->nalloc);
174 srenew(md->massT, md->nalloc);
175 /* The SIMD version of the integrator needs this aligned and padded.
176 * The padding needs to be with zeros, which we set later below.
178 gmx::AlignedAllocationPolicy::free(md->invmass);
179 md->invmass = new(gmx::AlignedAllocationPolicy::malloc((md->nalloc + GMX_REAL_MAX_SIMD_WIDTH)*sizeof(*md->invmass)))real;
180 srenew(md->invMassPerDim, md->nalloc);
181 srenew(md->chargeA, md->nalloc);
182 srenew(md->typeA, md->nalloc);
183 if (md->nPerturbed)
185 srenew(md->chargeB, md->nalloc);
186 srenew(md->typeB, md->nalloc);
188 if (bLJPME)
190 srenew(md->sqrt_c6A, md->nalloc);
191 srenew(md->sigmaA, md->nalloc);
192 srenew(md->sigma3A, md->nalloc);
193 if (md->nPerturbed)
195 srenew(md->sqrt_c6B, md->nalloc);
196 srenew(md->sigmaB, md->nalloc);
197 srenew(md->sigma3B, md->nalloc);
200 srenew(md->ptype, md->nalloc);
201 if (opts->ngtc > 1)
203 srenew(md->cTC, md->nalloc);
204 /* We always copy cTC with domain decomposition */
206 srenew(md->cENER, md->nalloc);
207 if (opts->ngacc > 1)
209 srenew(md->cACC, md->nalloc);
211 if (opts->nFreeze &&
212 (opts->ngfrz > 1 ||
213 opts->nFreeze[0][XX] || opts->nFreeze[0][YY] || opts->nFreeze[0][ZZ]))
215 srenew(md->cFREEZE, md->nalloc);
217 if (md->bVCMgrps)
219 srenew(md->cVCM, md->nalloc);
221 if (md->bOrires)
223 srenew(md->cORF, md->nalloc);
225 if (md->nPerturbed)
227 srenew(md->bPerturbed, md->nalloc);
230 /* Note that these user t_mdatoms array pointers are NULL
231 * when there is only one group present.
232 * Therefore, when adding code, the user should use something like:
233 * gprnrU1 = (md->cU1==NULL ? 0 : md->cU1[localatindex])
235 if (mtop->groups.grpnr[egcUser1] != nullptr)
237 srenew(md->cU1, md->nalloc);
239 if (mtop->groups.grpnr[egcUser2] != nullptr)
241 srenew(md->cU2, md->nalloc);
244 if (ir->bQMMM)
246 srenew(md->bQM, md->nalloc);
250 int molb = 0;
252 // cppcheck-suppress unreadVariable
253 nthreads = gmx_omp_nthreads_get(emntDefault);
254 #pragma omp parallel for num_threads(nthreads) schedule(static) firstprivate(molb)
255 for (int i = 0; i < md->nr; i++)
259 int g, ag;
260 real mA, mB, fac;
261 real c6, c12;
263 if (index == nullptr)
265 ag = i;
267 else
269 ag = index[i];
271 const t_atom &atom = mtopGetAtomParameters(mtop, ag, &molb);
273 if (md->cFREEZE)
275 md->cFREEZE[i] = ggrpnr(groups, egcFREEZE, ag);
277 if (EI_ENERGY_MINIMIZATION(ir->eI))
279 /* Displacement is proportional to F, masses used for constraints */
280 mA = 1.0;
281 mB = 1.0;
283 else if (ir->eI == eiBD)
285 /* With BD the physical masses are irrelevant.
286 * To keep the code simple we use most of the normal MD code path
287 * for BD. Thus for constraining the masses should be proportional
288 * to the friction coefficient. We set the absolute value such that
289 * m/2<(dx/dt)^2> = m/2*2kT/fric*dt = kT/2 => m=fric*dt/2
290 * Then if we set the (meaningless) velocity to v=dx/dt, we get the
291 * correct kinetic energy and temperature using the usual code path.
292 * Thus with BD v*dt will give the displacement and the reported
293 * temperature can signal bad integration (too large time step).
295 if (ir->bd_fric > 0)
297 mA = 0.5*ir->bd_fric*ir->delta_t;
298 mB = 0.5*ir->bd_fric*ir->delta_t;
300 else
302 /* The friction coefficient is mass/tau_t */
303 fac = ir->delta_t/opts->tau_t[md->cTC ? groups->grpnr[egcTC][ag] : 0];
304 mA = 0.5*atom.m*fac;
305 mB = 0.5*atom.mB*fac;
308 else
310 mA = atom.m;
311 mB = atom.mB;
313 if (md->nMassPerturbed)
315 md->massA[i] = mA;
316 md->massB[i] = mB;
318 md->massT[i] = mA;
320 if (mA == 0.0)
322 md->invmass[i] = 0;
323 md->invMassPerDim[i][XX] = 0;
324 md->invMassPerDim[i][YY] = 0;
325 md->invMassPerDim[i][ZZ] = 0;
327 else if (md->cFREEZE)
329 g = md->cFREEZE[i];
330 if (opts->nFreeze[g][XX] && opts->nFreeze[g][YY] && opts->nFreeze[g][ZZ])
332 /* Set the mass of completely frozen particles to ALMOST_ZERO
333 * iso 0 to avoid div by zero in lincs or shake.
