1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
43 #if defined STDC_HEADERS && !defined emacs
46 /* We need this for `regex.h', and perhaps for the Emacs include files. */
47 # include <sys/types.h>
50 /* Whether to use ISO C Amendment 1 wide char functions.
51 Those should not be used for Emacs since it uses its own. */
53 #define WIDE_CHAR_SUPPORT 1
55 #define WIDE_CHAR_SUPPORT \
56 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
59 /* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
62 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
68 /* We have to keep the namespace clean. */
69 # define regfree(preg) __regfree (preg)
70 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
71 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
72 # define regerror(errcode, preg, errbuf, errbuf_size) \
73 __regerror(errcode, preg, errbuf, errbuf_size)
74 # define re_set_registers(bu, re, nu, st, en) \
75 __re_set_registers (bu, re, nu, st, en)
76 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
77 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
78 # define re_match(bufp, string, size, pos, regs) \
79 __re_match (bufp, string, size, pos, regs)
80 # define re_search(bufp, string, size, startpos, range, regs) \
81 __re_search (bufp, string, size, startpos, range, regs)
82 # define re_compile_pattern(pattern, length, bufp) \
83 __re_compile_pattern (pattern, length, bufp)
84 # define re_set_syntax(syntax) __re_set_syntax (syntax)
85 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
86 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
87 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
89 /* Make sure we call libc's function even if the user overrides them. */
90 # define btowc __btowc
91 # define iswctype __iswctype
92 # define wctype __wctype
94 # define WEAK_ALIAS(a,b) weak_alias (a, b)
96 /* We are also using some library internals. */
97 # include <locale/localeinfo.h>
98 # include <locale/elem-hash.h>
99 # include <langinfo.h>
101 # define WEAK_ALIAS(a,b)
104 /* This is for other GNU distributions with internationalized messages. */
105 #if HAVE_LIBINTL_H || defined _LIBC
106 # include <libintl.h>
108 # define gettext(msgid) (msgid)
112 /* This define is so xgettext can find the internationalizable
114 # define gettext_noop(String) String
117 /* The `emacs' switch turns on certain matching commands
118 that make sense only in Emacs. */
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
128 # include "charset.h"
129 # include "category.h"
134 # define malloc xmalloc
138 # define realloc xrealloc
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_STRING_CHAR(p, s) \
150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
151 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
154 /* Set C a (possibly multibyte) character before P. P points into a
155 string which is the virtual concatenation of STR1 (which ends at
156 END1) or STR2 (which ends at END2). */
157 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
161 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
162 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
163 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
164 c = STRING_CHAR (dtemp, (p) - dtemp); \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
171 #else /* not emacs */
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
178 # if defined STDC_HEADERS || defined _LIBC
185 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
186 If nothing else has been done, use the method below. */
187 # ifdef INHIBIT_STRING_HEADER
188 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
189 # if !defined bzero && !defined bcopy
190 # undef INHIBIT_STRING_HEADER
195 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
196 This is used in most programs--a few other programs avoid this
197 by defining INHIBIT_STRING_HEADER. */
198 # ifndef INHIBIT_STRING_HEADER
199 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
203 # define bzero(s, n) (memset (s, '\0', n), (s))
205 # define bzero(s, n) __bzero (s, n)
209 # include <strings.h>
211 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
214 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
219 /* Define the syntax stuff for \<, \>, etc. */
221 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
222 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
224 # ifdef SWITCH_ENUM_BUG
225 # define SWITCH_ENUM_CAST(x) ((int)(x))
227 # define SWITCH_ENUM_CAST(x) (x)
230 /* Dummy macros for non-Emacs environments. */
231 # define BASE_LEADING_CODE_P(c) (0)
232 # define CHAR_CHARSET(c) 0
233 # define CHARSET_LEADING_CODE_BASE(c) 0
234 # define MAX_MULTIBYTE_LENGTH 1
235 # define RE_MULTIBYTE_P(x) 0
236 # define WORD_BOUNDARY_P(c1, c2) (0)
237 # define CHAR_HEAD_P(p) (1)
238 # define SINGLE_BYTE_CHAR_P(c) (1)
239 # define SAME_CHARSET_P(c1, c2) (1)
240 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
241 # define STRING_CHAR(p, s) (*(p))
242 # define RE_STRING_CHAR STRING_CHAR
243 # define CHAR_STRING(c, s) (*(s) = (c), 1)
244 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
248 # define MAKE_CHAR(charset, c1, c2) (c1)
249 #endif /* not emacs */
252 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253 # define RE_TRANSLATE_P(TBL) (TBL)
256 /* Get the interface, including the syntax bits. */
259 /* isalpha etc. are used for the character classes. */
264 /* 1 if C is an ASCII character. */
265 # define IS_REAL_ASCII(c) ((c) < 0200)
267 /* 1 if C is a unibyte character. */
268 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
270 /* The Emacs definitions should not be directly affected by locales. */
272 /* In Emacs, these are only used for single-byte characters. */
273 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274 # define ISCNTRL(c) ((c) < ' ')
275 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
279 /* This is only used for single-byte characters. */
280 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
282 /* The rest must handle multibyte characters. */
284 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
288 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
292 # define ISALNUM(c) (IS_REAL_ASCII (c) \
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
296 : SYNTAX (c) == Sword)
298 # define ISALPHA(c) (IS_REAL_ASCII (c) \
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
301 : SYNTAX (c) == Sword)
303 # define ISLOWER(c) (LOWERCASEP (c))
305 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
310 : SYNTAX (c) != Sword)
312 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
314 # define ISUPPER(c) (UPPERCASEP (c))
316 # define ISWORD(c) (SYNTAX (c) == Sword)
318 #else /* not emacs */
320 /* Jim Meyering writes:
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
325 ctype uses should be through macros like ISPRINT... If
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
333 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334 # define ISASCII(c) 1
336 # define ISASCII(c) isascii(c)
339 /* 1 if C is an ASCII character. */
340 # define IS_REAL_ASCII(c) ((c) < 0200)
342 /* This distinction is not meaningful, except in Emacs. */
343 # define ISUNIBYTE(c) 1
346 # define ISBLANK(c) (ISASCII (c) && isblank (c))
348 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
353 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
357 # define ISPRINT(c) (ISASCII (c) && isprint (c))
358 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
360 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
361 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362 # define ISLOWER(c) (ISASCII (c) && islower (c))
363 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364 # define ISSPACE(c) (ISASCII (c) && isspace (c))
365 # define ISUPPER(c) (ISASCII (c) && isupper (c))
366 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
368 # define ISWORD(c) ISALPHA(c)
371 # define TOLOWER(c) _tolower(c)
373 # define TOLOWER(c) tolower(c)
376 /* How many characters in the character set. */
377 # define CHAR_SET_SIZE 256
381 extern char *re_syntax_table
;
383 # else /* not SYNTAX_TABLE */
385 static char re_syntax_table
[CHAR_SET_SIZE
];
396 bzero (re_syntax_table
, sizeof re_syntax_table
);
398 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
400 re_syntax_table
[c
] = Sword
;
402 re_syntax_table
['_'] = Sword
;
407 # endif /* not SYNTAX_TABLE */
409 # define SYNTAX(c) re_syntax_table[(c)]
411 #endif /* not emacs */
414 # define NULL (void *)0
417 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
420 (Per Bothner suggested the basic approach.) */
421 #undef SIGN_EXTEND_CHAR
423 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
424 #else /* not __STDC__ */
425 /* As in Harbison and Steele. */
426 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
429 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
433 the other hand, malloc is more portable, and easier to debug.
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
441 # define REGEX_ALLOCATE malloc
442 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443 # define REGEX_FREE free
445 #else /* not REGEX_MALLOC */
447 /* Emacs already defines alloca, sometimes. */
450 /* Make alloca work the best possible way. */
452 # define alloca __builtin_alloca
453 # else /* not __GNUC__ */
456 # endif /* HAVE_ALLOCA_H */
457 # endif /* not __GNUC__ */
459 # endif /* not alloca */
461 # define REGEX_ALLOCATE alloca
463 /* Assumes a `char *destination' variable. */
464 # define REGEX_REALLOCATE(source, osize, nsize) \
465 (destination = (char *) alloca (nsize), \
466 memcpy (destination, source, osize))
468 /* No need to do anything to free, after alloca. */
469 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
471 #endif /* not REGEX_MALLOC */
473 /* Define how to allocate the failure stack. */
475 #if defined REL_ALLOC && defined REGEX_MALLOC
477 # define REGEX_ALLOCATE_STACK(size) \
478 r_alloc (&failure_stack_ptr, (size))
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
480 r_re_alloc (&failure_stack_ptr, (nsize))
481 # define REGEX_FREE_STACK(ptr) \
482 r_alloc_free (&failure_stack_ptr)
484 #else /* not using relocating allocator */
488 # define REGEX_ALLOCATE_STACK malloc
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490 # define REGEX_FREE_STACK free
492 # else /* not REGEX_MALLOC */
494 # define REGEX_ALLOCATE_STACK alloca
496 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
497 REGEX_REALLOCATE (source, osize, nsize)
498 /* No need to explicitly free anything. */
499 # define REGEX_FREE_STACK(arg) ((void)0)
501 # endif /* not REGEX_MALLOC */
502 #endif /* not using relocating allocator */
505 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
508 #define FIRST_STRING_P(ptr) \
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
511 /* (Re)Allocate N items of type T using malloc, or fail. */
512 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514 #define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
518 #define BYTEWIDTH 8 /* In bits. */
520 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
524 #define MAX(a, b) ((a) > (b) ? (a) : (b))
525 #define MIN(a, b) ((a) < (b) ? (a) : (b))
527 /* Type of source-pattern and string chars. */
528 typedef const unsigned char re_char
;
530 typedef char boolean
;
534 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
535 re_char
*string1
, int size1
,
536 re_char
*string2
, int size2
,
538 struct re_registers
*regs
,
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
550 /* Succeed right away--no more backtracking. */
553 /* Followed by one byte giving n, then by n literal bytes. */
556 /* Matches any (more or less) character. */
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
595 /* Fail unless at beginning of line. */
598 /* Fail unless at end of line. */
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
605 /* Analogously, for end of buffer/string. */
608 /* Followed by two byte relative address to which to jump. */
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump
,
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
622 on_failure_jump_loop
,
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
628 on_failure_jump_nastyloop
,
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart
,
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
653 wordbeg
, /* Succeeds if at word beginning. */
654 wordend
, /* Succeeds if at word end. */
656 wordbound
, /* Succeeds if at a word boundary. */
657 notwordbound
, /* Succeeds if not at a word boundary. */
659 /* Matches any character whose syntax is specified. Followed by
660 a byte which contains a syntax code, e.g., Sword. */
663 /* Matches any character whose syntax is not that specified. */
667 ,before_dot
, /* Succeeds if before point. */
668 at_dot
, /* Succeeds if at point. */
669 after_dot
, /* Succeeds if after point. */
671 /* Matches any character whose category-set contains the specified
672 category. The operator is followed by a byte which contains a
673 category code (mnemonic ASCII character). */
676 /* Matches any character whose category-set does not contain the
677 specified category. The operator is followed by a byte which
678 contains the category code (mnemonic ASCII character). */
683 /* Common operations on the compiled pattern. */
685 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
687 #define STORE_NUMBER(destination, number) \
689 (destination)[0] = (number) & 0377; \
690 (destination)[1] = (number) >> 8; \
693 /* Same as STORE_NUMBER, except increment DESTINATION to
694 the byte after where the number is stored. Therefore, DESTINATION
695 must be an lvalue. */
697 #define STORE_NUMBER_AND_INCR(destination, number) \
699 STORE_NUMBER (destination, number); \
700 (destination) += 2; \
703 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 #define EXTRACT_NUMBER(destination, source) \
708 (destination) = *(source) & 0377; \
709 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
713 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
715 extract_number (dest
, source
)
719 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
720 *dest
= *source
& 0377;
724 # ifndef EXTRACT_MACROS /* To debug the macros. */
725 # undef EXTRACT_NUMBER
726 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
727 # endif /* not EXTRACT_MACROS */
731 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
732 SOURCE must be an lvalue. */
734 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
736 EXTRACT_NUMBER (destination, source); \
741 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
744 extract_number_and_incr (destination
, source
)
748 extract_number (destination
, *source
);
752 # ifndef EXTRACT_MACROS
753 # undef EXTRACT_NUMBER_AND_INCR
754 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
755 extract_number_and_incr (&dest, &src)
756 # endif /* not EXTRACT_MACROS */
760 /* Store a multibyte character in three contiguous bytes starting
761 DESTINATION, and increment DESTINATION to the byte after where the
762 character is stored. Therefore, DESTINATION must be an lvalue. */
764 #define STORE_CHARACTER_AND_INCR(destination, character) \
766 (destination)[0] = (character) & 0377; \
767 (destination)[1] = ((character) >> 8) & 0377; \
768 (destination)[2] = (character) >> 16; \
769 (destination) += 3; \
772 /* Put into DESTINATION a character stored in three contiguous bytes
773 starting at SOURCE. */
775 #define EXTRACT_CHARACTER(destination, source) \
777 (destination) = ((source)[0] \
778 | ((source)[1] << 8) \
779 | ((source)[2] << 16)); \
783 /* Macros for charset. */
785 /* Size of bitmap of charset P in bytes. P is a start of charset,
786 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
787 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
789 /* Nonzero if charset P has range table. */
790 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
792 /* Return the address of range table of charset P. But not the start
793 of table itself, but the before where the number of ranges is
794 stored. `2 +' means to skip re_opcode_t and size of bitmap,
795 and the 2 bytes of flags at the start of the range table. */
796 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
798 /* Extract the bit flags that start a range table. */
799 #define CHARSET_RANGE_TABLE_BITS(p) \
800 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
801 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
803 /* Test if C is listed in the bitmap of charset P. */
804 #define CHARSET_LOOKUP_BITMAP(p, c) \
805 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
806 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
808 /* Return the address of end of RANGE_TABLE. COUNT is number of
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
812 #define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
815 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
816 COUNT is number of ranges in RANGE_TABLE. */
817 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 re_wchar_t range_start, range_end; \
822 re_char *range_table_end \
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
825 for (p = (range_table); p < range_table_end; p += 2 * 3) \
827 EXTRACT_CHARACTER (range_start, p); \
828 EXTRACT_CHARACTER (range_end, p + 3); \
830 if (range_start <= (c) && (c) <= range_end) \
839 /* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 /* Number of ranges in range table. */ \
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 /* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
857 the other test files, you can run the already-written tests. */
861 /* We use standard I/O for debugging. */
864 /* It is useful to test things that ``must'' be true when debugging. */
867 static int debug
= -100000;
869 # define DEBUG_STATEMENT(e) e
870 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
875 if (debug > 0) print_partial_compiled_pattern (s, e)
876 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880 /* Print the fastmap in human-readable form. */
883 print_fastmap (fastmap
)
886 unsigned was_a_range
= 0;
889 while (i
< (1 << BYTEWIDTH
))
895 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
911 /* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
915 print_partial_compiled_pattern (start
, end
)
929 /* Loop over pattern commands. */
932 printf ("%d:\t", p
- start
);
934 switch ((re_opcode_t
) *p
++)
946 printf ("/exactn/%d", mcnt
);
956 printf ("/start_memory/%d", *p
++);
960 printf ("/stop_memory/%d", *p
++);
964 printf ("/duplicate/%d", *p
++);
974 register int c
, last
= -100;
975 register int in_range
= 0;
976 int length
= CHARSET_BITMAP_SIZE (p
- 1);
977 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
979 printf ("/charset [%s",
980 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
982 assert (p
+ *p
< pend
);
984 for (c
= 0; c
< 256; c
++)
986 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
988 /* Are we starting a range? */
989 if (last
+ 1 == c
&& ! in_range
)
994 /* Have we broken a range? */
995 else if (last
+ 1 != c
&& in_range
)
1014 if (has_range_table
)
1017 printf ("has-range-table");
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p
+= 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count
, p
);
1022 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1028 printf ("/begline");
1032 printf ("/endline");
1035 case on_failure_jump
:
1036 extract_number_and_incr (&mcnt
, &p
);
1037 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
1040 case on_failure_keep_string_jump
:
1041 extract_number_and_incr (&mcnt
, &p
);
1042 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1045 case on_failure_jump_nastyloop
:
1046 extract_number_and_incr (&mcnt
, &p
);
1047 printf ("/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1050 case on_failure_jump_loop
:
1051 extract_number_and_incr (&mcnt
, &p
);
1052 printf ("/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1055 case on_failure_jump_smart
:
1056 extract_number_and_incr (&mcnt
, &p
);
1057 printf ("/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1061 extract_number_and_incr (&mcnt
, &p
);
1062 printf ("/jump to %d", p
+ mcnt
- start
);
1066 extract_number_and_incr (&mcnt
, &p
);
1067 extract_number_and_incr (&mcnt2
, &p
);
1068 printf ("/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1072 extract_number_and_incr (&mcnt
, &p
);
1073 extract_number_and_incr (&mcnt2
, &p
);
1074 printf ("/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1078 extract_number_and_incr (&mcnt
, &p
);
1079 extract_number_and_incr (&mcnt2
, &p
);
1080 printf ("/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1084 printf ("/wordbound");
1088 printf ("/notwordbound");
1092 printf ("/wordbeg");
1096 printf ("/wordend");
1099 printf ("/syntaxspec");
1101 printf ("/%d", mcnt
);
1105 printf ("/notsyntaxspec");
1107 printf ("/%d", mcnt
);
1112 printf ("/before_dot");
1120 printf ("/after_dot");
1124 printf ("/categoryspec");
1126 printf ("/%d", mcnt
);
1129 case notcategoryspec
:
1130 printf ("/notcategoryspec");
1132 printf ("/%d", mcnt
);
1145 printf ("?%d", *(p
-1));
1151 printf ("%d:\tend of pattern.\n", p
- start
);
1156 print_compiled_pattern (bufp
)
1157 struct re_pattern_buffer
*bufp
;
1159 re_char
*buffer
= bufp
->buffer
;
1161 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1162 printf ("%ld bytes used/%ld bytes allocated.\n",
1163 bufp
->used
, bufp
->allocated
);
1165 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1167 printf ("fastmap: ");
1168 print_fastmap (bufp
->fastmap
);
1171 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1172 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1173 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1174 printf ("no_sub: %d\t", bufp
->no_sub
);
1175 printf ("not_bol: %d\t", bufp
->not_bol
);
1176 printf ("not_eol: %d\t", bufp
->not_eol
);
1177 printf ("syntax: %lx\n", bufp
->syntax
);
1179 /* Perhaps we should print the translate table? */
1184 print_double_string (where
, string1
, size1
, string2
, size2
)
1197 if (FIRST_STRING_P (where
))
1199 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1200 putchar (string1
[this_char
]);
1205 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1206 putchar (string2
[this_char
]);
1210 #else /* not DEBUG */
1215 # define DEBUG_STATEMENT(e)
1216 # define DEBUG_PRINT1(x)
1217 # define DEBUG_PRINT2(x1, x2)
1218 # define DEBUG_PRINT3(x1, x2, x3)
1219 # define DEBUG_PRINT4(x1, x2, x3, x4)
1220 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1221 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1223 #endif /* not DEBUG */
1225 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1226 also be assigned to arbitrarily: each pattern buffer stores its own
1227 syntax, so it can be changed between regex compilations. */
1228 /* This has no initializer because initialized variables in Emacs
1229 become read-only after dumping. */
1230 reg_syntax_t re_syntax_options
;
1233 /* Specify the precise syntax of regexps for compilation. This provides
1234 for compatibility for various utilities which historically have
1235 different, incompatible syntaxes.
