xfreopen need not depend on freopen-safer
[gnulib.git] / lib / expm1.c
blob0623d0498a933f93f36ed8e8b55603112f5dd246
1 /* Exponential function minus one.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
17 #include <config.h>
19 /* Specification. */
20 #include <math.h>
22 #include <float.h>
24 /* A value slightly larger than log(2). */
25 #define LOG2_PLUS_EPSILON 0.6931471805599454
27 /* Best possible approximation of log(2) as a 'double'. */
28 #define LOG2 0.693147180559945309417232121458176568075
30 /* Best possible approximation of 1/log(2) as a 'double'. */
31 #define LOG2_INVERSE 1.44269504088896340735992468100189213743
33 /* Best possible approximation of log(2)/256 as a 'double'. */
34 #define LOG2_BY_256 0.00270760617406228636491106297444600221904
36 /* Best possible approximation of 256/log(2) as a 'double'. */
37 #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181
39 /* The upper 32 bits of log(2)/256. */
40 #define LOG2_BY_256_HI_PART 0.0027076061733168899081647396087646484375
41 /* log(2)/256 - LOG2_HI_PART. */
42 #define LOG2_BY_256_LO_PART \
43 0.000000000000745396456746323365681353781544922399845
45 double
46 expm1 (double x)
48 if (isnand (x))
49 return x;
51 if (x >= (double) DBL_MAX_EXP * LOG2_PLUS_EPSILON)
52 /* x > DBL_MAX_EXP * log(2)
53 hence exp(x) > 2^DBL_MAX_EXP, overflows to Infinity. */
54 return HUGE_VAL;
56 if (x <= (double) (- DBL_MANT_DIG) * LOG2_PLUS_EPSILON)
57 /* x < (- DBL_MANT_DIG) * log(2)
58 hence 0 < exp(x) < 2^-DBL_MANT_DIG,
59 hence -1 < exp(x)-1 < -1 + 2^-DBL_MANT_DIG
60 rounds to -1. */
61 return -1.0;
63 if (x <= - LOG2_PLUS_EPSILON)
64 /* 0 < exp(x) < 1/2.
65 Just compute exp(x), then subtract 1. */
66 return exp (x) - 1.0;
68 if (x == 0.0)
69 /* Return a zero with the same sign as x. */
70 return x;
72 /* Decompose x into
73 x = n * log(2) + m * log(2)/256 + y
74 where
75 n is an integer, n >= -1,
76 m is an integer, -128 <= m <= 128,
77 y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
78 Then
79 exp(x) = 2^n * exp(m * log(2)/256) * exp(y)
80 Compute each factor minus one, then combine them through the
81 formula (1+a)*(1+b) = 1 + (a+b*(1+a)),
82 that is (1+a)*(1+b) - 1 = a + b*(1+a).
83 The first factor is an ldexpl() call.
84 The second factor is a table lookup.
85 The third factor minus one is computed
86 - either as sinh(y) + sinh(y)^2 / (cosh(y) + 1)
87 where sinh(y) is computed through the power series:
88 sinh(y) = y + y^3/3! + y^5/5! + ...
89 and cosh(y) is computed as hypot(1, sinh(y)),
90 - or as exp(2*z) - 1 = 2 * tanh(z) / (1 - tanh(z))
91 where z = y/2
92 and tanh(z) is computed through its power series:
93 tanh(z) = z
94 - 1/3 * z^3
95 + 2/15 * z^5
96 - 17/315 * z^7
97 + 62/2835 * z^9
98 - 1382/155925 * z^11
99 + 21844/6081075 * z^13
100 - 929569/638512875 * z^15
101 + ...
102 Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
103 z^7 term is < 0.0007^6 < 2^-60 <= 2^-DBL_MANT_DIG, therefore we can
104 truncate the series after the z^5 term.