335 md->invmass[i] = ALMOST_ZERO;
337 else
339 /* Note: Partially frozen particles use the normal invmass.
340 * If such particles are constrained, the frozen dimensions
341 * should not be updated with the constrained coordinates.
343 md->invmass[i] = 1.0/mA;
345 for (int d = 0; d < DIM; d++)
347 md->invMassPerDim[i][d] = (opts->nFreeze[g][d] ? 0 : 1.0/mA);
350 else
352 md->invmass[i] = 1.0/mA;
353 for (int d = 0; d < DIM; d++)
355 md->invMassPerDim[i][d] = 1.0/mA;
359 md->chargeA[i] = atom.q;
360 md->typeA[i] = atom.type;
361 if (bLJPME)
363 c6 = mtop->ffparams.iparams[atom.type*(mtop->ffparams.atnr+1)].lj.c6;
364 c12 = mtop->ffparams.iparams[atom.type*(mtop->ffparams.atnr+1)].lj.c12;
365 md->sqrt_c6A[i] = sqrt(c6);
366 if (c6 == 0.0 || c12 == 0)
368 md->sigmaA[i] = 1.0;
370 else
372 md->sigmaA[i] = gmx::sixthroot(c12/c6);
374 md->sigma3A[i] = 1/(md->sigmaA[i]*md->sigmaA[i]*md->sigmaA[i]);
376 if (md->nPerturbed)
378 md->bPerturbed[i] = PERTURBED(atom);
379 md->chargeB[i] = atom.qB;
380 md->typeB[i] = atom.typeB;
381 if (bLJPME)
383 c6 = mtop->ffparams.iparams[atom.typeB*(mtop->ffparams.atnr+1)].lj.c6;
384 c12 = mtop->ffparams.iparams[atom.typeB*(mtop->ffparams.atnr+1)].lj.c12;
385 md->sqrt_c6B[i] = sqrt(c6);
386 if (c6 == 0.0 || c12 == 0)
388 md->sigmaB[i] = 1.0;
390 else
392 md->sigmaB[i] = gmx::sixthroot(c12/c6);
394 md->sigma3B[i] = 1/(md->sigmaB[i]*md->sigmaB[i]*md->sigmaB[i]);
397 md->ptype[i] = atom.ptype;
398 if (md->cTC)
400 md->cTC[i] = groups->grpnr[egcTC][ag];
402 md->cENER[i] = ggrpnr(groups, egcENER, ag);
403 if (md->cACC)
405 md->cACC[i] = groups->grpnr[egcACC][ag];
407 if (md->cVCM)
409 md->cVCM[i] = groups->grpnr[egcVCM][ag];
411 if (md->cORF)
413 md->cORF[i] = ggrpnr(groups, egcORFIT, ag);
416 if (md->cU1)
418 md->cU1[i] = groups->grpnr[egcUser1][ag];
420 if (md->cU2)
422 md->cU2[i] = groups->grpnr[egcUser2][ag];
425 if (ir->bQMMM)
427 if (groups->grpnr[egcQMMM] == nullptr ||
428 groups->grpnr[egcQMMM][ag] < groups->grps[egcQMMM].nr-1)
430 md->bQM[i] = TRUE;
432 else
434 md->bQM[i] = FALSE;
438 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
441 if (md->nr > 0)
443 /* Pad invmass with 0 so a SIMD MD update does not change v and x */
444 for (int i = md->nr; i < md->nr + GMX_REAL_MAX_SIMD_WIDTH; i++)
446 md->invmass[i] = 0;
450 md->homenr = homenr;
451 /* We set mass, invmass, invMassPerDim and tmass for lambda=0.
452 * For free-energy runs, these should be updated using update_mdatoms().
454 md->tmass = md->tmassA;
455 md->lambda = 0;
458 void update_mdatoms(t_mdatoms *md, real lambda)
460 if (md->nMassPerturbed && lambda != md->lambda)
462 real L1 = 1 - lambda;
464 /* Update masses of perturbed atoms for the change in lambda */
465 // cppcheck-suppress unreadVariable
466 int gmx_unused nthreads = gmx_omp_nthreads_get(emntDefault);
467 #pragma omp parallel for num_threads(nthreads) schedule(static)
468 for (int i = 0; i < md->nr; i++)
470 if (md->bPerturbed[i])
472 md->massT[i] = L1*md->massA[i] + lambda*md->massB[i];
473 /* Atoms with invmass 0 or ALMOST_ZERO are massless or frozen
474 * and their invmass does not depend on lambda.
476 if (md->invmass[i] > 1.1*ALMOST_ZERO)
478 md->invmass[i] = 1.0/md->massT[i];
479 for (int d = 0; d < DIM; d++)
481 if (md->invMassPerDim[i][d] > 1.1*ALMOST_ZERO)
483 md->invMassPerDim[i][d] = md->invmass[i];
490 /* Update the system mass for the change in lambda */
491 md->tmass = L1*md->tmassA + lambda*md->tmassB;
494 md->lambda = lambda;