1237 The argument SYNTAX is a bit mask comprised of the various bits
1238 defined in regex.h. We return the old syntax. */
1241 re_set_syntax (syntax
)
1242 reg_syntax_t syntax
;
1244 reg_syntax_t ret
= re_syntax_options
;
1246 re_syntax_options
= syntax
;
1249 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1251 /* This table gives an error message for each of the error codes listed
1252 in regex.h. Obviously the order here has to be same as there.
1253 POSIX doesn't require that we do anything for REG_NOERROR,
1254 but why not be nice? */
1256 static const char *re_error_msgid
[] =
1258 gettext_noop ("Success"), /* REG_NOERROR */
1259 gettext_noop ("No match"), /* REG_NOMATCH */
1260 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1261 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1262 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1263 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1264 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1265 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1266 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1267 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1268 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1269 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1270 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1271 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1272 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1273 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1274 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1277 /* Avoiding alloca during matching, to placate r_alloc. */
1279 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1280 searching and matching functions should not call alloca. On some
1281 systems, alloca is implemented in terms of malloc, and if we're
1282 using the relocating allocator routines, then malloc could cause a
1283 relocation, which might (if the strings being searched are in the
1284 ralloc heap) shift the data out from underneath the regexp
1287 Here's another reason to avoid allocation: Emacs
1288 processes input from X in a signal handler; processing X input may
1289 call malloc; if input arrives while a matching routine is calling
1290 malloc, then we're scrod. But Emacs can't just block input while
1291 calling matching routines; then we don't notice interrupts when
1292 they come in. So, Emacs blocks input around all regexp calls
1293 except the matching calls, which it leaves unprotected, in the
1294 faith that they will not malloc. */
1296 /* Normally, this is fine. */
1297 #define MATCH_MAY_ALLOCATE
1299 /* When using GNU C, we are not REALLY using the C alloca, no matter
1300 what config.h may say. So don't take precautions for it. */
1305 /* The match routines may not allocate if (1) they would do it with malloc
1306 and (2) it's not safe for them to use malloc.
1307 Note that if REL_ALLOC is defined, matching would not use malloc for the
1308 failure stack, but we would still use it for the register vectors;
1309 so REL_ALLOC should not affect this. */
1310 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1311 # undef MATCH_MAY_ALLOCATE
1315 /* Failure stack declarations and macros; both re_compile_fastmap and
1316 re_match_2 use a failure stack. These have to be macros because of
1317 REGEX_ALLOCATE_STACK. */
1320 /* Approximate number of failure points for which to initially allocate space
1321 when matching. If this number is exceeded, we allocate more
1322 space, so it is not a hard limit. */
1323 #ifndef INIT_FAILURE_ALLOC
1324 # define INIT_FAILURE_ALLOC 20
1327 /* Roughly the maximum number of failure points on the stack. Would be
1328 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1329 This is a variable only so users of regex can assign to it; we never
1330 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1331 before using it, so it should probably be a byte-count instead. */
1332 # if defined MATCH_MAY_ALLOCATE
1333 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1334 whose default stack limit is 2mb. In order for a larger
1335 value to work reliably, you have to try to make it accord
1336 with the process stack limit. */
1337 size_t re_max_failures
= 40000;
1339 size_t re_max_failures
= 4000;
1342 union fail_stack_elt
1345 /* This should be the biggest `int' that's no bigger than a pointer. */
1349 typedef union fail_stack_elt fail_stack_elt_t
;
1353 fail_stack_elt_t
*stack
;
1355 size_t avail
; /* Offset of next open position. */
1356 size_t frame
; /* Offset of the cur constructed frame. */
1359 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1360 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1363 /* Define macros to initialize and free the failure stack.
1364 Do `return -2' if the alloc fails. */
1366 #ifdef MATCH_MAY_ALLOCATE
1367 # define INIT_FAIL_STACK() \
1369 fail_stack.stack = (fail_stack_elt_t *) \
1370 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1371 * sizeof (fail_stack_elt_t)); \
1373 if (fail_stack.stack == NULL) \
1376 fail_stack.size = INIT_FAILURE_ALLOC; \
1377 fail_stack.avail = 0; \
1378 fail_stack.frame = 0; \
1381 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1383 # define INIT_FAIL_STACK() \
1385 fail_stack.avail = 0; \
1386 fail_stack.frame = 0; \
1389 # define RESET_FAIL_STACK() ((void)0)
1393 /* Double the size of FAIL_STACK, up to a limit
1394 which allows approximately `re_max_failures' items.
1396 Return 1 if succeeds, and 0 if either ran out of memory
1397 allocating space for it or it was already too large.
1399 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1401 /* Factor to increase the failure stack size by
1402 when we increase it.
1403 This used to be 2, but 2 was too wasteful
1404 because the old discarded stacks added up to as much space
1405 were as ultimate, maximum-size stack. */
1406 #define FAIL_STACK_GROWTH_FACTOR 4
1408 #define GROW_FAIL_STACK(fail_stack) \
1409 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1410 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1412 : ((fail_stack).stack \
1413 = (fail_stack_elt_t *) \
1414 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1415 (fail_stack).size * sizeof (fail_stack_elt_t), \
1416 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1417 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1418 * FAIL_STACK_GROWTH_FACTOR))), \
1420 (fail_stack).stack == NULL \
1422 : ((fail_stack).size \
1423 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1424 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1425 * FAIL_STACK_GROWTH_FACTOR)) \
1426 / sizeof (fail_stack_elt_t)), \
1430 /* Push a pointer value onto the failure stack.
1431 Assumes the variable `fail_stack'. Probably should only
1432 be called from within `PUSH_FAILURE_POINT'. */
1433 #define PUSH_FAILURE_POINTER(item) \
1434 fail_stack.stack[fail_stack.avail++].pointer = (item)
1436 /* This pushes an integer-valued item onto the failure stack.
1437 Assumes the variable `fail_stack'. Probably should only
1438 be called from within `PUSH_FAILURE_POINT'. */
1439 #define PUSH_FAILURE_INT(item) \
1440 fail_stack.stack[fail_stack.avail++].integer = (item)
1442 /* Push a fail_stack_elt_t value onto the failure stack.
1443 Assumes the variable `fail_stack'. Probably should only
1444 be called from within `PUSH_FAILURE_POINT'. */
1445 #define PUSH_FAILURE_ELT(item) \
1446 fail_stack.stack[fail_stack.avail++] = (item)
1448 /* These three POP... operations complement the three PUSH... operations.
1449 All assume that `fail_stack' is nonempty. */
1450 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1451 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1452 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1454 /* Individual items aside from the registers. */
1455 #define NUM_NONREG_ITEMS 3
1457 /* Used to examine the stack (to detect infinite loops). */
1458 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1459 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1460 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1461 #define TOP_FAILURE_HANDLE() fail_stack.frame
1464 #define ENSURE_FAIL_STACK(space) \
1465 while (REMAINING_AVAIL_SLOTS <= space) { \
1466 if (!GROW_FAIL_STACK (fail_stack)) \
1468 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1469 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1472 /* Push register NUM onto the stack. */
1473 #define PUSH_FAILURE_REG(num) \
1475 char *destination; \
1476 ENSURE_FAIL_STACK(3); \
1477 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1478 num, regstart[num], regend[num]); \
1479 PUSH_FAILURE_POINTER (regstart[num]); \
1480 PUSH_FAILURE_POINTER (regend[num]); \
1481 PUSH_FAILURE_INT (num); \
1484 /* Change the counter's value to VAL, but make sure that it will
1485 be reset when backtracking. */
1486 #define PUSH_NUMBER(ptr,val) \
1488 char *destination; \
1490 ENSURE_FAIL_STACK(3); \
1491 EXTRACT_NUMBER (c, ptr); \
1492 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1493 PUSH_FAILURE_INT (c); \
1494 PUSH_FAILURE_POINTER (ptr); \
1495 PUSH_FAILURE_INT (-1); \
1496 STORE_NUMBER (ptr, val); \
1499 /* Pop a saved register off the stack. */
1500 #define POP_FAILURE_REG_OR_COUNT() \
1502 int reg = POP_FAILURE_INT (); \
1505 /* It's a counter. */ \
1506 /* Here, we discard `const', making re_match non-reentrant. */ \
1507 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1508 reg = POP_FAILURE_INT (); \
1509 STORE_NUMBER (ptr, reg); \
1510 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1514 regend[reg] = POP_FAILURE_POINTER (); \
1515 regstart[reg] = POP_FAILURE_POINTER (); \
1516 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1517 reg, regstart[reg], regend[reg]); \
1521 /* Check that we are not stuck in an infinite loop. */
1522 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1524 int failure = TOP_FAILURE_HANDLE(); \
1525 /* Check for infinite matching loops */ \
1526 while (failure > 0 && \
1527 (FAILURE_STR (failure) == string_place \
1528 || FAILURE_STR (failure) == NULL)) \
1530 assert (FAILURE_PAT (failure) >= bufp->buffer \
1531 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1532 if (FAILURE_PAT (failure) == pat_cur) \
1534 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1535 failure = NEXT_FAILURE_HANDLE(failure); \
1537 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1540 /* Push the information about the state we will need
1541 if we ever fail back to it.
1543 Requires variables fail_stack, regstart, regend and
1544 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1547 Does `return FAILURE_CODE' if runs out of memory. */
1549 #define PUSH_FAILURE_POINT(pattern, string_place) \
1551 char *destination; \
1552 /* Must be int, so when we don't save any registers, the arithmetic \
1553 of 0 + -1 isn't done as unsigned. */ \
1555 DEBUG_STATEMENT (nfailure_points_pushed++); \
1556 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1557 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1558 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1560 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1562 DEBUG_PRINT1 ("\n"); \
1564 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1565 PUSH_FAILURE_INT (fail_stack.frame); \
1567 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1568 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1569 DEBUG_PRINT1 ("'\n"); \
1570 PUSH_FAILURE_POINTER (string_place); \
1572 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1573 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1574 PUSH_FAILURE_POINTER (pattern); \
1576 /* Close the frame by moving the frame pointer past it. */ \
1577 fail_stack.frame = fail_stack.avail; \
1580 /* Estimate the size of data pushed by a typical failure stack entry.
1581 An estimate is all we need, because all we use this for
1582 is to choose a limit for how big to make the failure stack. */
1583 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1584 #define TYPICAL_FAILURE_SIZE 20
1586 /* How many items can still be added to the stack without overflowing it. */
1587 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1590 /* Pops what PUSH_FAIL_STACK pushes.
