mbrtoc32: Add tests.
[gnulib.git] / lib / dfa.c
blob96ae560b143db6fd19dc04ca9aee291ea91eb618
1 /* dfa.c - deterministic extended regexp routines for GNU
2 Copyright (C) 1988, 1998, 2000, 2002, 2004-2005, 2007-2020 Free Software
3 Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3, or (at your option)
8 any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc.,
18 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA */
20 /* Written June, 1988 by Mike Haertel
21 Modified July, 1988 by Arthur David Olson to assist BMG speedups */
23 #include <config.h>
25 #include "dfa.h"
27 #include "flexmember.h"
29 #include <assert.h>
30 #include <ctype.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <limits.h>
35 #include <string.h>
37 /* Another name for ptrdiff_t, for sizes of objects and nonnegative
38 indexes into objects. It is signed to help catch integer overflow.
39 It has its own name because it is for nonnegative values only. */
40 typedef ptrdiff_t idx_t;
41 static idx_t const IDX_MAX = PTRDIFF_MAX;
43 static bool
44 streq (char const *a, char const *b)
46 return strcmp (a, b) == 0;
49 static bool
50 isasciidigit (char c)
52 return '0' <= c && c <= '9';
55 #include "gettext.h"
56 #define _(str) gettext (str)
58 #include <wchar.h>
60 #include "intprops.h"
61 #include "xalloc.h"
62 #include "localeinfo.h"
64 #ifndef FALLTHROUGH
65 # if __GNUC__ < 7
66 # define FALLTHROUGH ((void) 0)
67 # else
68 # define FALLTHROUGH __attribute__ ((__fallthrough__))
69 # endif
70 #endif
72 #ifndef MIN
73 # define MIN(a,b) ((a) < (b) ? (a) : (b))
74 #endif
76 /* HPUX defines these as macros in sys/param.h. */
77 #ifdef setbit
78 # undef setbit
79 #endif
80 #ifdef clrbit
81 # undef clrbit
82 #endif
84 /* First integer value that is greater than any character code. */
85 enum { NOTCHAR = 1 << CHAR_BIT };
87 /* Number of bits used in a charclass word. */
88 enum { CHARCLASS_WORD_BITS = 64 };
90 /* This represents part of a character class. It must be unsigned and
91 at least CHARCLASS_WORD_BITS wide. Any excess bits are zero. */
92 typedef uint_least64_t charclass_word;
94 /* An initializer for a charclass whose 64-bit words are A through D. */
95 #define CHARCLASS_INIT(a, b, c, d) {{a, b, c, d}}
97 /* The maximum useful value of a charclass_word; all used bits are 1. */
98 static charclass_word const CHARCLASS_WORD_MASK
99 = ((charclass_word) 1 << (CHARCLASS_WORD_BITS - 1) << 1) - 1;
101 /* Number of words required to hold a bit for every character. */
102 enum
104 CHARCLASS_WORDS = (NOTCHAR + CHARCLASS_WORD_BITS - 1) / CHARCLASS_WORD_BITS
107 /* Sets of unsigned characters are stored as bit vectors in arrays of ints. */
108 typedef struct { charclass_word w[CHARCLASS_WORDS]; } charclass;
110 /* Convert a possibly-signed character to an unsigned character. This is
111 a bit safer than casting to unsigned char, since it catches some type
112 errors that the cast doesn't. */
113 static unsigned char
114 to_uchar (char ch)
116 return ch;
119 /* Contexts tell us whether a character is a newline or a word constituent.
120 Word-constituent characters are those that satisfy iswalnum, plus '_'.
121 Each character has a single CTX_* value; bitmasks of CTX_* values denote
122 a particular character class.
124 A state also stores a context value, which is a bitmask of CTX_* values.
125 A state's context represents a set of characters that the state's
126 predecessors must match. For example, a state whose context does not
127 include CTX_LETTER will never have transitions where the previous
128 character is a word constituent. A state whose context is CTX_ANY
129 might have transitions from any character. */
131 enum
133 CTX_NONE = 1,
134 CTX_LETTER = 2,
135 CTX_NEWLINE = 4,
136 CTX_ANY = 7
139 /* Sometimes characters can only be matched depending on the surrounding
140 context. Such context decisions depend on what the previous character
141 was, and the value of the current (lookahead) character. Context
142 dependent constraints are encoded as 9-bit integers. Each bit that
143 is set indicates that the constraint succeeds in the corresponding
144 context.
146 bit 6-8 - valid contexts when next character is CTX_NEWLINE
147 bit 3-5 - valid contexts when next character is CTX_LETTER
148 bit 0-2 - valid contexts when next character is CTX_NONE
150 succeeds_in_context determines whether a given constraint
151 succeeds in a particular context. Prev is a bitmask of possible
152 context values for the previous character, curr is the (single-bit)
153 context value for the lookahead character. */
154 static int
155 newline_constraint (int constraint)
157 return (constraint >> 6) & 7;
159 static int
160 letter_constraint (int constraint)
162 return (constraint >> 3) & 7;
164 static int
165 other_constraint (int constraint)
167 return constraint & 7;
170 static bool
171 succeeds_in_context (int constraint, int prev, int curr)
173 return !! (((curr & CTX_NONE ? other_constraint (constraint) : 0) \
174 | (curr & CTX_LETTER ? letter_constraint (constraint) : 0) \
175 | (curr & CTX_NEWLINE ? newline_constraint (constraint) : 0)) \
176 & prev);
179 /* The following describe what a constraint depends on. */
180 static bool
181 prev_newline_dependent (int constraint)
183 return ((constraint ^ constraint >> 2) & 0111) != 0;
185 static bool
186 prev_letter_dependent (int constraint)
188 return ((constraint ^ constraint >> 1) & 0111) != 0;
191 /* Tokens that match the empty string subject to some constraint actually
192 work by applying that constraint to determine what may follow them,
193 taking into account what has gone before. The following values are
194 the constraints corresponding to the special tokens previously defined. */
195 enum
197 NO_CONSTRAINT = 0777,
198 BEGLINE_CONSTRAINT = 0444,
199 ENDLINE_CONSTRAINT = 0700,
200 BEGWORD_CONSTRAINT = 0050,
201 ENDWORD_CONSTRAINT = 0202,
202 LIMWORD_CONSTRAINT = 0252,
203 NOTLIMWORD_CONSTRAINT = 0525
206 /* The regexp is parsed into an array of tokens in postfix form. Some tokens
207 are operators and others are terminal symbols. Most (but not all) of these
208 codes are returned by the lexical analyzer. */
210 typedef ptrdiff_t token;
211 static token const TOKEN_MAX = PTRDIFF_MAX;
213 /* States are indexed by state_num values. These are normally
214 nonnegative but -1 is used as a special value. */
215 typedef ptrdiff_t state_num;
217 /* Predefined token values. */
218 enum
220 END = -1, /* END is a terminal symbol that matches the
221 end of input; any value of END or less in
222 the parse tree is such a symbol. Accepting
223 states of the DFA are those that would have
224 a transition on END. This is -1, not some
225 more-negative value, to tweak the speed of
226 comparisons to END. */
228 /* Ordinary character values are terminal symbols that match themselves. */
230 /* CSET must come last in the following list of special tokens. Otherwise,
231 the list order matters only for performance. Related special tokens
232 should have nearby values so that code like (t == ANYCHAR || t == MBCSET
233 || CSET <= t) can be done with a single machine-level comparison. */
235 EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches
236 the empty string. */
238 QMARK, /* QMARK is an operator of one argument that
239 matches zero or one occurrences of its
240 argument. */
242 STAR, /* STAR is an operator of one argument that
243 matches the Kleene closure (zero or more
244 occurrences) of its argument. */
246 PLUS, /* PLUS is an operator of one argument that
247 matches the positive closure (one or more
248 occurrences) of its argument. */
250 REPMN, /* REPMN is a lexical token corresponding
251 to the {m,n} construct. REPMN never
252 appears in the compiled token vector. */
254 CAT, /* CAT is an operator of two arguments that
255 matches the concatenation of its
256 arguments. CAT is never returned by the
257 lexical analyzer. */
259 OR, /* OR is an operator of two arguments that
260 matches either of its arguments. */
262 LPAREN, /* LPAREN never appears in the parse tree,
263 it is only a lexeme. */
265 RPAREN, /* RPAREN never appears in the parse tree. */
267 WCHAR, /* Only returned by lex. wctok contains
268 the wide character representation. */
270 ANYCHAR, /* ANYCHAR is a terminal symbol that matches
271 a valid multibyte (or single byte) character.
272 It is used only if MB_CUR_MAX > 1. */
274 BEG, /* BEG is an initial symbol that matches the
275 beginning of input. */
277 BEGLINE, /* BEGLINE is a terminal symbol that matches
278 the empty string at the beginning of a
279 line. */
281 ENDLINE, /* ENDLINE is a terminal symbol that matches
282 the empty string at the end of a line. */
284 BEGWORD, /* BEGWORD is a terminal symbol that matches
285 the empty string at the beginning of a
286 word. */
288 ENDWORD, /* ENDWORD is a terminal symbol that matches
289 the empty string at the end of a word. */
291 LIMWORD, /* LIMWORD is a terminal symbol that matches
292 the empty string at the beginning or the
293 end of a word. */
295 NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that
296 matches the empty string not at
297 the beginning or end of a word. */
299 BACKREF, /* BACKREF is generated by \<digit>
300 or by any other construct that
301 is not completely handled. If the scanner
302 detects a transition on backref, it returns
303 a kind of "semi-success" indicating that
304 the match will have to be verified with
305 a backtracking matcher. */
307 MBCSET, /* MBCSET is similar to CSET, but for
308 multibyte characters. */
310 CSET /* CSET and (and any value greater) is a
311 terminal symbol that matches any of a
312 class of characters. */
316 /* States of the recognizer correspond to sets of positions in the parse
317 tree, together with the constraints under which they may be matched.
318 So a position is encoded as an index into the parse tree together with
319 a constraint. */
320 typedef struct
322 idx_t index; /* Index into the parse array. */
323 unsigned int constraint; /* Constraint for matching this position. */
324 } position;
326 /* Sets of positions are stored as arrays. */
327 typedef struct
329 position *elems; /* Elements of this position set. */
330 idx_t nelem; /* Number of elements in this set. */
331 idx_t alloc; /* Number of elements allocated in ELEMS. */
332 } position_set;
334 /* A state of the dfa consists of a set of positions, some flags,
335 and the token value of the lowest-numbered position of the state that
336 contains an END token. */
337 typedef struct
339 size_t hash; /* Hash of the positions of this state. */
340 position_set elems; /* Positions this state could match. */
341 unsigned char context; /* Context from previous state. */
342 unsigned short constraint; /* Constraint for this state to accept. */
343 token first_end; /* Token value of the first END in elems. */
344 position_set mbps; /* Positions which can match multibyte
345 characters or the follows, e.g., period.
346 Used only if MB_CUR_MAX > 1. */
347 state_num mb_trindex; /* Index of this state in MB_TRANS, or
348 negative if the state does not have
349 ANYCHAR. */
350 } dfa_state;
352 /* Maximum for any transition table count. This should be at least 3,
353 for the initial state setup. */
354 enum { MAX_TRCOUNT = 1024 };
356 /* A bracket operator.
357 e.g., [a-c], [[:alpha:]], etc. */
358 struct mb_char_classes
360 ptrdiff_t cset;
361 bool invert;
362 wchar_t *chars; /* Normal characters. */
363 idx_t nchars;
364 idx_t nchars_alloc;
367 struct regex_syntax
369 /* Syntax bits controlling the behavior of the lexical analyzer. */
370 reg_syntax_t syntax_bits;
371 bool syntax_bits_set;
373 /* Flag for case-folding letters into sets. */
374 bool case_fold;
376 /* True if ^ and $ match only the start and end of data, and do not match
377 end-of-line within data. */
378 bool anchor;
380 /* End-of-line byte in data. */
381 unsigned char eolbyte;
383 /* Cache of char-context values. */
384 char sbit[NOTCHAR];
386 /* If never_trail[B], the byte B cannot be a non-initial byte in a
387 multibyte character. */
388 bool never_trail[NOTCHAR];
390 /* Set of characters considered letters. */
391 charclass letters;
393 /* Set of characters that are newline. */
394 charclass newline;
397 /* Lexical analyzer. All the dross that deals with the obnoxious
398 GNU Regex syntax bits is located here. The poor, suffering
399 reader is referred to the GNU Regex documentation for the
400 meaning of the @#%!@#%^!@ syntax bits. */
401 struct lexer_state
403 char const *ptr; /* Pointer to next input character. */
404 idx_t left; /* Number of characters remaining. */
405 token lasttok; /* Previous token returned; initially END. */
406 idx_t parens; /* Count of outstanding left parens. */
407 int minrep, maxrep; /* Repeat counts for {m,n}. */
409 /* Wide character representation of the current multibyte character,
410 or WEOF if there was an encoding error. Used only if
411 MB_CUR_MAX > 1. */
412 wint_t wctok;
414 /* The most recently analyzed multibyte bracket expression. */
415 struct mb_char_classes brack;
417 /* We're separated from beginning or (, | only by zero-width characters. */
418 bool laststart;
421 /* Recursive descent parser for regular expressions. */
423 struct parser_state
425 token tok; /* Lookahead token. */
426 idx_t depth; /* Current depth of a hypothetical stack
427 holding deferred productions. This is
428 used to determine the depth that will be
429 required of the real stack later on in
430 dfaanalyze. */
433 /* A compiled regular expression. */
434 struct dfa
436 /* Fields filled by the scanner. */
437 charclass *charclasses; /* Array of character sets for CSET tokens. */
438 idx_t cindex; /* Index for adding new charclasses. */
439 idx_t calloc; /* Number of charclasses allocated. */
440 ptrdiff_t canychar; /* Index of anychar class, or -1. */
442 /* Scanner state */
443 struct lexer_state lex;
445 /* Parser state */
446 struct parser_state parse;
448 /* Fields filled by the parser. */
449 token *tokens; /* Postfix parse array. */
450 idx_t tindex; /* Index for adding new tokens. */
451 idx_t talloc; /* Number of tokens currently allocated. */
452 idx_t depth; /* Depth required of an evaluation stack
453 used for depth-first traversal of the
454 parse tree. */
455 idx_t nleaves; /* Number of leaves on the parse tree. */
456 idx_t nregexps; /* Count of parallel regexps being built
457 with dfaparse. */
458 bool fast; /* The DFA is fast. */
459 token utf8_anychar_classes[9]; /* To lower ANYCHAR in UTF-8 locales. */
460 mbstate_t mbs; /* Multibyte conversion state. */
462 /* The following are valid only if MB_CUR_MAX > 1. */
464 /* The value of multibyte_prop[i] is defined by following rule.
465 if tokens[i] < NOTCHAR
466 bit 0 : tokens[i] is the first byte of a character, including
467 single-byte characters.
468 bit 1 : tokens[i] is the last byte of a character, including
469 single-byte characters.
471 e.g.
472 tokens
473 = 'single_byte_a', 'multi_byte_A', single_byte_b'
474 = 'sb_a', 'mb_A(1st byte)', 'mb_A(2nd byte)', 'mb_A(3rd byte)', 'sb_b'
475 multibyte_prop
476 = 3 , 1 , 0 , 2 , 3
478 char *multibyte_prop;
480 /* Fields filled by the superset. */
481 struct dfa *superset; /* Hint of the dfa. */
483 /* Fields filled by the state builder. */
484 dfa_state *states; /* States of the dfa. */
485 state_num sindex; /* Index for adding new states. */
486 idx_t salloc; /* Number of states currently allocated. */
488 /* Fields filled by the parse tree->NFA conversion. */
489 position_set *follows; /* Array of follow sets, indexed by position
490 index. The follow of a position is the set
491 of positions containing characters that
492 could conceivably follow a character
493 matching the given position in a string
494 matching the regexp. Allocated to the
495 maximum possible position index. */
496 bool searchflag; /* We are supposed to build a searching
497 as opposed to an exact matcher. A searching
498 matcher finds the first and shortest string
499 matching a regexp anywhere in the buffer,
500 whereas an exact matcher finds the longest
501 string matching, but anchored to the
502 beginning of the buffer. */
504 /* Fields filled by dfaanalyze. */
505 int *constraints; /* Array of union of accepting constraints
506 in the follow of a position. */
507 int *separates; /* Array of contexts on follow of a
508 position. */
510 /* Fields filled by dfaexec. */
511 state_num tralloc; /* Number of transition tables that have
512 slots so far, not counting trans[-1] and
513 trans[-2]. */
514 int trcount; /* Number of transition tables that have
515 been built, other than for initial
516 states. */
517 int min_trcount; /* Number of initial states. Equivalently,
518 the minimum state number for which trcount
519 counts transitions. */
520 state_num **trans; /* Transition tables for states that can
521 never accept. If the transitions for a
522 state have not yet been computed, or the
523 state could possibly accept, its entry in
524 this table is NULL. This points to two
525 past the start of the allocated array,
526 and trans[-1] and trans[-2] are always
527 NULL. */
528 state_num **fails; /* Transition tables after failing to accept
529 on a state that potentially could do so.
