vasnprintf: Don't use %n on modern, ISO C 99 compliant platforms.
[gnulib.git] / lib / trigl.c
bloba61de338bd2df8d91237677f0f5630c40a6f4dc6
1 /* Quad-precision floating point argument reduction. -*- coding: utf-8 -*-
2 Copyright (C) 1999, 2007, 2009-2020 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <https://www.gnu.org/licenses/>. */
19 #include <config.h>
21 /* Specification. */
22 #include "trigl.h"
24 #include <float.h>
25 #include <math.h>
27 /* Code based on glibc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c
28 and glibc/sysdeps/ieee754/dbl-64/k_rem_pio2.c. */
30 /* Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi */
31 static const int two_over_pi[] = {
32 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
33 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
34 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
35 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
36 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
37 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
38 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
39 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
40 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
41 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
42 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
43 0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
44 0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
45 0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
46 0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
47 0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
48 0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
49 0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
50 0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
51 0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
52 0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
53 0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
54 0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
55 0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
56 0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
57 0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
58 0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
59 0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
60 0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
61 0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
62 0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
63 0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
64 0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
65 0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
66 0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
67 0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
68 0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
69 0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
70 0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
71 0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
72 0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
73 0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
74 0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
75 0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
76 0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
77 0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
78 0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
79 0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
80 0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
81 0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
82 0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
83 0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
84 0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
85 0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
86 0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
87 0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
88 0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
89 0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
90 0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
91 0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
92 0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
93 0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
94 0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
95 0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
96 0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
97 0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
98 0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
99 0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
100 0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
101 0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
102 0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
103 0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
104 0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
105 0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
106 0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
107 0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
108 0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
109 0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
110 0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
111 0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
112 0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
113 0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
114 0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
115 0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
116 0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
117 0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
118 0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
119 0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
120 0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
121 0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
122 0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
123 0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
124 0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
125 0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
126 0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
127 0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
128 0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
129 0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
130 0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
131 0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
132 0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
133 0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
134 0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
135 0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
136 0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
137 0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
138 0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
139 0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
140 0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
141 0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
142 0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
143 0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
144 0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
145 0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
146 0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
147 0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
148 0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
149 0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
150 0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
151 0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
152 0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
153 0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
154 0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
155 0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
156 0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
157 0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
158 0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
159 0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
160 0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
161 0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
162 0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
163 0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
164 0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
165 0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
166 0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
167 0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
168 0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
169 0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
170 0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
171 0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
172 0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
173 0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
174 0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
175 0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
176 0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
177 0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
178 0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
179 0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
180 0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
181 0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
182 0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
183 0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
184 0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
185 0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
186 0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
187 0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
188 0x7b7b89, 0x483d38,
191 static const long double c[] = {
192 /* 93 bits of pi/2 */
193 #define PI_2_1 c[0]
194 1.57079632679489661923132169155131424e+00L, /* 3fff921fb54442d18469898cc5100000 */
196 /* pi/2 - PI_2_1 */
197 #define PI_2_1t c[1]
198 8.84372056613570112025531863263659260e-29L, /* 3fa1c06e0e68948127044533e63a0106 */
201 static int kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
202 const int *ipio2);
205 ieee754_rem_pio2l (long double x, long double *y)
207 long double z, w, t;
208 double tx[8];
209 int exp, n;
211 if (x >= -0.78539816339744830961566084581987572104929234984377
212 && x <= 0.78539816339744830961566084581987572104929234984377)
213 /* x in <-pi/4, pi/4> */
215 y[0] = x;
216 y[1] = 0;
217 return 0;
220 if (x > 0 && x < 2.35619449019234492884698253745962716314787704953131)
222 /* 113 + 93 bit PI is ok */
223 z = x - PI_2_1;
224 y[0] = z - PI_2_1t;
225 y[1] = (z - y[0]) - PI_2_1t;
226 return 1;
229 if (x < 0 && x > -2.35619449019234492884698253745962716314787704953131)
231 /* 113 + 93 bit PI is ok */
232 z = x + PI_2_1;
233 y[0] = z + PI_2_1t;
234 y[1] = (z - y[0]) + PI_2_1t;
235 return -1;
238 if (x + x == x) /* x is ±oo */
240 y[0] = x - x;
241 y[1] = y[0];
242 return 0;
245 /* Handle large arguments.
246 We split the 113 bits of the mantissa into 5 24bit integers
247 stored in a double array. */
248 z = frexp (x, &exp);
249 tx[0] = floorl (z *= 16777216.0);
250 z -= tx[0];
251 tx[1] = floorl (z *= 16777216.0);
252 z -= tx[1];
253 tx[2] = floorl (z *= 16777216.0);
254 z -= tx[2];
255 tx[3] = floorl (z *= 16777216.0);
256 z -= tx[3];
257 tx[4] = floorl (z *= 16777216.0);
259 n = kernel_rem_pio2 (tx, tx + 5, exp - 24, tx[4] ? 5 : 4, 3, two_over_pi);
261 /* The result is now stored in 3 double values, we need to convert it into
262 two long double values. */
263 t = (long double) tx[6] + (long double) tx[7];
264 w = (long double) tx[5];
266 if (x > 0)
268 y[0] = w + t;
269 y[1] = t - (y[0] - w);
270 return n;
272 else
274 y[0] = -(w + t);
275 y[1] = -t - (y[0] + w);
276 return -n;
280 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
282 * ====================================================
283 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
285 * Developed at SunPro, a Sun Microsystems, Inc. business.