1592 We restore into the parameters, all of which should be lvalues:
1593 STR -- the saved data position.
1594 PAT -- the saved pattern position.
1595 REGSTART, REGEND -- arrays of string positions.
1597 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1598 `pend', `string1', `size1', `string2', and `size2'. */
1600 #define POP_FAILURE_POINT(str, pat) \
1602 assert (!FAIL_STACK_EMPTY ()); \
1604 /* Remove failure points and point to how many regs pushed. */ \
1605 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1606 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1607 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1609 /* Pop the saved registers. */ \
1610 while (fail_stack.frame < fail_stack.avail) \
1611 POP_FAILURE_REG_OR_COUNT (); \
1613 pat = POP_FAILURE_POINTER (); \
1614 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1615 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1617 /* If the saved string location is NULL, it came from an \
1618 on_failure_keep_string_jump opcode, and we want to throw away the \
1619 saved NULL, thus retaining our current position in the string. */ \
1620 str = POP_FAILURE_POINTER (); \
1621 DEBUG_PRINT2 (" Popping string %p: `", str); \
1622 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1623 DEBUG_PRINT1 ("'\n"); \
1625 fail_stack.frame = POP_FAILURE_INT (); \
1626 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1628 assert (fail_stack.avail >= 0); \
1629 assert (fail_stack.frame <= fail_stack.avail); \
1631 DEBUG_STATEMENT (nfailure_points_popped++); \
1632 } while (0) /* POP_FAILURE_POINT */
1636 /* Registers are set to a sentinel when they haven't yet matched. */
1637 #define REG_UNSET(e) ((e) == NULL)
1639 /* Subroutine declarations and macros for regex_compile. */
1641 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1642 reg_syntax_t syntax
,
1643 struct re_pattern_buffer
*bufp
));
1644 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1645 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1646 int arg1
, int arg2
));
1647 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1648 int arg
, unsigned char *end
));
1649 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1650 int arg1
, int arg2
, unsigned char *end
));
1651 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1653 reg_syntax_t syntax
));
1654 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1656 reg_syntax_t syntax
));
1657 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1658 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1659 char *fastmap
, const int multibyte
));
1661 /* Fetch the next character in the uncompiled pattern---translating it
1663 #define PATFETCH(c) \
1666 c = TRANSLATE (c); \
1669 /* Fetch the next character in the uncompiled pattern, with no
1671 #define PATFETCH_RAW(c) \
1674 if (p == pend) return REG_EEND; \
1675 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1680 /* If `translate' is non-null, return translate[D], else just D. We
1681 cast the subscript to translate because some data is declared as
1682 `char *', to avoid warnings when a string constant is passed. But
1683 when we use a character as a subscript we must make it unsigned. */
1685 # define TRANSLATE(d) \
1686 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1690 /* Macros for outputting the compiled pattern into `buffer'. */
1692 /* If the buffer isn't allocated when it comes in, use this. */
1693 #define INIT_BUF_SIZE 32
1695 /* Make sure we have at least N more bytes of space in buffer. */
1696 #define GET_BUFFER_SPACE(n) \
1697 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1700 /* Make sure we have one more byte of buffer space and then add C to it. */
1701 #define BUF_PUSH(c) \
1703 GET_BUFFER_SPACE (1); \
1704 *b++ = (unsigned char) (c); \
1708 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1709 #define BUF_PUSH_2(c1, c2) \
1711 GET_BUFFER_SPACE (2); \
1712 *b++ = (unsigned char) (c1); \
1713 *b++ = (unsigned char) (c2); \
1717 /* As with BUF_PUSH_2, except for three bytes. */
1718 #define BUF_PUSH_3(c1, c2, c3) \
1720 GET_BUFFER_SPACE (3); \
1721 *b++ = (unsigned char) (c1); \
1722 *b++ = (unsigned char) (c2); \
1723 *b++ = (unsigned char) (c3); \
1727 /* Store a jump with opcode OP at LOC to location TO. We store a
1728 relative address offset by the three bytes the jump itself occupies. */
1729 #define STORE_JUMP(op, loc, to) \
1730 store_op1 (op, loc, (to) - (loc) - 3)
1732 /* Likewise, for a two-argument jump. */
1733 #define STORE_JUMP2(op, loc, to, arg) \
1734 store_op2 (op, loc, (to) - (loc) - 3, arg)
1736 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1737 #define INSERT_JUMP(op, loc, to) \
1738 insert_op1 (op, loc, (to) - (loc) - 3, b)
1740 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1741 #define INSERT_JUMP2(op, loc, to, arg) \
1742 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1745 /* This is not an arbitrary limit: the arguments which represent offsets
1746 into the pattern are two bytes long. So if 2^16 bytes turns out to
1747 be too small, many things would have to change. */
1748 /* Any other compiler which, like MSC, has allocation limit below 2^16
1749 bytes will have to use approach similar to what was done below for
1750 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1751 reallocating to 0 bytes. Such thing is not going to work too well.
1752 You have been warned!! */
1753 #if defined _MSC_VER && !defined WIN32
1754 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1755 # define MAX_BUF_SIZE 65500L
1757 # define MAX_BUF_SIZE (1L << 16)
1760 /* Extend the buffer by twice its current size via realloc and
1761 reset the pointers that pointed into the old block to point to the
1762 correct places in the new one. If extending the buffer results in it
1763 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1764 #if __BOUNDED_POINTERS__
1765 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1766 # define MOVE_BUFFER_POINTER(P) \
1767 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1768 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1771 SET_HIGH_BOUND (b); \
1772 SET_HIGH_BOUND (begalt); \
1773 if (fixup_alt_jump) \
1774 SET_HIGH_BOUND (fixup_alt_jump); \
1776 SET_HIGH_BOUND (laststart); \
1777 if (pending_exact) \
1778 SET_HIGH_BOUND (pending_exact); \
1781 # define MOVE_BUFFER_POINTER(P) (P) += incr
1782 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1784 #define EXTEND_BUFFER() \
1786 re_char *old_buffer = bufp->buffer; \
1787 if (bufp->allocated == MAX_BUF_SIZE) \
1789 bufp->allocated <<= 1; \
1790 if (bufp->allocated > MAX_BUF_SIZE) \
1791 bufp->allocated = MAX_BUF_SIZE; \
1792 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1793 if (bufp->buffer == NULL) \
1794 return REG_ESPACE; \
1795 /* If the buffer moved, move all the pointers into it. */ \
1796 if (old_buffer != bufp->buffer) \
1798 int incr = bufp->buffer - old_buffer; \
1799 MOVE_BUFFER_POINTER (b); \
1800 MOVE_BUFFER_POINTER (begalt); \
1801 if (fixup_alt_jump) \
1802 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1804 MOVE_BUFFER_POINTER (laststart); \
1805 if (pending_exact) \
1806 MOVE_BUFFER_POINTER (pending_exact); \
1808 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1812 /* Since we have one byte reserved for the register number argument to
1813 {start,stop}_memory, the maximum number of groups we can report
1814 things about is what fits in that byte. */
1815 #define MAX_REGNUM 255
1817 /* But patterns can have more than `MAX_REGNUM' registers. We just
1818 ignore the excess. */
1819 typedef unsigned regnum_t
;
1822 /* Macros for the compile stack. */
1824 /* Since offsets can go either forwards or backwards, this type needs to
1825 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1826 /* int may be not enough when sizeof(int) == 2. */
1827 typedef long pattern_offset_t
;
1831 pattern_offset_t begalt_offset
;
1832 pattern_offset_t fixup_alt_jump
;
1833 pattern_offset_t laststart_offset
;
1835 } compile_stack_elt_t
;
1840 compile_stack_elt_t
*stack
;
1842 unsigned avail
; /* Offset of next open position. */
1843 } compile_stack_type
;
1846 #define INIT_COMPILE_STACK_SIZE 32
1848 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1849 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1851 /* The next available element. */
1852 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1855 /* Structure to manage work area for range table. */
1856 struct range_table_work_area
1858 int *table
; /* actual work area. */
1859 int allocated
; /* allocated size for work area in bytes. */
1860 int used
; /* actually used size in words. */
1861 int bits
; /* flag to record character classes */
1864 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1865 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1867 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1869 (work_area).allocated += 16 * sizeof (int); \
1870 if ((work_area).table) \
1872 = (int *) realloc ((work_area).table, (work_area).allocated); \
1875 = (int *) malloc ((work_area).allocated); \
1876 if ((work_area).table == 0) \
1877 FREE_STACK_RETURN (REG_ESPACE); \
1881 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1882 (work_area).bits |= (bit)
1884 /* Bits used to implement the multibyte-part of the various character classes
1885 such as [:alnum:] in a charset's range table. */
1886 #define BIT_WORD 0x1
1887 #define BIT_LOWER 0x2
1888 #define BIT_PUNCT 0x4
1889 #define BIT_SPACE 0x8
1890 #define BIT_UPPER 0x10
1891 #define BIT_MULTIBYTE 0x20
1893 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1894 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1896 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1897 (work_area).table[(work_area).used++] = (range_start); \
1898 (work_area).table[(work_area).used++] = (range_end); \
1901 /* Free allocated memory for WORK_AREA. */
1902 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1904 if ((work_area).table) \
1905 free ((work_area).table); \
1908 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1909 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1910 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1911 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1914 /* Set the bit for character C in a list. */
1915 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1918 /* Get the next unsigned number in the uncompiled pattern. */
1919 #define GET_UNSIGNED_NUMBER(num) \
1920 do { if (p != pend) \
1923 while ('0' <= c && c <= '9') \
1927 num = num * 10 + c - '0'; \
1935 #if WIDE_CHAR_SUPPORT
1936 /* The GNU C library provides support for user-defined character classes
1937 and the functions from ISO C amendement 1. */
1938 # ifdef CHARCLASS_NAME_MAX
1939 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1941 /* This shouldn't happen but some implementation might still have this
1942 problem. Use a reasonable default value. */
1943 # define CHAR_CLASS_MAX_LENGTH 256
1945 typedef wctype_t re_wctype_t
;
1946 typedef wchar_t re_wchar_t
;
1947 # define re_wctype wctype
1948 # define re_iswctype iswctype
1949 # define re_wctype_to_bit(cc) 0
1951 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1954 /* Character classes. */
1955 typedef enum { RECC_ERROR
= 0,
1956 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1957 RECC_GRAPH
, RECC_PRINT
,
1958 RECC_LOWER
, RECC_UPPER
,
1959 RECC_PUNCT
, RECC_CNTRL
,
1960 RECC_DIGIT
, RECC_XDIGIT
,
1961 RECC_BLANK
, RECC_SPACE
,
1962 RECC_MULTIBYTE
, RECC_NONASCII
,
1963 RECC_ASCII
, RECC_UNIBYTE
1966 typedef int re_wchar_t
;
1968 /* Map a string to the char class it names (if any). */
1973 const char *string
= str
;
1974 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
1975 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
1976 else if (STREQ (string
, "word")) return RECC_WORD
;
1977 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
1978 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
1979 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
1980 else if (STREQ (string
, "lower")) return RECC_LOWER
;
1981 else if (STREQ (string
, "print")) return RECC_PRINT
;
1982 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
1983 else if (STREQ (string
, "space")) return RECC_SPACE
;
1984 else if (STREQ (string
, "upper")) return RECC_UPPER
;
1985 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
1986 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
1987 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
1988 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
1989 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
1990 else if (STREQ (string
, "blank")) return RECC_BLANK
;
1994 /* True iff CH is in the char class CC. */
1996 re_iswctype (ch
, cc
)
2002 case RECC_ALNUM
: return ISALNUM (ch
);
2003 case RECC_ALPHA
: return ISALPHA (ch
);
2004 case RECC_BLANK
: return ISBLANK (ch
);
2005 case RECC_CNTRL
: return ISCNTRL (ch
);
2006 case RECC_DIGIT
: return ISDIGIT (ch
);
2007 case RECC_GRAPH
: return ISGRAPH (ch
);
2008 case RECC_LOWER
: return ISLOWER (ch
);
2009 case RECC_PRINT
: return ISPRINT (ch
);
2010 case RECC_PUNCT
: return ISPUNCT (ch
);
2011 case RECC_SPACE
: return ISSPACE (ch
);
2012 case RECC_UPPER
: return ISUPPER (ch
);
2013 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2014 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2015 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2016 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2017 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2018 case RECC_WORD
: return ISWORD (ch
);
2019 case RECC_ERROR
: return false;
2025 /* Return a bit-pattern to use in the range-table bits to match multibyte
2026 chars of class CC. */
2028 re_wctype_to_bit (cc
)
2033 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2034 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2035 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2036 case RECC_LOWER
: return BIT_LOWER
;
2037 case RECC_UPPER
: return BIT_UPPER
;
2038 case RECC_PUNCT
: return BIT_PUNCT
;
2039 case RECC_SPACE
: return BIT_SPACE
;
2040 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2041 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2048 /* Explicit quit checking is only used on NTemacs. */
2049 #if defined WINDOWSNT && defined emacs && defined QUIT
2050 extern int immediate_quit
;
2051 # define IMMEDIATE_QUIT_CHECK \
2053 if (immediate_quit) QUIT; \
2056 # define IMMEDIATE_QUIT_CHECK ((void)0)
2059 #ifndef MATCH_MAY_ALLOCATE
2061 /* If we cannot allocate large objects within re_match_2_internal,
2062 we make the fail stack and register vectors global.
2063 The fail stack, we grow to the maximum size when a regexp
2065 The register vectors, we adjust in size each time we
2066 compile a regexp, according to the number of registers it needs. */
2068 static fail_stack_type fail_stack
;
2070 /* Size with which the following vectors are currently allocated.
2071 That is so we can make them bigger as needed,
2072 but never make them smaller. */
2073 static int regs_allocated_size
;
2075 static re_char
** regstart
, ** regend
;
2076 static re_char
**best_regstart
, **best_regend
;
2078 /* Make the register vectors big enough for NUM_REGS registers,
2079 but don't make them smaller. */
2082 regex_grow_registers (num_regs
)
2085 if (num_regs
> regs_allocated_size
)
2087 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2088 RETALLOC_IF (regend
, num_regs
, re_char
*);
2089 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2090 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2092 regs_allocated_size
= num_regs
;
2096 #endif /* not MATCH_MAY_ALLOCATE */
2098 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2102 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2103 Returns one of error codes defined in `regex.h', or zero for success.
2105 Assumes the `allocated' (and perhaps `buffer') and `translate'
2106 fields are set in BUFP on entry.
2108 If it succeeds, results are put in BUFP (if it returns an error, the
2109 contents of BUFP are undefined):
2110 `buffer' is the compiled pattern;
2111 `syntax' is set to SYNTAX;
2112 `used' is set to the length of the compiled pattern;
2113 `fastmap_accurate' is zero;
2114 `re_nsub' is the number of subexpressions in PATTERN;
2115 `not_bol' and `not_eol' are zero;
2117 The `fastmap' field is neither examined nor set. */
2119 /* Insert the `jump' from the end of last alternative to "here".
2120 The space for the jump has already been allocated. */
2121 #define FIXUP_ALT_JUMP() \
2123 if (fixup_alt_jump) \
2124 STORE_JUMP (jump, fixup_alt_jump, b); \
2128 /* Return, freeing storage we allocated. */
2129 #define FREE_STACK_RETURN(value) \
2131 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2132 free (compile_stack.stack); \
2136 static reg_errcode_t
2137 regex_compile (pattern
, size
, syntax
, bufp
)
2140 reg_syntax_t syntax
;
2141 struct re_pattern_buffer
*bufp
;
2143 /* We fetch characters from PATTERN here. */
2144 register re_wchar_t c
, c1
;
2146 /* A random temporary spot in PATTERN. */
2149 /* Points to the end of the buffer, where we should append. */
2150 register unsigned char *b
;
2152 /* Keeps track of unclosed groups. */
2153 compile_stack_type compile_stack
;
2155 /* Points to the current (ending) position in the pattern. */
2157 /* `const' makes AIX compiler fail. */
2158 unsigned char *p
= pattern
;
2160 re_char
*p
= pattern
;
2162 re_char
*pend
= pattern
+ size
;
2164 /* How to translate the characters in the pattern. */
2165 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2167 /* Address of the count-byte of the most recently inserted `exactn'
2168 command. This makes it possible to tell if a new exact-match
2169 character can be added to that command or if the character requires
2170 a new `exactn' command. */
2171 unsigned char *pending_exact
= 0;
2173 /* Address of start of the most recently finished expression.