530 If trans[i] is non-null, fails[i] must
531 be null. */
532 char *success; /* Table of acceptance conditions used in
533 dfaexec and computed in build_state. */
534 state_num *newlines; /* Transitions on newlines. The entry for a
535 newline in any transition table is always
536 -1 so we can count lines without wasting
537 too many cycles. The transition for a
538 newline is stored separately and handled
539 as a special case. Newline is also used
540 as a sentinel at the end of the buffer. */
541 state_num initstate_notbol; /* Initial state for CTX_LETTER and CTX_NONE
542 context in multibyte locales, in which we
543 do not distinguish between their contexts,
544 as not supported word. */
545 position_set mb_follows; /* Follow set added by ANYCHAR on demand. */
546 state_num **mb_trans; /* Transition tables for states with
547 ANYCHAR. */
548 state_num mb_trcount; /* Number of transition tables for states with
549 ANYCHAR that have actually been built. */
551 /* Syntax configuration. This is near the end so that dfacopysyntax
552 can memset up to here. */
553 struct regex_syntax syntax;
555 /* Information derived from the locale. This is at the end so that
556 a quick memset need not clear it specially. */
558 /* dfaexec implementation. */
559 char *(*dfaexec) (struct dfa *, char const *, char *,
560 bool, ptrdiff_t *, bool *);
562 /* Other cached information derived from the locale. */
563 struct localeinfo localeinfo;
566 /* User access to dfa internals. */
568 /* S could possibly be an accepting state of R. */
569 static bool
570 accepting (state_num s, struct dfa const *r)
572 return r->states[s].constraint != 0;
575 /* STATE accepts in the specified context. */
576 static bool
577 accepts_in_context (int prev, int curr, state_num state, struct dfa const *dfa)
579 return succeeds_in_context (dfa->states[state].constraint, prev, curr);
582 static void regexp (struct dfa *dfa);
584 /* Store into *PWC the result of converting the leading bytes of the
585 multibyte buffer S of length N bytes, using D->localeinfo.sbctowc
586 and updating the conversion state in *D. On conversion error,
587 convert just a single byte, to WEOF. Return the number of bytes
588 converted.
590 This differs from mbrtowc (PWC, S, N, &D->mbs) as follows:
592 * PWC points to wint_t, not to wchar_t.
593 * The last arg is a dfa *D instead of merely a multibyte conversion
594 state D->mbs.
595 * N must be at least 1.
596 * S[N - 1] must be a sentinel byte.
597 * Shift encodings are not supported.
598 * The return value is always in the range 1..N.
599 * D->mbs is always valid afterwards.
600 * *PWC is always set to something. */
601 static int
602 mbs_to_wchar (wint_t *pwc, char const *s, size_t n, struct dfa *d)
604 unsigned char uc = s[0];
605 wint_t wc = d->localeinfo.sbctowc[uc];
607 if (wc == WEOF)
609 wchar_t wch;
610 size_t nbytes = mbrtowc (&wch, s, n, &d->mbs);
611 if (0 < nbytes && nbytes < (size_t) -2)
613 *pwc = wch;
614 return nbytes;
616 memset (&d->mbs, 0, sizeof d->mbs);
619 *pwc = wc;
620 return 1;
623 #ifdef DEBUG
625 static void
626 prtok (token t)
628 if (t <= END)
629 fprintf (stderr, "END");
630 else if (0 <= t && t < NOTCHAR)
632 unsigned int ch = t;
633 fprintf (stderr, "0x%02x", ch);
635 else
637 char const *s;
638 switch (t)
640 case BEG:
641 s = "BEG";
642 break;
643 case EMPTY:
644 s = "EMPTY";
645 break;
646 case BACKREF:
647 s = "BACKREF";
648 break;
649 case BEGLINE:
650 s = "BEGLINE";
651 break;
652 case ENDLINE:
653 s = "ENDLINE";
654 break;
655 case BEGWORD:
656 s = "BEGWORD";
657 break;
658 case ENDWORD:
659 s = "ENDWORD";
660 break;
661 case LIMWORD:
662 s = "LIMWORD";
663 break;
664 case NOTLIMWORD:
665 s = "NOTLIMWORD";
666 break;
667 case QMARK:
668 s = "QMARK";
669 break;
670 case STAR:
671 s = "STAR";
672 break;
673 case PLUS:
674 s = "PLUS";
675 break;
676 case CAT:
677 s = "CAT";
678 break;
679 case OR:
680 s = "OR";
681 break;
682 case LPAREN:
683 s = "LPAREN";
684 break;
685 case RPAREN:
686 s = "RPAREN";
687 break;
688 case ANYCHAR:
689 s = "ANYCHAR";
690 break;
691 case MBCSET:
692 s = "MBCSET";
693 break;
694 default:
695 s = "CSET";
696 break;
698 fprintf (stderr, "%s", s);
701 #endif /* DEBUG */
703 /* Stuff pertaining to charclasses. */
705 static bool
706 tstbit (unsigned int b, charclass const *c)
708 return c->w[b / CHARCLASS_WORD_BITS] >> b % CHARCLASS_WORD_BITS & 1;
711 static void
712 setbit (unsigned int b, charclass *c)
714 charclass_word one = 1;
715 c->w[b / CHARCLASS_WORD_BITS] |= one << b % CHARCLASS_WORD_BITS;
718 static void
719 clrbit (unsigned int b, charclass *c)
721 charclass_word one = 1;
722 c->w[b / CHARCLASS_WORD_BITS] &= ~(one << b % CHARCLASS_WORD_BITS);
725 static void
726 zeroset (charclass *s)
728 memset (s, 0, sizeof *s);
731 static void
732 fillset (charclass *s)
734 for (int i = 0; i < CHARCLASS_WORDS; i++)
735 s->w[i] = CHARCLASS_WORD_MASK;
738 static void
739 notset (charclass *s)
741 for (int i = 0; i < CHARCLASS_WORDS; ++i)
742 s->w[i] = CHARCLASS_WORD_MASK & ~s->w[i];
745 static bool
746 equal (charclass const *s1, charclass const *s2)
748 charclass_word w = 0;
749 for (int i = 0; i < CHARCLASS_WORDS; i++)
750 w |= s1->w[i] ^ s2->w[i];
751 return w == 0;
754 static bool
755 emptyset (charclass const *s)
757 charclass_word w = 0;
758 for (int i = 0; i < CHARCLASS_WORDS; i++)
759 w |= s->w[i];
760 return w == 0;
763 /* Grow PA, which points to an array of *NITEMS items, and return the
764 location of the reallocated array, updating *NITEMS to reflect its
765 new size. The new array will contain at least NITEMS_INCR_MIN more
766 items, but will not contain more than NITEMS_MAX items total.
767 ITEM_SIZE is the size of each item, in bytes.
769 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
770 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
771 infinity.
773 If PA is null, then allocate a new array instead of reallocating
774 the old one.
776 Thus, to grow an array A without saving its old contents, do
777 { free (A); A = xpalloc (NULL, &AITEMS, ...); }. */
779 static void *
780 xpalloc (void *pa, idx_t *nitems, idx_t nitems_incr_min,
781 ptrdiff_t nitems_max, idx_t item_size)
783 idx_t n0 = *nitems;
785 /* The approximate size to use for initial small allocation
786 requests. This is the largest "small" request for the GNU C
787 library malloc. */
788 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
790 /* If the array is tiny, grow it to about (but no greater than)
791 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
792 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
795 idx_t n, nbytes;
796 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
797 n = IDX_MAX;
798 if (0 <= nitems_max && nitems_max < n)
799 n = nitems_max;
801 idx_t adjusted_nbytes
802 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
803 ? MIN (IDX_MAX, SIZE_MAX)
804 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
805 if (adjusted_nbytes)
807 n = adjusted_nbytes / item_size;
808 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
811 if (! pa)
812 *nitems = 0;
813 if (n - n0 < nitems_incr_min
814 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
815 || (0 <= nitems_max && nitems_max < n)
816 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
817 xalloc_die ();
818 pa = xrealloc (pa, nbytes);
819 *nitems = n;
820 return pa;
823 /* Ensure that the array addressed by PA holds at least I + 1 items.
824 Either return PA, or reallocate the array and return its new address.
825 Although PA may be null, the returned value is never null.
827 The array holds *NITEMS items, where 0 <= I <= *NITEMS; *NITEMS
828 is updated on reallocation. If PA is null, *NITEMS must be zero.
829 Do not allocate more than NITEMS_MAX items total; -1 means no limit.
830 ITEM_SIZE is the size of one item; it must be positive.
831 Avoid O(N**2) behavior on arrays growing linearly. */
832 static void *
833 maybe_realloc (void *pa, idx_t i, idx_t *nitems,
834 ptrdiff_t nitems_max, idx_t item_size)
836 if (i < *nitems)
837 return pa;
838 return xpalloc (pa, nitems, 1, nitems_max, item_size);
841 /* In DFA D, find the index of charclass S, or allocate a new one. */
842 static idx_t
843 charclass_index (struct dfa *d, charclass const *s)
845 idx_t i;
847 for (i = 0; i < d->cindex; ++i)
848 if (equal (s, &d->charclasses[i]))
849 return i;
850 d->charclasses = maybe_realloc (d->charclasses, d->cindex, &d->calloc,
851 TOKEN_MAX - CSET, sizeof *d->charclasses);
852 ++d->cindex;
853 d->charclasses[i] = *s;
854 return i;
857 static bool
858 unibyte_word_constituent (struct dfa const *dfa, unsigned char c)
860 return dfa->localeinfo.sbctowc[c] != WEOF && (isalnum (c) || (c) == '_');
863 static int
864 char_context (struct dfa const *dfa, unsigned char c)
866 if (c == dfa->syntax.eolbyte && !dfa->syntax.anchor)
867 return CTX_NEWLINE;
868 if (unibyte_word_constituent (dfa, c))
869 return CTX_LETTER;
870 return CTX_NONE;
873 /* Set a bit in the charclass for the given wchar_t. Do nothing if WC
874 is represented by a multi-byte sequence. Even for MB_CUR_MAX == 1,
875 this may happen when folding case in weird Turkish locales where
876 dotless i/dotted I are not included in the chosen character set.
877 Return whether a bit was set in the charclass. */
878 static bool
879 setbit_wc (wint_t wc, charclass *c)
881 int b = wctob (wc);
882 if (b < 0)
883 return false;
885 setbit (b, c);
886 return true;
889 /* Set a bit for B and its case variants in the charclass C.
890 MB_CUR_MAX must be 1. */
891 static void
892 setbit_case_fold_c (int b, charclass *c)
894 int ub = toupper (b);
895 for (int i = 0; i < NOTCHAR; i++)
896 if (toupper (i) == ub)
897 setbit (i, c);
900 /* Fetch the next lexical input character from the pattern. There
901 must at least one byte of pattern input. Set DFA->lex.wctok to the
902 value of the character or to WEOF depending on whether the input is
903 a valid multibyte character (possibly of length 1). Then return
904 the next input byte value, except return EOF if the input is a
905 multibyte character of length greater than 1. */
906 static int
907 fetch_wc (struct dfa *dfa)
909 int nbytes = mbs_to_wchar (&dfa->lex.wctok, dfa->lex.ptr, dfa->lex.left,
910 dfa);
911 int c = nbytes == 1 ? to_uchar (dfa->lex.ptr[0]) : EOF;
912 dfa->lex.ptr += nbytes;
913 dfa->lex.left -= nbytes;
914 return c;
917 /* If there is no more input, report an error about unbalanced brackets.
918 Otherwise, behave as with fetch_wc (DFA). */
919 static int
920 bracket_fetch_wc (struct dfa *dfa)
922 if (! dfa->lex.left)
923 dfaerror (_("unbalanced ["));
924 return fetch_wc (dfa);
927 typedef int predicate (int);
929 /* The following list maps the names of the Posix named character classes
930 to predicate functions that determine whether a given character is in
931 the class. The leading [ has already been eaten by the lexical
932 analyzer. */
933 struct dfa_ctype
935 const char *name;
936 predicate *func;
937 bool single_byte_only;
940 static const struct dfa_ctype prednames[] = {
941 {"alpha", isalpha, false},
942 {"upper", isupper, false},
943 {"lower", islower, false},
944 {"digit", isdigit, true},
945 {"xdigit", isxdigit, false},
946 {"space", isspace, false},
947 {"punct", ispunct, false},
948 {"alnum", isalnum, false},
949 {"print", isprint, false},
950 {"graph", isgraph, false},
951 {"cntrl", iscntrl, false},
952 {"blank", isblank, false},
953 {NULL, NULL, false}
956 static const struct dfa_ctype *_GL_ATTRIBUTE_PURE
957 find_pred (const char *str)
959 for (int i = 0; prednames[i].name; i++)
960 if (streq (str, prednames[i].name))
961 return &prednames[i];
962 return NULL;
965 /* Parse a bracket expression, which possibly includes multibyte
966 characters. */
967 static token
968 parse_bracket_exp (struct dfa *dfa)
970 /* This is a bracket expression that dfaexec is known to
971 process correctly. */
972 bool known_bracket_exp = true;
974 /* Used to warn about [:space:].
975 Bit 0 = first character is a colon.
976 Bit 1 = last character is a colon.
977 Bit 2 = includes any other character but a colon.
978 Bit 3 = includes ranges, char/equiv classes or collation elements. */
979 int colon_warning_state;
981 dfa->lex.brack.nchars = 0;
982 charclass ccl;
983 zeroset (&ccl);
984 int c = bracket_fetch_wc (dfa);
985 bool invert = c == '^';
986 if (invert)
988 c = bracket_fetch_wc (dfa);
989 known_bracket_exp = dfa->localeinfo.simple;
991 wint_t wc = dfa->lex.wctok;
992 int c1;
993 wint_t wc1;
994 colon_warning_state = (c == ':');
997 c1 = NOTCHAR; /* Mark c1 as not initialized. */
998 colon_warning_state &= ~2;
1000 /* Note that if we're looking at some other [:...:] construct,
1001 we just treat it as a bunch of ordinary characters. We can do
1002 this because we assume regex has checked for syntax errors before
1003 dfa is ever called. */
1004 if (c == '[')
1006 c1 = bracket_fetch_wc (dfa);
1007 wc1 = dfa->lex.wctok;
1009 if ((c1 == ':' && (dfa->syntax.syntax_bits & RE_CHAR_CLASSES))
1010 || c1 == '.' || c1 == '=')
1012 enum { MAX_BRACKET_STRING_LEN = 32 };
1013 char str[MAX_BRACKET_STRING_LEN + 1];
1014 int len = 0;
1015 for (;;)
1017 c = bracket_fetch_wc (dfa);
1018 if (dfa->lex.left == 0
1019 || (c == c1 && dfa->lex.ptr[0] == ']'))
1020 break;
1021 if (len < MAX_BRACKET_STRING_LEN)
1022 str[len++] = c;
1023 else
1024 /* This is in any case an invalid class name. */
1025 str[0] = '\0';
1027 str[len] = '\0';
1029 /* Fetch bracket. */
1030 c = bracket_fetch_wc (dfa);
1031 wc = dfa->lex.wctok;
1032 if (c1 == ':')
1033 /* Build character class. POSIX allows character
1034 classes to match multicharacter collating elements,
1035 but the regex code does not support that, so do not
1036 worry about that possibility. */
1038 char const *class
1039 = (dfa->syntax.case_fold && (streq (str, "upper")
1040 || streq (str, "lower"))
1041 ? "alpha" : str);
1042 const struct dfa_ctype *pred = find_pred (class);
1043 if (!pred)
1044 dfaerror (_("invalid character class"));
1046 if (dfa->localeinfo.multibyte && !pred->single_byte_only)
1047 known_bracket_exp = false;
1048 else
1049 for (int c2 = 0; c2 < NOTCHAR; ++c2)
1050 if (pred->func (c2))
1051 setbit (c2, &ccl);
1053 else
1054 known_bracket_exp = false;
1056 colon_warning_state |= 8;
1058 /* Fetch new lookahead character. */
1059 c1 = bracket_fetch_wc (dfa);
1060 wc1 = dfa->lex.wctok;
1061 continue;
1064 /* We treat '[' as a normal character here. c/c1/wc/wc1
1065 are already set up. */
1068 if (c == '\\'
1069 && (dfa->syntax.syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
1071 c = bracket_fetch_wc (dfa);
1072 wc = dfa->lex.wctok;
1075 if (c1 == NOTCHAR)
1077 c1 = bracket_fetch_wc (dfa);
1078 wc1 = dfa->lex.wctok;
1081 if (c1 == '-')
1082 /* build range characters. */
1084 int c2 = bracket_fetch_wc (dfa);
1085 wint_t wc2 = dfa->lex.wctok;
1087 /* A bracket expression like [a-[.aa.]] matches an unknown set.
1088 Treat it like [-a[.aa.]] while parsing it, and
1089 remember that the set is unknown. */
1090 if (c2 == '[' && dfa->lex.ptr[0] == '.')
