tex: several grammar tweaks
[gostyle.git] / README
blob0746b45558e993a0b3004b97eb78d971b378ea28
1 Hello!!
3 This repository includes various tools used to analyze Go-players style.
5 It has two parts:
6  - the neural network (NN) training and running code (see subfolder `gnet')
7  - simple Python library used for
8                 - creating neural network train files from pattern files
9                 - doing PCA analysis of pattern files
11 Python gostyle library and example programs:
12         gostyle.py - library code
13         make_train_set.py - script that makes a train set for a NN
14         make_input_vector.py - used to create input vectors for trained NN
15         pca.py - performs a PCA analysis on vectors made from pattern files and prints it in gnuplot-friendly format
16         data_about_players.py - contains data about players and their strategies 
18 gostyle.py
19         Suppose you want to generate input vectors from player patfiles and output vectors based on an expert-knowledged-information.
20         1. Create an InputGenerator object:
21                 >>>     i = InputVectorGenerator(main_pat_filename, num_features)
22         2. Then you can print some input vectors - pattern files  (e.g. 'Superman') must exist,..
23                 >>> for name in [ 'Cho-Chikun', 'Superman', 'Toya Koyo']:
24                 ...             print i(name)
25         3. Now you reaalized you want to do PCA:
26                 >>> list_of_input_vectors = [ i(name) for name in [ 'Cho-Chikun', 'Superman', 'Toya Koyo']]
27                 >>> pca = PCA(input_vectors, reduce=True)
28                 >>> reduced_list_of_vectors = pca.process_list_of_vectors( list_of_input_vectors )
29         4. Now we generate output vectors:
30                 >>> dict = { 'Cho-Chikun' : [1,1], 'Superman' : [666,666], 'Toya Koyo' : [1, 5] } 
31                 >>> output_vectors = [ dict[name] for name in ['Cho-Chikun', 'Superman', 'Toya Koyo']]
32         5. You may also have written - this does the same, but you may use different output vector object, while keep your current code
33                 >>> dict = { 'Cho-Chikun' : [1,1], 'Superman' : [666,666], 'Toya Koyo' : [1, 5] } 
34                 >>> o = PlanarOutputVectorGenerator(dict)
35                 >>> output_vectors = [ o(name) for name in ['Cho-Chikun', 'Superman', 'Toya Koyo']]
37         See the densely commented code for other examples...
39 ----------
40 If you want to understand what is going on
42 What we do is that we try to determine players' strategies and characteristics by inspecting pattern files. A pattern file is a file that
43 has patterns in it :-) A pattern is a set of features (such as a distance from a border, a shape of stones on the goban, ..) for each move.
44 TODO
47 ----------
48 PREPARING THE DATASET:
50 1. Assemble a list of players you are interested in, one name per line,
51    to some file, e.g. players.list.
53 2. Get large SGF collection with index file listing games by players.
55         We use GoGoD 2008 Winter as our reference database.
57 3. Get Pachi source tree, and build yourself the binary. Copy over these
58    files: zzgo sgf2gtp.pl patterns.spat pattern_byplayer.sh
60 4. Create a directory where you will stash raw lists of patterns for each
61    player encountered - e.g. rawpat_files/.
63 5. For each game in the SGF collection where at least one of the players
64    is interesting, run ./pattern_byplayer.sh rawpat_files/ $SGFFILE. You can
65    ignore warnings/errors sometimes printed for individual files.
67         If importing from GoGoD, you can use:
69                 ./data_gogod.sh $PATH_TO_GOGOD players.list rawpat_files/
71         See its header for usage details.
73 6. Create a directory where the pattern summaries by frequency for
74    interesting players will go - e.g. pat_files/.
76 7. Fill up pat_files/ from rawpat_files/ based on players.list. You can use a
77    pre-made script, run ./data_summarize.sh players.list rawpat_files/ pat_files/.
79 8. pat_files/ now contains the dataset that can be analyzed by other tools
80    in the suite.