2174 This tells, e.g., postfix * where to find the start of its
2175 operand. Reset at the beginning of groups and alternatives. */
2176 unsigned char *laststart
= 0;
2178 /* Address of beginning of regexp, or inside of last group. */
2179 unsigned char *begalt
;
2181 /* Place in the uncompiled pattern (i.e., the {) to
2182 which to go back if the interval is invalid. */
2183 re_char
*beg_interval
;
2185 /* Address of the place where a forward jump should go to the end of
2186 the containing expression. Each alternative of an `or' -- except the
2187 last -- ends with a forward jump of this sort. */
2188 unsigned char *fixup_alt_jump
= 0;
2190 /* Counts open-groups as they are encountered. Remembered for the
2191 matching close-group on the compile stack, so the same register
2192 number is put in the stop_memory as the start_memory. */
2193 regnum_t regnum
= 0;
2195 /* Work area for range table of charset. */
2196 struct range_table_work_area range_table_work
;
2198 /* If the object matched can contain multibyte characters. */
2199 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2203 DEBUG_PRINT1 ("\nCompiling pattern: ");
2206 unsigned debug_count
;
2208 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2209 putchar (pattern
[debug_count
]);
2214 /* Initialize the compile stack. */
2215 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2216 if (compile_stack
.stack
== NULL
)
2219 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2220 compile_stack
.avail
= 0;
2222 range_table_work
.table
= 0;
2223 range_table_work
.allocated
= 0;
2225 /* Initialize the pattern buffer. */
2226 bufp
->syntax
= syntax
;
2227 bufp
->fastmap_accurate
= 0;
2228 bufp
->not_bol
= bufp
->not_eol
= 0;
2230 /* Set `used' to zero, so that if we return an error, the pattern
2231 printer (for debugging) will think there's no pattern. We reset it
2235 /* Always count groups, whether or not bufp->no_sub is set. */
2238 #if !defined emacs && !defined SYNTAX_TABLE
2239 /* Initialize the syntax table. */
2240 init_syntax_once ();
2243 if (bufp
->allocated
== 0)
2246 { /* If zero allocated, but buffer is non-null, try to realloc
2247 enough space. This loses if buffer's address is bogus, but
2248 that is the user's responsibility. */
2249 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2252 { /* Caller did not allocate a buffer. Do it for them. */
2253 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2255 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2257 bufp
->allocated
= INIT_BUF_SIZE
;
2260 begalt
= b
= bufp
->buffer
;
2262 /* Loop through the uncompiled pattern until we're at the end. */
2271 if ( /* If at start of pattern, it's an operator. */
2273 /* If context independent, it's an operator. */
2274 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2275 /* Otherwise, depends on what's come before. */
2276 || at_begline_loc_p (pattern
, p
, syntax
))
2277 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2286 if ( /* If at end of pattern, it's an operator. */
2288 /* If context independent, it's an operator. */
2289 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2290 /* Otherwise, depends on what's next. */
2291 || at_endline_loc_p (p
, pend
, syntax
))
2292 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2301 if ((syntax
& RE_BK_PLUS_QM
)
2302 || (syntax
& RE_LIMITED_OPS
))
2306 /* If there is no previous pattern... */
2309 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2310 FREE_STACK_RETURN (REG_BADRPT
);
2311 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2316 /* 1 means zero (many) matches is allowed. */
2317 boolean zero_times_ok
= 0, many_times_ok
= 0;
2320 /* If there is a sequence of repetition chars, collapse it
2321 down to just one (the right one). We can't combine
2322 interval operators with these because of, e.g., `a{2}*',
2323 which should only match an even number of `a's. */
2327 if ((syntax
& RE_FRUGAL
)
2328 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2332 zero_times_ok
|= c
!= '+';
2333 many_times_ok
|= c
!= '?';
2339 || (!(syntax
& RE_BK_PLUS_QM
)
2340 && (*p
== '+' || *p
== '?')))
2342 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2345 FREE_STACK_RETURN (REG_EESCAPE
);
2346 if (p
[1] == '+' || p
[1] == '?')
2347 PATFETCH (c
); /* Gobble up the backslash. */
2353 /* If we get here, we found another repeat character. */
2357 /* Star, etc. applied to an empty pattern is equivalent
2358 to an empty pattern. */
2359 if (!laststart
|| laststart
== b
)
2362 /* Now we know whether or not zero matches is allowed
2363 and also whether or not two or more matches is allowed. */
2368 boolean simple
= skip_one_char (laststart
) == b
;
2369 unsigned int startoffset
= 0;
2371 /* Check if the loop can match the empty string. */
2372 (simple
|| !analyse_first (laststart
, b
, NULL
, 0)) ?
2373 on_failure_jump
: on_failure_jump_loop
;
2374 assert (skip_one_char (laststart
) <= b
);
2376 if (!zero_times_ok
&& simple
)
2377 { /* Since simple * loops can be made faster by using
2378 on_failure_keep_string_jump, we turn simple P+
2379 into PP* if P is simple. */
2380 unsigned char *p1
, *p2
;
2381 startoffset
= b
- laststart
;
2382 GET_BUFFER_SPACE (startoffset
);
2383 p1
= b
; p2
= laststart
;
2389 GET_BUFFER_SPACE (6);
2392 STORE_JUMP (ofj
, b
, b
+ 6);
2394 /* Simple * loops can use on_failure_keep_string_jump
2395 depending on what follows. But since we don't know
2396 that yet, we leave the decision up to
2397 on_failure_jump_smart. */
2398 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2399 laststart
+ startoffset
, b
+ 6);
2401 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2406 /* A simple ? pattern. */
2407 assert (zero_times_ok
);
2408 GET_BUFFER_SPACE (3);
2409 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2413 else /* not greedy */
2414 { /* I wish the greedy and non-greedy cases could be merged. */
2416 GET_BUFFER_SPACE (7); /* We might use less. */
2419 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2421 /* The non-greedy multiple match looks like a repeat..until:
2422 we only need a conditional jump at the end of the loop */
2423 if (emptyp
) BUF_PUSH (no_op
);
2424 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2425 : on_failure_jump
, b
, laststart
);
2429 /* The repeat...until naturally matches one or more.
2430 To also match zero times, we need to first jump to
2431 the end of the loop (its conditional jump). */
2432 INSERT_JUMP (jump
, laststart
, b
);
2438 /* non-greedy a?? */
2439 INSERT_JUMP (jump
, laststart
, b
+ 3);
2441 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2458 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2460 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2462 /* Ensure that we have enough space to push a charset: the
2463 opcode, the length count, and the bitset; 34 bytes in all. */
2464 GET_BUFFER_SPACE (34);
2468 /* We test `*p == '^' twice, instead of using an if
2469 statement, so we only need one BUF_PUSH. */
2470 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2474 /* Remember the first position in the bracket expression. */
2477 /* Push the number of bytes in the bitmap. */
2478 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2480 /* Clear the whole map. */
2481 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2483 /* charset_not matches newline according to a syntax bit. */
2484 if ((re_opcode_t
) b
[-2] == charset_not
2485 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2486 SET_LIST_BIT ('\n');
2488 /* Read in characters and ranges, setting map bits. */
2491 boolean escaped_char
= false;
2492 const unsigned char *p2
= p
;
2494 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2498 /* \ might escape characters inside [...] and [^...]. */
2499 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2501 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2504 escaped_char
= true;
2508 /* Could be the end of the bracket expression. If it's
2509 not (i.e., when the bracket expression is `[]' so
2510 far), the ']' character bit gets set way below. */
2511 if (c
== ']' && p2
!= p1
)
2515 /* What should we do for the character which is
2516 greater than 0x7F, but not BASE_LEADING_CODE_P?
2519 /* See if we're at the beginning of a possible character
2522 if (!escaped_char
&&
2523 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2525 /* Leave room for the null. */
2526 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2527 const unsigned char *class_beg
;
2533 /* If pattern is `[[:'. */
2534 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2539 if ((c
== ':' && *p
== ']') || p
== pend
)
2541 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2544 /* This is in any case an invalid class name. */
2549 /* If isn't a word bracketed by `[:' and `:]':
2550 undo the ending character, the letters, and
2551 leave the leading `:' and `[' (but set bits for
2553 if (c
== ':' && *p
== ']')
2558 cc
= re_wctype (str
);
2561 FREE_STACK_RETURN (REG_ECTYPE
);
2563 /* Throw away the ] at the end of the character
2567 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2569 /* Most character classes in a multibyte match
2570 just set a flag. Exceptions are is_blank,
2571 is_digit, is_cntrl, and is_xdigit, since
2572 they can only match ASCII characters. We
2573 don't need to handle them for multibyte.
2574 They are distinguished by a negative wctype. */
2577 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2578 re_wctype_to_bit (cc
));
2580 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2582 int translated
= TRANSLATE (ch
);
2583 if (re_iswctype (btowc (ch
), cc
))
2584 SET_LIST_BIT (translated
);
2587 /* Repeat the loop. */
2592 /* Go back to right after the "[:". */
2596 /* Because the `:' may starts the range, we
2597 can't simply set bit and repeat the loop.
2598 Instead, just set it to C and handle below. */
2603 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2606 /* Discard the `-'. */
2609 /* Fetch the character which ends the range. */
2612 if (SINGLE_BYTE_CHAR_P (c
))
2614 if (! SINGLE_BYTE_CHAR_P (c1
))
2616 /* Handle a range starting with a
2617 character of less than 256, and ending
2618 with a character of not less than 256.
2619 Split that into two ranges, the low one
2620 ending at 0377, and the high one
2621 starting at the smallest character in
2622 the charset of C1 and ending at C1. */
2623 int charset
= CHAR_CHARSET (c1
);
2624 int c2
= MAKE_CHAR (charset
, 0, 0);
2626 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2631 else if (!SAME_CHARSET_P (c
, c1
))
2632 FREE_STACK_RETURN (REG_ERANGE
);
2635 /* Range from C to C. */
2638 /* Set the range ... */
2639 if (SINGLE_BYTE_CHAR_P (c
))
2640 /* ... into bitmap. */
2642 re_wchar_t this_char
;
2643 int range_start
= c
, range_end
= c1
;
2645 /* If the start is after the end, the range is empty. */
2646 if (range_start
> range_end
)
2648 if (syntax
& RE_NO_EMPTY_RANGES
)
2649 FREE_STACK_RETURN (REG_ERANGE
);
2650 /* Else, repeat the loop. */
2654 for (this_char
= range_start
; this_char
<= range_end
;
2656 SET_LIST_BIT (TRANSLATE (this_char
));
2660 /* ... into range table. */
2661 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2664 /* Discard any (non)matching list bytes that are all 0 at the
2665 end of the map. Decrease the map-length byte too. */
2666 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2670 /* Build real range table from work area. */
2671 if (RANGE_TABLE_WORK_USED (range_table_work
)
2672 || RANGE_TABLE_WORK_BITS (range_table_work
))
2675 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2677 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2678 bytes for flags, two for COUNT, and three bytes for
2680 GET_BUFFER_SPACE (4 + used
* 3);
2682 /* Indicate the existence of range table. */
2683 laststart
[1] |= 0x80;
2685 /* Store the character class flag bits into the range table.
2686 If not in emacs, these flag bits are always 0. */
2687 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2688 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2690 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2691 for (i
= 0; i
< used
; i
++)
2692 STORE_CHARACTER_AND_INCR
2693 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2700 if (syntax
& RE_NO_BK_PARENS
)
2707 if (syntax
& RE_NO_BK_PARENS
)
2714 if (syntax
& RE_NEWLINE_ALT
)
2721 if (syntax
& RE_NO_BK_VBAR
)
2728 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2729 goto handle_interval
;
2735 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2737 /* Do not translate the character after the \, so that we can
2738 distinguish, e.g., \B from \b, even if we normally would
2739 translate, e.g., B to b. */
2745 if (syntax
& RE_NO_BK_PARENS
)
2746 goto normal_backslash
;
2753 /* Look for a special (?...) construct */
2754 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
2756 PATFETCH (c
); /* Gobble up the '?'. */
2760 case ':': shy
= 1; break;
2762 /* Only (?:...) is supported right now. */
2763 FREE_STACK_RETURN (REG_BADPAT
);
2774 if (COMPILE_STACK_FULL
)
2776 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2777 compile_stack_elt_t
);
2778 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2780 compile_stack
.size
<<= 1;
2783 /* These are the values to restore when we hit end of this
2784 group. They are all relative offsets, so that if the
2785 whole pattern moves because of realloc, they will still
2787 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2788 COMPILE_STACK_TOP
.fixup_alt_jump
2789 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2790 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2791 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
2794 start_memory for groups beyond the last one we can
2795 represent in the compiled pattern. */
2796 if (regnum
<= MAX_REGNUM
&& !shy
)
2797 BUF_PUSH_2 (start_memory
, regnum
);
2799 compile_stack
.avail
++;
2804 /* If we've reached MAX_REGNUM groups, then this open
2805 won't actually generate any code, so we'll have to
2806 clear pending_exact explicitly. */
2812 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2814 if (COMPILE_STACK_EMPTY
)
2816 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2817 goto normal_backslash
;
2819 FREE_STACK_RETURN (REG_ERPAREN
);
2825 /* See similar code for backslashed left paren above. */
2826 if (COMPILE_STACK_EMPTY
)
2828 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2831 FREE_STACK_RETURN (REG_ERPAREN
);
2834 /* Since we just checked for an empty stack above, this
2835 ``can't happen''. */
2836 assert (compile_stack
.avail
!= 0);
2838 /* We don't just want to restore into `regnum', because
2839 later groups should continue to be numbered higher,
2840 as in `(ab)c(de)' -- the second group is #2. */
2841 regnum_t this_group_regnum
;
2843 compile_stack
.avail
--;
2844 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2846 = COMPILE_STACK_TOP
.fixup_alt_jump
2847 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2849 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2850 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2851 /* If we've reached MAX_REGNUM groups, then this open
2852 won't actually generate any code, so we'll have to
2853 clear pending_exact explicitly. */
2856 /* We're at the end of the group, so now we know how many
2857 groups were inside this one. */
2858 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
2859 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
2864 case '|': /* `\|'. */
2865 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2866 goto normal_backslash
;
2868 if (syntax
& RE_LIMITED_OPS
)
2871 /* Insert before the previous alternative a jump which
2872 jumps to this alternative if the former fails. */
2873 GET_BUFFER_SPACE (3);
2874 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2878 /* The alternative before this one has a jump after it
2879 which gets executed if it gets matched. Adjust that
2880 jump so it will jump to this alternative's analogous
2881 jump (put in below, which in turn will jump to the next
2882 (if any) alternative's such jump, etc.). The last such
2883 jump jumps to the correct final destination. A picture:
2889 If we are at `b', then fixup_alt_jump right now points to a
2890 three-byte space after `a'. We'll put in the jump, set
2891 fixup_alt_jump to right after `b', and leave behind three
2892 bytes which we'll fill in when we get to after `c'. */
2896 /* Mark and leave space for a jump after this alternative,
2897 to be filled in later either by next alternative or
2898 when know we're at the end of a series of alternatives. */
2900 GET_BUFFER_SPACE (3);
2909 /* If \{ is a literal. */
2910 if (!(syntax
& RE_INTERVALS
)
2911 /* If we're at `\{' and it's not the open-interval
2913 || (syntax
& RE_NO_BK_BRACES
))
2914 goto normal_backslash
;
2918 /* If got here, then the syntax allows intervals. */
2920 /* At least (most) this many matches must be made. */
2921 int lower_bound
= 0, upper_bound
= -1;
2926 FREE_STACK_RETURN (REG_EBRACE
);
2928 GET_UNSIGNED_NUMBER (lower_bound
);
2931 GET_UNSIGNED_NUMBER (upper_bound
);
2933 /* Interval such as `{1}' => match exactly once. */
2934 upper_bound
= lower_bound
;
2936 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2937 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
2938 FREE_STACK_RETURN (REG_BADBR
);
2940 if (!(syntax
& RE_NO_BK_BRACES
))
2943 FREE_STACK_RETURN (REG_BADBR
);
2949 FREE_STACK_RETURN (REG_BADBR
);
2951 /* We just parsed a valid interval. */
2953 /* If it's invalid to have no preceding re. */
2956 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2957 FREE_STACK_RETURN (REG_BADRPT
);
2958 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2961 goto unfetch_interval
;
2964 if (upper_bound
== 0)
2965 /* If the upper bound is zero, just drop the sub pattern
2968 else if (lower_bound
== 1 && upper_bound
== 1)
2969 /* Just match it once: nothing to do here. */
2972 /* Otherwise, we have a nontrivial interval. When
2973 we're all done, the pattern will look like:
2974 set_number_at <jump count> <upper bound>
2975 set_number_at <succeed_n count> <lower bound>
2976 succeed_n <after jump addr> <succeed_n count>
2978 jump_n <succeed_n addr> <jump count>
2979 (The upper bound and `jump_n' are omitted if
2980 `upper_bound' is 1, though.) */
2982 { /* If the upper bound is > 1, we need to insert
2983 more at the end of the loop. */
2984 unsigned int nbytes
= (upper_bound
< 0 ? 3
2985 : upper_bound
> 1 ? 5 : 0);
2986 unsigned int startoffset
= 0;
2988 GET_BUFFER_SPACE (20); /* We might use less. */
2990 if (lower_bound
== 0)
2992 /* A succeed_n that starts with 0 is really a
2993 a simple on_failure_jump_loop. */
2994 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3000 /* Initialize lower bound of the `succeed_n', even
3001 though it will be set during matching by its
3002 attendant `set_number_at' (inserted next),
3003 because `re_compile_fastmap' needs to know.