1092 known_bracket_exp = false;
1093 c2 = ']';
1096 if (c2 == ']')
1098 /* In the case [x-], the - is an ordinary hyphen,
1099 which is left in c1, the lookahead character. */
1100 dfa->lex.ptr--;
1101 dfa->lex.left++;
1103 else
1105 if (c2 == '\\' && (dfa->syntax.syntax_bits
1106 & RE_BACKSLASH_ESCAPE_IN_LISTS))
1108 c2 = bracket_fetch_wc (dfa);
1109 wc2 = dfa->lex.wctok;
1112 colon_warning_state |= 8;
1113 c1 = bracket_fetch_wc (dfa);
1114 wc1 = dfa->lex.wctok;
1116 /* Treat [x-y] as a range if x != y. */
1117 if (wc != wc2 || wc == WEOF)
1119 if (dfa->localeinfo.simple
1120 || (isasciidigit (c) & isasciidigit (c2)))
1122 for (int ci = c; ci <= c2; ci++)
1123 if (dfa->syntax.case_fold && isalpha (ci))
1124 setbit_case_fold_c (ci, &ccl);
1125 else
1126 setbit (ci, &ccl);
1128 else
1129 known_bracket_exp = false;
1131 continue;
1136 colon_warning_state |= (c == ':') ? 2 : 4;
1138 if (!dfa->localeinfo.multibyte)
1140 if (dfa->syntax.case_fold && isalpha (c))
1141 setbit_case_fold_c (c, &ccl);
1142 else
1143 setbit (c, &ccl);
1144 continue;
1147 if (wc == WEOF)
1148 known_bracket_exp = false;
1149 else
1151 wchar_t folded[CASE_FOLDED_BUFSIZE + 1];
1152 int n = (dfa->syntax.case_fold
1153 ? case_folded_counterparts (wc, folded + 1) + 1
1154 : 1);
1155 folded[0] = wc;
1156 for (int i = 0; i < n; i++)
1157 if (!setbit_wc (folded[i], &ccl))
1159 dfa->lex.brack.chars
1160 = maybe_realloc (dfa->lex.brack.chars, dfa->lex.brack.nchars,
1161 &dfa->lex.brack.nchars_alloc, -1,
1162 sizeof *dfa->lex.brack.chars);
1163 dfa->lex.brack.chars[dfa->lex.brack.nchars++] = folded[i];
1167 while ((wc = wc1, (c = c1) != ']'));
1169 if (colon_warning_state == 7)
1170 dfawarn (_("character class syntax is [[:space:]], not [:space:]"));
1172 if (! known_bracket_exp)
1173 return BACKREF;
1175 if (dfa->localeinfo.multibyte && (invert || dfa->lex.brack.nchars != 0))
1177 dfa->lex.brack.invert = invert;
1178 dfa->lex.brack.cset = emptyset (&ccl) ? -1 : charclass_index (dfa, &ccl);
1179 return MBCSET;
1182 if (invert)
1184 notset (&ccl);
1185 if (dfa->syntax.syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
1186 clrbit ('\n', &ccl);
1189 return CSET + charclass_index (dfa, &ccl);
1192 struct lexptr
1194 char const *ptr;
1195 idx_t left;
1198 static void
1199 push_lex_state (struct dfa *dfa, struct lexptr *ls, char const *s)
1201 ls->ptr = dfa->lex.ptr;
1202 ls->left = dfa->lex.left;
1203 dfa->lex.ptr = s;
1204 dfa->lex.left = strlen (s);
1207 static void
1208 pop_lex_state (struct dfa *dfa, struct lexptr const *ls)
1210 dfa->lex.ptr = ls->ptr;
1211 dfa->lex.left = ls->left;
1214 static token
1215 lex (struct dfa *dfa)
1217 bool backslash = false;
1219 /* Basic plan: We fetch a character. If it's a backslash,
1220 we set the backslash flag and go through the loop again.
1221 On the plus side, this avoids having a duplicate of the
1222 main switch inside the backslash case. On the minus side,
1223 it means that just about every case begins with
1224 "if (backslash) ...". */
1225 for (int i = 0; i < 2; ++i)
1227 if (! dfa->lex.left)
1228 return dfa->lex.lasttok = END;
1229 int c = fetch_wc (dfa);
1231 switch (c)
1233 case '\\':
1234 if (backslash)
1235 goto normal_char;
1236 if (dfa->lex.left == 0)
1237 dfaerror (_("unfinished \\ escape"));
1238 backslash = true;
1239 break;
1241 case '^':
1242 if (backslash)
1243 goto normal_char;
1244 if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
1245 || dfa->lex.lasttok == END || dfa->lex.lasttok == LPAREN
1246 || dfa->lex.lasttok == OR)
1247 return dfa->lex.lasttok = BEGLINE;
1248 goto normal_char;
1250 case '$':
1251 if (backslash)
1252 goto normal_char;
1253 if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
1254 || dfa->lex.left == 0
1255 || ((dfa->lex.left
1256 > !(dfa->syntax.syntax_bits & RE_NO_BK_PARENS))
1257 && (dfa->lex.ptr[!(dfa->syntax.syntax_bits & RE_NO_BK_PARENS)
1258 & (dfa->lex.ptr[0] == '\\')]
1259 == ')'))
1260 || ((dfa->lex.left
1261 > !(dfa->syntax.syntax_bits & RE_NO_BK_VBAR))
1262 && (dfa->lex.ptr[!(dfa->syntax.syntax_bits & RE_NO_BK_VBAR)
1263 & (dfa->lex.ptr[0] == '\\')]
1264 == '|'))
1265 || ((dfa->syntax.syntax_bits & RE_NEWLINE_ALT)
1266 && dfa->lex.left > 0 && dfa->lex.ptr[0] == '\n'))
1267 return dfa->lex.lasttok = ENDLINE;
1268 goto normal_char;
1270 case '1':
1271 case '2':
1272 case '3':
1273 case '4':
1274 case '5':
1275 case '6':
1276 case '7':
1277 case '8':
1278 case '9':
1279 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_BK_REFS))
1281 dfa->lex.laststart = false;
1282 return dfa->lex.lasttok = BACKREF;
1284 goto normal_char;
1286 case '`':
1287 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1289 /* FIXME: should be beginning of string */
1290 return dfa->lex.lasttok = BEGLINE;
1292 goto normal_char;
1294 case '\'':
1295 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1297 /* FIXME: should be end of string */
1298 return dfa->lex.lasttok = ENDLINE;
1300 goto normal_char;
1302 case '<':
1303 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1304 return dfa->lex.lasttok = BEGWORD;
1305 goto normal_char;
1307 case '>':
1308 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1309 return dfa->lex.lasttok = ENDWORD;
1310 goto normal_char;
1312 case 'b':
1313 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1314 return dfa->lex.lasttok = LIMWORD;
1315 goto normal_char;
1317 case 'B':
1318 if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1319 return dfa->lex.lasttok = NOTLIMWORD;
1320 goto normal_char;
1322 case '?':
1323 if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
1324 goto normal_char;
1325 if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
1326 goto normal_char;
1327 if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
1328 && dfa->lex.laststart)
1329 goto normal_char;
1330 return dfa->lex.lasttok = QMARK;
1332 case '*':
1333 if (backslash)
1334 goto normal_char;
1335 if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
1336 && dfa->lex.laststart)
1337 goto normal_char;
1338 return dfa->lex.lasttok = STAR;
1340 case '+':
1341 if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
1342 goto normal_char;
1343 if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
1344 goto normal_char;
1345 if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
1346 && dfa->lex.laststart)
1347 goto normal_char;
1348 return dfa->lex.lasttok = PLUS;
1350 case '{':
1351 if (!(dfa->syntax.syntax_bits & RE_INTERVALS))
1352 goto normal_char;
1353 if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_BRACES) == 0))
1354 goto normal_char;
1355 if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
1356 && dfa->lex.laststart)
1357 goto normal_char;
1359 /* Cases:
1360 {M} - exact count
1361 {M,} - minimum count, maximum is infinity
1362 {,N} - 0 through N
1363 {,} - 0 to infinity (same as '*')
1364 {M,N} - M through N */
1366 char const *p = dfa->lex.ptr;
1367 char const *lim = p + dfa->lex.left;
1368 dfa->lex.minrep = dfa->lex.maxrep = -1;
1369 for (; p != lim && isasciidigit (*p); p++)
1370 dfa->lex.minrep = (dfa->lex.minrep < 0
1371 ? *p - '0'
1372 : MIN (RE_DUP_MAX + 1,
1373 dfa->lex.minrep * 10 + *p - '0'));
1374 if (p != lim)
1376 if (*p != ',')
1377 dfa->lex.maxrep = dfa->lex.minrep;
1378 else
1380 if (dfa->lex.minrep < 0)
1381 dfa->lex.minrep = 0;
1382 while (++p != lim && isasciidigit (*p))
1383 dfa->lex.maxrep
1384 = (dfa->lex.maxrep < 0
1385 ? *p - '0'
1386 : MIN (RE_DUP_MAX + 1,
1387 dfa->lex.maxrep * 10 + *p - '0'));
1390 if (! ((! backslash || (p != lim && *p++ == '\\'))
1391 && p != lim && *p++ == '}'
1392 && 0 <= dfa->lex.minrep
1393 && (dfa->lex.maxrep < 0
1394 || dfa->lex.minrep <= dfa->lex.maxrep)))
1396 if (dfa->syntax.syntax_bits & RE_INVALID_INTERVAL_ORD)
1397 goto normal_char;
1398 dfaerror (_("invalid content of \\{\\}"));
1400 if (RE_DUP_MAX < dfa->lex.maxrep)
1401 dfaerror (_("regular expression too big"));
1402 dfa->lex.ptr = p;
1403 dfa->lex.left = lim - p;
1405 dfa->lex.laststart = false;
1406 return dfa->lex.lasttok = REPMN;
1408 case '|':
1409 if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
1410 goto normal_char;
1411 if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_VBAR) == 0))
1412 goto normal_char;
1413 dfa->lex.laststart = true;
1414 return dfa->lex.lasttok = OR;
1416 case '\n':
1417 if (dfa->syntax.syntax_bits & RE_LIMITED_OPS
1418 || backslash || !(dfa->syntax.syntax_bits & RE_NEWLINE_ALT))
1419 goto normal_char;
1420 dfa->lex.laststart = true;
1421 return dfa->lex.lasttok = OR;
1423 case '(':
1424 if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
1425 goto normal_char;
1426 dfa->lex.parens++;
1427 dfa->lex.laststart = true;
1428 return dfa->lex.lasttok = LPAREN;
1430 case ')':
1431 if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
1432 goto normal_char;
1433 if (dfa->lex.parens == 0
1434 && dfa->syntax.syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
1435 goto normal_char;
1436 dfa->lex.parens--;
1437 dfa->lex.laststart = false;
1438 return dfa->lex.lasttok = RPAREN;
1440 case '.':
1441 if (backslash)
1442 goto normal_char;
1443 if (dfa->canychar < 0)
1445 charclass ccl;
1446 fillset (&ccl);
1447 if (!(dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
1448 clrbit ('\n', &ccl);
1449 if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
1450 clrbit ('\0', &ccl);
1451 if (dfa->localeinfo.multibyte)
1452 for (int c2 = 0; c2 < NOTCHAR; c2++)
1453 if (dfa->localeinfo.sbctowc[c2] == WEOF)
1454 clrbit (c2, &ccl);
1455 dfa->canychar = charclass_index (dfa, &ccl);
1457 dfa->lex.laststart = false;
1458 return dfa->lex.lasttok = (dfa->localeinfo.multibyte
1459 ? ANYCHAR
1460 : CSET + dfa->canychar);
1462 case 's':
1463 case 'S':
1464 if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1465 goto normal_char;
1466 if (!dfa->localeinfo.multibyte)
1468 charclass ccl;
1469 zeroset (&ccl);
1470 for (int c2 = 0; c2 < NOTCHAR; ++c2)
1471 if (isspace (c2))
1472 setbit (c2, &ccl);
1473 if (c == 'S')
1474 notset (&ccl);
1475 dfa->lex.laststart = false;
1476 return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
1479 /* FIXME: see if optimizing this, as is done with ANYCHAR and
1480 add_utf8_anychar, makes sense. */
1482 /* \s and \S are documented to be equivalent to [[:space:]] and
1483 [^[:space:]] respectively, so tell the lexer to process those
1484 strings, each minus its "already processed" '['. */
1486 struct lexptr ls;
1487 push_lex_state (dfa, &ls, &"^[:space:]]"[c == 's']);
1488 dfa->lex.lasttok = parse_bracket_exp (dfa);
1489 pop_lex_state (dfa, &ls);
1492 dfa->lex.laststart = false;
1493 return dfa->lex.lasttok;
1495 case 'w':
1496 case 'W':
1497 if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
1498 goto normal_char;
1500 if (!dfa->localeinfo.multibyte)
1502 charclass ccl;
1503 zeroset (&ccl);
1504 for (int c2 = 0; c2 < NOTCHAR; ++c2)
1505 if (dfa->syntax.sbit[c2] == CTX_LETTER)
1506 setbit (c2, &ccl);
1507 if (c == 'W')
1508 notset (&ccl);
1509 dfa->lex.laststart = false;
1510 return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
1513 /* FIXME: see if optimizing this, as is done with ANYCHAR and
1514 add_utf8_anychar, makes sense. */
1516 /* \w and \W are documented to be equivalent to [_[:alnum:]] and
1517 [^_[:alnum:]] respectively, so tell the lexer to process those
1518 strings, each minus its "already processed" '['. */
1520 struct lexptr ls;
1521 push_lex_state (dfa, &ls, &"^_[:alnum:]]"[c == 'w']);
1522 dfa->lex.lasttok = parse_bracket_exp (dfa);
1523 pop_lex_state (dfa, &ls);
1526 dfa->lex.laststart = false;
1527 return dfa->lex.lasttok;
1529 case '[':
1530 if (backslash)
1531 goto normal_char;
1532 dfa->lex.laststart = false;
1533 return dfa->lex.lasttok = parse_bracket_exp (dfa);
1535 default:
1536 normal_char:
1537 dfa->lex.laststart = false;
1538 /* For multibyte character sets, folding is done in atom. Always
1539 return WCHAR. */
1540 if (dfa->localeinfo.multibyte)
1541 return dfa->lex.lasttok = WCHAR;
1543 if (dfa->syntax.case_fold && isalpha (c))
1545 charclass ccl;
1546 zeroset (&ccl);
1547 setbit_case_fold_c (c, &ccl);
1548 return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
1551 return dfa->lex.lasttok = c;
1555 /* The above loop should consume at most a backslash
1556 and some other character. */
1557 abort ();
1558 return END; /* keeps pedantic compilers happy. */
1561 static void
1562 addtok_mb (struct dfa *dfa, token t, char mbprop)
1564 if (dfa->talloc == dfa->tindex)
1566 dfa->tokens = xpalloc (dfa->tokens, &dfa->talloc, 1, -1,
1567 sizeof *dfa->tokens);
1568 if (dfa->localeinfo.multibyte)
1569 dfa->multibyte_prop = xnrealloc (dfa->multibyte_prop, dfa->talloc,
1570 sizeof *dfa->multibyte_prop);
1572 if (dfa->localeinfo.multibyte)
1573 dfa->multibyte_prop[dfa->tindex] = mbprop;
1574 dfa->tokens[dfa->tindex++] = t;
1576 switch (t)
1578 case QMARK:
1579 case STAR:
1580 case PLUS:
1581 break;
1583 case CAT:
1584 case OR:
1585 dfa->parse.depth--;
1586 break;
1588 case BACKREF:
1589 dfa->fast = false;
1590 FALLTHROUGH;
1591 default:
1592 dfa->nleaves++;
1593 FALLTHROUGH;
1594 case EMPTY:
1595 dfa->parse.depth++;
1596 break;
1598 if (dfa->parse.depth > dfa->depth)
1599 dfa->depth = dfa->parse.depth;
1602 static void addtok_wc (struct dfa *dfa, wint_t wc);
1604 /* Add the given token to the parse tree, maintaining the depth count and
1605 updating the maximum depth if necessary. */
1606 static void
1607 addtok (struct dfa *dfa, token t)
1609 if (dfa->localeinfo.multibyte && t == MBCSET)
1611 bool need_or = false;
1613 /* Extract wide characters into alternations for better performance.
1614 This does not require UTF-8. */
1615 for (idx_t i = 0; i < dfa->lex.brack.nchars; i++)
1617 addtok_wc (dfa, dfa->lex.brack.chars[i]);
1618 if (need_or)
1619 addtok (dfa, OR);
1620 need_or = true;
1622 dfa->lex.brack.nchars = 0;
1624 /* Wide characters have been handled above, so it is possible
1625 that the set is empty now. Do nothing in that case. */
1626 if (dfa->lex.brack.cset != -1)
1628 addtok (dfa, CSET + dfa->lex.brack.cset);
1629 if (need_or)
1630 addtok (dfa, OR);
1633 else
1635 addtok_mb (dfa, t, 3);
1639 /* We treat a multibyte character as a single atom, so that DFA
1640 can treat a multibyte character as a single expression.
1642 e.g., we construct the following tree from "<mb1><mb2>".
