af_alg: Improve comments.
[gnulib.git] / lib / tanl.c
blobae70884c711137540da57c22eea47f28bf359ce5
1 /* s_tanl.c -- long double version of s_tan.c.
2 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
3 */
5 /* @(#)s_tan.c 5.1 93/09/24 */
6 /*
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
13 * is preserved.
14 * ====================================================
17 #include <config.h>
19 /* Specification. */
20 #include <math.h>
22 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
24 long double
25 tanl (long double x)
27 return tan (x);
30 #else
32 /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_tanl.c
33 and glibc/sysdeps/ieee754/ldbl-128/k_tanl.c. */
35 /* tanl(x)
36 * Return tangent function of x.
38 * kernel function:
39 * __kernel_tanl ... tangent function on [-pi/4,pi/4]
40 * __ieee754_rem_pio2l ... argument reduction routine
42 * Method.
43 * Let S,C and T denote the sin, cos and tan respectively on
44 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
45 * in [-pi/4 , +pi/4], and let n = k mod 4.
46 * We have
48 * n sin(x) cos(x) tan(x)
49 * ----------------------------------------------------------
50 * 0 S C T
51 * 1 C -S -1/T
52 * 2 -S -C T
53 * 3 -C S -1/T
54 * ----------------------------------------------------------
56 * Special cases:
57 * Let trig be any of sin, cos, or tan.
58 * trig(+-INF) is NaN, with signals;
59 * trig(NaN) is that NaN;
61 * Accuracy:
62 * TRIG(x) returns trig(x) nearly rounded
65 # include "trigl.h"
68 * ====================================================
69 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
71 * Developed at SunPro, a Sun Microsystems, Inc. business.
72 * Permission to use, copy, modify, and distribute this
73 * software is freely granted, provided that this notice
74 * is preserved.
75 * ====================================================
79 Long double expansions contributed by
80 Stephen L. Moshier <moshier@na-net.ornl.gov>
83 /* __kernel_tanl( x, y, k )
84 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
85 * Input x is assumed to be bounded by ~pi/4 in magnitude.
86 * Input y is the tail of x.
87 * Input k indicates whether tan (if k=1) or
88 * -1/tan (if k= -1) is returned.
90 * Algorithm
91 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
92 * 2. if x < 2^-57, return x with inexact if x!=0.
93 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
94 * on [0,0.67433].
96 * Note: tan(x+y) = tan(x) + tan'(x)*y
97 * ~ tan(x) + (1+x*x)*y
98 * Therefore, for better accuracy in computing tan(x+y), let
99 * r = x^3 * R(x^2)
100 * then
101 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
103 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
104 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
105 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
109 static const long double
110 pio4hi = 7.8539816339744830961566084581987569936977E-1L,
111 pio4lo = 2.1679525325309452561992610065108379921906E-35L,
113 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
114 0 <= x <= 0.6743316650390625
115 Peak relative error 8.0e-36 */
116 TH = 3.333333333333333333333333333333333333333E-1L,
117 T0 = -1.813014711743583437742363284336855889393E7L,
118 T1 = 1.320767960008972224312740075083259247618E6L,
119 T2 = -2.626775478255838182468651821863299023956E4L,
120 T3 = 1.764573356488504935415411383687150199315E2L,
121 T4 = -3.333267763822178690794678978979803526092E-1L,
123 U0 = -1.359761033807687578306772463253710042010E8L,
124 U1 = 6.494370630656893175666729313065113194784E7L,
125 U2 = -4.180787672237927475505536849168729386782E6L,
126 U3 = 8.031643765106170040139966622980914621521E4L,
127 U4 = -5.323131271912475695157127875560667378597E2L;
128 /* 1.000000000000000000000000000000000000000E0 */
131 static long double
132 kernel_tanl (long double x, long double y, int iy)
134 long double z, r, v, w, s, u, u1;
135 int invert = 0, sign;
137 sign = 1;
138 if (x < 0)
140 x = -x;
141 y = -y;
142 sign = -1;
145 if (x < 0.000000000000000006938893903907228377647697925567626953125L) /* x < 2**-57 */
147 if ((int) x == 0)
148 { /* generate inexact */
149 if (iy == -1 && x == 0.0)
150 return 1.0L / fabs (x);
151 else
152 return (iy == 1) ? x : -1.0L / x;
155 if (x >= 0.6743316650390625) /* |x| >= 0.6743316650390625 */
157 invert = 1;
159 z = pio4hi - x;
160 w = pio4lo - y;
161 x = z + w;
162 y = 0.0;
164 z = x * x;
165 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
166 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
167 r = r / v;
169 s = z * x;
170 r = y + z * (s * r + y);
171 r += TH * s;
172 w = x + r;
173 if (invert)
175 v = (long double) iy;
176 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
177 if (sign < 0)
178 w = -w;
179 return w;
181 if (iy == 1)
182 return w;
183 else
184 { /* if allow error up to 2 ulp,
185 simply return -1.0/(x+r) here */
186 /* compute -1.0/(x+r) accurately */
187 u1 = (double) w;
188 v = r - (u1 - x);
189 z = -1.0 / w;
190 u = (double) z;
191 s = 1.0 + u * u1;
192 return u + z * (s + u * v);
196 long double
197 tanl (long double x)
199 long double y[2], z = 0.0L;
200 int n;
202 /* tanl(NaN) is NaN */
203 if (isnanl (x))
204 return x;
206 /* |x| ~< pi/4 */
207 if (x >= -0.7853981633974483096156608458198757210492 &&
208 x <= 0.7853981633974483096156608458198757210492)
209 return kernel_tanl (x, z, 1);
211 /* tanl(Inf) is NaN, tanl(0) is 0 */
212 else if (x + x == x)
213 return x - x; /* NaN */
215 /* argument reduction needed */
216 else
218 n = ieee754_rem_pio2l (x, y);
219 /* 1 -- n even, -1 -- n odd */
220 return kernel_tanl (y[0], y[1], 1 - ((n & 1) << 1));
224 #endif
226 #if 0
228 main (void)
230 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492));
231 printf ("%.16Lg\n", tanl (-0.7853981633974483096156608458198757210492));
232 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 *3));
233 printf ("%.16Lg\n", tanl (-0.7853981633974483096156608458198757210492 *31));
234 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 / 2));
235 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 * 3/2));
236 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 * 5/2));
238 #endif