timevar: import from Bison.
[gnulib.git] / lib / cbrtl.c
blob2d18606321ff5d14eacc087ac98f19be231c7fbc
1 /* Compute cubic root of long double value.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Cephes Math Library Release 2.2: January, 1991
4 Copyright 1984, 1991 by Stephen L. Moshier
5 Adapted for glibc October, 2001.
7 This program is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <https://www.gnu.org/licenses/>. */
20 #include <config.h>
22 /* Specification. */
23 #include <math.h>
25 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
27 long double
28 cbrtl (long double x)
30 return cbrt (x);
33 #else
35 /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_cbrtl.c. */
37 /* cbrtl.c
39 * Cube root, long double precision
43 * SYNOPSIS:
45 * long double x, y, cbrtl();
47 * y = cbrtl( x );
51 * DESCRIPTION:
53 * Returns the cube root of the argument, which may be negative.
55 * Range reduction involves determining the power of 2 of
56 * the argument. A polynomial of degree 2 applied to the
57 * mantissa, and multiplication by the cube root of 1, 2, or 4
58 * approximates the root to within about 0.1%. Then Newton's
59 * iteration is used three times to converge to an accurate
60 * result.
64 * ACCURACY:
66 * Relative error:
67 * arithmetic domain # trials peak rms
68 * IEEE -8,8 100000 1.3e-34 3.9e-35
69 * IEEE exp(+-707) 100000 1.3e-34 4.3e-35
73 static const long double CBRT2 = 1.259921049894873164767210607278228350570251L;
74 static const long double CBRT4 = 1.587401051968199474751705639272308260391493L;
75 static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L;
76 static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L;
78 long double
79 cbrtl (long double x)
81 if (isfinite (x) && x != 0.0L)
83 int e, rem, sign;
84 long double z;
86 if (x > 0)
87 sign = 1;
88 else
90 sign = -1;
91 x = -x;
94 z = x;
95 /* extract power of 2, leaving mantissa between 0.5 and 1 */
96 x = frexpl (x, &e);
98 /* Approximate cube root of number between .5 and 1,
99 peak relative error = 1.2e-6 */
100 x = ((((1.3584464340920900529734e-1L * x
101 - 6.3986917220457538402318e-1L) * x
102 + 1.2875551670318751538055e0L) * x
103 - 1.4897083391357284957891e0L) * x
104 + 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;
106 /* exponent divided by 3 */
107 if (e >= 0)
109 rem = e;
110 e /= 3;
111 rem -= 3 * e;
112 if (rem == 1)
113 x *= CBRT2;
114 else if (rem == 2)
115 x *= CBRT4;
117 else
118 { /* argument less than 1 */
119 e = -e;
120 rem = e;
121 e /= 3;
122 rem -= 3 * e;
123 if (rem == 1)
124 x *= CBRT2I;
125 else if (rem == 2)
126 x *= CBRT4I;
127 e = -e;
130 /* multiply by power of 2 */
131 x = ldexpl (x, e);
133 /* Newton iteration */
134 x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
135 x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
136 x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
138 if (sign < 0)
139 x = -x;
140 return x;
142 else
144 # ifdef __sgi /* so that when x == -0.0L, the result is -0.0L not +0.0L */
145 return x;
146 # else
147 return x + x;
148 # endif
152 #endif