1643 <mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
1644 <mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT> */
1645 static void
1646 addtok_wc (struct dfa *dfa, wint_t wc)
1648 unsigned char buf[MB_LEN_MAX];
1649 mbstate_t s = { 0 };
1650 size_t stored_bytes = wcrtomb ((char *) buf, wc, &s);
1651 int buflen;
1653 if (stored_bytes != (size_t) -1)
1654 buflen = stored_bytes;
1655 else
1657 /* This is merely stop-gap. buf[0] is undefined, yet skipping
1658 the addtok_mb call altogether can corrupt the heap. */
1659 buflen = 1;
1660 buf[0] = 0;
1663 addtok_mb (dfa, buf[0], buflen == 1 ? 3 : 1);
1664 for (int i = 1; i < buflen; i++)
1666 addtok_mb (dfa, buf[i], i == buflen - 1 ? 2 : 0);
1667 addtok (dfa, CAT);
1671 static void
1672 add_utf8_anychar (struct dfa *dfa)
1674 /* Since the Unicode Standard Version 4.0.0 (2003), a well-formed
1675 UTF-8 byte sequence has been defined as follows:
1677 ([\x00-\x7f]
1678 |[\xc2-\xdf][\x80-\xbf]
1679 |[\xe0][\xa0-\xbf][\x80-\xbf]
1680 |[\xe1-\xec\xee-\xef][\x80-\xbf][\x80-\xbf]
1681 |[\xed][\x80-\x9f][\x80-\xbf]
1682 |[\xf0][\x90-\xbf][\x80-\xbf][\x80-\xbf])
1683 |[\xf1-\xf3][\x80-\xbf][\x80-\xbf][\x80-\xbf]
1684 |[\xf4][\x80-\x8f][\x80-\xbf][\x80-\xbf])
1686 which I'll write more concisely "A|BC|DEC|FCC|GHC|IJCC|KCCC|LMCC",
1687 where A = [\x00-\x7f], B = [\xc2-\xdf], C = [\x80-\xbf],
1688 D = [\xe0], E = [\xa0-\xbf], F = [\xe1-\xec\xee-\xef], G = [\xed],
1689 H = [\x80-\x9f], I = [\xf0],
1690 J = [\x90-\xbf], K = [\xf1-\xf3], L = [\xf4], M = [\x80-\x8f].
1692 This can be refactored to "A|(B|DE|GH|(F|IJ|LM|KC)C)C". */
1694 /* Mnemonics for classes containing two or more bytes. */
1695 enum { A, B, C, E, F, H, J, K, M };
1697 /* Mnemonics for single-byte tokens. */
1698 enum { D_token = 0xe0, G_token = 0xed, I_token = 0xf0, L_token = 0xf4 };
1700 static charclass const utf8_classes[] = {
1701 /* A. 00-7f: 1-byte sequence. */
1702 CHARCLASS_INIT (0xffffffffffffffff, 0xffffffffffffffff, 0, 0),
1704 /* B. c2-df: 1st byte of a 2-byte sequence. */
1705 CHARCLASS_INIT (0, 0, 0, 0x00000000fffffffc),
1707 /* C. 80-bf: non-leading bytes. */
1708 CHARCLASS_INIT (0, 0, 0xffffffffffffffff, 0),
1710 /* D. e0 (just a token). */
1712 /* E. a0-bf: 2nd byte of a "DEC" sequence. */
1713 CHARCLASS_INIT (0, 0, 0xffffffff00000000, 0),
1715 /* F. e1-ec + ee-ef: 1st byte of an "FCC" sequence. */
1716 CHARCLASS_INIT (0, 0, 0, 0x0000dffe00000000),
1718 /* G. ed (just a token). */
1720 /* H. 80-9f: 2nd byte of a "GHC" sequence. */
1721 CHARCLASS_INIT (0, 0, 0x000000000000ffff, 0),
1723 /* I. f0 (just a token). */
1725 /* J. 90-bf: 2nd byte of an "IJCC" sequence. */
1726 CHARCLASS_INIT (0, 0, 0xffffffffffff0000, 0),
1728 /* K. f1-f3: 1st byte of a "KCCC" sequence. */
1729 CHARCLASS_INIT (0, 0, 0, 0x000e000000000000),
1731 /* L. f4 (just a token). */
1733 /* M. 80-8f: 2nd byte of a "LMCC" sequence. */
1734 CHARCLASS_INIT (0, 0, 0x00000000000000ff, 0),
1737 /* Define the character classes that are needed below. */
1738 if (dfa->utf8_anychar_classes[0] == 0)
1740 charclass c = utf8_classes[0];
1741 if (! (dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
1742 clrbit ('\n', &c);
1743 if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
1744 clrbit ('\0', &c);
1745 dfa->utf8_anychar_classes[0] = CSET + charclass_index (dfa, &c);
1747 for (int i = 1; i < sizeof utf8_classes / sizeof *utf8_classes; i++)
1748 dfa->utf8_anychar_classes[i]
1749 = CSET + charclass_index (dfa, &utf8_classes[i]);
1752 /* Implement the "A|(B|DE|GH|(F|IJ|LM|KC)C)C" pattern mentioned above.
1753 The token buffer is in reverse Polish order, so we get
1754 "A B D E CAT OR G H CAT OR F I J CAT OR L M CAT OR K
1755 C CAT OR C CAT OR C CAT OR". */
1756 addtok (dfa, dfa->utf8_anychar_classes[A]);
1757 addtok (dfa, dfa->utf8_anychar_classes[B]);
1758 addtok (dfa, D_token);
1759 addtok (dfa, dfa->utf8_anychar_classes[E]);
1760 addtok (dfa, CAT);
1761 addtok (dfa, OR);
1762 addtok (dfa, G_token);
1763 addtok (dfa, dfa->utf8_anychar_classes[H]);
1764 addtok (dfa, CAT);
1765 addtok (dfa, OR);
1766 addtok (dfa, dfa->utf8_anychar_classes[F]);
1767 addtok (dfa, I_token);
1768 addtok (dfa, dfa->utf8_anychar_classes[J]);
1769 addtok (dfa, CAT);
1770 addtok (dfa, OR);
1771 addtok (dfa, L_token);
1772 addtok (dfa, dfa->utf8_anychar_classes[M]);
1773 addtok (dfa, CAT);
1774 addtok (dfa, OR);
1775 addtok (dfa, dfa->utf8_anychar_classes[K]);
1776 for (int i = 0; i < 3; i++)
1778 addtok (dfa, dfa->utf8_anychar_classes[C]);
1779 addtok (dfa, CAT);
1780 addtok (dfa, OR);
1784 /* The grammar understood by the parser is as follows.
1786 regexp:
1787 regexp OR branch
1788 branch
1790 branch:
1791 branch closure
1792 closure
1794 closure:
1795 closure QMARK
1796 closure STAR
1797 closure PLUS
1798 closure REPMN
1799 atom
1801 atom:
1802 <normal character>
1803 <multibyte character>
1804 ANYCHAR
1805 MBCSET
1806 CSET
1807 BACKREF
1808 BEGLINE
1809 ENDLINE
1810 BEGWORD
1811 ENDWORD
1812 LIMWORD
1813 NOTLIMWORD
1814 LPAREN regexp RPAREN
1815 <empty>
1817 The parser builds a parse tree in postfix form in an array of tokens. */
1819 static void
1820 atom (struct dfa *dfa)
1822 if ((0 <= dfa->parse.tok && dfa->parse.tok < NOTCHAR)
1823 || dfa->parse.tok >= CSET
1824 || dfa->parse.tok == BEG || dfa->parse.tok == BACKREF
1825 || dfa->parse.tok == BEGLINE || dfa->parse.tok == ENDLINE
1826 || dfa->parse.tok == BEGWORD || dfa->parse.tok == ENDWORD
1827 || dfa->parse.tok == LIMWORD || dfa->parse.tok == NOTLIMWORD
1828 || dfa->parse.tok == ANYCHAR || dfa->parse.tok == MBCSET)
1830 if (dfa->parse.tok == ANYCHAR && dfa->localeinfo.using_utf8)
1832 /* For UTF-8 expand the period to a series of CSETs that define a
1833 valid UTF-8 character. This avoids using the slow multibyte
1834 path. I'm pretty sure it would be both profitable and correct to
1835 do it for any encoding; however, the optimization must be done
1836 manually as it is done above in add_utf8_anychar. So, let's
1837 start with UTF-8: it is the most used, and the structure of the
1838 encoding makes the correctness more obvious. */
1839 add_utf8_anychar (dfa);
1841 else
1842 addtok (dfa, dfa->parse.tok);
1843 dfa->parse.tok = lex (dfa);
1845 else if (dfa->parse.tok == WCHAR)
1847 if (dfa->lex.wctok == WEOF)
1848 addtok (dfa, BACKREF);
1849 else
1851 addtok_wc (dfa, dfa->lex.wctok);
1853 if (dfa->syntax.case_fold)
1855 wchar_t folded[CASE_FOLDED_BUFSIZE];
1856 int n = case_folded_counterparts (dfa->lex.wctok, folded);
1857 for (int i = 0; i < n; i++)
1859 addtok_wc (dfa, folded[i]);
1860 addtok (dfa, OR);
1865 dfa->parse.tok = lex (dfa);
1867 else if (dfa->parse.tok == LPAREN)
1869 dfa->parse.tok = lex (dfa);
1870 regexp (dfa);
1871 if (dfa->parse.tok != RPAREN)
1872 dfaerror (_("unbalanced ("));
1873 dfa->parse.tok = lex (dfa);
1875 else
1876 addtok (dfa, EMPTY);
1879 /* Return the number of tokens in the given subexpression. */
1880 static idx_t _GL_ATTRIBUTE_PURE
1881 nsubtoks (struct dfa const *dfa, idx_t tindex)
1883 switch (dfa->tokens[tindex - 1])
1885 default:
1886 return 1;
1887 case QMARK:
1888 case STAR:
1889 case PLUS:
1890 return 1 + nsubtoks (dfa, tindex - 1);
1891 case CAT:
1892 case OR:
1894 idx_t ntoks1 = nsubtoks (dfa, tindex - 1);
1895 return 1 + ntoks1 + nsubtoks (dfa, tindex - 1 - ntoks1);
1900 /* Copy the given subexpression to the top of the tree. */
1901 static void
1902 copytoks (struct dfa *dfa, idx_t tindex, idx_t ntokens)
1904 if (dfa->localeinfo.multibyte)
1905 for (idx_t i = 0; i < ntokens; i++)
1906 addtok_mb (dfa, dfa->tokens[tindex + i],
1907 dfa->multibyte_prop[tindex + i]);
1908 else
1909 for (idx_t i = 0; i < ntokens; i++)
1910 addtok_mb (dfa, dfa->tokens[tindex + i], 3);
1913 static void
1914 closure (struct dfa *dfa)
1916 atom (dfa);
1917 while (dfa->parse.tok == QMARK || dfa->parse.tok == STAR
1918 || dfa->parse.tok == PLUS || dfa->parse.tok == REPMN)
1919 if (dfa->parse.tok == REPMN && (dfa->lex.minrep || dfa->lex.maxrep))
1921 idx_t ntokens = nsubtoks (dfa, dfa->tindex);
1922 idx_t tindex = dfa->tindex - ntokens;
1923 if (dfa->lex.maxrep < 0)
1924 addtok (dfa, PLUS);
1925 if (dfa->lex.minrep == 0)
1926 addtok (dfa, QMARK);
1927 int i;
1928 for (i = 1; i < dfa->lex.minrep; i++)
1930 copytoks (dfa, tindex, ntokens);
1931 addtok (dfa, CAT);
1933 for (; i < dfa->lex.maxrep; i++)
1935 copytoks (dfa, tindex, ntokens);
1936 addtok (dfa, QMARK);
1937 addtok (dfa, CAT);
1939 dfa->parse.tok = lex (dfa);
1941 else if (dfa->parse.tok == REPMN)
1943 dfa->tindex -= nsubtoks (dfa, dfa->tindex);
1944 dfa->parse.tok = lex (dfa);
1945 closure (dfa);
1947 else
1949 addtok (dfa, dfa->parse.tok);
1950 dfa->parse.tok = lex (dfa);
1954 static void
1955 branch (struct dfa* dfa)
1957 closure (dfa);
1958 while (dfa->parse.tok != RPAREN && dfa->parse.tok != OR
1959 && dfa->parse.tok >= 0)
1961 closure (dfa);
1962 addtok (dfa, CAT);
1966 static void
1967 regexp (struct dfa *dfa)
1969 branch (dfa);
1970 while (dfa->parse.tok == OR)
1972 dfa->parse.tok = lex (dfa);
1973 branch (dfa);
1974 addtok (dfa, OR);
1978 /* Parse a string S of length LEN into D. S can include NUL characters.
1979 This is the main entry point for the parser. */
1980 void
1981 dfaparse (char const *s, idx_t len, struct dfa *d)
1983 d->lex.ptr = s;
1984 d->lex.left = len;
1985 d->lex.lasttok = END;
1986 d->lex.laststart = true;
1988 if (!d->syntax.syntax_bits_set)
1989 dfaerror (_("no syntax specified"));
1991 if (!d->nregexps)
1992 addtok (d, BEG);
1994 d->parse.tok = lex (d);
1995 d->parse.depth = d->depth;
1997 regexp (d);
1999 if (d->parse.tok != END)
2000 dfaerror (_("unbalanced )"));
2002 addtok (d, END - d->nregexps);
2003 addtok (d, CAT);
2005 if (d->nregexps)
2006 addtok (d, OR);
2008 ++d->nregexps;
2011 /* Some primitives for operating on sets of positions. */
2013 /* Copy one set to another. */
2014 static void
2015 copy (position_set const *src, position_set *dst)
2017 if (dst->alloc < src->nelem)
2019 free (dst->elems);
2020 dst->elems = xpalloc (NULL, &dst->alloc, src->nelem - dst->alloc, -1,
2021 sizeof *dst->elems);
2023 dst->nelem = src->nelem;
2024 if (src->nelem != 0)
2025 memcpy (dst->elems, src->elems, src->nelem * sizeof *dst->elems);
2028 static void
2029 alloc_position_set (position_set *s, idx_t size)
2031 s->elems = xnmalloc (size, sizeof *s->elems);
2032 s->alloc = size;
2033 s->nelem = 0;
2036 /* Insert position P in set S. S is maintained in sorted order on
2037 decreasing index. If there is already an entry in S with P.index
2038 then merge (logically-OR) P's constraints into the one in S.
2039 S->elems must point to an array large enough to hold the resulting set. */
2040 static void
2041 insert (position p, position_set *s)
2043 idx_t count = s->nelem;
2044 idx_t lo = 0, hi = count;
2045 while (lo < hi)
2047 idx_t mid = (lo + hi) >> 1;
2048 if (s->elems[mid].index < p.index)
2049 lo = mid + 1;
2050 else if (s->elems[mid].index == p.index)
2052 s->elems[mid].constraint |= p.constraint;
2053 return;
2055 else
2056 hi = mid;
2059 s->elems = maybe_realloc (s->elems, count, &s->alloc, -1, sizeof *s->elems);
2060 for (idx_t i = count; i > lo; i--)
2061 s->elems[i] = s->elems[i - 1];
2062 s->elems[lo] = p;
2063 ++s->nelem;
2066 static void
2067 append (position p, position_set *s)
2069 idx_t count = s->nelem;
2070 s->elems = maybe_realloc (s->elems, count, &s->alloc, -1, sizeof *s->elems);
2071 s->elems[s->nelem++] = p;
2074 /* Merge S1 and S2 (with the additional constraint C2) into M. The
2075 result is as if the positions of S1, and of S2 with the additional
2076 constraint C2, were inserted into an initially empty set. */
2077 static void
2078 merge_constrained (position_set const *s1, position_set const *s2,
2079 unsigned int c2, position_set *m)
2081 idx_t i = 0, j = 0;
2083 if (m->alloc - s1->nelem < s2->nelem)
2085 free (m->elems);
2086 m->alloc = s1->nelem;
2087 m->elems = xpalloc (NULL, &m->alloc, s2->nelem, -1, sizeof *m->elems);
2089 m->nelem = 0;
2090 while (i < s1->nelem || j < s2->nelem)
2091 if (! (j < s2->nelem)
2092 || (i < s1->nelem && s1->elems[i].index <= s2->elems[j].index))
2094 unsigned int c = ((i < s1->nelem && j < s2->nelem
2095 && s1->elems[i].index == s2->elems[j].index)
2096 ? s2->elems[j++].constraint & c2
2097 : 0);
2098 m->elems[m->nelem].index = s1->elems[i].index;
2099 m->elems[m->nelem++].constraint = s1->elems[i++].constraint | c;
2101 else
2103 if (s2->elems[j].constraint & c2)
2105 m->elems[m->nelem].index = s2->elems[j].index;
2106 m->elems[m->nelem++].constraint = s2->elems[j].constraint & c2;
2108 j++;
2112 /* Merge two sets of positions into a third. The result is exactly as if
2113 the positions of both sets were inserted into an initially empty set. */
2114 static void
2115 merge (position_set const *s1, position_set const *s2, position_set *m)
2117 merge_constrained (s1, s2, -1, m);
2120 static void
2121 merge2 (position_set *dst, position_set const *src, position_set *m)
2123 if (src->nelem < 4)
2125 for (idx_t i = 0; i < src->nelem; i++)
2126 insert (src->elems[i], dst);
2128 else
2130 merge (src, dst, m);
2131 copy (m, dst);
2135 /* Delete a position from a set. Return the nonzero constraint of the
2136 deleted position, or zero if there was no such position. */
2137 static unsigned int
2138 delete (idx_t del, position_set *s)
2140 idx_t count = s->nelem;
2141 idx_t lo = 0, hi = count;
2142 while (lo < hi)
2144 idx_t mid = (lo + hi) >> 1;
2145 if (s->elems[mid].index < del)
2146 lo = mid + 1;
2147 else if (s->elems[mid].index == del)
2149 unsigned int c = s->elems[mid].constraint;
2150 idx_t i;
2151 for (i = mid; i + 1 < count; i++)
2152 s->elems[i] = s->elems[i + 1];
2153 s->nelem = i;
2154 return c;
2156 else
2157 hi = mid;
2159 return 0;
2162 /* Replace a position with the followed set. */
2163 static void
2164 replace (position_set *dst, idx_t del, position_set *add,
2165 unsigned int constraint, position_set *tmp)
2167 unsigned int c = delete (del, dst) & constraint;
2169 if (c)
2171 copy (dst, tmp);
2172 merge_constrained (tmp, add, c, dst);
2176 /* Find the index of the state corresponding to the given position set with
2177 the given preceding context, or create a new state if there is no such
2178 state. Context tells whether we got here on a newline or letter. */
2179 static state_num
2180 state_index (struct dfa *d, position_set const *s, int context)
2182 size_t hash = 0;
2183 int constraint = 0;
2184 state_num i;
2185 token first_end = 0;
2187 for (i = 0; i < s->nelem; ++i)
2189 size_t ind = s->elems[i].index;
2190 hash ^= ind + s->elems[i].constraint;
2193 /* Try to find a state that exactly matches the proposed one. */
2194 for (i = 0; i < d->sindex; ++i)
2196 if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
2197 || context != d->states[i].context)
2198 continue;
2199 state_num j;
2200 for (j = 0; j < s->nelem; ++j)
2201 if (s->elems[j].constraint != d->states[i].elems.elems[j].constraint
2202 || s->elems[j].index != d->states[i].elems.elems[j].index)
2203 break;
2204 if (j == s->nelem)
2205 return i;
2208 #ifdef DEBUG
2209 fprintf (stderr, "new state %td\n nextpos:", i);
2210 for (state_num j = 0; j < s->nelem; j++)
2212 fprintf (stderr, " %td:", s->elems[j].index);
2213 prtok (d->tokens[s->elems[j].index]);
2215 fprintf (stderr, "\n context:");
2216 if (context ^ CTX_ANY)
2218 if (context & CTX_NONE)
2219 fprintf (stderr, " CTX_NONE");
2220 if (context & CTX_LETTER)
2221 fprintf (stderr, " CTX_LETTER");
2222 if (context & CTX_NEWLINE)
2223 fprintf (stderr, " CTX_NEWLINE");
2225 else
2226 fprintf (stderr, " CTX_ANY");
2227 fprintf (stderr, "\n");
2228 #endif
2230 for (state_num j = 0; j < s->nelem; j++)
2232 int c = d->constraints[s->elems[j].index];
2234 if (c != 0)
2236 if (succeeds_in_context (c, context, CTX_ANY))
2237 constraint |= c;
2238 if (!first_end)
2239 first_end = d->tokens[s->elems[j].index];
2241 else if (d->tokens[s->elems[j].index] == BACKREF)
2242 constraint = NO_CONSTRAINT;
2246 /* Create a new state. */
2247 d->states = maybe_realloc (d->states, d->sindex, &d->salloc, -1,
2248 sizeof *d->states);
2249 d->states[i].hash = hash;
2250 alloc_position_set (&d->states[i].elems, s->nelem);
2251 copy (s, &d->states[i].elems);
2252 d->states[i].context = context;
2253 d->states[i].constraint = constraint;
2254 d->states[i].first_end = first_end;
2255 d->states[i].mbps.nelem = 0;
2256 d->states[i].mbps.elems = NULL;
2257 d->states[i].mb_trindex = -1;
2259 ++d->sindex;
2261 return i;
2264 /* Find the epsilon closure of a set of positions. If any position of the set
2265 contains a symbol that matches the empty string in some context, replace
2266 that position with the elements of its follow labeled with an appropriate
2267 constraint. Repeat exhaustively until no funny positions are left.