106 Given the usual bounds DBL_MAX_EXP <= 16384, DBL_MANT_DIG <= 120, we
107 can estimate x: -84 <= x <= 11357.
108 This means, when dividing x by log(2), where we want x mod log(2)
109 to be precise to DBL_MANT_DIG bits, we have to use an approximation
110 to log(2) that has 14+DBL_MANT_DIG bits. */
113 double nm = round (x * LOG2_BY_256_INVERSE); /* = 256 * n + m */
114 /* n has at most 15 bits, nm therefore has at most 23 bits, therefore
115 n * LOG2_HI_PART is computed exactly, and n * LOG2_LO_PART is computed
116 with an absolute error < 2^15 * 2e-10 * 2^-DBL_MANT_DIG. */
117 double y_tmp = x - nm * LOG2_BY_256_HI_PART;
118 double y = y_tmp - nm * LOG2_BY_256_LO_PART;
119 double z = 0.5L * y;
121 /* Coefficients of the power series for tanh(z). */
122 #define TANH_COEFF_1 1.0
123 #define TANH_COEFF_3 -0.333333333333333333333333333333333333334
124 #define TANH_COEFF_5 0.133333333333333333333333333333333333334
125 #define TANH_COEFF_7 -0.053968253968253968253968253968253968254
126 #define TANH_COEFF_9 0.0218694885361552028218694885361552028218
127 #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886
128 #define TANH_COEFF_13 0.00359212803657248101692546136990581435026
129 #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904
131 double z2 = z * z;
132 double tanh_z =
133 ((TANH_COEFF_5
134 * z2 + TANH_COEFF_3)
135 * z2 + TANH_COEFF_1)
136 * z;
138 double exp_y_minus_1 = 2.0 * tanh_z / (1.0 - tanh_z);
140 int n = (int) round (nm * (1.0 / 256.0));
141 int m = (int) nm - 256 * n;
143 /* expm1_table[i] = exp((i - 128) * log(2)/256) - 1.
144 Computed in GNU clisp through
145 (setf (long-float-digits) 128)
146 (setq a 0L0)
147 (setf (long-float-digits) 256)
148 (dotimes (i 257)
149 (format t " ~D,~%"
150 (float (- (exp (* (/ (- i 128) 256) (log 2L0))) 1) a))) */
151 static const double expm1_table[257] =
153 -0.292893218813452475599155637895150960716,
154 -0.290976057839792401079436677742323809165,
155 -0.289053698915417220095325702647879950038,
156 -0.287126127947252846596498423285616993819,
157 -0.285193330804014994382467110862430046956,
158 -0.283255293316105578740250215722626632811,
159 -0.281312001275508837198386957752147486471,
160 -0.279363440435687168635744042695052413926,
161 -0.277409596511476689981496879264164547161,
162 -0.275450455178982509740597294512888729286,
163 -0.273486002075473717576963754157712706214,
164 -0.271516222799278089184548475181393238264,
165 -0.269541102909676505674348554844689233423,
166 -0.267560627926797086703335317887720824384,
167 -0.265574783331509036569177486867109287348,
168 -0.263583554565316202492529493866889713058,
169 -0.261586927030250344306546259812975038038,
170 -0.259584886088764114771170054844048746036,
171 -0.257577417063623749727613604135596844722,
172 -0.255564505237801467306336402685726757248,
173 -0.253546135854367575399678234256663229163,
174 -0.251522294116382286608175138287279137577,
175 -0.2494929651867872398674385184702356751864,
176 -0.247458134188296727960327722100283867508,
177 -0.24541778620328863011699022448340323429,
178 -0.243371906273695048903181511842366886387,
179 -0.24132047940089265059510885341281062657,
180 -0.239263490545592708236869372901757573532,
181 -0.237200924627730846574373155241529522695,
182 -0.23513276652635648805745654063657412692,
183 -0.233059001079521999099699248246140670544,
184 -0.230979613084171535783261520405692115669,
185 -0.228894587296029588193854068954632579346,
186 -0.226803908429489222568744221853864674729,
187 -0.224707561157500020438486294646580877171,
188 -0.222605530111455713940842831198332609562,
189 -0.2204977998810815164831359552625710592544,
