uchar C++ tests: Fix build error on FreeBSD 12.
[gnulib.git] / lib / logl.c
blob0e8162f328acbd19cc5aa75a2df024d005ef2907
1 /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
3 This program is free software: you can redistribute it and/or modify
4 it under the terms of the GNU General Public License as published by
5 the Free Software Foundation; either version 3 of the License, or
6 (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program. If not, see <https://www.gnu.org/licenses/>. */
16 #include <config.h>
18 /* Specification. */
19 #include <math.h>
21 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
23 long double
24 logl (long double x)
26 return log (x);
29 #elif 0 /* was: HAVE_LOGL */
31 long double
32 logl (long double x)
33 # undef logl
35 /* Work around the OSF/1 5.1 bug. */
36 if (x == 0.0L)
37 /* Return -Infinity. */
38 return -1.0L / 0.0L;
39 return logl (x);
42 #else
44 /* Code based on glibc/sysdeps/ieee754/ldbl-128/e_logl.c. */
46 /* logll.c
48 * Natural logarithm for 128-bit long double precision.
52 * SYNOPSIS:
54 * long double x, y, logl();
56 * y = logl( x );
60 * DESCRIPTION:
62 * Returns the base e (2.718...) logarithm of x.
64 * The argument is separated into its exponent and fractional
65 * parts. Use of a lookup table increases the speed of the routine.
66 * The program uses logarithms tabulated at intervals of 1/128 to
67 * cover the domain from approximately 0.7 to 1.4.
69 * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
70 * log(1+x) = x - 0.5 x^2 + x^3 P(x) .
74 * ACCURACY:
76 * Relative error:
77 * arithmetic domain # trials peak rms
78 * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
79 * IEEE 0.125, 8 100000 1.2e-34 4.1e-35
82 * WARNING:
84 * This program uses integer operations on bit fields of floating-point
85 * numbers. It does not work with data structures other than the
86 * structure assumed.
90 /* log(1+x) = x - .5 x^2 + x^3 l(x)
91 -.0078125 <= x <= +.0078125
92 peak relative error 1.2e-37 */
93 static const long double
94 l3 = 3.333333333333333333333333333333336096926E-1L,
95 l4 = -2.499999999999999999999999999486853077002E-1L,
96 l5 = 1.999999999999999999999999998515277861905E-1L,
97 l6 = -1.666666666666666666666798448356171665678E-1L,
98 l7 = 1.428571428571428571428808945895490721564E-1L,
99 l8 = -1.249999999999999987884655626377588149000E-1L,
100 l9 = 1.111111111111111093947834982832456459186E-1L,
101 l10 = -1.000000000000532974938900317952530453248E-1L,
102 l11 = 9.090909090915566247008015301349979892689E-2L,
103 l12 = -8.333333211818065121250921925397567745734E-2L,
104 l13 = 7.692307559897661630807048686258659316091E-2L,
105 l14 = -7.144242754190814657241902218399056829264E-2L,
106 l15 = 6.668057591071739754844678883223432347481E-2L;
108 /* Lookup table of ln(t) - (t-1)
109 t = 0.5 + (k+26)/128)
110 k = 0, ..., 91 */
111 static const long double logtbl[92] = {
112 -5.5345593589352099112142921677820359632418E-2L,
113 -5.2108257402767124761784665198737642086148E-2L,
114 -4.8991686870576856279407775480686721935120E-2L,
115 -4.5993270766361228596215288742353061431071E-2L,
116 -4.3110481649613269682442058976885699556950E-2L,
117 -4.0340872319076331310838085093194799765520E-2L,
118 -3.7682072451780927439219005993827431503510E-2L,
119 -3.5131785416234343803903228503274262719586E-2L,
120 -3.2687785249045246292687241862699949178831E-2L,
121 -3.0347913785027239068190798397055267411813E-2L,
122 -2.8110077931525797884641940838507561326298E-2L,
123 -2.5972247078357715036426583294246819637618E-2L,
124 -2.3932450635346084858612873953407168217307E-2L,
125 -2.1988775689981395152022535153795155900240E-2L,
126 -2.0139364778244501615441044267387667496733E-2L,
127 -1.8382413762093794819267536615342902718324E-2L,
128 -1.6716169807550022358923589720001638093023E-2L,
129 -1.5138929457710992616226033183958974965355E-2L,
130 -1.3649036795397472900424896523305726435029E-2L,
131 -1.2244881690473465543308397998034325468152E-2L,
132 -1.0924898127200937840689817557742469105693E-2L,
133 -9.6875626072830301572839422532631079809328E-3L,
134 -8.5313926245226231463436209313499745894157E-3L,
135 -7.4549452072765973384933565912143044991706E-3L,
136 -6.4568155251217050991200599386801665681310E-3L,
137 -5.5356355563671005131126851708522185605193E-3L,
138 -4.6900728132525199028885749289712348829878E-3L,
139 -3.9188291218610470766469347968659624282519E-3L,
140 -3.2206394539524058873423550293617843896540E-3L,
141 -2.5942708080877805657374888909297113032132E-3L,
142 -2.0385211375711716729239156839929281289086E-3L,
143 -1.5522183228760777967376942769773768850872E-3L,
144 -1.1342191863606077520036253234446621373191E-3L,