2268 S->elems must be large enough to hold the result. */
2269 static void
2270 epsclosure (struct dfa const *d)
2272 position_set tmp;
2273 alloc_position_set (&tmp, d->nleaves);
2274 for (idx_t i = 0; i < d->tindex; i++)
2275 if (d->follows[i].nelem > 0 && d->tokens[i] >= NOTCHAR
2276 && d->tokens[i] != BACKREF && d->tokens[i] != ANYCHAR
2277 && d->tokens[i] != MBCSET && d->tokens[i] < CSET)
2279 unsigned int constraint;
2280 switch (d->tokens[i])
2282 case BEGLINE:
2283 constraint = BEGLINE_CONSTRAINT;
2284 break;
2285 case ENDLINE:
2286 constraint = ENDLINE_CONSTRAINT;
2287 break;
2288 case BEGWORD:
2289 constraint = BEGWORD_CONSTRAINT;
2290 break;
2291 case ENDWORD:
2292 constraint = ENDWORD_CONSTRAINT;
2293 break;
2294 case LIMWORD:
2295 constraint = LIMWORD_CONSTRAINT;
2296 break;
2297 case NOTLIMWORD:
2298 constraint = NOTLIMWORD_CONSTRAINT;
2299 break;
2300 default:
2301 constraint = NO_CONSTRAINT;
2302 break;
2305 delete (i, &d->follows[i]);
2307 for (idx_t j = 0; j < d->tindex; j++)
2308 if (i != j && d->follows[j].nelem > 0)
2309 replace (&d->follows[j], i, &d->follows[i], constraint, &tmp);
2311 free (tmp.elems);
2314 /* Returns the set of contexts for which there is at least one
2315 character included in C. */
2317 static int
2318 charclass_context (struct dfa const *dfa, charclass const *c)
2320 int context = 0;
2322 for (int j = 0; j < CHARCLASS_WORDS; j++)
2324 if (c->w[j] & dfa->syntax.newline.w[j])
2325 context |= CTX_NEWLINE;
2326 if (c->w[j] & dfa->syntax.letters.w[j])
2327 context |= CTX_LETTER;
2328 if (c->w[j] & ~(dfa->syntax.letters.w[j] | dfa->syntax.newline.w[j]))
2329 context |= CTX_NONE;
2332 return context;
2335 /* Returns the contexts on which the position set S depends. Each context
2336 in the set of returned contexts (let's call it SC) may have a different
2337 follow set than other contexts in SC, and also different from the
2338 follow set of the complement set (sc ^ CTX_ANY). However, all contexts
2339 in the complement set will have the same follow set. */
2341 static int _GL_ATTRIBUTE_PURE
2342 state_separate_contexts (struct dfa *d, position_set const *s)
2344 int separate_contexts = 0;
2346 for (idx_t j = 0; j < s->nelem; j++)
2347 separate_contexts |= d->separates[s->elems[j].index];
2349 return separate_contexts;
2352 enum
2354 /* Single token is repeated. It is distinguished from non-repeated. */
2355 OPT_REPEAT = (1 << 0),
2357 /* Multiple tokens are repeated. This flag is on at head of tokens. The
2358 node is not merged. */
2359 OPT_LPAREN = (1 << 1),
2361 /* Multiple branches are joined. The node is not merged. */
2362 OPT_RPAREN = (1 << 2),
2364 /* The node is walked. If the node is found in walking again, OPT_RPAREN
2365 flag is turned on. */
2366 OPT_WALKED = (1 << 3),
2368 /* The node is queued. The node is not queued again. */
2369 OPT_QUEUED = (1 << 4)
2372 static void
2373 merge_nfa_state (struct dfa *d, idx_t tindex, char *flags,
2374 position_set *merged)
2376 position_set *follows = d->follows;
2377 idx_t nelem = 0;
2379 d->constraints[tindex] = 0;
2381 for (idx_t i = 0; i < follows[tindex].nelem; i++)
2383 idx_t sindex = follows[tindex].elems[i].index;
2385 /* Skip the node as pruned in future. */
2386 unsigned int iconstraint = follows[tindex].elems[i].constraint;
2387 if (iconstraint == 0)
2388 continue;
2390 if (d->tokens[follows[tindex].elems[i].index] <= END)
2392 d->constraints[tindex] |= follows[tindex].elems[i].constraint;
2393 continue;
2396 if (!(flags[sindex] & (OPT_LPAREN | OPT_RPAREN)))
2398 idx_t j;
2400 for (j = 0; j < nelem; j++)
2402 idx_t dindex = follows[tindex].elems[j].index;
2404 if (follows[tindex].elems[j].constraint != iconstraint)
2405 continue;
2407 if (flags[dindex] & (OPT_LPAREN | OPT_RPAREN))
2408 continue;
2410 if (d->tokens[sindex] != d->tokens[dindex])
2411 continue;
2413 if ((flags[sindex] ^ flags[dindex]) & OPT_REPEAT)
2414 continue;
2416 if (flags[sindex] & OPT_REPEAT)
2417 delete (sindex, &follows[sindex]);
2419 merge2 (&follows[dindex], &follows[sindex], merged);
2421 break;
2424 if (j < nelem)
2425 continue;
2428 follows[tindex].elems[nelem++] = follows[tindex].elems[i];
2429 flags[sindex] |= OPT_QUEUED;
2432 follows[tindex].nelem = nelem;
2435 static int
2436 compare (const void *a, const void *b)
2438 position const *p = a, *q = b;
2439 return p->index < q->index ? -1 : p->index > q->index;
2442 static void
2443 reorder_tokens (struct dfa *d)
2445 idx_t nleaves;
2446 ptrdiff_t *map;
2447 token *tokens;
2448 position_set *follows;
2449 int *constraints;
2450 char *multibyte_prop;
2452 nleaves = 0;
2454 map = xnmalloc (d->tindex, sizeof *map);
2456 map[0] = nleaves++;
2458 for (idx_t i = 1; i < d->tindex; i++)
2459 map[i] = -1;
2461 tokens = xnmalloc (d->nleaves, sizeof *tokens);
2462 follows = xnmalloc (d->nleaves, sizeof *follows);
2463 constraints = xnmalloc (d->nleaves, sizeof *constraints);
2465 if (d->localeinfo.multibyte)
2466 multibyte_prop = xnmalloc (d->nleaves, sizeof *multibyte_prop);
2467 else
2468 multibyte_prop = NULL;
2470 for (idx_t i = 0; i < d->tindex; i++)
2472 if (map[i] == -1)
2474 free (d->follows[i].elems);
2475 d->follows[i].elems = NULL;
2476 d->follows[i].nelem = 0;
2477 continue;
2480 tokens[map[i]] = d->tokens[i];
2481 follows[map[i]] = d->follows[i];
2482 constraints[map[i]] = d->constraints[i];
2484 if (multibyte_prop != NULL)
2485 multibyte_prop[map[i]] = d->multibyte_prop[i];
2487 for (idx_t j = 0; j < d->follows[i].nelem; j++)
2489 if (map[d->follows[i].elems[j].index] == -1)
2490 map[d->follows[i].elems[j].index] = nleaves++;
2492 d->follows[i].elems[j].index = map[d->follows[i].elems[j].index];
2495 qsort (d->follows[i].elems, d->follows[i].nelem,
2496 sizeof *d->follows[i].elems, compare);
2499 for (idx_t i = 0; i < nleaves; i++)
2501 d->tokens[i] = tokens[i];
2502 d->follows[i] = follows[i];
2503 d->constraints[i] = constraints[i];
2505 if (multibyte_prop != NULL)
2506 d->multibyte_prop[i] = multibyte_prop[i];
2509 d->tindex = d->nleaves = nleaves;
2511 free (tokens);
2512 free (follows);
2513 free (constraints);
2514 free (multibyte_prop);
2515 free (map);
2518 static void
2519 dfaoptimize (struct dfa *d)
2521 char *flags = xzalloc (d->tindex);
2523 for (idx_t i = 0; i < d->tindex; i++)
2525 for (idx_t j = 0; j < d->follows[i].nelem; j++)
2527 if (d->follows[i].elems[j].index == i)
2528 flags[d->follows[i].elems[j].index] |= OPT_REPEAT;
2529 else if (d->follows[i].elems[j].index < i)
2530 flags[d->follows[i].elems[j].index] |= OPT_LPAREN;
2531 else if (flags[d->follows[i].elems[j].index] &= OPT_WALKED)
2532 flags[d->follows[i].elems[j].index] |= OPT_RPAREN;
2533 else
2534 flags[d->follows[i].elems[j].index] |= OPT_WALKED;
2538 flags[0] |= OPT_QUEUED;
2540 position_set merged0;
2541 position_set *merged = &merged0;
2542 alloc_position_set (merged, d->nleaves);
2544 d->constraints = xnmalloc (d->tindex, sizeof *d->constraints);
2546 for (idx_t i = 0; i < d->tindex; i++)
2547 if (flags[i] & OPT_QUEUED)
2548 merge_nfa_state (d, i, flags, merged);
2550 reorder_tokens (d);
2552 free (merged->elems);
2553 free (flags);
2556 /* Perform bottom-up analysis on the parse tree, computing various functions.
2557 Note that at this point, we're pretending constructs like \< are real
2558 characters rather than constraints on what can follow them.
2560 Nullable: A node is nullable if it is at the root of a regexp that can
2561 match the empty string.
2562 * EMPTY leaves are nullable.
2563 * No other leaf is nullable.
2564 * A QMARK or STAR node is nullable.
2565 * A PLUS node is nullable if its argument is nullable.
2566 * A CAT node is nullable if both its arguments are nullable.
2567 * An OR node is nullable if either argument is nullable.
2569 Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
2570 that could correspond to the first character of a string matching the
2571 regexp rooted at the given node.
2572 * EMPTY leaves have empty firstpos.
2573 * The firstpos of a nonempty leaf is that leaf itself.
2574 * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
2575 argument.
2576 * The firstpos of a CAT node is the firstpos of the left argument, union
2577 the firstpos of the right if the left argument is nullable.
2578 * The firstpos of an OR node is the union of firstpos of each argument.
2580 Lastpos: The lastpos of a node is the set of positions that could
2581 correspond to the last character of a string matching the regexp at
2582 the given node.
2583 * EMPTY leaves have empty lastpos.
2584 * The lastpos of a nonempty leaf is that leaf itself.
2585 * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
2586 argument.
2587 * The lastpos of a CAT node is the lastpos of its right argument, union
2588 the lastpos of the left if the right argument is nullable.
2589 * The lastpos of an OR node is the union of the lastpos of each argument.
2591 Follow: The follow of a position is the set of positions that could
2592 correspond to the character following a character matching the node in
2593 a string matching the regexp. At this point we consider special symbols
2594 that match the empty string in some context to be just normal characters.
2595 Later, if we find that a special symbol is in a follow set, we will
2596 replace it with the elements of its follow, labeled with an appropriate
2597 constraint.
2598 * Every node in the firstpos of the argument of a STAR or PLUS node is in
2599 the follow of every node in the lastpos.
2600 * Every node in the firstpos of the second argument of a CAT node is in
2601 the follow of every node in the lastpos of the first argument.
2603 Because of the postfix representation of the parse tree, the depth-first
2604 analysis is conveniently done by a linear scan with the aid of a stack.
2605 Sets are stored as arrays of the elements, obeying a stack-like allocation
2606 scheme; the number of elements in each set deeper in the stack can be
2607 used to determine the address of a particular set's array. */
2608 static void
2609 dfaanalyze (struct dfa *d, bool searchflag)
2611 /* Array allocated to hold position sets. */
2612 position *posalloc = xnmalloc (d->nleaves, 2 * sizeof *posalloc);
2613 /* Firstpos and lastpos elements. */
2614 position *firstpos = posalloc;
2615 position *lastpos = firstpos + d->nleaves;
2616 position pos;
2617 position_set tmp;
2619 /* Stack for element counts and nullable flags. */
2620 struct
2622 /* Whether the entry is nullable. */
2623 bool nullable;
2625 /* Counts of firstpos and lastpos sets. */
2626 idx_t nfirstpos;
2627 idx_t nlastpos;
2628 } *stkalloc = xnmalloc (d->depth, sizeof *stkalloc), *stk = stkalloc;
2630 position_set merged; /* Result of merging sets. */
2632 addtok (d, CAT);
2634 #ifdef DEBUG
2635 fprintf (stderr, "dfaanalyze:\n");
2636 for (idx_t i = 0; i < d->tindex; i++)
2638 fprintf (stderr, " %td:", i);
2639 prtok (d->tokens[i]);
2641 putc ('\n', stderr);
2642 #endif
2644 d->searchflag = searchflag;
2645 alloc_position_set (&merged, d->nleaves);
2646 d->follows = xcalloc (d->tindex, sizeof *d->follows);
2648 for (idx_t i = 0; i < d->tindex; i++)
2650 switch (d->tokens[i])
2652 case EMPTY:
2653 /* The empty set is nullable. */
2654 stk->nullable = true;
2656 /* The firstpos and lastpos of the empty leaf are both empty. */
2657 stk->nfirstpos = stk->nlastpos = 0;
2658 stk++;
2659 break;
2661 case STAR:
2662 case PLUS:
2663 /* Every element in the firstpos of the argument is in the follow
2664 of every element in the lastpos. */
2666 tmp.elems = firstpos - stk[-1].nfirstpos;
2667 tmp.nelem = stk[-1].nfirstpos;
2668 position *p = lastpos - stk[-1].nlastpos;
2669 for (idx_t j = 0; j < stk[-1].nlastpos; j++)
2671 merge (&tmp, &d->follows[p[j].index], &merged);
2672 copy (&merged, &d->follows[p[j].index]);
2675 FALLTHROUGH;
2676 case QMARK:
2677 /* A QMARK or STAR node is automatically nullable. */
2678 if (d->tokens[i] != PLUS)
2679 stk[-1].nullable = true;
2680 break;
2682 case CAT:
2683 /* Every element in the firstpos of the second argument is in the
2684 follow of every element in the lastpos of the first argument. */
2686 tmp.nelem = stk[-1].nfirstpos;
2687 tmp.elems = firstpos - stk[-1].nfirstpos;
2688 position *p = lastpos - stk[-1].nlastpos - stk[-2].nlastpos;
2689 for (idx_t j = 0; j < stk[-2].nlastpos; j++)
2691 merge (&tmp, &d->follows[p[j].index], &merged);
2692 copy (&merged, &d->follows[p[j].index]);
2696 /* The firstpos of a CAT node is the firstpos of the first argument,
2697 union that of the second argument if the first is nullable. */
2698 if (stk[-2].nullable)
2699 stk[-2].nfirstpos += stk[-1].nfirstpos;
2700 else
2701 firstpos -= stk[-1].nfirstpos;
2703 /* The lastpos of a CAT node is the lastpos of the second argument,
2704 union that of the first argument if the second is nullable. */
2705 if (stk[-1].nullable)
2706 stk[-2].nlastpos += stk[-1].nlastpos;
2707 else
2709 position *p = lastpos - stk[-1].nlastpos - stk[-2].nlastpos;
2710 for (idx_t j = 0; j < stk[-1].nlastpos; j++)
2711 p[j] = p[j + stk[-2].nlastpos];
2712 lastpos -= stk[-2].nlastpos;
2713 stk[-2].nlastpos = stk[-1].nlastpos;
2716 /* A CAT node is nullable if both arguments are nullable. */
2717 stk[-2].nullable &= stk[-1].nullable;
2718 stk--;
2719 break;
2721 case OR:
2722 /* The firstpos is the union of the firstpos of each argument. */
2723 stk[-2].nfirstpos += stk[-1].nfirstpos;
2725 /* The lastpos is the union of the lastpos of each argument. */
2726 stk[-2].nlastpos += stk[-1].nlastpos;
2728 /* An OR node is nullable if either argument is nullable. */
2729 stk[-2].nullable |= stk[-1].nullable;
2730 stk--;
2731 break;
2733 default:
2734 /* Anything else is a nonempty position. (Note that special
2735 constructs like \< are treated as nonempty strings here;
2736 an "epsilon closure" effectively makes them nullable later.
