2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
17 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
27 /* Code based on glibc/sysdeps/ieee754/ldbl-128/e_asinl.c. */
30 Long double expansions contributed by
31 Stephen L. Moshier <moshier@na-net.ornl.gov>
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
39 * Between .5 and .625 the approximation is
40 * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
42 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
45 * if x is NaN, return x itself;
46 * if |x|>1, return NaN with invalid signal.
51 static const long double
54 pio2_hi
= 1.5707963267948966192313216916397514420986L,
55 pio2_lo
= 4.3359050650618905123985220130216759843812E-35L,
56 pio4_hi
= 7.8539816339744830961566084581987569936977E-1L,
58 /* coefficient for R(x^2) */
60 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
62 peak relative error 1.9e-35 */
63 pS0
= -8.358099012470680544198472400254596543711E2L
,
64 pS1
= 3.674973957689619490312782828051860366493E3L
,
65 pS2
= -6.730729094812979665807581609853656623219E3L
,
66 pS3
= 6.643843795209060298375552684423454077633E3L
,
67 pS4
= -3.817341990928606692235481812252049415993E3L
,
68 pS5
= 1.284635388402653715636722822195716476156E3L
,
69 pS6
= -2.410736125231549204856567737329112037867E2L
,
70 pS7
= 2.219191969382402856557594215833622156220E1L
,
71 pS8
= -7.249056260830627156600112195061001036533E-1L,
72 pS9
= 1.055923570937755300061509030361395604448E-3L,
74 qS0
= -5.014859407482408326519083440151745519205E3L
,
75 qS1
= 2.430653047950480068881028451580393430537E4L
,
76 qS2
= -4.997904737193653607449250593976069726962E4L
,
77 qS3
= 5.675712336110456923807959930107347511086E4L
,
78 qS4
= -3.881523118339661268482937768522572588022E4L
,
79 qS5
= 1.634202194895541569749717032234510811216E4L
,
80 qS6
= -4.151452662440709301601820849901296953752E3L
,
81 qS7
= 5.956050864057192019085175976175695342168E2L
,
82 qS8
= -4.175375777334867025769346564600396877176E1L
,
83 /* 1.000000000000000000000000000000000000000E0 */
85 /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
86 -0.0625 <= x <= 0.0625
87 peak relative error 3.3e-35 */
88 rS0
= -5.619049346208901520945464704848780243887E0L
,
89 rS1
= 4.460504162777731472539175700169871920352E1L
,
90 rS2
= -1.317669505315409261479577040530751477488E2L
,
91 rS3
= 1.626532582423661989632442410808596009227E2L
,
92 rS4
= -3.144806644195158614904369445440583873264E1L
,
93 rS5
= -9.806674443470740708765165604769099559553E1L
,
94 rS6
= 5.708468492052010816555762842394927806920E1L
,
95 rS7
= 1.396540499232262112248553357962639431922E1L
,
96 rS8
= -1.126243289311910363001762058295832610344E1L
,
97 rS9
= -4.956179821329901954211277873774472383512E-1L,
98 rS10
= 3.313227657082367169241333738391762525780E-1L,
100 sS0
= -4.645814742084009935700221277307007679325E0L
,
101 sS1
= 3.879074822457694323970438316317961918430E1L
,
102 sS2
= -1.221986588013474694623973554726201001066E2L
,
103 sS3
= 1.658821150347718105012079876756201905822E2L
,
104 sS4
= -4.804379630977558197953176474426239748977E1L
,
105 sS5
= -1.004296417397316948114344573811562952793E2L
,
106 sS6
= 7.530281592861320234941101403870010111138E1L
,
107 sS7
= 1.270735595411673647119592092304357226607E1L
,
108 sS8
= -1.815144839646376500705105967064792930282E1L
,
109 sS9
= -7.821597334910963922204235247786840828217E-2L,
110 /* 1.000000000000000000000000000000000000000E0 */
112 asinr5625
= 5.9740641664535021430381036628424864397707E-1L;
116 asinl (long double x
)
118 long double y
, t
, p
, q
;
129 if (y
>= 1.0L) /* |x|>= 1 */
132 /* asin(1)=+-pi/2 with inexact */
133 return x
* pio2_hi
+ x
* pio2_lo
;
135 return (x
- x
) / (x
- x
); /* asin(|x|>1) is NaN */
137 else if (y
< 0.5L) /* |x| < 0.5 */
139 if (y
< 0.000000000000000006938893903907228377647697925567626953125L) /* |x| < 2**-57 */
141 return y
; /* return x with inexact if x!=0 */
166 return x
+ x
* (p
/ q
);
169 else if (y
< 0.625) /* 0.625 */
172 p
= ((((((((((rS10
* t
195 t
= asinr5625
+ p
/ q
;
198 t
= pio2_hi
+ pio2_lo
- 2 * asinl (sqrtl ((1 - y
) / 2));
209 printf ("%.18Lg %.18Lg\n",
211 1.5707963267948966192313216916397514420984L);
212 printf ("%.18Lg %.18Lg\n",
213 asinl (0.7071067811865475244008443621048490392848L),
214 0.7853981633974483096156608458198757210492L);
215 printf ("%.18Lg %.18Lg\n",
217 0.5235987755982988730771072305465838140328L);
218 printf ("%.18Lg %.18Lg\n",
219 asinl (0.3090169943749474241022934171828190588600L),
220 0.3141592653589793238462643383279502884196L);
221 printf ("%.18Lg %.18Lg\n",
223 -1.5707963267948966192313216916397514420984L);
224 printf ("%.18Lg %.18Lg\n",
225 asinl (-0.7071067811865475244008443621048490392848L),
226 -0.7853981633974483096156608458198757210492L);
227 printf ("%.18Lg %.18Lg\n",
229 -0.5235987755982988730771072305465838140328L);
230 printf ("%.18Lg %.18Lg\n",
231 asinl (-0.3090169943749474241022934171828190588600L),
232 -0.3141592653589793238462643383279502884196L);