190 -0.218384355014321147927034632426122058645,
191 -0.2162651800172235534675441445217774245016,
192 -0.214140259353829315375718509234297186439,
193 -0.212009577446056756772364919909047495547,
194 -0.209873118673587736597751517992039478005,
195 -0.2077308673737531349400659265343210916196,
196 -0.205582807841418027883101951185666435317,
197 -0.2034289243288665510313756784404656320656,
198 -0.201269201045686450868589852895683430425,
199 -0.199103622158653323103076879204523186316,
200 -0.196932171791614537151556053482436428417,
201 -0.19475483402537284591023966632129970827,
202 -0.192571592897569679960015418424270885733,
203 -0.190382432402568125350119133273631796029,
204 -0.188187336491335584102392022226559177731,
205 -0.185986289071326116575890738992992661386,
206 -0.183779274006362464829286135533230759947,
207 -0.181566275116517756116147982921992768975,
208 -0.17934727617799688564586793151548689933,
209 -0.1771222609230175777406216376370887771665,
210 -0.1748912130396911245164132617275148983224,
211 -0.1726541161719028012138814282020908791644,
212 -0.170410953919191957302175212789218768074,
213 -0.168161709836631782476831771511804777363,
214 -0.165906367434708746670203829291463807099,
215 -0.1636449101792017131905953879307692887046,
216 -0.161377321491060724103867675441291294819,
217 -0.15910358474628545696887452376678510496,
218 -0.15682368327580335203567701228614769857,
219 -0.154537600365347409013071332406381692911,
220 -0.152245319255333652509541396360635796882,
221 -0.149946823140738265249318713251248832456,
222 -0.147642095170974388162796469615281683674,
223 -0.145331118449768586448102562484668501975,
224 -0.143013876035036980698187522160833990549,
225 -0.140690350938761042185327811771843747742,
226 -0.138360526126863051392482883127641270248,
227 -0.136024384519081218878475585385633792948,
228 -0.133681908988844467561490046485836530346,
229 -0.131333082363146875502898959063916619876,
230 -0.128977887422421778270943284404535317759,
231 -0.126616306900415529961291721709773157771,
232 -0.1242483234840609219490048572320697039866,
233 -0.121873919813350258443919690312343389353,
234 -0.1194930784812080879189542126763637438278,
235 -0.11710578203336358947830887503073906297,
236 -0.1147120129682226132300120925687579825894,
237 -0.1123117537367393737247203999003383961205,
238 -0.1099049867422877955201404475637647649574,
239 -0.1074916943405325099278897180135900838485,
240 -0.1050718588392995019970556101123417014993,
241 -0.102645462498446406786148378936109092823,
242 -0.1002124875297324539725723033374854302454,
243 -0.097772916096688059846161368344495155786,
244 -0.0953267303144840657307406742107731280055,
245 -0.092873912249800621875082699818829828767,
246 -0.0904144439206957158520284361718212536293,
247 -0.0879483072964733445019372468353990225585,
248 -0.0854754842975513284540160873038416459095,
249 -0.0829959567953287682564584052058555719614,
250 -0.080509706612053141143695628825336081184,
251 -0.078016715520687037466429613329061550362,
252 -0.075516965244774535807472733052603963221,
253 -0.073010437458307215803773464831151680239,
254 -0.070497113785589807692349282254427317595,
255 -0.067976975801105477595185454402763710658,
256 -0.0654500050293807475554878955602008567352,
257 -0.06291618294485004933500052502277673278,
258 -0.0603754909717199109794126487955155117284,
259 -0.0578279104838327751561896480162548451191,
260 -0.055273422804530448266460732621318468453,
261 -0.0527120092065171793298906732865376926237,
262 -0.0501436509117223676387482401930039000769,
263 -0.0475683290911628981746625337821392744829,