2737 Backreferences have to get a real position so we can detect
2738 transitions on them later. But they are nullable. */
2739 stk->nullable = d->tokens[i] == BACKREF;
2741 /* This position is in its own firstpos and lastpos. */
2742 stk->nfirstpos = stk->nlastpos = 1;
2743 stk++;
2745 firstpos->index = lastpos->index = i;
2746 firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
2747 firstpos++, lastpos++;
2749 break;
2751 #ifdef DEBUG
2752 /* ... balance the above nonsyntactic #ifdef goo... */
2753 fprintf (stderr, "node %td:", i);
2754 prtok (d->tokens[i]);
2755 putc ('\n', stderr);
2756 fprintf (stderr,
2757 stk[-1].nullable ? " nullable: yes\n" : " nullable: no\n");
2758 fprintf (stderr, " firstpos:");
2759 for (idx_t j = 0; j < stk[-1].nfirstpos; j++)
2761 fprintf (stderr, " %td:", firstpos[j - stk[-1].nfirstpos].index);
2762 prtok (d->tokens[firstpos[j - stk[-1].nfirstpos].index]);
2764 fprintf (stderr, "\n lastpos:");
2765 for (idx_t j = 0; j < stk[-1].nlastpos; j++)
2767 fprintf (stderr, " %td:", lastpos[j - stk[-1].nlastpos].index);
2768 prtok (d->tokens[lastpos[j - stk[-1].nlastpos].index]);
2770 putc ('\n', stderr);
2771 #endif
2774 /* For each follow set that is the follow set of a real position, replace
2775 it with its epsilon closure. */
2776 epsclosure (d);
2778 dfaoptimize (d);
2780 #ifdef DEBUG
2781 for (idx_t i = 0; i < d->tindex; i++)
2782 if (d->tokens[i] == BEG || d->tokens[i] < NOTCHAR
2783 || d->tokens[i] == BACKREF || d->tokens[i] == ANYCHAR
2784 || d->tokens[i] == MBCSET || d->tokens[i] >= CSET)
2786 fprintf (stderr, "follows(%td:", i);
2787 prtok (d->tokens[i]);
2788 fprintf (stderr, "):");
2789 for (idx_t j = 0; j < d->follows[i].nelem; j++)
2791 fprintf (stderr, " %td:", d->follows[i].elems[j].index);
2792 prtok (d->tokens[d->follows[i].elems[j].index]);
2794 putc ('\n', stderr);
2796 #endif
2798 pos.index = 0;
2799 pos.constraint = NO_CONSTRAINT;
2801 alloc_position_set (&tmp, 1);
2803 append (pos, &tmp);
2805 d->separates = xnmalloc (d->tindex, sizeof *d->separates);
2807 for (idx_t i = 0; i < d->tindex; i++)
2809 d->separates[i] = 0;
2811 if (prev_newline_dependent (d->constraints[i]))
2812 d->separates[i] |= CTX_NEWLINE;
2813 if (prev_letter_dependent (d->constraints[i]))
2814 d->separates[i] |= CTX_LETTER;
2816 for (idx_t j = 0; j < d->follows[i].nelem; j++)
2818 if (prev_newline_dependent (d->follows[i].elems[j].constraint))
2819 d->separates[i] |= CTX_NEWLINE;
2820 if (prev_letter_dependent (d->follows[i].elems[j].constraint))
2821 d->separates[i] |= CTX_LETTER;
2825 /* Context wanted by some position. */
2826 int separate_contexts = state_separate_contexts (d, &tmp);
2828 /* Build the initial state. */
2829 if (separate_contexts & CTX_NEWLINE)
2830 state_index (d, &tmp, CTX_NEWLINE);
2831 d->initstate_notbol = d->min_trcount
2832 = state_index (d, &tmp, separate_contexts ^ CTX_ANY);
2833 if (separate_contexts & CTX_LETTER)
2834 d->min_trcount = state_index (d, &tmp, CTX_LETTER);
2835 d->min_trcount++;
2836 d->trcount = 0;
2838 free (posalloc);
2839 free (stkalloc);
2840 free (merged.elems);
2841 free (tmp.elems);
2844 /* Make sure D's state arrays are large enough to hold NEW_STATE. */
2845 static void
2846 realloc_trans_if_necessary (struct dfa *d)
2848 state_num oldalloc = d->tralloc;
2849 if (oldalloc < d->sindex)
2851 state_num **realtrans = d->trans ? d->trans - 2 : NULL;
2852 idx_t newalloc1 = realtrans ? d->tralloc + 2 : 0;
2853 realtrans = xpalloc (realtrans, &newalloc1, d->sindex - oldalloc,
2854 -1, sizeof *realtrans);
2855 realtrans[0] = realtrans[1] = NULL;
2856 d->trans = realtrans + 2;
2857 idx_t newalloc = d->tralloc = newalloc1 - 2;
2858 d->fails = xnrealloc (d->fails, newalloc, sizeof *d->fails);
2859 d->success = xnrealloc (d->success, newalloc, sizeof *d->success);
2860 d->newlines = xnrealloc (d->newlines, newalloc, sizeof *d->newlines);
2861 if (d->localeinfo.multibyte)
2863 realtrans = d->mb_trans ? d->mb_trans - 2 : NULL;
2864 realtrans = xnrealloc (realtrans, newalloc1, sizeof *realtrans);
2865 if (oldalloc == 0)
2866 realtrans[0] = realtrans[1] = NULL;
2867 d->mb_trans = realtrans + 2;
2869 for (; oldalloc < newalloc; oldalloc++)
2871 d->trans[oldalloc] = NULL;
2872 d->fails[oldalloc] = NULL;
2873 if (d->localeinfo.multibyte)
2874 d->mb_trans[oldalloc] = NULL;
2880 Calculate the transition table for a new state derived from state s
2881 for a compiled dfa d after input character uc, and return the new
2882 state number.
2884 Do not worry about all possible input characters; calculate just the group
2885 of positions that match uc. Label it with the set of characters that
2886 every position in the group matches (taking into account, if necessary,
2887 preceding context information of s). Then find the union
2888 of these positions' follows, i.e., the set of positions of the
2889 new state. For each character in the group's label, set the transition
2890 on this character to be to a state corresponding to the set's positions,
2891 and its associated backward context information, if necessary.
2893 When building a searching matcher, include the positions of state
2894 0 in every state.
2896 The group is constructed by building an equivalence-class
2897 partition of the positions of s.
2899 For each position, find the set of characters C that it matches. Eliminate
2900 any characters from C that fail on grounds of backward context.
2902 Check whether the group's label L has nonempty
2903 intersection with C. If L - C is nonempty, create a new group labeled
2904 L - C and having the same positions as the current group, and set L to
2905 the intersection of L and C. Insert the position in the group, set
2906 C = C - L, and resume scanning.
2908 If after comparing with every group there are characters remaining in C,
2909 create a new group labeled with the characters of C and insert this
2910 position in that group. */
2912 static state_num
2913 build_state (state_num s, struct dfa *d, unsigned char uc)
2915 position_set follows; /* Union of the follows for each
2916 position of the current state. */
2917 position_set group; /* Positions that match the input char. */
2918 position_set tmp; /* Temporary space for merging sets. */
2919 state_num state; /* New state. */
2920 state_num state_newline; /* New state on a newline transition. */
2921 state_num state_letter; /* New state on a letter transition. */
2923 #ifdef DEBUG
2924 fprintf (stderr, "build state %td\n", s);
2925 #endif
2927 /* A pointer to the new transition table, and the table itself. */
2928 state_num **ptrans = (accepting (s, d) ? d->fails : d->trans) + s;
2929 state_num *trans = *ptrans;
2931 if (!trans)
2933 /* MAX_TRCOUNT is an arbitrary upper limit on the number of
2934 transition tables that can exist at once, other than for
2935 initial states. Often-used transition tables are quickly
2936 rebuilt, whereas rarely-used ones are cleared away. */
2937 if (MAX_TRCOUNT <= d->trcount)
2939 for (state_num i = d->min_trcount; i < d->tralloc; i++)
2941 free (d->trans[i]);
2942 free (d->fails[i]);
2943 d->trans[i] = d->fails[i] = NULL;
2945 d->trcount = 0;
2948 d->trcount++;
2949 *ptrans = trans = xmalloc (NOTCHAR * sizeof *trans);
2951 /* Fill transition table with a default value which means that the
2952 transited state has not been calculated yet. */
2953 for (int i = 0; i < NOTCHAR; i++)
2954 trans[i] = -2;
2957 /* Set up the success bits for this state. */
2958 d->success[s] = 0;
2959 if (accepts_in_context (d->states[s].context, CTX_NEWLINE, s, d))
2960 d->success[s] |= CTX_NEWLINE;
2961 if (accepts_in_context (d->states[s].context, CTX_LETTER, s, d))
2962 d->success[s] |= CTX_LETTER;
2963 if (accepts_in_context (d->states[s].context, CTX_NONE, s, d))
2964 d->success[s] |= CTX_NONE;
2966 alloc_position_set (&follows, d->nleaves);
2968 /* Find the union of the follows of the positions of the group.
2969 This is a hideously inefficient loop. Fix it someday. */
2970 for (idx_t j = 0; j < d->states[s].elems.nelem; j++)
2971 for (idx_t k = 0;
2972 k < d->follows[d->states[s].elems.elems[j].index].nelem; ++k)
2973 insert (d->follows[d->states[s].elems.elems[j].index].elems[k],
2974 &follows);
2976 /* Positions that match the input char. */
2977 alloc_position_set (&group, d->nleaves);
2979 /* The group's label. */
2980 charclass label;
2981 fillset (&label);
2983 for (idx_t i = 0; i < follows.nelem; i++)
2985 charclass matches; /* Set of matching characters. */
2986 position pos = follows.elems[i];
2987 bool matched = false;
2988 if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
2990 zeroset (&matches);
2991 setbit (d->tokens[pos.index], &matches);
2992 if (d->tokens[pos.index] == uc)
2993 matched = true;
2995 else if (d->tokens[pos.index] >= CSET)
2997 matches = d->charclasses[d->tokens[pos.index] - CSET];
2998 if (tstbit (uc, &matches))
2999 matched = true;
3001 else if (d->tokens[pos.index] == ANYCHAR)
3003 matches = d->charclasses[d->canychar];
3004 if (tstbit (uc, &matches))
3005 matched = true;
3007 /* ANYCHAR must match with a single character, so we must put
3008 it to D->states[s].mbps which contains the positions which
3009 can match with a single character not a byte. If all
3010 positions which has ANYCHAR does not depend on context of
3011 next character, we put the follows instead of it to
3012 D->states[s].mbps to optimize. */
3013 if (succeeds_in_context (pos.constraint, d->states[s].context,
3014 CTX_NONE))
3016 if (d->states[s].mbps.nelem == 0)
3017 alloc_position_set (&d->states[s].mbps, 1);
3018 insert (pos, &d->states[s].mbps);
3021 else
3022 continue;
3024 /* Some characters may need to be eliminated from matches because
3025 they fail in the current context. */
3026 if (pos.constraint != NO_CONSTRAINT)
3028 if (!succeeds_in_context (pos.constraint,
3029 d->states[s].context, CTX_NEWLINE))
3030 for (int j = 0; j < CHARCLASS_WORDS; j++)
3031 matches.w[j] &= ~d->syntax.newline.w[j];
3032 if (!succeeds_in_context (pos.constraint,
3033 d->states[s].context, CTX_LETTER))
3034 for (int j = 0; j < CHARCLASS_WORDS; ++j)
3035 matches.w[j] &= ~d->syntax.letters.w[j];
3036 if (!succeeds_in_context (pos.constraint,
3037 d->states[s].context, CTX_NONE))
3038 for (int j = 0; j < CHARCLASS_WORDS; ++j)
3039 matches.w[j] &= d->syntax.letters.w[j] | d->syntax.newline.w[j];
3041 /* If there are no characters left, there's no point in going on. */
3042 if (emptyset (&matches))
3043 continue;
3045 /* If we have reset the bit that made us declare "matched", reset
3046 that indicator, too. This is required to avoid an infinite loop
3047 with this command: echo cx | LC_ALL=C grep -E 'c\b[x ]' */
3048 if (!tstbit (uc, &matches))
3049 matched = false;
3052 #ifdef DEBUG
3053 fprintf (stderr, " nextpos %td:", pos.index);
3054 prtok (d->tokens[pos.index]);
3055 fprintf (stderr, " of");
3056 for (unsigned j = 0; j < NOTCHAR; j++)
3057 if (tstbit (j, &matches))
3058 fprintf (stderr, " 0x%02x", j);
3059 fprintf (stderr, "\n");
3060 #endif
3062 if (matched)
3064 for (int k = 0; k < CHARCLASS_WORDS; ++k)
3065 label.w[k] &= matches.w[k];
3066 append (pos, &group);
3068 else
3070 for (int k = 0; k < CHARCLASS_WORDS; ++k)
3071 label.w[k] &= ~matches.w[k];
3075 alloc_position_set (&tmp, d->nleaves);
3077 if (group.nelem > 0)
3079 /* If we are building a searching matcher, throw in the positions
3080 of state 0 as well, if possible. */
3081 if (d->searchflag)
3083 /* If a token in follows.elems is not 1st byte of a multibyte
3084 character, or the states of follows must accept the bytes
3085 which are not 1st byte of the multibyte character.
3086 Then, if a state of follows encounters a byte, it must not be
3087 a 1st byte of a multibyte character nor a single byte character.
3088 In this case, do not add state[0].follows to next state, because
3089 state[0] must accept 1st-byte.
3091 For example, suppose <sb a> is a certain single byte character,
3092 <mb A> is a certain multibyte character, and the codepoint of
3093 <sb a> equals the 2nd byte of the codepoint of <mb A>. When
3094 state[0] accepts <sb a>, state[i] transits to state[i+1] by
3095 accepting the 1st byte of <mb A>, and state[i+1] accepts the
3096 2nd byte of <mb A>, if state[i+1] encounters the codepoint of
3097 <sb a>, it must not be <sb a> but the 2nd byte of <mb A>, so do
3098 not add state[0]. */
3100 bool mergeit = !d->localeinfo.multibyte;
3101 if (!mergeit)
3103 mergeit = true;
3104 for (idx_t j = 0; mergeit && j < group.nelem; j++)
3105 mergeit &= d->multibyte_prop[group.elems[j].index];
3107 if (mergeit)
3109 merge (&d->states[0].elems, &group, &tmp);
3110 copy (&tmp, &group);
3114 /* Find out if the new state will want any context information,
3115 by calculating possible contexts that the group can match,
3116 and separate contexts that the new state wants to know. */
3117 int possible_contexts = charclass_context (d, &label);
3118 int separate_contexts = state_separate_contexts (d, &group);
3120 /* Find the state(s) corresponding to the union of the follows. */
3121 if (possible_contexts & ~separate_contexts)
3122 state = state_index (d, &group, separate_contexts ^ CTX_ANY);
3123 else
3124 state = -1;
3125 if (separate_contexts & possible_contexts & CTX_NEWLINE)
3126 state_newline = state_index (d, &group, CTX_NEWLINE);
3127 else
3128 state_newline = state;
3129 if (separate_contexts & possible_contexts & CTX_LETTER)
3130 state_letter = state_index (d, &group, CTX_LETTER);
3131 else
3132 state_letter = state;
3134 /* Reallocate now, to reallocate any newline transition properly. */
3135 realloc_trans_if_necessary (d);
3138 /* If we are a searching matcher, the default transition is to a state
3139 containing the positions of state 0, otherwise the default transition
3140 is to fail miserably. */
3141 else if (d->searchflag)
3143 state_newline = 0;
3144 state_letter = d->min_trcount - 1;
3145 state = d->initstate_notbol;
3147 else
3149 state_newline = -1;
3150 state_letter = -1;
3151 state = -1;
3154 /* Set the transitions for each character in the label. */
3155 for (int i = 0; i < NOTCHAR; i++)
3156 if (tstbit (i, &label))
3157 switch (d->syntax.sbit[i])
3159 case CTX_NEWLINE:
3160 trans[i] = state_newline;
3161 break;
3162 case CTX_LETTER:
3163 trans[i] = state_letter;
3164 break;
3165 default:
3166 trans[i] = state;
3167 break;
3170 #ifdef DEBUG
3171 fprintf (stderr, "trans table %td", s);
3172 for (int i = 0; i < NOTCHAR; ++i)
3174 if (!(i & 0xf))
3175 fprintf (stderr, "\n");
3176 fprintf (stderr, " %2td", trans[i]);
3178 fprintf (stderr, "\n");
3179 #endif
3181 free (group.elems);
3182 free (follows.elems);
3183 free (tmp.elems);
3185 /* Keep the newline transition in a special place so we can use it as
3186 a sentinel. */
3187 if (tstbit (d->syntax.eolbyte, &label))
3189 d->newlines[s] = trans[d->syntax.eolbyte];
3190 trans[d->syntax.eolbyte] = -1;
3193 return trans[uc];
3196 /* Multibyte character handling sub-routines for dfaexec. */
3198 /* Consume a single byte and transit state from 's' to '*next_state'.