3004 Jump to the `jump_n' we might insert below. */
3005 INSERT_JUMP2 (succeed_n
, laststart
,
3010 /* Code to initialize the lower bound. Insert
3011 before the `succeed_n'. The `5' is the last two
3012 bytes of this `set_number_at', plus 3 bytes of
3013 the following `succeed_n'. */
3014 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3019 if (upper_bound
< 0)
3021 /* A negative upper bound stands for infinity,
3022 in which case it degenerates to a plain jump. */
3023 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3026 else if (upper_bound
> 1)
3027 { /* More than one repetition is allowed, so
3028 append a backward jump to the `succeed_n'
3029 that starts this interval.
3031 When we've reached this during matching,
3032 we'll have matched the interval once, so
3033 jump back only `upper_bound - 1' times. */
3034 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3038 /* The location we want to set is the second
3039 parameter of the `jump_n'; that is `b-2' as
3040 an absolute address. `laststart' will be
3041 the `set_number_at' we're about to insert;
3042 `laststart+3' the number to set, the source
3043 for the relative address. But we are
3044 inserting into the middle of the pattern --
3045 so everything is getting moved up by 5.
3046 Conclusion: (b - 2) - (laststart + 3) + 5,
3047 i.e., b - laststart.
3049 We insert this at the beginning of the loop
3050 so that if we fail during matching, we'll
3051 reinitialize the bounds. */
3052 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3053 upper_bound
- 1, b
);
3058 beg_interval
= NULL
;
3063 /* If an invalid interval, match the characters as literals. */
3064 assert (beg_interval
);
3066 beg_interval
= NULL
;
3068 /* normal_char and normal_backslash need `c'. */
3071 if (!(syntax
& RE_NO_BK_BRACES
))
3073 assert (p
> pattern
&& p
[-1] == '\\');
3074 goto normal_backslash
;
3080 /* There is no way to specify the before_dot and after_dot
3081 operators. rms says this is ok. --karl */
3089 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3095 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3101 BUF_PUSH_2 (categoryspec
, c
);
3107 BUF_PUSH_2 (notcategoryspec
, c
);
3113 if (syntax
& RE_NO_GNU_OPS
)
3116 BUF_PUSH_2 (syntaxspec
, Sword
);
3121 if (syntax
& RE_NO_GNU_OPS
)
3124 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3129 if (syntax
& RE_NO_GNU_OPS
)
3135 if (syntax
& RE_NO_GNU_OPS
)
3141 if (syntax
& RE_NO_GNU_OPS
)
3143 BUF_PUSH (wordbound
);
3147 if (syntax
& RE_NO_GNU_OPS
)
3149 BUF_PUSH (notwordbound
);
3153 if (syntax
& RE_NO_GNU_OPS
)
3159 if (syntax
& RE_NO_GNU_OPS
)
3164 case '1': case '2': case '3': case '4': case '5':
3165 case '6': case '7': case '8': case '9':
3169 if (syntax
& RE_NO_BK_REFS
)
3170 goto normal_backslash
;
3174 /* Can't back reference to a subexpression before its end. */
3175 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3176 FREE_STACK_RETURN (REG_ESUBREG
);
3179 BUF_PUSH_2 (duplicate
, reg
);
3186 if (syntax
& RE_BK_PLUS_QM
)
3189 goto normal_backslash
;
3193 /* You might think it would be useful for \ to mean
3194 not to translate; but if we don't translate it
3195 it will never match anything. */
3203 /* Expects the character in `c'. */
3205 /* If no exactn currently being built. */
3208 /* If last exactn not at current position. */
3209 || pending_exact
+ *pending_exact
+ 1 != b
3211 /* We have only one byte following the exactn for the count. */
3212 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3214 /* If followed by a repetition operator. */
3215 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3216 || ((syntax
& RE_BK_PLUS_QM
)
3217 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3218 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3219 || ((syntax
& RE_INTERVALS
)
3220 && ((syntax
& RE_NO_BK_BRACES
)
3221 ? p
!= pend
&& *p
== '{'
3222 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3224 /* Start building a new exactn. */
3228 BUF_PUSH_2 (exactn
, 0);
3229 pending_exact
= b
- 1;
3232 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3237 len
= CHAR_STRING (c
, b
);
3241 (*pending_exact
) += len
;
3246 } /* while p != pend */
3249 /* Through the pattern now. */
3253 if (!COMPILE_STACK_EMPTY
)
3254 FREE_STACK_RETURN (REG_EPAREN
);
3256 /* If we don't want backtracking, force success
3257 the first time we reach the end of the compiled pattern. */
3258 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3261 free (compile_stack
.stack
);
3263 /* We have succeeded; set the length of the buffer. */
3264 bufp
->used
= b
- bufp
->buffer
;
3269 re_compile_fastmap (bufp
);
3270 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3271 print_compiled_pattern (bufp
);
3276 #ifndef MATCH_MAY_ALLOCATE
3277 /* Initialize the failure stack to the largest possible stack. This
3278 isn't necessary unless we're trying to avoid calling alloca in
3279 the search and match routines. */
3281 int num_regs
= bufp
->re_nsub
+ 1;
3283 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3285 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3287 if (! fail_stack
.stack
)
3289 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3290 * sizeof (fail_stack_elt_t
));
3293 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3295 * sizeof (fail_stack_elt_t
)));
3298 regex_grow_registers (num_regs
);
3300 #endif /* not MATCH_MAY_ALLOCATE */
3303 } /* regex_compile */
3305 /* Subroutines for `regex_compile'. */
3307 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3310 store_op1 (op
, loc
, arg
)
3315 *loc
= (unsigned char) op
;
3316 STORE_NUMBER (loc
+ 1, arg
);
3320 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3323 store_op2 (op
, loc
, arg1
, arg2
)
3328 *loc
= (unsigned char) op
;
3329 STORE_NUMBER (loc
+ 1, arg1
);
3330 STORE_NUMBER (loc
+ 3, arg2
);
3334 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3335 for OP followed by two-byte integer parameter ARG. */
3338 insert_op1 (op
, loc
, arg
, end
)
3344 register unsigned char *pfrom
= end
;
3345 register unsigned char *pto
= end
+ 3;
3347 while (pfrom
!= loc
)
3350 store_op1 (op
, loc
, arg
);
3354 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3357 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3363 register unsigned char *pfrom
= end
;
3364 register unsigned char *pto
= end
+ 5;
3366 while (pfrom
!= loc
)
3369 store_op2 (op
, loc
, arg1
, arg2
);
3373 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3374 after an alternative or a begin-subexpression. We assume there is at
3375 least one character before the ^. */
3378 at_begline_loc_p (pattern
, p
, syntax
)
3379 re_char
*pattern
, *p
;
3380 reg_syntax_t syntax
;
3382 re_char
*prev
= p
- 2;
3383 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3386 /* After a subexpression? */
3387 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3388 /* After an alternative? */
3389 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3390 /* After a shy subexpression? */
3391 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3392 && prev
[-1] == '?' && prev
[-2] == '('
3393 && (syntax
& RE_NO_BK_PARENS
3394 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3398 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3399 at least one character after the $, i.e., `P < PEND'. */
3402 at_endline_loc_p (p
, pend
, syntax
)
3404 reg_syntax_t syntax
;
3407 boolean next_backslash
= *next
== '\\';
3408 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3411 /* Before a subexpression? */
3412 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3413 : next_backslash
&& next_next
&& *next_next
== ')')
3414 /* Before an alternative? */
3415 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3416 : next_backslash
&& next_next
&& *next_next
== '|');
3420 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3421 false if it's not. */
3424 group_in_compile_stack (compile_stack
, regnum
)
3425 compile_stack_type compile_stack
;
3430 for (this_element
= compile_stack
.avail
- 1;
3433 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3440 If fastmap is non-NULL, go through the pattern and fill fastmap
3441 with all the possible leading chars. If fastmap is NULL, don't
3442 bother filling it up (obviously) and only return whether the
3443 pattern could potentially match the empty string.
3445 Return 1 if p..pend might match the empty string.
3446 Return 0 if p..pend matches at least one char.
3447 Return -1 if fastmap was not updated accurately. */
3450 analyse_first (p
, pend
, fastmap
, multibyte
)
3453 const int multibyte
;
3458 /* If all elements for base leading-codes in fastmap is set, this
3459 flag is set true. */
3460 boolean match_any_multibyte_characters
= false;
3464 /* The loop below works as follows:
3465 - It has a working-list kept in the PATTERN_STACK and which basically
3466 starts by only containing a pointer to the first operation.
3467 - If the opcode we're looking at is a match against some set of
3468 chars, then we add those chars to the fastmap and go on to the
3469 next work element from the worklist (done via `break').
3470 - If the opcode is a control operator on the other hand, we either
3471 ignore it (if it's meaningless at this point, such as `start_memory')
3472 or execute it (if it's a jump). If the jump has several destinations
3473 (i.e. `on_failure_jump'), then we push the other destination onto the
3475 We guarantee termination by ignoring backward jumps (more or less),
3476 so that `p' is monotonically increasing. More to the point, we
3477 never set `p' (or push) anything `<= p1'. */
3481 /* `p1' is used as a marker of how far back a `on_failure_jump'
3482 can go without being ignored. It is normally equal to `p'
3483 (which prevents any backward `on_failure_jump') except right
3484 after a plain `jump', to allow patterns such as:
3487 10: on_failure_jump 3
3488 as used for the *? operator. */
3491 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3498 /* If the first character has to match a backreference, that means
3499 that the group was empty (since it already matched). Since this
3500 is the only case that interests us here, we can assume that the
3501 backreference must match the empty string. */
3506 /* Following are the cases which match a character. These end
3512 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3514 if (SINGLE_BYTE_CHAR_P (c
))
3523 /* We could put all the chars except for \n (and maybe \0)
3524 but we don't bother since it is generally not worth it. */
3525 if (!fastmap
) break;
3530 /* Chars beyond end of bitmap are possible matches.
3531 All the single-byte codes can occur in multibyte buffers.
3532 So any that are not listed in the charset
3533 are possible matches, even in multibyte buffers. */
3534 if (!fastmap
) break;
3535 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3536 j
< (1 << BYTEWIDTH
); j
++)
3540 if (!fastmap
) break;
3541 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3542 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3544 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3547 if ((not && multibyte
)
3548 /* Any character set can possibly contain a character
3549 which doesn't match the specified set of characters. */
3550 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3551 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3552 /* If we can match a character class, we can match
3553 any character set. */
3555 set_fastmap_for_multibyte_characters
:
3556 if (match_any_multibyte_characters
== false)
3558 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3559 if (BASE_LEADING_CODE_P (j
))
3561 match_any_multibyte_characters
= true;
3565 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3566 && match_any_multibyte_characters
== false)
3568 /* Set fastmap[I] 1 where I is a base leading code of each
3569 multibyte character in the range table. */
3572 /* Make P points the range table. `+ 2' is to skip flag
3573 bits for a character class. */
3574 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3576 /* Extract the number of ranges in range table into COUNT. */
3577 EXTRACT_NUMBER_AND_INCR (count
, p
);
3578 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3580 /* Extract the start of each range. */
3581 EXTRACT_CHARACTER (c
, p
);
3582 j
= CHAR_CHARSET (c
);
3583 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3590 if (!fastmap
) break;
3592 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3594 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3595 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3599 /* This match depends on text properties. These end with
3600 aborting optimizations. */
3604 case notcategoryspec
:
3605 if (!fastmap
) break;
3606 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3608 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3609 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3613 /* Any character set can possibly contain a character
3614 whose category is K (or not). */
3615 goto set_fastmap_for_multibyte_characters
;
3618 /* All cases after this match the empty string. These end with
3638 EXTRACT_NUMBER_AND_INCR (j
, p
);
3640 /* Backward jumps can only go back to code that we've already
3641 visited. `re_compile' should make sure this is true. */
3644 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3646 case on_failure_jump
:
3647 case on_failure_keep_string_jump
:
3648 case on_failure_jump_loop
:
3649 case on_failure_jump_nastyloop
:
3650 case on_failure_jump_smart
:
3656 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3657 to jump back to "just after here". */
3660 case on_failure_jump
:
3661 case on_failure_keep_string_jump
:
3662 case on_failure_jump_nastyloop
:
3663 case on_failure_jump_loop
:
3664 case on_failure_jump_smart
:
3665 EXTRACT_NUMBER_AND_INCR (j
, p
);
3667 ; /* Backward jump to be ignored. */
3669 { /* We have to look down both arms.
3670 We first go down the "straight" path so as to minimize
3671 stack usage when going through alternatives. */
3672 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
3680 /* This code simply does not properly handle forward jump_n. */
3681 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3683 /* jump_n can either jump or fall through. The (backward) jump
3684 case has already been handled, so we only need to look at the
3685 fallthrough case. */
3689 /* If N == 0, it should be an on_failure_jump_loop instead. */
3690 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3692 /* We only care about one iteration of the loop, so we don't
3693 need to consider the case where this behaves like an
3710 abort (); /* We have listed all the cases. */
3713 /* Getting here means we have found the possible starting
3714 characters for one path of the pattern -- and that the empty
3715 string does not match. We need not follow this path further. */
3719 /* We reached the end without matching anything. */
3722 } /* analyse_first */
3724 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3725 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3726 characters can start a string that matches the pattern. This fastmap
3727 is used by re_search to skip quickly over impossible starting points.
3729 Character codes above (1 << BYTEWIDTH) are not represented in the
3730 fastmap, but the leading codes are represented. Thus, the fastmap
3731 indicates which character sets could start a match.
3733 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3734 area as BUFP->fastmap.
3736 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3739 Returns 0 if we succeed, -2 if an internal error. */
3742 re_compile_fastmap (bufp
)
3743 struct re_pattern_buffer
*bufp
;
3745 char *fastmap
= bufp
->fastmap
;
3748 assert (fastmap
&& bufp
->buffer
);
3750 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3751 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3753 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
3754 fastmap
, RE_MULTIBYTE_P (bufp
));
3755 bufp
->can_be_null
= (analysis
!= 0);
3757 } /* re_compile_fastmap */
3759 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3760 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3761 this memory for recording register information. STARTS and ENDS
3762 must be allocated using the malloc library routine, and must each
3763 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3765 If NUM_REGS == 0, then subsequent matches should allocate their own
3768 Unless this function is called, the first search or match using
3769 PATTERN_BUFFER will allocate its own register data, without
3770 freeing the old data. */
3773 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3774 struct re_pattern_buffer
*bufp
;
3775 struct re_registers
*regs
;
3777 regoff_t
*starts
, *ends
;
3781 bufp
->regs_allocated
= REGS_REALLOCATE
;
3782 regs
->num_regs
= num_regs
;
3783 regs
->start
= starts
;
3788 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3790 regs
->start
= regs
->end
= (regoff_t
*) 0;
3793 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
3795 /* Searching routines. */
3797 /* Like re_search_2, below, but only one string is specified, and
3798 doesn't let you say where to stop matching. */
3801 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3802 struct re_pattern_buffer
*bufp
;
3804 int size
, startpos
, range
;
3805 struct re_registers
*regs
;
3807 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3810 WEAK_ALIAS (__re_search
, re_search
)
3812 /* End address of virtual concatenation of string. */
3813 #define STOP_ADDR_VSTRING(P) \
3814 (((P) >= size1 ? string2 + size2 : string1 + size1))
3816 /* Address of POS in the concatenation of virtual string. */
3817 #define POS_ADDR_VSTRING(POS) \
3818 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3820 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3821 virtual concatenation of STRING1 and STRING2, starting first at index
3822 STARTPOS, then at STARTPOS + 1, and so on.
3824 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3826 RANGE is how far to scan while trying to match. RANGE = 0 means try
3827 only at STARTPOS; in general, the last start tried is STARTPOS +
3830 In REGS, return the indices of the virtual concatenation of STRING1
3831 and STRING2 that matched the entire BUFP->buffer and its contained
3834 Do not consider matching one past the index STOP in the virtual
3835 concatenation of STRING1 and STRING2.