264 -0.044986024864805103778829470427200864833,
265 -0.0423967193014263530636943648520845560749,
266 -0.0398003934184762630513928111129293882558,
267 -0.0371970281819375355214808849088086316225,
268 -0.0345866045061864160477270517354652168038,
269 -0.0319691032538527747009720477166542375817,
270 -0.0293445052356798073922893825624102948152,
271 -0.0267127912103833568278979766786970786276,
272 -0.0240739418845108520444897665995250062307,
273 -0.0214279379122998654908388741865642544049,
274 -0.018774759895536286618755114942929674984,
275 -0.016114388383412110943633198761985316073,
276 -0.01344680387238284353202993186779328685225,
277 -0.0107719868060245158708750409344163322253,
278 -0.00808991757489031507008688867384418356197,
279 -0.00540057651636682434752231377783368554176,
280 -0.00270394391452987374234008615207739887604,
281 0.0,
282 0.00271127505020248543074558845036204047301,
283 0.0054299011128028213513839559347998147001,
284 0.00815589811841751578309489081720103927357,
285 0.0108892860517004600204097905618605243881,
286 0.01363008495148943884025892906393992959584,
287 0.0163783149109530379404931137862940627635,
288 0.0191339960777379496848780958207928793998,
289 0.0218971486541166782344801347832994397821,
290 0.0246677928971356451482890762708149276281,
291 0.0274459491187636965388611939222137814994,
292 0.0302316376860410128717079024539045670944,
293 0.0330248790212284225001082839704609180866,
294 0.0358256936019571200299832090180813718441,
295 0.0386341019613787906124366979546397325796,
296 0.0414501246883161412645460790118931264803,
297 0.0442737824274138403219664787399290087847,
298 0.0471050958792898661299072502271122405627,
299 0.049944085800687266082038126515907909062,
300 0.0527907730046263271198912029807463031904,
301 0.05564517836055715880834132515293865216,
302 0.0585073227945126901057721096837166450754,
303 0.0613772272892620809505676780038837262945,
304 0.0642549128844645497886112570015802206798,
305 0.0671404006768236181695211209928091626068,
306 0.070033711820241773542411936757623568504,
307 0.0729348675259755513850354508738275853402,
308 0.0758438890627910378032286484760570740623,
309 0.0787607977571197937406800374384829584908,
310 0.081685614993215201942115594422531125645,
311 0.0846183622133092378161051719066143416095,
312 0.0875590609177696653467978309440397078697,
313 0.090507732665257659207010655760707978993,
314 0.0934643990728858542282201462504471620805,
315 0.096429081816376823386138295859248481766,
316 0.099401802630221985463696968238829904039,
317 0.1023825833078409435564142094256468575113,
318 0.1053714457017412555882746962569503110404,
319 0.1083684117236786380094236494266198501387,
320 0.111373503344817603850149254228916637444,
321 0.1143867425958925363088129569196030678004,
322 0.1174081515673691990545799630857802666544,
323 0.120437752409606684429003879866313012766,
324 0.1234755673330198007337297397753214319548,
325 0.1265216186082418997947986437870347776336,
326 0.12957592856628814599726498884024982591,
327 0.1326385195987192279870737236776230843835,
328 0.135709414157805514240390330676117013429,
329 0.1387886347566916537038302838415112547204,
330 0.14187620396956162271229760828788093894,
331 0.144972144431804219394413888222915895793,
332 0.148076478840179006778799662697342680031,
333 0.15118922995298270581775963520198253612,
334 0.154310420590216039548221528724806960684,
335 0.157440073633751029613085766293796821108,
336 0.160578212027498746369459472576090986253,
337 0.163724858777577513813573599092185312343,
338 0.166880036952481570555516298414089287832,
339 0.1700437696832501880802590357927385730016,