3199 This function is almost same as the state transition routin in dfaexec.
3200 But state transition is done just once, otherwise matching succeed or
3201 reach the end of the buffer. */
3202 static state_num
3203 transit_state_singlebyte (struct dfa *d, state_num s, unsigned char const **pp)
3205 state_num *t;
3207 if (d->trans[s])
3208 t = d->trans[s];
3209 else if (d->fails[s])
3210 t = d->fails[s];
3211 else
3213 build_state (s, d, **pp);
3214 if (d->trans[s])
3215 t = d->trans[s];
3216 else
3218 t = d->fails[s];
3219 assert (t);
3223 if (t[**pp] == -2)
3224 build_state (s, d, **pp);
3226 return t[*(*pp)++];
3229 /* Transit state from s, then return new state and update the pointer of
3230 the buffer. This function is for a period operator which can match a
3231 multi-byte character. */
3232 static state_num
3233 transit_state (struct dfa *d, state_num s, unsigned char const **pp,
3234 unsigned char const *end)
3236 wint_t wc;
3238 int mbclen = mbs_to_wchar (&wc, (char const *) *pp, end - *pp, d);
3240 /* This state has some operators which can match a multibyte character. */
3241 d->mb_follows.nelem = 0;
3243 /* Calculate the state which can be reached from the state 's' by
3244 consuming 'mbclen' single bytes from the buffer. */
3245 state_num s1 = s;
3246 int mbci;
3247 for (mbci = 0; mbci < mbclen && (mbci == 0 || d->min_trcount <= s); mbci++)
3248 s = transit_state_singlebyte (d, s, pp);
3249 *pp += mbclen - mbci;
3251 if (wc == WEOF)
3253 /* It is an invalid character, so ANYCHAR is not accepted. */
3254 return s;
3257 /* If all positions which have ANYCHAR do not depend on the context
3258 of the next character, calculate the next state with
3259 pre-calculated follows and cache the result. */
3260 if (d->states[s1].mb_trindex < 0)
3262 if (MAX_TRCOUNT <= d->mb_trcount)
3264 state_num s3;
3265 for (s3 = -1; s3 < d->tralloc; s3++)
3267 free (d->mb_trans[s3]);
3268 d->mb_trans[s3] = NULL;
3271 for (state_num i = 0; i < d->sindex; i++)
3272 d->states[i].mb_trindex = -1;
3273 d->mb_trcount = 0;
3275 d->states[s1].mb_trindex = d->mb_trcount++;
3278 if (! d->mb_trans[s])
3280 enum { TRANSPTR_SIZE = sizeof *d->mb_trans[s] };
3281 enum { TRANSALLOC_SIZE = MAX_TRCOUNT * TRANSPTR_SIZE };
3282 d->mb_trans[s] = xmalloc (TRANSALLOC_SIZE);
3283 for (int i = 0; i < MAX_TRCOUNT; i++)
3284 d->mb_trans[s][i] = -1;
3286 else if (d->mb_trans[s][d->states[s1].mb_trindex] >= 0)
3287 return d->mb_trans[s][d->states[s1].mb_trindex];
3289 if (s == -1)
3290 copy (&d->states[s1].mbps, &d->mb_follows);
3291 else
3292 merge (&d->states[s1].mbps, &d->states[s].elems, &d->mb_follows);
3294 int separate_contexts = state_separate_contexts (d, &d->mb_follows);
3295 state_num s2 = state_index (d, &d->mb_follows, separate_contexts ^ CTX_ANY);
3296 realloc_trans_if_necessary (d);
3298 d->mb_trans[s][d->states[s1].mb_trindex] = s2;
3300 return s2;
3303 /* The initial state may encounter a byte which is not a single byte character
3304 nor the first byte of a multibyte character. But it is incorrect for the
3305 initial state to accept such a byte. For example, in Shift JIS the regular
3306 expression "\\" accepts the codepoint 0x5c, but should not accept the second
3307 byte of the codepoint 0x815c. Then the initial state must skip the bytes
3308 that are not a single byte character nor the first byte of a multibyte
3309 character.
3311 Given DFA state d, use mbs_to_wchar to advance MBP until it reaches
3312 or exceeds P, and return the advanced MBP. If WCP is non-NULL and
3313 the result is greater than P, set *WCP to the final wide character
3314 processed, or to WEOF if no wide character is processed. Otherwise,
3315 if WCP is non-NULL, *WCP may or may not be updated.
3317 Both P and MBP must be no larger than END. */
3318 static unsigned char const *
3319 skip_remains_mb (struct dfa *d, unsigned char const *p,
3320 unsigned char const *mbp, char const *end)
3322 if (d->syntax.never_trail[*p])
3323 return p;
3324 while (mbp < p)
3326 wint_t wc;
3327 mbp += mbs_to_wchar (&wc, (char const *) mbp,
3328 end - (char const *) mbp, d);
3330 return mbp;
3333 /* Search through a buffer looking for a match to the struct dfa *D.
3334 Find the first occurrence of a string matching the regexp in the
3335 buffer, and the shortest possible version thereof. Return a pointer to
3336 the first character after the match, or NULL if none is found. BEGIN
3337 points to the beginning of the buffer, and END points to the first byte
3338 after its end. Note however that we store a sentinel byte (usually
3339 newline) in *END, so the actual buffer must be one byte longer.
3340 When ALLOW_NL, newlines may appear in the matching string.
3341 If COUNT is non-NULL, increment *COUNT once for each newline processed.
3342 If MULTIBYTE, the input consists of multibyte characters and/or
3343 encoding-error bytes. Otherwise, it consists of single-byte characters.
3344 Here is the list of features that make this DFA matcher punt:
3345 - [M-N] range in non-simple locale: regex is up to 25% faster on [a-z]
3346 - [^...] in non-simple locale
3347 - [[=foo=]] or [[.foo.]]
3348 - [[:alpha:]] etc. in multibyte locale (except [[:digit:]] works OK)
3349 - back-reference: (.)\1
3350 - word-delimiter in multibyte locale: \<, \>, \b, \B
3351 See struct localeinfo.simple for the definition of "simple locale". */
3353 static inline char *
3354 dfaexec_main (struct dfa *d, char const *begin, char *end, bool allow_nl,
3355 ptrdiff_t *count, bool multibyte)
3357 if (MAX_TRCOUNT <= d->sindex)
3359 for (state_num s = d->min_trcount; s < d->sindex; s++)
3361 free (d->states[s].elems.elems);
3362 free (d->states[s].mbps.elems);
3364 d->sindex = d->min_trcount;
3366 if (d->trans)
3368 for (state_num s = 0; s < d->tralloc; s++)
3370 free (d->trans[s]);
3371 free (d->fails[s]);
3372 d->trans[s] = d->fails[s] = NULL;
3374 d->trcount = 0;
3377 if (d->localeinfo.multibyte && d->mb_trans)
3379 for (state_num s = -1; s < d->tralloc; s++)
3381 free (d->mb_trans[s]);
3382 d->mb_trans[s] = NULL;
3384 for (state_num s = 0; s < d->min_trcount; s++)
3385 d->states[s].mb_trindex = -1;
3386 d->mb_trcount = 0;
3390 if (!d->tralloc)
3391 realloc_trans_if_necessary (d);
3393 /* Current state. */
3394 state_num s = 0, s1 = 0;
3396 /* Current input character. */
3397 unsigned char const *p = (unsigned char const *) begin;
3398 unsigned char const *mbp = p;
3400 /* Copy of d->trans so it can be optimized into a register. */
3401 state_num **trans = d->trans;
3402 unsigned char eol = d->syntax.eolbyte; /* Likewise for eolbyte. */
3403 unsigned char saved_end = *(unsigned char *) end;
3404 *end = eol;
3406 if (multibyte)
3408 memset (&d->mbs, 0, sizeof d->mbs);
3409 if (d->mb_follows.alloc == 0)
3410 alloc_position_set (&d->mb_follows, d->nleaves);
3413 idx_t nlcount = 0;
3414 for (;;)
3416 state_num *t;
3417 while ((t = trans[s]) != NULL)
3419 if (s < d->min_trcount)
3421 if (!multibyte || d->states[s].mbps.nelem == 0)
3423 while (t[*p] == s)
3424 p++;
3426 if (multibyte)
3427 p = mbp = skip_remains_mb (d, p, mbp, end);
3430 if (multibyte)
3432 s1 = s;
3434 if (d->states[s].mbps.nelem == 0
3435 || d->localeinfo.sbctowc[*p] != WEOF || (char *) p >= end)
3437 /* If an input character does not match ANYCHAR, do it
3438 like a single-byte character. */
3439 s = t[*p++];
3441 else
3443 s = transit_state (d, s, &p, (unsigned char *) end);
3444 mbp = p;
3445 trans = d->trans;
3448 else
3450 s1 = t[*p++];
3451 t = trans[s1];
3452 if (! t)
3454 state_num tmp = s;
3455 s = s1;
3456 s1 = tmp; /* swap */
3457 break;
3459 if (s < d->min_trcount)
3461 while (t[*p] == s1)
3462 p++;
3464 s = t[*p++];
3468 if (s < 0)
3470 if (s == -2)
3472 s = build_state (s1, d, p[-1]);
3473 trans = d->trans;
3475 else if ((char *) p <= end && p[-1] == eol && 0 <= d->newlines[s1])
3477 /* The previous character was a newline. Count it, and skip
3478 checking of multibyte character boundary until here. */
3479 nlcount++;
3480 mbp = p;
3482 s = (allow_nl ? d->newlines[s1]
3483 : d->syntax.sbit[eol] == CTX_NEWLINE ? 0
3484 : d->syntax.sbit[eol] == CTX_LETTER ? d->min_trcount - 1
3485 : d->initstate_notbol);
3487 else
3489 p = NULL;
3490 goto done;
3493 else if (d->fails[s])
3495 if ((d->success[s] & d->syntax.sbit[*p])
3496 || ((char *) p == end
3497 && accepts_in_context (d->states[s].context, CTX_NEWLINE, s,
3498 d)))
3499 goto done;
3501 if (multibyte && s < d->min_trcount)
3502 p = mbp = skip_remains_mb (d, p, mbp, end);
3504 s1 = s;
3505 if (!multibyte || d->states[s].mbps.nelem == 0
3506 || d->localeinfo.sbctowc[*p] != WEOF || (char *) p >= end)
3508 /* If a input character does not match ANYCHAR, do it
3509 like a single-byte character. */
3510 s = d->fails[s][*p++];
3512 else
3514 s = transit_state (d, s, &p, (unsigned char *) end);
3515 mbp = p;
3516 trans = d->trans;
3519 else
3521 build_state (s, d, p[0]);
3522 trans = d->trans;
3526 done:
3527 if (count)
3528 *count += nlcount;
3529 *end = saved_end;
3530 return (char *) p;
3533 /* Specialized versions of dfaexec for multibyte and single-byte cases.
3534 This is for performance, as dfaexec_main is an inline function. */
3536 static char *
3537 dfaexec_mb (struct dfa *d, char const *begin, char *end,
3538 bool allow_nl, ptrdiff_t *count, bool *backref)
3540 return dfaexec_main (d, begin, end, allow_nl, count, true);
3543 static char *
3544 dfaexec_sb (struct dfa *d, char const *begin, char *end,
3545 bool allow_nl, ptrdiff_t *count, bool *backref)
3547 return dfaexec_main (d, begin, end, allow_nl, count, false);
3550 /* Always set *BACKREF and return BEGIN. Use this wrapper for
3551 any regexp that uses a construct not supported by this code. */
3552 static char *
3553 dfaexec_noop (struct dfa *d, char const *begin, char *end,
3554 bool allow_nl, ptrdiff_t *count, bool *backref)
3556 *backref = true;
3557 return (char *) begin;
3560 /* Like dfaexec_main (D, BEGIN, END, ALLOW_NL, COUNT, D->localeinfo.multibyte),
3561 but faster and set *BACKREF if the DFA code does not support this
3562 regexp usage. */
3564 char *
3565 dfaexec (struct dfa *d, char const *begin, char *end,
3566 bool allow_nl, ptrdiff_t *count, bool *backref)
3568 return d->dfaexec (d, begin, end, allow_nl, count, backref);
3571 struct dfa *
3572 dfasuperset (struct dfa const *d)
3574 return d->superset;
3577 bool
3578 dfaisfast (struct dfa const *d)
3580 return d->fast;
3583 static void
3584 free_mbdata (struct dfa *d)
3586 free (d->multibyte_prop);
3587 free (d->lex.brack.chars);
3588 free (d->mb_follows.elems);
3590 if (d->mb_trans)
3592 state_num s;
3593 for (s = -1; s < d->tralloc; s++)
3594 free (d->mb_trans[s]);
3595 free (d->mb_trans - 2);
3599 /* Return true if every construct in D is supported by this DFA matcher. */
3600 static bool _GL_ATTRIBUTE_PURE
3601 dfa_supported (struct dfa const *d)
3603 for (idx_t i = 0; i < d->tindex; i++)
3605 switch (d->tokens[i])
3607 case BEGWORD:
3608 case ENDWORD:
3609 case LIMWORD:
3610 case NOTLIMWORD:
3611 if (!d->localeinfo.multibyte)
3612 continue;
3613 FALLTHROUGH;
3614 case BACKREF:
3615 case MBCSET:
3616 return false;
3619 return true;
3622 /* Disable use of the superset DFA if it is not likely to help
3623 performance. */
3624 static void
3625 maybe_disable_superset_dfa (struct dfa *d)
3627 if (!d->localeinfo.using_utf8)
3628 return;
3630 bool have_backref = false;
3631 for (idx_t i = 0; i < d->tindex; i++)
3633 switch (d->tokens[i])
3635 case ANYCHAR:
3636 /* Lowered. */
3637 abort ();
3638 case BACKREF:
3639 have_backref = true;
3640 break;
3641 case MBCSET:
3642 /* Requires multi-byte algorithm. */
3643 return;
3644 default:
3645 break;
3649 if (!have_backref && d->superset)
3651 /* The superset DFA is not likely to be much faster, so remove it. */
3652 dfafree (d->superset);
3653 free (d->superset);
3654 d->superset = NULL;
3657 free_mbdata (d);
3658 d->localeinfo.multibyte = false;
3659 d->dfaexec = dfaexec_sb;
3660 d->fast = true;
3663 static void
3664 dfassbuild (struct dfa *d)
3666 struct dfa *sup = dfaalloc ();
3668 *sup = *d;
3669 sup->localeinfo.multibyte = false;
3670 sup->dfaexec = dfaexec_sb;
3671 sup->multibyte_prop = NULL;
3672 sup->superset = NULL;
3673 sup->states = NULL;
3674 sup->sindex = 0;
3675 sup->constraints = NULL;
3676 sup->separates = NULL;
3677 sup->follows = NULL;
3678 sup->tralloc = 0;
3679 sup->trans = NULL;
3680 sup->fails = NULL;
3681 sup->success = NULL;
3682 sup->newlines = NULL;
3684 sup->charclasses = xnmalloc (sup->calloc, sizeof *sup->charclasses);
3685 if (d->cindex)
3687 memcpy (sup->charclasses, d->charclasses,
3688 d->cindex * sizeof *sup->charclasses);
3691 sup->tokens = xnmalloc (d->tindex, 2 * sizeof *sup->tokens);
3692 sup->talloc = d->tindex * 2;
3694 bool have_achar = false;
3695 bool have_nchar = false;
3696 idx_t j;
3697 for (idx_t i = j = 0; i < d->tindex; i++)
3699 switch (d->tokens[i])
3701 case ANYCHAR:
3702 case MBCSET:
3703 case BACKREF:
3705 charclass ccl;
3706 fillset (&ccl);
3707 sup->tokens[j++] = CSET + charclass_index (sup, &ccl);
3708 sup->tokens[j++] = STAR;
3709 if (d->tokens[i + 1] == QMARK || d->tokens[i + 1] == STAR
3710 || d->tokens[i + 1] == PLUS)
3711 i++;
3712 have_achar = true;
3714 break;
3715 case BEGWORD:
3716 case ENDWORD:
3717 case LIMWORD:
3718 case NOTLIMWORD:
3719 if (d->localeinfo.multibyte)
3721 /* These constraints aren't supported in a multibyte locale.
3722 Ignore them in the superset DFA. */
3723 sup->tokens[j++] = EMPTY;
3724 break;
3726 FALLTHROUGH;
3727 default:
3728 sup->tokens[j++] = d->tokens[i];
3729 if ((0 <= d->tokens[i] && d->tokens[i] < NOTCHAR)
3730 || d->tokens[i] >= CSET)
3731 have_nchar = true;
3732 break;
3735 sup->tindex = j;
3737 if (have_nchar && (have_achar || d->localeinfo.multibyte))
3738 d->superset = sup;
3739 else
3741 dfafree (sup);
3742 free (sup);
3746 /* Parse a string S of length LEN into D (but skip this step if S is null).
