hash-set, linkedhash-set: Reduce code duplication.
[gnulib.git] / lib / exp2l.c
blob4db57b8b6e5fda1420c1091b50c995736fdbd539
1 /* Exponential base 2 function.
2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
17 #include <config.h>
19 /* Specification. */
20 #include <math.h>
22 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
24 long double
25 exp2l (long double x)
27 return exp2 (x);
30 #else
32 # include <float.h>
34 /* gl_expl_table[i] = exp((i - 128) * log(2)/256). */
35 extern const long double gl_expl_table[257];
37 /* Best possible approximation of log(2) as a 'long double'. */
38 #define LOG2 0.693147180559945309417232121458176568075L
40 /* Best possible approximation of 1/log(2) as a 'long double'. */
41 #define LOG2_INVERSE 1.44269504088896340735992468100189213743L
43 /* Best possible approximation of log(2)/256 as a 'long double'. */
44 #define LOG2_BY_256 0.00270760617406228636491106297444600221904L
46 /* Best possible approximation of 256/log(2) as a 'long double'. */
47 #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L
49 long double
50 exp2l (long double x)
52 /* exp2(x) = exp(x*log(2)).
53 If we would compute it like this, there would be rounding errors for
54 integer or near-integer values of x. To avoid these, we inline the
55 algorithm for exp(), and the multiplication with log(2) cancels a
56 division by log(2). */
58 if (isnanl (x))
59 return x;
61 if (x > (long double) LDBL_MAX_EXP)
62 /* x > LDBL_MAX_EXP
63 hence exp2(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */
64 return HUGE_VALL;
66 if (x < (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG))
67 /* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG)
68 hence exp2(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG),
69 underflows to zero. */
70 return 0.0L;
72 /* Decompose x into
73 x = n + m/256 + y/log(2)
74 where
75 n is an integer,
76 m is an integer, -128 <= m <= 128,
77 y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
78 Then
79 exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
80 The first factor is an ldexpl() call.
81 The second factor is a table lookup.
82 The third factor is computed
83 - either as sinh(y) + cosh(y)
84 where sinh(y) is computed through the power series:
85 sinh(y) = y + y^3/3! + y^5/5! + ...
86 and cosh(y) is computed as hypot(1, sinh(y)),
87 - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
88 where z = y/2
89 and tanh(z) is computed through its power series:
90 tanh(z) = z
91 - 1/3 * z^3
92 + 2/15 * z^5
93 - 17/315 * z^7
94 + 62/2835 * z^9
95 - 1382/155925 * z^11
96 + 21844/6081075 * z^13
97 - 929569/638512875 * z^15
98 + ...
99 Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
100 z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we
101 can truncate the series after the z^11 term. */
104 long double nm = roundl (x * 256.0L); /* = 256 * n + m */
105 long double z = (x * 256.0L - nm) * (LOG2_BY_256 * 0.5L);
107 /* Coefficients of the power series for tanh(z). */
108 #define TANH_COEFF_1 1.0L
109 #define TANH_COEFF_3 -0.333333333333333333333333333333333333334L
110 #define TANH_COEFF_5 0.133333333333333333333333333333333333334L
111 #define TANH_COEFF_7 -0.053968253968253968253968253968253968254L
112 #define TANH_COEFF_9 0.0218694885361552028218694885361552028218L
113 #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L
114 #define TANH_COEFF_13 0.00359212803657248101692546136990581435026L
115 #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L
117 long double z2 = z * z;
118 long double tanh_z =
119 (((((TANH_COEFF_11
120 * z2 + TANH_COEFF_9)
121 * z2 + TANH_COEFF_7)
122 * z2 + TANH_COEFF_5)
123 * z2 + TANH_COEFF_3)
124 * z2 + TANH_COEFF_1)
125 * z;
127 long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z);
129 int n = (int) roundl (nm * (1.0L / 256.0L));
130 int m = (int) nm - 256 * n;
132 return ldexpl (gl_expl_table[128 + m] * exp_y, n);
136 #endif