1 /* s_tanl.c -- long double version of s_tan.c.
2 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
5 /* @(#)s_tan.c 5.1 93/09/24 */
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
14 * ====================================================
22 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
32 /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_tanl.c
33 and glibc/sysdeps/ieee754/ldbl-128/k_tanl.c. */
36 * Return tangent function of x.
39 * __kernel_tanl ... tangent function on [-pi/4,pi/4]
40 * __ieee754_rem_pio2l ... argument reduction routine
43 * Let S,C and T denote the sin, cos and tan respectively on
44 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
45 * in [-pi/4 , +pi/4], and let n = k mod 4.
48 * n sin(x) cos(x) tan(x)
49 * ----------------------------------------------------------
54 * ----------------------------------------------------------
57 * Let trig be any of sin, cos, or tan.
58 * trig(+-INF) is NaN, with signals;
59 * trig(NaN) is that NaN;
62 * TRIG(x) returns trig(x) nearly rounded
68 * ====================================================
69 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
71 * Developed at SunPro, a Sun Microsystems, Inc. business.
72 * Permission to use, copy, modify, and distribute this
73 * software is freely granted, provided that this notice
75 * ====================================================
79 Long double expansions contributed by
80 Stephen L. Moshier <moshier@na-net.ornl.gov>
83 /* __kernel_tanl( x, y, k )
84 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
85 * Input x is assumed to be bounded by ~pi/4 in magnitude.
86 * Input y is the tail of x.
87 * Input k indicates whether tan (if k=1) or
88 * -1/tan (if k= -1) is returned.
91 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
92 * 2. if x < 2^-57, return x with inexact if x!=0.
93 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
96 * Note: tan(x+y) = tan(x) + tan'(x)*y
97 * ~ tan(x) + (1+x*x)*y
98 * Therefore, for better accuracy in computing tan(x+y), let
101 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
103 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
104 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
105 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
109 static const long double
110 pio4hi
= 7.8539816339744830961566084581987569936977E-1L,
111 pio4lo
= 2.1679525325309452561992610065108379921906E-35L,
113 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
114 0 <= x <= 0.6743316650390625
115 Peak relative error 8.0e-36 */
116 TH
= 3.333333333333333333333333333333333333333E-1L,
117 T0
= -1.813014711743583437742363284336855889393E7L
,
118 T1
= 1.320767960008972224312740075083259247618E6L
,
119 T2
= -2.626775478255838182468651821863299023956E4L
,
120 T3
= 1.764573356488504935415411383687150199315E2L
,
121 T4
= -3.333267763822178690794678978979803526092E-1L,
123 U0
= -1.359761033807687578306772463253710042010E8L
,
124 U1
= 6.494370630656893175666729313065113194784E7L
,
125 U2
= -4.180787672237927475505536849168729386782E6L
,
126 U3
= 8.031643765106170040139966622980914621521E4L
,
127 U4
= -5.323131271912475695157127875560667378597E2L
;
128 /* 1.000000000000000000000000000000000000000E0 */
132 kernel_tanl (long double x
, long double y
, int iy
)
134 long double z
, r
, v
, w
, s
, u
, u1
;
135 int invert
= 0, sign
;
145 if (x
< 0.000000000000000006938893903907228377647697925567626953125L) /* x < 2**-57 */
148 { /* generate inexact */
149 if (iy
== -1 && x
== 0.0)
150 return 1.0L / fabs (x
);
152 return (iy
== 1) ? x
: -1.0L / x
;
155 if (x
>= 0.6743316650390625) /* |x| >= 0.6743316650390625 */
165 r
= T0
+ z
* (T1
+ z
* (T2
+ z
* (T3
+ z
* T4
)));
166 v
= U0
+ z
* (U1
+ z
* (U2
+ z
* (U3
+ z
* (U4
+ z
))));
170 r
= y
+ z
* (s
* r
+ y
);
175 v
= (long double) iy
;
176 w
= (v
- 2.0 * (x
- (w
* w
/ (w
+ v
) - r
)));
184 { /* if allow error up to 2 ulp,
185 simply return -1.0/(x+r) here */
186 /* compute -1.0/(x+r) accurately */
192 return u
+ z
* (s
+ u
* v
);
199 long double y
[2], z
= 0.0L;
202 /* tanl(NaN) is NaN */
207 if (x
>= -0.7853981633974483096156608458198757210492 &&
208 x
<= 0.7853981633974483096156608458198757210492)
209 return kernel_tanl (x
, z
, 1);
211 /* tanl(Inf) is NaN, tanl(0) is 0 */
213 return x
- x
; /* NaN */
215 /* argument reduction needed */
218 n
= ieee754_rem_pio2l (x
, y
);
219 /* 1 -- n even, -1 -- n odd */
220 return kernel_tanl (y
[0], y
[1], 1 - ((n
& 1) << 1));
230 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492));
231 printf ("%.16Lg\n", tanl (-0.7853981633974483096156608458198757210492));
232 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 *3));
233 printf ("%.16Lg\n", tanl (-0.7853981633974483096156608458198757210492 *31));
234 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 / 2));
235 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 * 3/2));
236 printf ("%.16Lg\n", tanl (0.7853981633974483096156608458198757210492 * 5/2));