286 * Permission to use, copy, modify, and distribute this
287 * software is freely granted, provided that this notice
288 * is preserved.
289 * ====================================================
292 #if defined LIBM_SCCS && !defined GCC_LINT && !defined lint
293 static char rcsid[] =
294 "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
295 #endif
298 * kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
299 * double x[],y[]; int e0,nx,prec; int ipio2[];
301 * kernel_rem_pio2 return the last three digits of N with
302 * y = x - N*pi/2
303 * so that |y| < pi/2.
305 * The method is to compute the integer (mod 8) and fraction parts of
306 * (2/pi)*x without doing the full multiplication. In general we
307 * skip the part of the product that are known to be a huge integer (
308 * more accurately, = 0 mod 8 ). Thus the number of operations are
309 * independent of the exponent of the input.
311 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
313 * Input parameters:
314 * x[] The input value (must be positive) is broken into nx
315 * pieces of 24-bit integers in double precision format.
316 * x[i] will be the i-th 24 bit of x. The scaled exponent
317 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
318 * match x's up to 24 bits.
320 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
321 * e0 = ilogb(z)-23
322 * z = scalbn(z,-e0)
323 * for i = 0,1,2
324 * x[i] = floor(z)
325 * z = (z-x[i])*2**24
328 * y[] output result in an array of double precision numbers.
329 * The dimension of y[] is:
330 * 24-bit precision 1
331 * 53-bit precision 2
332 * 64-bit precision 2
333 * 113-bit precision 3
334 * The actual value is the sum of them. Thus for 113-bit
335 * precision, one may have to do something like:
337 * long double t,w,r_head, r_tail;
338 * t = (long double)y[2] + (long double)y[1];
339 * w = (long double)y[0];
340 * r_head = t+w;
341 * r_tail = w - (r_head - t);
343 * e0 The exponent of x[0]
345 * nx dimension of x[]
347 * prec an integer indicating the precision:
348 * 0 24 bits (single)
349 * 1 53 bits (double)
350 * 2 64 bits (extended)
351 * 3 113 bits (quad)
353 * ipio2[]
354 * integer array, contains the (24*i)-th to (24*i+23)-th
355 * bit of 2/pi after binary point. The corresponding
356 * floating value is
358 * ipio2[i] * 2^(-24(i+1)).
360 * External function:
361 * double scalbn(), floor();
364 * Here is the description of some local variables:
366 * jk jk+1 is the initial number of terms of ipio2[] needed
367 * in the computation. The recommended value is 2,3,4,
368 * 6 for single, double, extended,and quad.
370 * jz local integer variable indicating the number of
371 * terms of ipio2[] used.
373 * jx nx - 1
375 * jv index for pointing to the suitable ipio2[] for the
376 * computation. In general, we want
377 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
378 * is an integer. Thus
379 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
380 * Hence jv = max(0,(e0-3)/24).
382 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
384 * q[] double array with integral value, representing the
385 * 24-bits chunk of the product of x and 2/pi.
387 * q0 the corresponding exponent of q[0]. Note that the
388 * exponent for q[i] would be q0-24*i.
390 * PIo2[] double precision array, obtained by cutting pi/2
391 * into 24 bits chunks.
393 * f[] ipio2[] in floating point
395 * iq[] integer array by breaking up q[] in 24-bits chunk.
397 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
399 * ih integer. If >0 it indicates q[] is >= 0.5, hence
400 * it also indicates the *sign* of the result.
406 * Constants:
407 * The hexadecimal values are the intended ones for the following
408 * constants. The decimal values may be used, provided that the
409 * compiler will convert from decimal to binary accurately enough
410 * to produce the hexadecimal values shown.