3837 We return either the position in the strings at which the match was
3838 found, -1 if no match, or -2 if error (such as failure
3842 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
3843 struct re_pattern_buffer
*bufp
;
3844 const char *str1
, *str2
;
3848 struct re_registers
*regs
;
3852 re_char
*string1
= (re_char
*) str1
;
3853 re_char
*string2
= (re_char
*) str2
;
3854 register char *fastmap
= bufp
->fastmap
;
3855 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3856 int total_size
= size1
+ size2
;
3857 int endpos
= startpos
+ range
;
3858 boolean anchored_start
;
3860 /* Nonzero if we have to concern multibyte character. */
3861 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
3863 /* Check for out-of-range STARTPOS. */
3864 if (startpos
< 0 || startpos
> total_size
)
3867 /* Fix up RANGE if it might eventually take us outside
3868 the virtual concatenation of STRING1 and STRING2.
3869 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3871 range
= 0 - startpos
;
3872 else if (endpos
> total_size
)
3873 range
= total_size
- startpos
;
3875 /* If the search isn't to be a backwards one, don't waste time in a
3876 search for a pattern anchored at beginning of buffer. */
3877 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3886 /* In a forward search for something that starts with \=.
3887 don't keep searching past point. */
3888 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3890 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
3896 /* Update the fastmap now if not correct already. */
3897 if (fastmap
&& !bufp
->fastmap_accurate
)
3898 re_compile_fastmap (bufp
);
3900 /* See whether the pattern is anchored. */
3901 anchored_start
= (bufp
->buffer
[0] == begline
);
3904 gl_state
.object
= re_match_object
;
3906 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
3908 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
3912 /* Loop through the string, looking for a place to start matching. */
3915 /* If the pattern is anchored,
3916 skip quickly past places we cannot match.
3917 We don't bother to treat startpos == 0 specially
3918 because that case doesn't repeat. */
3919 if (anchored_start
&& startpos
> 0)
3921 if (! ((startpos
<= size1
? string1
[startpos
- 1]
3922 : string2
[startpos
- size1
- 1])
3927 /* If a fastmap is supplied, skip quickly over characters that
3928 cannot be the start of a match. If the pattern can match the
3929 null string, however, we don't need to skip characters; we want
3930 the first null string. */
3931 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3933 register re_char
*d
;
3934 register re_wchar_t buf_ch
;
3936 d
= POS_ADDR_VSTRING (startpos
);
3938 if (range
> 0) /* Searching forwards. */
3940 register int lim
= 0;
3943 if (startpos
< size1
&& startpos
+ range
>= size1
)
3944 lim
= range
- (size1
- startpos
);
3946 /* Written out as an if-else to avoid testing `translate'
3948 if (RE_TRANSLATE_P (translate
))
3955 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
3958 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
3963 range
-= buf_charlen
;
3968 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
3975 while (range
> lim
&& !fastmap
[*d
])
3981 startpos
+= irange
- range
;
3983 else /* Searching backwards. */
3985 int room
= (startpos
>= size1
3986 ? size2
+ size1
- startpos
3987 : size1
- startpos
);
3988 buf_ch
= RE_STRING_CHAR (d
, room
);
3989 buf_ch
= TRANSLATE (buf_ch
);
3991 if (! (buf_ch
>= 0400
3992 || fastmap
[buf_ch
]))
3997 /* If can't match the null string, and that's all we have left, fail. */
3998 if (range
>= 0 && startpos
== total_size
&& fastmap
3999 && !bufp
->can_be_null
)
4002 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4003 startpos
, regs
, stop
);
4004 #ifndef REGEX_MALLOC
4021 /* Update STARTPOS to the next character boundary. */
4024 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4025 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4026 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4044 /* Update STARTPOS to the previous character boundary. */
4047 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4050 /* Find the head of multibyte form. */
4051 while (!CHAR_HEAD_P (*p
))
4056 if (MULTIBYTE_FORM_LENGTH (p
, len
+ 1) != (len
+ 1))
4072 WEAK_ALIAS (__re_search_2
, re_search_2
)
4074 /* Declarations and macros for re_match_2. */
4076 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4078 RE_TRANSLATE_TYPE translate
,
4079 const int multibyte
));
4081 /* This converts PTR, a pointer into one of the search strings `string1'
4082 and `string2' into an offset from the beginning of that string. */
4083 #define POINTER_TO_OFFSET(ptr) \
4084 (FIRST_STRING_P (ptr) \
4085 ? ((regoff_t) ((ptr) - string1)) \
4086 : ((regoff_t) ((ptr) - string2 + size1)))
4088 /* Call before fetching a character with *d. This switches over to
4089 string2 if necessary.
4090 Check re_match_2_internal for a discussion of why end_match_2 might
4091 not be within string2 (but be equal to end_match_1 instead). */
4092 #define PREFETCH() \
4095 /* End of string2 => fail. */ \
4096 if (dend == end_match_2) \
4098 /* End of string1 => advance to string2. */ \
4100 dend = end_match_2; \
4103 /* Call before fetching a char with *d if you already checked other limits.
4104 This is meant for use in lookahead operations like wordend, etc..
4105 where we might need to look at parts of the string that might be
4106 outside of the LIMITs (i.e past `stop'). */
4107 #define PREFETCH_NOLIMIT() \
4111 dend = end_match_2; \
4114 /* Test if at very beginning or at very end of the virtual concatenation
4115 of `string1' and `string2'. If only one string, it's `string2'. */
4116 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4117 #define AT_STRINGS_END(d) ((d) == end2)
4120 /* Test if D points to a character which is word-constituent. We have
4121 two special cases to check for: if past the end of string1, look at
4122 the first character in string2; and if before the beginning of
4123 string2, look at the last character in string1. */
4124 #define WORDCHAR_P(d) \
4125 (SYNTAX ((d) == end1 ? *string2 \
4126 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4129 /* Disabled due to a compiler bug -- see comment at case wordbound */
4131 /* The comment at case wordbound is following one, but we don't use
4132 AT_WORD_BOUNDARY anymore to support multibyte form.
4134 The DEC Alpha C compiler 3.x generates incorrect code for the
4135 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4136 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4137 macro and introducing temporary variables works around the bug. */
4140 /* Test if the character before D and the one at D differ with respect
4141 to being word-constituent. */
4142 #define AT_WORD_BOUNDARY(d) \
4143 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4144 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4147 /* Free everything we malloc. */
4148 #ifdef MATCH_MAY_ALLOCATE
4149 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4150 # define FREE_VARIABLES() \
4152 REGEX_FREE_STACK (fail_stack.stack); \
4153 FREE_VAR (regstart); \
4154 FREE_VAR (regend); \
4155 FREE_VAR (best_regstart); \
4156 FREE_VAR (best_regend); \
4159 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4160 #endif /* not MATCH_MAY_ALLOCATE */
4163 /* Optimization routines. */
4165 /* If the operation is a match against one or more chars,
4166 return a pointer to the next operation, else return NULL. */
4171 switch (SWITCH_ENUM_CAST (*p
++))
4182 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4185 p
= CHARSET_RANGE_TABLE (p
- 1);
4186 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4187 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4190 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4197 case notcategoryspec
:
4209 /* Jump over non-matching operations. */
4210 static unsigned char *
4211 skip_noops (p
, pend
)
4212 unsigned char *p
, *pend
;
4217 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4226 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4237 /* Non-zero if "p1 matches something" implies "p2 fails". */
4239 mutually_exclusive_p (bufp
, p1
, p2
)
4240 struct re_pattern_buffer
*bufp
;
4241 unsigned char *p1
, *p2
;
4244 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4245 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4247 assert (p1
>= bufp
->buffer
&& p1
< pend
4248 && p2
>= bufp
->buffer
&& p2
<= pend
);
4250 /* Skip over open/close-group commands.
4251 If what follows this loop is a ...+ construct,
4252 look at what begins its body, since we will have to
4253 match at least one of that. */
4254 p2
= skip_noops (p2
, pend
);
4255 /* The same skip can be done for p1, except that this function
4256 is only used in the case where p1 is a simple match operator. */
4257 /* p1 = skip_noops (p1, pend); */
4259 assert (p1
>= bufp
->buffer
&& p1
< pend
4260 && p2
>= bufp
->buffer
&& p2
<= pend
);
4262 op2
= p2
== pend
? succeed
: *p2
;
4264 switch (SWITCH_ENUM_CAST (op2
))
4268 /* If we're at the end of the pattern, we can change. */
4269 if (skip_one_char (p1
))
4271 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4279 register re_wchar_t c
4280 = (re_opcode_t
) *p2
== endline
? '\n'
4281 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4283 if ((re_opcode_t
) *p1
== exactn
)
4285 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4287 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4292 else if ((re_opcode_t
) *p1
== charset
4293 || (re_opcode_t
) *p1
== charset_not
)
4295 int not = (re_opcode_t
) *p1
== charset_not
;
4297 /* Test if C is listed in charset (or charset_not)
4299 if (SINGLE_BYTE_CHAR_P (c
))
4301 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4302 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4305 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4306 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4308 /* `not' is equal to 1 if c would match, which means
4309 that we can't change to pop_failure_jump. */
4312 DEBUG_PRINT1 (" No match => fast loop.\n");
4316 else if ((re_opcode_t
) *p1
== anychar
4319 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4327 if ((re_opcode_t
) *p1
== exactn
)
4328 /* Reuse the code above. */
4329 return mutually_exclusive_p (bufp
, p2
, p1
);
4331 /* It is hard to list up all the character in charset
4332 P2 if it includes multibyte character. Give up in
4334 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4336 /* Now, we are sure that P2 has no range table.
4337 So, for the size of bitmap in P2, `p2[1]' is
4338 enough. But P1 may have range table, so the
4339 size of bitmap table of P1 is extracted by
4340 using macro `CHARSET_BITMAP_SIZE'.
4342 Since we know that all the character listed in
4343 P2 is ASCII, it is enough to test only bitmap
4346 if ((re_opcode_t
) *p1
== charset
)
4349 /* We win if the charset inside the loop
4350 has no overlap with the one after the loop. */
4353 && idx
< CHARSET_BITMAP_SIZE (p1
));
4355 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4359 || idx
== CHARSET_BITMAP_SIZE (p1
))
4361 DEBUG_PRINT1 (" No match => fast loop.\n");
4365 else if ((re_opcode_t
) *p1
== charset_not
)
4368 /* We win if the charset_not inside the loop lists
4369 every character listed in the charset after. */
4370 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4371 if (! (p2
[2 + idx
] == 0
4372 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4373 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4378 DEBUG_PRINT1 (" No match => fast loop.\n");
4387 switch (SWITCH_ENUM_CAST (*p1
))
4391 /* Reuse the code above. */
4392 return mutually_exclusive_p (bufp
, p2
, p1
);
4394 /* When we have two charset_not, it's very unlikely that
4395 they don't overlap. The union of the two sets of excluded
4396 chars should cover all possible chars, which, as a matter of
4397 fact, is virtually impossible in multibyte buffers. */
4404 return ((re_opcode_t
) *p1
== syntaxspec
4405 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4409 return ((re_opcode_t
) *p1
== notsyntaxspec
4410 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4413 return (((re_opcode_t
) *p1
== notsyntaxspec
4414 || (re_opcode_t
) *p1
== syntaxspec
)
4419 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4420 case notcategoryspec
:
4421 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4433 /* Matching routines. */
4435 #ifndef emacs /* Emacs never uses this. */
4436 /* re_match is like re_match_2 except it takes only a single string. */
4439 re_match (bufp
, string
, size
, pos
, regs
)
4440 struct re_pattern_buffer
*bufp
;
4443 struct re_registers
*regs
;
4445 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4447 # if defined C_ALLOCA && !defined REGEX_MALLOC
4452 WEAK_ALIAS (__re_match
, re_match
)
4453 #endif /* not emacs */
4456 /* In Emacs, this is the string or buffer in which we
4457 are matching. It is used for looking up syntax properties. */
4458 Lisp_Object re_match_object
;
4461 /* re_match_2 matches the compiled pattern in BUFP against the
4462 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4463 and SIZE2, respectively). We start matching at POS, and stop
4466 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4467 store offsets for the substring each group matched in REGS. See the
4468 documentation for exactly how many groups we fill.
4470 We return -1 if no match, -2 if an internal error (such as the
4471 failure stack overflowing). Otherwise, we return the length of the
4472 matched substring. */
4475 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4476 struct re_pattern_buffer
*bufp
;
4477 const char *string1
, *string2
;
4480 struct re_registers
*regs
;
4487 gl_state
.object
= re_match_object
;
4488 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4489 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4492 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4493 (re_char
*) string2
, size2
,
4495 #if defined C_ALLOCA && !defined REGEX_MALLOC
4500 WEAK_ALIAS (__re_match_2
, re_match_2
)
4502 /* This is a separate function so that we can force an alloca cleanup
4505 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4506 struct re_pattern_buffer
*bufp
;
4507 re_char
*string1
, *string2
;
4510 struct re_registers
*regs
;
4513 /* General temporaries. */
4518 /* Just past the end of the corresponding string. */
4519 re_char
*end1
, *end2
;
4521 /* Pointers into string1 and string2, just past the last characters in
4522 each to consider matching. */
4523 re_char
*end_match_1
, *end_match_2
;
4525 /* Where we are in the data, and the end of the current string. */
4528 /* Used sometimes to remember where we were before starting matching
4529 an operator so that we can go back in case of failure. This "atomic"
4530 behavior of matching opcodes is indispensable to the correctness
4531 of the on_failure_keep_string_jump optimization. */
4534 /* Where we are in the pattern, and the end of the pattern. */
4535 re_char
*p
= bufp
->buffer
;
4536 re_char
*pend
= p
+ bufp
->used
;
4538 /* We use this to map every character in the string. */
4539 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4541 /* Nonzero if we have to concern multibyte character. */
4542 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4544 /* Failure point stack. Each place that can handle a failure further
4545 down the line pushes a failure point on this stack. It consists of
4546 regstart, and regend for all registers corresponding to
4547 the subexpressions we're currently inside, plus the number of such
4548 registers, and, finally, two char *'s. The first char * is where
4549 to resume scanning the pattern; the second one is where to resume
4550 scanning the strings. */
4551 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4552 fail_stack_type fail_stack
;
4555 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4558 #if defined REL_ALLOC && defined REGEX_MALLOC
4559 /* This holds the pointer to the failure stack, when
4560 it is allocated relocatably. */
4561 fail_stack_elt_t
*failure_stack_ptr
;
4564 /* We fill all the registers internally, independent of what we
4565 return, for use in backreferences. The number here includes
4566 an element for register zero. */
4567 size_t num_regs
= bufp
->re_nsub
+ 1;
4569 /* Information on the contents of registers. These are pointers into
4570 the input strings; they record just what was matched (on this
4571 attempt) by a subexpression part of the pattern, that is, the
4572 regnum-th regstart pointer points to where in the pattern we began
4573 matching and the regnum-th regend points to right after where we
4574 stopped matching the regnum-th subexpression. (The zeroth register
4575 keeps track of what the whole pattern matches.) */
4576 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4577 re_char
**regstart
, **regend
;
4580 /* The following record the register info as found in the above
4581 variables when we find a match better than any we've seen before.