340 0.1732160801636372475348043545132453888896,
341 0.176396991650281276284645728483848641053,
342 0.1795865274628759454861005667694405189764,
343 0.182784710984341029924457204693850757963,
344 0.185991565660993831371265649534215563735,
345 0.189207115002721066717499970560475915293,
346 0.192431382583151222142727558145431011481,
347 0.1956643920398273745838370498654519757025,
348 0.1989061670743804817703025579763002069494,
349 0.202156731452703142096396957497765876,
350 0.205416109005123825604211432558411335666,
351 0.208684323626581577354792255889216998483,
352 0.211961399276801194468168917732493045449,
353 0.2152473599804688781165202513387984576236,
354 0.218542229827408361758207148117394510722,
355 0.221846032972757516903891841911570785834,
356 0.225158793637145437709464594384845353705,
357 0.2284805361068700056940089577927818403626,
358 0.231811284734075935884556653212794816605,
359 0.235151063936933305692912507415415760296,
360 0.238499898199816567833368865859612431546,
361 0.241857812073484048593677468726595605511,
362 0.245224830175257932775204967486152674173,
363 0.248600977189204736621766097302495545187,
364 0.251986277866316270060206031789203597321,
365 0.255380757024691089579390657442301194598,
366 0.258784439549716443077860441815162618762,
367 0.262197350394250708014010258518416459672,
368 0.265619514578806324196273999873453036297,
369 0.269050957191733222554419081032338004715,
370 0.272491703389402751236692044184602176772,
371 0.27594177839639210038120243475928938891,
372 0.279401207505669226913587970027852545961,
373 0.282870016078778280726669781021514051111,
374 0.286348229546025533601482208069738348358,
375 0.289835873406665812232747295491552189677,
376 0.293332973229089436725559789048704304684,
377 0.296839554651009665933754117792451159835,
378 0.300355643379650651014140567070917791291,
379 0.303881265191935898574523648951997368331,
380 0.30741644593467724479715157747196172848,
381 0.310961211524764341922991786330755849366,
382 0.314515587949354658485983613383997794966,
383 0.318079601266063994690185647066116617661,
384 0.321653277603157514326511812330609226158,
385 0.325236643159741294629537095498721674113,
386 0.32882972420595439547865089632866510792,
387 0.33243254708316144935164337949073577407,
388 0.336045138204145773442627904371869759286,
389 0.339667524053303005360030669724352576023,
390 0.343299731186835263824217146181630875424,
391 0.346941786232945835788173713229537282073,
392 0.350593715892034391408522196060133960038,
393 0.354255546936892728298014740140702804344,
394 0.357927306212901046494536695671766697444,
395 0.361609020638224755585535938831941474643,
396 0.365300717204011815430698360337542855432,
397 0.369002422974590611929601132982192832168,
398 0.372714165087668369284997857144717215791,
399 0.376435970754530100216322805518686960261,
400 0.380167867260238095581945274358283464698,
401 0.383909881963831954872659527265192818003,
402 0.387662042298529159042861017950775988895,
403 0.391424375771926187149835529566243446678,
404 0.395196909966200178275574599249220994717,
405 0.398979672538311140209528136715194969206,
406 0.402772691220204706374713524333378817108,
407 0.40657599381901544248361973255451684411,
408 0.410389608217270704414375128268675481146,
409 0.414213562373095048801688724209698078569
412 double t = expm1_table[128 + m];
414 /* (1+t) * (1+exp_y_minus_1) - 1 = t + (1+t)*exp_y_minus_1 */
415 double p_minus_1 = t + (1.0 + t) * exp_y_minus_1;
417 double s = ldexp (1.0, n) - 1.0;
419 /* (1+s) * (1+p_minus_1) - 1 = s + (1+s)*p_minus_1 */
420 return s + (1.0 + s) * p_minus_1;