3747 Then analyze D and build a matcher for it.
3748 SEARCHFLAG says whether to build a searching or an exact matcher. */
3749 void
3750 dfacomp (char const *s, idx_t len, struct dfa *d, bool searchflag)
3752 if (s != NULL)
3753 dfaparse (s, len, d);
3755 dfassbuild (d);
3757 if (dfa_supported (d))
3759 maybe_disable_superset_dfa (d);
3760 dfaanalyze (d, searchflag);
3762 else
3764 d->dfaexec = dfaexec_noop;
3767 if (d->superset)
3769 d->fast = true;
3770 dfaanalyze (d->superset, searchflag);
3774 /* Free the storage held by the components of a dfa. */
3775 void
3776 dfafree (struct dfa *d)
3778 free (d->charclasses);
3779 free (d->tokens);
3781 if (d->localeinfo.multibyte)
3782 free_mbdata (d);
3784 free (d->constraints);
3785 free (d->separates);
3787 for (idx_t i = 0; i < d->sindex; i++)
3789 free (d->states[i].elems.elems);
3790 free (d->states[i].mbps.elems);
3792 free (d->states);
3794 if (d->follows)
3796 for (idx_t i = 0; i < d->tindex; i++)
3797 free (d->follows[i].elems);
3798 free (d->follows);
3801 if (d->trans)
3803 for (idx_t i = 0; i < d->tralloc; i++)
3805 free (d->trans[i]);
3806 free (d->fails[i]);
3809 free (d->trans - 2);
3810 free (d->fails);
3811 free (d->newlines);
3812 free (d->success);
3815 if (d->superset)
3817 dfafree (d->superset);
3818 free (d->superset);
3822 /* Having found the postfix representation of the regular expression,
3823 try to find a long sequence of characters that must appear in any line
3824 containing the r.e.
3825 Finding a "longest" sequence is beyond the scope here;
3826 we take an easy way out and hope for the best.
3827 (Take "(ab|a)b"--please.)
3829 We do a bottom-up calculation of sequences of characters that must appear
3830 in matches of r.e.'s represented by trees rooted at the nodes of the postfix
3831 representation:
3832 sequences that must appear at the left of the match ("left")
3833 sequences that must appear at the right of the match ("right")
3834 lists of sequences that must appear somewhere in the match ("in")
3835 sequences that must constitute the match ("is")
3837 When we get to the root of the tree, we use one of the longest of its
3838 calculated "in" sequences as our answer.
3840 The sequences calculated for the various types of node (in pseudo ANSI c)
3841 are shown below. "p" is the operand of unary operators (and the left-hand
3842 operand of binary operators); "q" is the right-hand operand of binary
3843 operators.
3845 "ZERO" means "a zero-length sequence" below.
3847 Type left right is in
3848 ---- ---- ----- -- --
3849 char c # c # c # c # c
3851 ANYCHAR ZERO ZERO ZERO ZERO
3853 MBCSET ZERO ZERO ZERO ZERO
3855 CSET ZERO ZERO ZERO ZERO
3857 STAR ZERO ZERO ZERO ZERO
3859 QMARK ZERO ZERO ZERO ZERO
3861 PLUS p->left p->right ZERO p->in
3863 CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
3864 p->left : q->right : q->is!=ZERO) ? q->in plus
3865 p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
3866 ZERO
3868 OR longest common longest common (do p->is and substrings common
3869 leading trailing to q->is have same p->in and
3870 (sub)sequence (sub)sequence q->in length and content) ?
3871 of p->left of p->right
3872 and q->left and q->right p->is : NULL
3874 If there's anything else we recognize in the tree, all four sequences get set
3875 to zero-length sequences. If there's something we don't recognize in the
3876 tree, we just return a zero-length sequence.
3878 Break ties in favor of infrequent letters (choosing 'zzz' in preference to
3879 'aaa')?
3881 And ... is it here or someplace that we might ponder "optimizations" such as
3882 egrep 'psi|epsilon' -> egrep 'psi'
3883 egrep 'pepsi|epsilon' -> egrep 'epsi'
3884 (Yes, we now find "epsi" as a "string
3885 that must occur", but we might also
3886 simplify the *entire* r.e. being sought)
3887 grep '[c]' -> grep 'c'
3888 grep '(ab|a)b' -> grep 'ab'
3889 grep 'ab*' -> grep 'a'
3890 grep 'a*b' -> grep 'b'
3892 There are several issues:
3894 Is optimization easy (enough)?
3896 Does optimization actually accomplish anything,
3897 or is the automaton you get from "psi|epsilon" (for example)
3898 the same as the one you get from "psi" (for example)?
3900 Are optimizable r.e.'s likely to be used in real-life situations
3901 (something like 'ab*' is probably unlikely; something like is
3902 'psi|epsilon' is likelier)? */
3904 static char *
3905 icatalloc (char *old, char const *new)
3907 idx_t newsize = strlen (new);
3908 if (newsize == 0)
3909 return old;
3910 idx_t oldsize = strlen (old);
3911 char *result = xrealloc (old, oldsize + newsize + 1);
3912 memcpy (result + oldsize, new, newsize + 1);
3913 return result;
3916 static void
3917 freelist (char **cpp)
3919 while (*cpp)
3920 free (*cpp++);
3923 static char **
3924 enlist (char **cpp, char *new, idx_t len)
3926 new = memcpy (xmalloc (len + 1), new, len);
3927 new[len] = '\0';
3928 /* Is there already something in the list that's new (or longer)? */
3929 idx_t i;
3930 for (i = 0; cpp[i] != NULL; i++)
3931 if (strstr (cpp[i], new) != NULL)
3933 free (new);
3934 return cpp;
3936 /* Eliminate any obsoleted strings. */
3937 for (idx_t j = 0; cpp[j] != NULL; )
3938 if (strstr (new, cpp[j]) == NULL)
3939 ++j;
3940 else
3942 free (cpp[j]);
3943 if (--i == j)
3944 break;
3945 cpp[j] = cpp[i];
3946 cpp[i] = NULL;
3948 /* Add the new string. */
3949 cpp = xnrealloc (cpp, i + 2, sizeof *cpp);
3950 cpp[i] = new;
3951 cpp[i + 1] = NULL;
3952 return cpp;
3955 /* Given pointers to two strings, return a pointer to an allocated
3956 list of their distinct common substrings. */
3957 static char **
3958 comsubs (char *left, char const *right)
3960 char **cpp = xzalloc (sizeof *cpp);
3962 for (char *lcp = left; *lcp != '\0'; lcp++)
3964 idx_t len = 0;
3965 char *rcp = strchr (right, *lcp);
3966 while (rcp != NULL)
3968 idx_t i;
3969 for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
3970 continue;
3971 if (i > len)
3972 len = i;
3973 rcp = strchr (rcp + 1, *lcp);
3975 if (len != 0)
3976 cpp = enlist (cpp, lcp, len);
3978 return cpp;
3981 static char **
3982 addlists (char **old, char **new)
3984 for (; *new; new++)
3985 old = enlist (old, *new, strlen (*new));
3986 return old;
3989 /* Given two lists of substrings, return a new list giving substrings
3990 common to both. */
3991 static char **
3992 inboth (char **left, char **right)
3994 char **both = xzalloc (sizeof *both);
3996 for (idx_t lnum = 0; left[lnum] != NULL; lnum++)
3998 for (idx_t rnum = 0; right[rnum] != NULL; rnum++)
4000 char **temp = comsubs (left[lnum], right[rnum]);
4001 both = addlists (both, temp);
4002 freelist (temp);
4003 free (temp);
4006 return both;
4009 typedef struct must must;
4011 struct must
4013 char **in;
4014 char *left;
4015 char *right;
4016 char *is;
4017 bool begline;
4018 bool endline;
4019 must *prev;
4022 static must *
4023 allocmust (must *mp, idx_t size)
4025 must *new_mp = xmalloc (sizeof *new_mp);
4026 new_mp->in = xzalloc (sizeof *new_mp->in);
4027 new_mp->left = xzalloc (size);
4028 new_mp->right = xzalloc (size);
4029 new_mp->is = xzalloc (size);
4030 new_mp->begline = false;
4031 new_mp->endline = false;
4032 new_mp->prev = mp;
4033 return new_mp;
4036 static void
4037 resetmust (must *mp)
4039 freelist (mp->in);
4040 mp->in[0] = NULL;
4041 mp->left[0] = mp->right[0] = mp->is[0] = '\0';
4042 mp->begline = false;
4043 mp->endline = false;
4046 static void
4047 freemust (must *mp)
4049 freelist (mp->in);
4050 free (mp->in);
4051 free (mp->left);
4052 free (mp->right);
4053 free (mp->is);
4054 free (mp);
4057 struct dfamust *
4058 dfamust (struct dfa const *d)
4060 must *mp = NULL;
4061 char const *result = "";
4062 bool exact = false;
4063 bool begline = false;
4064 bool endline = false;
4065 bool need_begline = false;
4066 bool need_endline = false;
4067 bool case_fold_unibyte = d->syntax.case_fold & !d->localeinfo.multibyte;
4069 for (idx_t ri = 1; ri + 1 < d->tindex; ri++)
4071 token t = d->tokens[ri];
4072 switch (t)
4074 case BEGLINE:
4075 mp = allocmust (mp, 2);
4076 mp->begline = true;
4077 need_begline = true;
4078 break;
4079 case ENDLINE:
4080 mp = allocmust (mp, 2);
4081 mp->endline = true;
4082 need_endline = true;
4083 break;
4084 case LPAREN:
4085 case RPAREN:
4086 assert (!"neither LPAREN nor RPAREN may appear here");
4088 case EMPTY:
4089 case BEGWORD:
4090 case ENDWORD:
4091 case LIMWORD:
4092 case NOTLIMWORD:
4093 case BACKREF:
4094 case ANYCHAR:
4095 case MBCSET:
4096 mp = allocmust (mp, 2);
4097 break;
4099 case STAR:
4100 case QMARK:
4101 resetmust (mp);
4102 break;
4104 case OR:
4106 char **new;
4107 must *rmp = mp;
4108 must *lmp = mp = mp->prev;
4109 idx_t j, ln, rn, n;
4111 /* Guaranteed to be. Unlikely, but ... */
4112 if (streq (lmp->is, rmp->is))
4114 lmp->begline &= rmp->begline;
4115 lmp->endline &= rmp->endline;
4117 else
4119 lmp->is[0] = '\0';
4120 lmp->begline = false;
4121 lmp->endline = false;
4123 /* Left side--easy */
4124 idx_t i = 0;
4125 while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
4126 ++i;
4127 lmp->left[i] = '\0';
4128 /* Right side */
4129 ln = strlen (lmp->right);
4130 rn = strlen (rmp->right);
4131 n = ln;
4132 if (n > rn)
4133 n = rn;
4134 for (i = 0; i < n; ++i)
4135 if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
4136 break;
4137 for (j = 0; j < i; ++j)
4138 lmp->right[j] = lmp->right[(ln - i) + j];
4139 lmp->right[j] = '\0';
4140 new = inboth (lmp->in, rmp->in);
4141 freelist (lmp->in);
4142 free (lmp->in);
4143 lmp->in = new;
4144 freemust (rmp);
4146 break;
4148 case PLUS:
4149 mp->is[0] = '\0';
4150 break;
4152 case END:
4153 assert (!mp->prev);
4154 for (idx_t i = 0; mp->in[i] != NULL; i++)
4155 if (strlen (mp->in[i]) > strlen (result))
4156 result = mp->in[i];
4157 if (streq (result, mp->is))
4159 if ((!need_begline || mp->begline) && (!need_endline
4160 || mp->endline))
4161 exact = true;
4162 begline = mp->begline;
4163 endline = mp->endline;
4165 goto done;
4167 case CAT:
4169 must *rmp = mp;
4170 must *lmp = mp = mp->prev;
4172 /* In. Everything in left, plus everything in
4173 right, plus concatenation of
4174 left's right and right's left. */
4175 lmp->in = addlists (lmp->in, rmp->in);
4176 if (lmp->right[0] != '\0' && rmp->left[0] != '\0')
4178 idx_t lrlen = strlen (lmp->right);
4179 idx_t rllen = strlen (rmp->left);
4180 char *tp = xmalloc (lrlen + rllen);
4181 memcpy (tp, lmp->right, lrlen);
4182 memcpy (tp + lrlen, rmp->left, rllen);
4183 lmp->in = enlist (lmp->in, tp, lrlen + rllen);
4184 free (tp);
4186 /* Left-hand */
4187 if (lmp->is[0] != '\0')
4188 lmp->left = icatalloc (lmp->left, rmp->left);
4189 /* Right-hand */
4190 if (rmp->is[0] == '\0')
4191 lmp->right[0] = '\0';
4192 lmp->right = icatalloc (lmp->right, rmp->right);
4193 /* Guaranteed to be */
4194 if ((lmp->is[0] != '\0' || lmp->begline)
4195 && (rmp->is[0] != '\0' || rmp->endline))
4197 lmp->is = icatalloc (lmp->is, rmp->is);
4198 lmp->endline = rmp->endline;
4200 else
4202 lmp->is[0] = '\0';
4203 lmp->begline = false;
4204 lmp->endline = false;
4206 freemust (rmp);
4208 break;
4210 case '\0':
4211 /* Not on *my* shift. */
4212 goto done;
4214 default:
4215 if (CSET <= t)
4217 /* If T is a singleton, or if case-folding in a unibyte
4218 locale and T's members all case-fold to the same char,
4219 convert T to one of its members. Otherwise, do
4220 nothing further with T. */
4221 charclass *ccl = &d->charclasses[t - CSET];
4222 int j;
4223 for (j = 0; j < NOTCHAR; j++)
4224 if (tstbit (j, ccl))
4225 break;
4226 if (! (j < NOTCHAR))
4228 mp = allocmust (mp, 2);
4229 break;
4231 t = j;
4232 while (++j < NOTCHAR)
4233 if (tstbit (j, ccl)
4234 && ! (case_fold_unibyte
4235 && toupper (j) == toupper (t)))
4236 break;
4237 if (j < NOTCHAR)
4239 mp = allocmust (mp, 2);
4240 break;
4244 idx_t rj = ri + 2;
4245 if (d->tokens[ri + 1] == CAT)
4247 for (; rj < d->tindex - 1; rj += 2)
4249 if ((rj != ri && (d->tokens[rj] <= 0
4250 || NOTCHAR <= d->tokens[rj]))
4251 || d->tokens[rj + 1] != CAT)
4252 break;
4255 mp = allocmust (mp, ((rj - ri) >> 1) + 1);
4256 mp->is[0] = mp->left[0] = mp->right[0]
4257 = case_fold_unibyte ? toupper (t) : t;
4259 idx_t i;
4260 for (i = 1; ri + 2 < rj; i++)
4262 ri += 2;
4263 t = d->tokens[ri];
4264 mp->is[i] = mp->left[i] = mp->right[i]
4265 = case_fold_unibyte ? toupper (t) : t;
4267 mp->is[i] = mp->left[i] = mp->right[i] = '\0';
4268 mp->in = enlist (mp->in, mp->is, i);
4269 break;
4272 done:;
4274 struct dfamust *dm = NULL;
4275 if (*result)
4277 dm = xmalloc (FLEXSIZEOF (struct dfamust, must, strlen (result) + 1));
4278 dm->exact = exact;
4279 dm->begline = begline;
4280 dm->endline = endline;
4281 strcpy (dm->must, result);
4284 while (mp)
4286 must *prev = mp->prev;
4287 freemust (mp);
4288 mp = prev;
4291 return dm;
4294 void
4295 dfamustfree (struct dfamust *dm)
4297 free (dm);
4300 struct dfa *
4301 dfaalloc (void)
4303 return xmalloc (sizeof (struct dfa));
4306 /* Initialize DFA. */
4307 void
4308 dfasyntax (struct dfa *dfa, struct localeinfo const *linfo,
4309 reg_syntax_t bits, int dfaopts)
4311 memset (dfa, 0, offsetof (struct dfa, dfaexec));
4312 dfa->dfaexec = linfo->multibyte ? dfaexec_mb : dfaexec_sb;
4313 dfa->localeinfo = *linfo;
4315 dfa->fast = !dfa->localeinfo.multibyte;
4317 dfa->canychar = -1;
4318 dfa->syntax.syntax_bits_set = true;
4319 dfa->syntax.case_fold = (bits & RE_ICASE) != 0;
4320 dfa->syntax.anchor = (dfaopts & DFA_ANCHOR) != 0;
4321 dfa->syntax.eolbyte = dfaopts & DFA_EOL_NUL ? '\0' : '\n';
4322 dfa->syntax.syntax_bits = bits;
4324 for (int i = CHAR_MIN; i <= CHAR_MAX; ++i)
4326 unsigned char uc = i;
4328 dfa->syntax.sbit[uc] = char_context (dfa, uc);
4329 switch (dfa->syntax.sbit[uc])
4331 case CTX_LETTER:
4332 setbit (uc, &dfa->syntax.letters);
4333 break;
4334 case CTX_NEWLINE:
4335 setbit (uc, &dfa->syntax.newline);
4336 break;
4339 /* POSIX requires that the five bytes in "\n\r./" (including the
4340 terminating NUL) cannot occur inside a multibyte character. */
4341 dfa->syntax.never_trail[uc] = (dfa->localeinfo.using_utf8
4342 ? (uc & 0xc0) != 0x80
4343 : strchr ("\n\r./", uc) != NULL);
4347 /* Initialize TO by copying FROM's syntax settings. */
4348 void
4349 dfacopysyntax (struct dfa *to, struct dfa const *from)
4351 memset (to, 0, offsetof (struct dfa, syntax));
4352 to->canychar = -1;
4353 to->fast = from->fast;
4354 to->syntax = from->syntax;
4355 to->dfaexec = from->dfaexec;
4356 to->localeinfo = from->localeinfo;
4359 /* vim:set shiftwidth=2: */