4582 This happens as we backtrack through the failure points, which in
4583 turn happens only if we have not yet matched the entire string. */
4584 unsigned best_regs_set
= false;
4585 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4586 re_char
**best_regstart
, **best_regend
;
4589 /* Logically, this is `best_regend[0]'. But we don't want to have to
4590 allocate space for that if we're not allocating space for anything
4591 else (see below). Also, we never need info about register 0 for
4592 any of the other register vectors, and it seems rather a kludge to
4593 treat `best_regend' differently than the rest. So we keep track of
4594 the end of the best match so far in a separate variable. We
4595 initialize this to NULL so that when we backtrack the first time
4596 and need to test it, it's not garbage. */
4597 re_char
*match_end
= NULL
;
4600 /* Counts the total number of registers pushed. */
4601 unsigned num_regs_pushed
= 0;
4604 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4608 #ifdef MATCH_MAY_ALLOCATE
4609 /* Do not bother to initialize all the register variables if there are
4610 no groups in the pattern, as it takes a fair amount of time. If
4611 there are groups, we include space for register 0 (the whole
4612 pattern), even though we never use it, since it simplifies the
4613 array indexing. We should fix this. */
4616 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4617 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4618 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4619 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4621 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4629 /* We must initialize all our variables to NULL, so that
4630 `FREE_VARIABLES' doesn't try to free them. */
4631 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4633 #endif /* MATCH_MAY_ALLOCATE */
4635 /* The starting position is bogus. */
4636 if (pos
< 0 || pos
> size1
+ size2
)
4642 /* Initialize subexpression text positions to -1 to mark ones that no
4643 start_memory/stop_memory has been seen for. Also initialize the
4644 register information struct. */
4645 for (reg
= 1; reg
< num_regs
; reg
++)
4646 regstart
[reg
] = regend
[reg
] = NULL
;
4648 /* We move `string1' into `string2' if the latter's empty -- but not if
4649 `string1' is null. */
4650 if (size2
== 0 && string1
!= NULL
)
4657 end1
= string1
+ size1
;
4658 end2
= string2
+ size2
;
4660 /* `p' scans through the pattern as `d' scans through the data.
4661 `dend' is the end of the input string that `d' points within. `d'
4662 is advanced into the following input string whenever necessary, but
4663 this happens before fetching; therefore, at the beginning of the
4664 loop, `d' can be pointing at the end of a string, but it cannot
4668 /* Only match within string2. */
4669 d
= string2
+ pos
- size1
;
4670 dend
= end_match_2
= string2
+ stop
- size1
;
4671 end_match_1
= end1
; /* Just to give it a value. */
4677 /* Only match within string1. */
4678 end_match_1
= string1
+ stop
;
4680 When we reach end_match_1, PREFETCH normally switches to string2.
4681 But in the present case, this means that just doing a PREFETCH
4682 makes us jump from `stop' to `gap' within the string.
4683 What we really want here is for the search to stop as
4684 soon as we hit end_match_1. That's why we set end_match_2
4685 to end_match_1 (since PREFETCH fails as soon as we hit
4687 end_match_2
= end_match_1
;
4690 { /* It's important to use this code when stop == size so that
4691 moving `d' from end1 to string2 will not prevent the d == dend
4692 check from catching the end of string. */
4694 end_match_2
= string2
+ stop
- size1
;
4700 DEBUG_PRINT1 ("The compiled pattern is: ");
4701 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4702 DEBUG_PRINT1 ("The string to match is: `");
4703 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4704 DEBUG_PRINT1 ("'\n");
4706 /* This loops over pattern commands. It exits by returning from the
4707 function if the match is complete, or it drops through if the match
4708 fails at this starting point in the input data. */
4711 DEBUG_PRINT2 ("\n%p: ", p
);
4714 { /* End of pattern means we might have succeeded. */
4715 DEBUG_PRINT1 ("end of pattern ... ");
4717 /* If we haven't matched the entire string, and we want the
4718 longest match, try backtracking. */
4719 if (d
!= end_match_2
)
4721 /* 1 if this match ends in the same string (string1 or string2)
4722 as the best previous match. */
4723 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4724 == FIRST_STRING_P (d
));
4725 /* 1 if this match is the best seen so far. */
4726 boolean best_match_p
;
4728 /* AIX compiler got confused when this was combined
4729 with the previous declaration. */
4731 best_match_p
= d
> match_end
;
4733 best_match_p
= !FIRST_STRING_P (d
);
4735 DEBUG_PRINT1 ("backtracking.\n");
4737 if (!FAIL_STACK_EMPTY ())
4738 { /* More failure points to try. */
4740 /* If exceeds best match so far, save it. */
4741 if (!best_regs_set
|| best_match_p
)
4743 best_regs_set
= true;
4746 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4748 for (reg
= 1; reg
< num_regs
; reg
++)
4750 best_regstart
[reg
] = regstart
[reg
];
4751 best_regend
[reg
] = regend
[reg
];
4757 /* If no failure points, don't restore garbage. And if
4758 last match is real best match, don't restore second
4760 else if (best_regs_set
&& !best_match_p
)
4763 /* Restore best match. It may happen that `dend ==
4764 end_match_1' while the restored d is in string2.
4765 For example, the pattern `x.*y.*z' against the
4766 strings `x-' and `y-z-', if the two strings are
4767 not consecutive in memory. */
4768 DEBUG_PRINT1 ("Restoring best registers.\n");
4771 dend
= ((d
>= string1
&& d
<= end1
)
4772 ? end_match_1
: end_match_2
);
4774 for (reg
= 1; reg
< num_regs
; reg
++)
4776 regstart
[reg
] = best_regstart
[reg
];
4777 regend
[reg
] = best_regend
[reg
];
4780 } /* d != end_match_2 */
4783 DEBUG_PRINT1 ("Accepting match.\n");
4785 /* If caller wants register contents data back, do it. */
4786 if (regs
&& !bufp
->no_sub
)
4788 /* Have the register data arrays been allocated? */
4789 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4790 { /* No. So allocate them with malloc. We need one
4791 extra element beyond `num_regs' for the `-1' marker
4793 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4794 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4795 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4796 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4801 bufp
->regs_allocated
= REGS_REALLOCATE
;
4803 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4804 { /* Yes. If we need more elements than were already
4805 allocated, reallocate them. If we need fewer, just
4807 if (regs
->num_regs
< num_regs
+ 1)
4809 regs
->num_regs
= num_regs
+ 1;
4810 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4811 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4812 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4821 /* These braces fend off a "empty body in an else-statement"
4822 warning under GCC when assert expands to nothing. */
4823 assert (bufp
->regs_allocated
== REGS_FIXED
);
4826 /* Convert the pointer data in `regstart' and `regend' to
4827 indices. Register zero has to be set differently,
4828 since we haven't kept track of any info for it. */
4829 if (regs
->num_regs
> 0)
4831 regs
->start
[0] = pos
;
4832 regs
->end
[0] = POINTER_TO_OFFSET (d
);
4835 /* Go through the first `min (num_regs, regs->num_regs)'
4836 registers, since that is all we initialized. */
4837 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
4839 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
4840 regs
->start
[reg
] = regs
->end
[reg
] = -1;
4844 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
4846 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
4850 /* If the regs structure we return has more elements than
4851 were in the pattern, set the extra elements to -1. If
4852 we (re)allocated the registers, this is the case,
4853 because we always allocate enough to have at least one
4855 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
4856 regs
->start
[reg
] = regs
->end
[reg
] = -1;
4857 } /* regs && !bufp->no_sub */
4859 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4860 nfailure_points_pushed
, nfailure_points_popped
,
4861 nfailure_points_pushed
- nfailure_points_popped
);
4862 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4864 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
4866 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4872 /* Otherwise match next pattern command. */
4873 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4875 /* Ignore these. Used to ignore the n of succeed_n's which
4876 currently have n == 0. */
4878 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4882 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4885 /* Match the next n pattern characters exactly. The following
4886 byte in the pattern defines n, and the n bytes after that
4887 are the characters to match. */
4890 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4892 /* Remember the start point to rollback upon failure. */
4895 /* This is written out as an if-else so we don't waste time
4896 testing `translate' inside the loop. */
4897 if (RE_TRANSLATE_P (translate
))
4902 int pat_charlen
, buf_charlen
;
4903 unsigned int pat_ch
, buf_ch
;
4906 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
4907 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4909 if (RE_TRANSLATE (translate
, buf_ch
)
4918 mcnt
-= pat_charlen
;
4925 if (RE_TRANSLATE (translate
, *d
) != *p
++)
4950 /* Match any character except possibly a newline or a null. */
4956 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4959 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4960 buf_ch
= TRANSLATE (buf_ch
);
4962 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
4964 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
4965 && buf_ch
== '\000'))
4968 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4977 register unsigned int c
;
4978 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4981 /* Start of actual range_table, or end of bitmap if there is no
4983 re_char
*range_table
;
4985 /* Nonzero if there is a range table. */
4986 int range_table_exists
;
4988 /* Number of ranges of range table. This is not included
4989 in the initial byte-length of the command. */
4992 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4994 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
4996 if (range_table_exists
)
4998 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
4999 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5003 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5004 c
= TRANSLATE (c
); /* The character to match. */
5006 if (SINGLE_BYTE_CHAR_P (c
))
5007 { /* Lookup bitmap. */
5008 /* Cast to `unsigned' instead of `unsigned char' in
5009 case the bit list is a full 32 bytes long. */
5010 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5011 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5015 else if (range_table_exists
)
5017 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5019 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5020 | (class_bits
& BIT_MULTIBYTE
)
5021 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5022 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5023 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5024 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5027 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5031 if (range_table_exists
)
5032 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5034 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5036 if (!not) goto fail
;
5043 /* The beginning of a group is represented by start_memory.
5044 The argument is the register number. The text
5045 matched within the group is recorded (in the internal
5046 registers data structure) under the register number. */
5048 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5050 /* In case we need to undo this operation (via backtracking). */
5051 PUSH_FAILURE_REG ((unsigned int)*p
);
5054 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5055 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5057 /* Move past the register number and inner group count. */
5062 /* The stop_memory opcode represents the end of a group. Its
5063 argument is the same as start_memory's: the register number. */
5065 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5067 assert (!REG_UNSET (regstart
[*p
]));
5068 /* Strictly speaking, there should be code such as:
5070 assert (REG_UNSET (regend[*p]));
5071 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5073 But the only info to be pushed is regend[*p] and it is known to
5074 be UNSET, so there really isn't anything to push.
5075 Not pushing anything, on the other hand deprives us from the
5076 guarantee that regend[*p] is UNSET since undoing this operation
5077 will not reset its value properly. This is not important since
5078 the value will only be read on the next start_memory or at
5079 the very end and both events can only happen if this stop_memory
5083 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5085 /* Move past the register number and the inner group count. */
5090 /* \<digit> has been turned into a `duplicate' command which is
5091 followed by the numeric value of <digit> as the register number. */
5094 register re_char
*d2
, *dend2
;
5095 int regno
= *p
++; /* Get which register to match against. */
5096 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5098 /* Can't back reference a group which we've never matched. */
5099 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5102 /* Where in input to try to start matching. */
5103 d2
= regstart
[regno
];
5105 /* Remember the start point to rollback upon failure. */
5108 /* Where to stop matching; if both the place to start and
5109 the place to stop matching are in the same string, then
5110 set to the place to stop, otherwise, for now have to use
5111 the end of the first string. */
5113 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5114 == FIRST_STRING_P (regend
[regno
]))
5115 ? regend
[regno
] : end_match_1
);
5118 /* If necessary, advance to next segment in register
5122 if (dend2
== end_match_2
) break;
5123 if (dend2
== regend
[regno
]) break;
5125 /* End of string1 => advance to string2. */
5127 dend2
= regend
[regno
];
5129 /* At end of register contents => success */
5130 if (d2
== dend2
) break;
5132 /* If necessary, advance to next segment in data. */
5135 /* How many characters left in this segment to match. */
5138 /* Want how many consecutive characters we can match in
5139 one shot, so, if necessary, adjust the count. */
5140 if (mcnt
> dend2
- d2
)
5143 /* Compare that many; failure if mismatch, else move
5145 if (RE_TRANSLATE_P (translate
)
5146 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5147 : memcmp (d
, d2
, mcnt
))
5152 d
+= mcnt
, d2
+= mcnt
;
5158 /* begline matches the empty string at the beginning of the string
5159 (unless `not_bol' is set in `bufp'), and after newlines. */
5161 DEBUG_PRINT1 ("EXECUTING begline.\n");
5163 if (AT_STRINGS_BEG (d
))
5165 if (!bufp
->not_bol
) break;
5170 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5174 /* In all other cases, we fail. */
5178 /* endline is the dual of begline. */
5180 DEBUG_PRINT1 ("EXECUTING endline.\n");
5182 if (AT_STRINGS_END (d
))
5184 if (!bufp
->not_eol
) break;
5188 PREFETCH_NOLIMIT ();
5195 /* Match at the very beginning of the data. */
5197 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5198 if (AT_STRINGS_BEG (d
))
5203 /* Match at the very end of the data. */
5205 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5206 if (AT_STRINGS_END (d
))
5211 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5212 pushes NULL as the value for the string on the stack. Then
5213 `POP_FAILURE_POINT' will keep the current value for the
5214 string, instead of restoring it. To see why, consider
5215 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5216 then the . fails against the \n. But the next thing we want
5217 to do is match the \n against the \n; if we restored the
5218 string value, we would be back at the foo.
5220 Because this is used only in specific cases, we don't need to
5221 check all the things that `on_failure_jump' does, to make
5222 sure the right things get saved on the stack. Hence we don't
5223 share its code. The only reason to push anything on the
5224 stack at all is that otherwise we would have to change
5225 `anychar's code to do something besides goto fail in this
5226 case; that seems worse than this. */
5227 case on_failure_keep_string_jump
:
5228 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5229 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5232 PUSH_FAILURE_POINT (p
- 3, NULL
);
5235 /* A nasty loop is introduced by the non-greedy *? and +?.
5236 With such loops, the stack only ever contains one failure point
5237 at a time, so that a plain on_failure_jump_loop kind of
5238 cycle detection cannot work. Worse yet, such a detection
5239 can not only fail to detect a cycle, but it can also wrongly
5240 detect a cycle (between different instantiations of the same
5242 So the method used for those nasty loops is a little different:
5243 We use a special cycle-detection-stack-frame which is pushed
5244 when the on_failure_jump_nastyloop failure-point is *popped*.
5245 This special frame thus marks the beginning of one iteration
5246 through the loop and we can hence easily check right here
5247 whether something matched between the beginning and the end of
5249 case on_failure_jump_nastyloop
:
5250 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5251 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5254 assert ((re_opcode_t
)p
[-4] == no_op
);
5255 CHECK_INFINITE_LOOP (p
- 4, d
);
5256 PUSH_FAILURE_POINT (p
- 3, d
);
5260 /* Simple loop detecting on_failure_jump: just check on the
5261 failure stack if the same spot was already hit earlier. */
5262 case on_failure_jump_loop
:
5264 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5265 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5268 CHECK_INFINITE_LOOP (p
- 3, d
);
5269 PUSH_FAILURE_POINT (p
- 3, d
);
5273 /* Uses of on_failure_jump:
5275 Each alternative starts with an on_failure_jump that points
5276 to the beginning of the next alternative. Each alternative
5277 except the last ends with a jump that in effect jumps past
5278 the rest of the alternatives. (They really jump to the
5279 ending jump of the following alternative, because tensioning
5280 these jumps is a hassle.)
5282 Repeats start with an on_failure_jump that points past both
5283 the repetition text and either the following jump or
5284 pop_failure_jump back to this on_failure_jump. */
5285 case on_failure_jump
:
5286 IMMEDIATE_QUIT_CHECK
;
5287 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5288 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5291 PUSH_FAILURE_POINT (p
-3, d
);
5294 /* This operation is used for greedy *.