145 -7.8340854719967065861624024730268350459991E-4L,
146 -4.9869831458030115699628274852562992756174E-4L,
147 -2.7902661731604211834685052867305795169688E-4L,
148 -1.2335696813916860754951146082826952093496E-4L,
149 -3.0677461025892873184042490943581654591817E-5L,
150 # define ZERO logtbl[38]
151 0.0000000000000000000000000000000000000000E0L,
152 -3.0359557945051052537099938863236321874198E-5L,
153 -1.2081346403474584914595395755316412213151E-4L,
154 -2.7044071846562177120083903771008342059094E-4L,
155 -4.7834133324631162897179240322783590830326E-4L,
156 -7.4363569786340080624467487620270965403695E-4L,
157 -1.0654639687057968333207323853366578860679E-3L,
158 -1.4429854811877171341298062134712230604279E-3L,
159 -1.8753781835651574193938679595797367137975E-3L,
160 -2.3618380914922506054347222273705859653658E-3L,
161 -2.9015787624124743013946600163375853631299E-3L,
162 -3.4938307889254087318399313316921940859043E-3L,
163 -4.1378413103128673800485306215154712148146E-3L,
164 -4.8328735414488877044289435125365629849599E-3L,
165 -5.5782063183564351739381962360253116934243E-3L,
166 -6.3731336597098858051938306767880719015261E-3L,
167 -7.2169643436165454612058905294782949315193E-3L,
168 -8.1090214990427641365934846191367315083867E-3L,
169 -9.0486422112807274112838713105168375482480E-3L,
170 -1.0035177140880864314674126398350812606841E-2L,
171 -1.1067990155502102718064936259435676477423E-2L,
172 -1.2146457974158024928196575103115488672416E-2L,
173 -1.3269969823361415906628825374158424754308E-2L,
174 -1.4437927104692837124388550722759686270765E-2L,
175 -1.5649743073340777659901053944852735064621E-2L,
176 -1.6904842527181702880599758489058031645317E-2L,
177 -1.8202661505988007336096407340750378994209E-2L,
178 -1.9542647000370545390701192438691126552961E-2L,
179 -2.0924256670080119637427928803038530924742E-2L,
180 -2.2346958571309108496179613803760727786257E-2L,
181 -2.3810230892650362330447187267648486279460E-2L,
182 -2.5313561699385640380910474255652501521033E-2L,
183 -2.6856448685790244233704909690165496625399E-2L,
184 -2.8438398935154170008519274953860128449036E-2L,
185 -3.0058928687233090922411781058956589863039E-2L,
186 -3.1717563112854831855692484086486099896614E-2L,
187 -3.3413836095418743219397234253475252001090E-2L,
188 -3.5147290019036555862676702093393332533702E-2L,
189 -3.6917475563073933027920505457688955423688E-2L,
190 -3.8723951502862058660874073462456610731178E-2L,
191 -4.0566284516358241168330505467000838017425E-2L,
192 -4.2444048996543693813649967076598766917965E-2L,
193 -4.4356826869355401653098777649745233339196E-2L,
194 -4.6304207416957323121106944474331029996141E-2L,
195 -4.8285787106164123613318093945035804818364E-2L,
196 -5.0301169421838218987124461766244507342648E-2L,
197 -5.2349964705088137924875459464622098310997E-2L,
198 -5.4431789996103111613753440311680967840214E-2L,
199 -5.6546268881465384189752786409400404404794E-2L,
200 -5.8693031345788023909329239565012647817664E-2L,
201 -6.0871713627532018185577188079210189048340E-2L,
202 -6.3081958078862169742820420185833800925568E-2L,
203 -6.5323413029406789694910800219643791556918E-2L,
204 -6.7595732653791419081537811574227049288168E-2L
207 /* ln(2) = ln2a + ln2b with extended precision. */
208 static const long double
209 ln2a = 6.93145751953125e-1L,
210 ln2b = 1.4286068203094172321214581765680755001344E-6L;
212 long double
213 logl (long double x)
215 long double z, y, w;
216 long double t;
217 int k, e;
219 /* Check for IEEE special cases. */
221 /* log(NaN) = NaN. */
222 if (isnanl (x))
224 return x;
226 /* log(0) = -infinity. */
227 if (x == 0.0L)
229 return -0.5L / ZERO;
231 /* log ( x < 0 ) = NaN */
232 if (x < 0.0L)
234 return (x - x) / ZERO;
236 /* log (infinity) */
237 if (x + x == x)
239 return x + x;
242 /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
243 x = frexpl (x, &e);
244 if (x < 0.703125L)
246 x += x;
247 e--;
250 /* On this interval the table is not used due to cancellation error. */
251 if ((x <= 1.0078125L) && (x >= 0.9921875L))
253 z = x - 1.0L;
254 k = 64;
255 t = 1.0L;
257 else
259 k = floorl ((x - 0.5L) * 128.0L);
260 t = 0.5L + k / 128.0L;
261 z = (x - t) / t;
264 /* Series expansion of log(1+z). */
265 w = z * z;
266 y = ((((((((((((l15 * z
267 + l14) * z
268 + l13) * z
269 + l12) * z
270 + l11) * z
271 + l10) * z
272 + l9) * z
273 + l8) * z
274 + l7) * z
275 + l6) * z
276 + l5) * z
277 + l4) * z
278 + l3) * z * w;
279 y -= 0.5 * w;
280 y += e * ln2b; /* Base 2 exponent offset times ln(2). */
281 y += z;
282 y += logtbl[k-26]; /* log(t) - (t-1) */
283 y += (t - 1.0L);
284 y += e * ln2a;
285 return y;
288 #endif