413 static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */
414 static const double PIo2[] = {
415 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
416 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
417 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
418 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
419 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
420 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
421 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
422 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
425 static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
426 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
428 static int
429 kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
430 const int *ipio2)
432 int jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
433 double z, fw, f[20], fq[20], q[20];
435 /* initialize jk */
436 jk = init_jk[prec];
437 jp = jk;
439 /* determine jx,jv,q0, note that 3>q0 */
440 jx = nx - 1;
441 jv = (e0 - 3) / 24;
442 if (jv < 0)
443 jv = 0;
444 q0 = e0 - 24 * (jv + 1);
446 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
447 j = jv - jx;
448 m = jx + jk;
449 for (i = 0; i <= m; i++, j++)
450 f[i] = (j < 0) ? zero : (double) ipio2[j];
452 /* compute q[0],q[1],...q[jk] */
453 for (i = 0; i <= jk; i++)
455 for (j = 0, fw = 0.0; j <= jx; j++)
456 fw += x[j] * f[jx + i - j];
457 q[i] = fw;
460 jz = jk;
461 recompute:
462 /* distill q[] into iq[] in reverse order */
463 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
465 fw = (double) ((int) (twon24 * z));
466 iq[i] = (int) (z - two24 * fw);
467 z = q[j - 1] + fw;
470 /* compute n */
471 z = ldexp (z, q0); /* actual value of z */
472 z -= 8.0 * floor (z * 0.125); /* trim off integer >= 8 */
473 n = (int) z;
474 z -= (double) n;
475 ih = 0;
476 if (q0 > 0)
477 { /* need iq[jz-1] to determine n */
478 i = (iq[jz - 1] >> (24 - q0));
479 n += i;
480 iq[jz - 1] -= i << (24 - q0);
481 ih = iq[jz - 1] >> (23 - q0);
483 else if (q0 == 0)
484 ih = iq[jz - 1] >> 23;
485 else if (z >= 0.5)
486 ih = 2;
488 if (ih > 0)
489 { /* q > 0.5 */
490 n += 1;
491 carry = 0;
492 for (i = 0; i < jz; i++)
493 { /* compute 1-q */
494 j = iq[i];
495 if (carry == 0)
497 if (j != 0)
499 carry = 1;
500 iq[i] = 0x1000000 - j;
503 else
504 iq[i] = 0xffffff - j;
506 if (q0 > 0)
507 { /* rare case: chance is 1 in 12 */
508 switch (q0)
510 case 1:
511 iq[jz - 1] &= 0x7fffff;
512 break;
513 case 2:
514 iq[jz - 1] &= 0x3fffff;
515 break;
518 if (ih == 2)
520 z = one - z;
521 if (carry != 0)
522 z -= ldexp (one, q0);
526 /* check if recomputation is needed */
527 if (z == zero)
529 j = 0;
530 for (i = jz - 1; i >= jk; i--)
531 j |= iq[i];
532 if (j == 0)
533 { /* need recomputation */
534 for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */
536 for (i = jz + 1; i <= jz + k; i++)
537 { /* add q[jz+1] to q[jz+k] */
538 f[jx + i] = (double) ipio2[jv + i];
539 for (j = 0, fw = 0.0; j <= jx; j++)
540 fw += x[j] * f[jx + i - j];
541 q[i] = fw;
543 jz += k;
544 goto recompute;
548 /* chop off zero terms */
549 if (z == 0.0)
551 jz -= 1;
552 q0 -= 24;
553 while (iq[jz] == 0)
555 jz--;
556 q0 -= 24;
559 else
560 { /* break z into 24-bit if necessary */
561 z = ldexp (z, -q0);
562 if (z >= two24)
564 fw = (double) ((int) (twon24 * z));
565 iq[jz] = (int) (z - two24 * fw);
566 jz += 1;
567 q0 += 24;
568 iq[jz] = (int) fw;
570 else
571 iq[jz] = (int) z;
574 /* convert integer "bit" chunk to floating-point value */
575 fw = ldexp (one, q0);
576 for (i = jz; i >= 0; i--)
578 q[i] = fw * (double) iq[i];
579 fw *= twon24;
582 /* compute PIo2[0,...,jp]*q[jz,...,0] */
583 for (i = jz; i >= 0; i--)
585 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
586 fw += PIo2[k] * q[i + k];
587 fq[jz - i] = fw;
590 /* compress fq[] into y[] */
591 switch (prec)
593 case 0:
594 fw = 0.0;
595 for (i = jz; i >= 0; i--)
596 fw += fq[i];
597 y[0] = (ih == 0) ? fw : -fw;
598 break;
599 case 1:
600 case 2:
601 fw = 0.0;
602 for (i = jz; i >= 0; i--)
603 fw += fq[i];
604 y[0] = (ih == 0) ? fw : -fw;
605 fw = fq[0] - fw;
606 for (i = 1; i <= jz; i++)
607 fw += fq[i];
608 y[1] = (ih == 0) ? fw : -fw;
609 break;
610 case 3: /* painful */
611 for (i = jz; i > 0; i--)
613 fw = fq[i - 1] + fq[i];
614 fq[i] += fq[i - 1] - fw;
615 fq[i - 1] = fw;
617 for (i = jz; i > 1; i--)
619 fw = fq[i - 1] + fq[i];
620 fq[i] += fq[i - 1] - fw;
621 fq[i - 1] = fw;
623 for (fw = 0.0, i = jz; i >= 2; i--)
624 fw += fq[i];
625 if (ih == 0)
627 y[0] = fq[0];
628 y[1] = fq[1];
629 y[2] = fw;
631 else
633 y[0] = -fq[0];
634 y[1] = -fq[1];
635 y[2] = -fw;
638 return n & 7;