5295 Compare the beginning of the repeat with what in the
5296 pattern follows its end. If we can establish that there
5297 is nothing that they would both match, i.e., that we
5298 would have to backtrack because of (as in, e.g., `a*a')
5299 then we can use a non-backtracking loop based on
5300 on_failure_keep_string_jump instead of on_failure_jump. */
5301 case on_failure_jump_smart
:
5302 IMMEDIATE_QUIT_CHECK
;
5303 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5304 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5307 re_char
*p1
= p
; /* Next operation. */
5308 /* Here, we discard `const', making re_match non-reentrant. */
5309 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5310 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5312 p
-= 3; /* Reset so that we will re-execute the
5313 instruction once it's been changed. */
5315 EXTRACT_NUMBER (mcnt
, p2
- 2);
5317 /* Ensure this is a indeed the trivial kind of loop
5318 we are expecting. */
5319 assert (skip_one_char (p1
) == p2
- 3);
5320 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5321 DEBUG_STATEMENT (debug
+= 2);
5322 if (mutually_exclusive_p (bufp
, p1
, p2
))
5324 /* Use a fast `on_failure_keep_string_jump' loop. */
5325 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5326 *p3
= (unsigned char) on_failure_keep_string_jump
;
5327 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5331 /* Default to a safe `on_failure_jump' loop. */
5332 DEBUG_PRINT1 (" smart default => slow loop.\n");
5333 *p3
= (unsigned char) on_failure_jump
;
5335 DEBUG_STATEMENT (debug
-= 2);
5339 /* Unconditionally jump (without popping any failure points). */
5342 IMMEDIATE_QUIT_CHECK
;
5343 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5344 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5345 p
+= mcnt
; /* Do the jump. */
5346 DEBUG_PRINT2 ("(to %p).\n", p
);
5350 /* Have to succeed matching what follows at least n times.
5351 After that, handle like `on_failure_jump'. */
5353 /* Signedness doesn't matter since we only compare MCNT to 0. */
5354 EXTRACT_NUMBER (mcnt
, p
+ 2);
5355 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5357 /* Originally, mcnt is how many times we HAVE to succeed. */
5360 /* Here, we discard `const', making re_match non-reentrant. */
5361 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5364 PUSH_NUMBER (p2
, mcnt
);
5367 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5372 /* Signedness doesn't matter since we only compare MCNT to 0. */
5373 EXTRACT_NUMBER (mcnt
, p
+ 2);
5374 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5376 /* Originally, this is how many times we CAN jump. */
5379 /* Here, we discard `const', making re_match non-reentrant. */
5380 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5382 PUSH_NUMBER (p2
, mcnt
);
5383 goto unconditional_jump
;
5385 /* If don't have to jump any more, skip over the rest of command. */
5392 unsigned char *p2
; /* Location of the counter. */
5393 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5395 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5396 /* Here, we discard `const', making re_match non-reentrant. */
5397 p2
= (unsigned char*) p
+ mcnt
;
5398 /* Signedness doesn't matter since we only copy MCNT's bits . */
5399 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5400 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5401 PUSH_NUMBER (p2
, mcnt
);
5407 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5408 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5410 /* We SUCCEED (or FAIL) in one of the following cases: */
5412 /* Case 1: D is at the beginning or the end of string. */
5413 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5417 /* C1 is the character before D, S1 is the syntax of C1, C2
5418 is the character at D, and S2 is the syntax of C2. */
5422 int offset
= PTR_TO_OFFSET (d
- 1);
5423 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5424 UPDATE_SYNTAX_TABLE (charpos
);
5426 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5429 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5431 PREFETCH_NOLIMIT ();
5432 c2
= RE_STRING_CHAR (d
, dend
- d
);
5435 if (/* Case 2: Only one of S1 and S2 is Sword. */
5436 ((s1
== Sword
) != (s2
== Sword
))
5437 /* Case 3: Both of S1 and S2 are Sword, and macro
5438 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5439 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5448 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5450 /* We FAIL in one of the following cases: */
5452 /* Case 1: D is at the end of string. */
5453 if (AT_STRINGS_END (d
))
5457 /* C1 is the character before D, S1 is the syntax of C1, C2
5458 is the character at D, and S2 is the syntax of C2. */
5462 int offset
= PTR_TO_OFFSET (d
);
5463 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5464 UPDATE_SYNTAX_TABLE (charpos
);
5467 c2
= RE_STRING_CHAR (d
, dend
- d
);
5470 /* Case 2: S2 is not Sword. */
5474 /* Case 3: D is not at the beginning of string ... */
5475 if (!AT_STRINGS_BEG (d
))
5477 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5479 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5483 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5485 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5492 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5494 /* We FAIL in one of the following cases: */
5496 /* Case 1: D is at the beginning of string. */
5497 if (AT_STRINGS_BEG (d
))
5501 /* C1 is the character before D, S1 is the syntax of C1, C2
5502 is the character at D, and S2 is the syntax of C2. */
5506 int offset
= PTR_TO_OFFSET (d
) - 1;
5507 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5508 UPDATE_SYNTAX_TABLE (charpos
);
5510 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5513 /* Case 2: S1 is not Sword. */
5517 /* Case 3: D is not at the end of string ... */
5518 if (!AT_STRINGS_END (d
))
5520 PREFETCH_NOLIMIT ();
5521 c2
= RE_STRING_CHAR (d
, dend
- d
);
5523 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5527 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5529 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5537 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5539 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5543 int offset
= PTR_TO_OFFSET (d
);
5544 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5545 UPDATE_SYNTAX_TABLE (pos1
);
5552 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5554 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5562 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5563 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5568 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5569 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5574 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5575 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5580 case notcategoryspec
:
5581 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5583 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5589 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5591 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5602 continue; /* Successfully executed one pattern command; keep going. */
5605 /* We goto here if a matching operation fails. */
5607 IMMEDIATE_QUIT_CHECK
;
5608 if (!FAIL_STACK_EMPTY ())
5611 /* A restart point is known. Restore to that state. */
5612 DEBUG_PRINT1 ("\nFAIL:\n");
5613 POP_FAILURE_POINT (str
, pat
);
5614 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5616 case on_failure_keep_string_jump
:
5617 assert (str
== NULL
);
5618 goto continue_failure_jump
;
5620 case on_failure_jump_nastyloop
:
5621 assert ((re_opcode_t
)pat
[-2] == no_op
);
5622 PUSH_FAILURE_POINT (pat
- 2, str
);
5625 case on_failure_jump_loop
:
5626 case on_failure_jump
:
5629 continue_failure_jump
:
5630 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5635 /* A special frame used for nastyloops. */
5642 assert (p
>= bufp
->buffer
&& p
<= pend
);
5644 if (d
>= string1
&& d
<= end1
)
5648 break; /* Matching at this starting point really fails. */
5652 goto restore_best_regs
;
5656 return -1; /* Failure to match. */
5659 /* Subroutine definitions for re_match_2. */
5661 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5662 bytes; nonzero otherwise. */
5665 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5668 RE_TRANSLATE_TYPE translate
;
5669 const int multibyte
;
5671 register re_char
*p1
= s1
, *p2
= s2
;
5672 re_char
*p1_end
= s1
+ len
;
5673 re_char
*p2_end
= s2
+ len
;
5675 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5676 different lengths, but relying on a single `len' would break this. -sm */
5677 while (p1
< p1_end
&& p2
< p2_end
)
5679 int p1_charlen
, p2_charlen
;
5680 re_wchar_t p1_ch
, p2_ch
;
5682 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5683 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5685 if (RE_TRANSLATE (translate
, p1_ch
)
5686 != RE_TRANSLATE (translate
, p2_ch
))
5689 p1
+= p1_charlen
, p2
+= p2_charlen
;
5692 if (p1
!= p1_end
|| p2
!= p2_end
)
5698 /* Entry points for GNU code. */
5700 /* re_compile_pattern is the GNU regular expression compiler: it
5701 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5702 Returns 0 if the pattern was valid, otherwise an error string.
5704 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5705 are set in BUFP on entry.
5707 We call regex_compile to do the actual compilation. */
5710 re_compile_pattern (pattern
, length
, bufp
)
5711 const char *pattern
;
5713 struct re_pattern_buffer
*bufp
;
5717 /* GNU code is written to assume at least RE_NREGS registers will be set
5718 (and at least one extra will be -1). */
5719 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5721 /* And GNU code determines whether or not to get register information
5722 by passing null for the REGS argument to re_match, etc., not by
5726 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
5730 return gettext (re_error_msgid
[(int) ret
]);
5732 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
5734 /* Entry points compatible with 4.2 BSD regex library. We don't define
5735 them unless specifically requested. */
5737 #if defined _REGEX_RE_COMP || defined _LIBC
5739 /* BSD has one and only one pattern buffer. */
5740 static struct re_pattern_buffer re_comp_buf
;
5744 /* Make these definitions weak in libc, so POSIX programs can redefine
5745 these names if they don't use our functions, and still use
5746 regcomp/regexec below without link errors. */
5756 if (!re_comp_buf
.buffer
)
5757 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5758 return (char *) gettext ("No previous regular expression");
5762 if (!re_comp_buf
.buffer
)
5764 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5765 if (re_comp_buf
.buffer
== NULL
)
5766 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5767 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5768 re_comp_buf
.allocated
= 200;
5770 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5771 if (re_comp_buf
.fastmap
== NULL
)
5772 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5773 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5776 /* Since `re_exec' always passes NULL for the `regs' argument, we
5777 don't need to initialize the pattern buffer fields which affect it. */
5779 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5784 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5785 return (char *) gettext (re_error_msgid
[(int) ret
]);
5796 const int len
= strlen (s
);
5798 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5800 #endif /* _REGEX_RE_COMP */
5802 /* POSIX.2 functions. Don't define these for Emacs. */
5806 /* regcomp takes a regular expression as a string and compiles it.
5808 PREG is a regex_t *. We do not expect any fields to be initialized,
5809 since POSIX says we shouldn't. Thus, we set
5811 `buffer' to the compiled pattern;
5812 `used' to the length of the compiled pattern;
5813 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5814 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5815 RE_SYNTAX_POSIX_BASIC;
5816 `fastmap' to an allocated space for the fastmap;
5817 `fastmap_accurate' to zero;
5818 `re_nsub' to the number of subexpressions in PATTERN.
5820 PATTERN is the address of the pattern string.
5822 CFLAGS is a series of bits which affect compilation.
5824 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5825 use POSIX basic syntax.
5827 If REG_NEWLINE is set, then . and [^...] don't match newline.
5828 Also, regexec will try a match beginning after every newline.
5830 If REG_ICASE is set, then we considers upper- and lowercase
5831 versions of letters to be equivalent when matching.
5833 If REG_NOSUB is set, then when PREG is passed to regexec, that
5834 routine will report only success or failure, and nothing about the
5837 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5838 the return codes and their meanings.) */
5841 regcomp (preg
, pattern
, cflags
)
5842 regex_t
*__restrict preg
;
5843 const char *__restrict pattern
;
5848 = (cflags
& REG_EXTENDED
) ?
5849 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5851 /* regex_compile will allocate the space for the compiled pattern. */
5853 preg
->allocated
= 0;
5856 /* Try to allocate space for the fastmap. */
5857 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5859 if (cflags
& REG_ICASE
)
5864 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5865 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5866 if (preg
->translate
== NULL
)
5867 return (int) REG_ESPACE
;
5869 /* Map uppercase characters to corresponding lowercase ones. */
5870 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5871 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
5874 preg
->translate
= NULL
;
5876 /* If REG_NEWLINE is set, newlines are treated differently. */
5877 if (cflags
& REG_NEWLINE
)
5878 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5879 syntax
&= ~RE_DOT_NEWLINE
;
5880 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5883 syntax
|= RE_NO_NEWLINE_ANCHOR
;
5885 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5887 /* POSIX says a null character in the pattern terminates it, so we
5888 can use strlen here in compiling the pattern. */
5889 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
5891 /* POSIX doesn't distinguish between an unmatched open-group and an
5892 unmatched close-group: both are REG_EPAREN. */
5893 if (ret
== REG_ERPAREN
)
5896 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5897 { /* Compute the fastmap now, since regexec cannot modify the pattern
5899 re_compile_fastmap (preg
);
5900 if (preg
->can_be_null
)
5901 { /* The fastmap can't be used anyway. */
5902 free (preg
->fastmap
);
5903 preg
->fastmap
= NULL
;
5908 WEAK_ALIAS (__regcomp
, regcomp
)
5911 /* regexec searches for a given pattern, specified by PREG, in the
5914 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5915 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5916 least NMATCH elements, and we set them to the offsets of the
5917 corresponding matched substrings.
5919 EFLAGS specifies `execution flags' which affect matching: if
5920 REG_NOTBOL is set, then ^ does not match at the beginning of the
5921 string; if REG_NOTEOL is set, then $ does not match at the end.
5923 We return 0 if we find a match and REG_NOMATCH if not. */
5926 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5927 const regex_t
*__restrict preg
;
5928 const char *__restrict string
;
5930 regmatch_t pmatch
[];
5934 struct re_registers regs
;
5935 regex_t private_preg
;
5936 int len
= strlen (string
);
5937 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
5939 private_preg
= *preg
;
5941 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5942 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5944 /* The user has told us exactly how many registers to return
5945 information about, via `nmatch'. We have to pass that on to the
5946 matching routines. */
5947 private_preg
.regs_allocated
= REGS_FIXED
;
5951 regs
.num_regs
= nmatch
;
5952 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
5953 if (regs
.start
== NULL
)
5954 return (int) REG_NOMATCH
;
5955 regs
.end
= regs
.start
+ nmatch
;
5958 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
5959 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
5960 was a little bit longer but still only matching the real part.
5961 This works because the `endline' will check for a '\n' and will find a
5962 '\0', correctly deciding that this is not the end of a line.
5963 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
5964 a convenient '\0' there. For all we know, the string could be preceded
5965 by '\n' which would throw things off. */
5967 /* Perform the searching operation. */
5968 ret
= re_search (&private_preg
, string
, len
,
5969 /* start: */ 0, /* range: */ len
,
5970 want_reg_info
? ®s
: (struct re_registers
*) 0);
5972 /* Copy the register information to the POSIX structure. */
5979 for (r
= 0; r
< nmatch
; r
++)
5981 pmatch
[r
].rm_so
= regs
.start
[r
];
5982 pmatch
[r
].rm_eo
= regs
.end
[r
];
5986 /* If we needed the temporary register info, free the space now. */
5990 /* We want zero return to mean success, unlike `re_search'. */
5991 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5993 WEAK_ALIAS (__regexec
, regexec
)
5996 /* Returns a message corresponding to an error code, ERRCODE, returned
5997 from either regcomp or regexec. We don't use PREG here. */
6000 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6002 const regex_t
*preg
;
6010 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6011 /* Only error codes returned by the rest of the code should be passed
6012 to this routine. If we are given anything else, or if other regex
6013 code generates an invalid error code, then the program has a bug.
6014 Dump core so we can fix it. */
6017 msg
= gettext (re_error_msgid
[errcode
]);
6019 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6021 if (errbuf_size
!= 0)
6023 if (msg_size
> errbuf_size
)
6025 strncpy (errbuf
, msg
, errbuf_size
- 1);
6026 errbuf
[errbuf_size
- 1] = 0;
6029 strcpy (errbuf
, msg
);
6034 WEAK_ALIAS (__regerror
, regerror
)
6037 /* Free dynamically allocated space used by PREG. */
6043 if (preg
->buffer
!= NULL
)
6044 free (preg
->buffer
);
6045 preg
->buffer
= NULL
;
6047 preg
->allocated
= 0;
6050 if (preg
->fastmap
!= NULL
)
6051 free (preg
->fastmap
);
6052 preg
->fastmap
= NULL
;
6053 preg
->fastmap_accurate
= 0;
6055 if (preg
->translate
!= NULL
)
6056 free (preg
->translate
);
6057 preg
->translate
= NULL
;
6059 WEAK_ALIAS (__regfree
, regfree
)
6061 #endif /* not emacs */