1 /* obstack.h - object stack macros
2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
21 All the apparent functions defined here are macros. The idea
22 is that you would use these pre-tested macros to solve a
23 very specific set of problems, and they would run fast.
24 Caution: no side-effects in arguments please!! They may be
25 evaluated MANY times!!
27 These macros operate a stack of objects. Each object starts life
28 small, and may grow to maturity. (Consider building a word syllable
29 by syllable.) An object can move while it is growing. Once it has
30 been "finished" it never changes address again. So the "top of the
31 stack" is typically an immature growing object, while the rest of the
32 stack is of mature, fixed size and fixed address objects.
34 These routines grab large chunks of memory, using a function you
35 supply, called 'obstack_chunk_alloc'. On occasion, they free chunks,
36 by calling 'obstack_chunk_free'. You must define them and declare
37 them before using any obstack macros.
39 Each independent stack is represented by a 'struct obstack'.
40 Each of the obstack macros expects a pointer to such a structure
41 as the first argument.
43 One motivation for this package is the problem of growing char strings
44 in symbol tables. Unless you are "fascist pig with a read-only mind"
45 --Gosper's immortal quote from HAKMEM item 154, out of context--you
46 would not like to put any arbitrary upper limit on the length of your
49 In practice this often means you will build many short symbols and a
50 few long symbols. At the time you are reading a symbol you don't know
51 how long it is. One traditional method is to read a symbol into a
52 buffer, realloc()ating the buffer every time you try to read a symbol
53 that is longer than the buffer. This is beaut, but you still will
54 want to copy the symbol from the buffer to a more permanent
55 symbol-table entry say about half the time.
57 With obstacks, you can work differently. Use one obstack for all symbol
58 names. As you read a symbol, grow the name in the obstack gradually.
59 When the name is complete, finalize it. Then, if the symbol exists already,
60 free the newly read name.
62 The way we do this is to take a large chunk, allocating memory from
63 low addresses. When you want to build a symbol in the chunk you just
64 add chars above the current "high water mark" in the chunk. When you
65 have finished adding chars, because you got to the end of the symbol,
66 you know how long the chars are, and you can create a new object.
67 Mostly the chars will not burst over the highest address of the chunk,
68 because you would typically expect a chunk to be (say) 100 times as
69 long as an average object.
71 In case that isn't clear, when we have enough chars to make up
72 the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
73 so we just point to it where it lies. No moving of chars is
74 needed and this is the second win: potentially long strings need
75 never be explicitly shuffled. Once an object is formed, it does not
76 change its address during its lifetime.
78 When the chars burst over a chunk boundary, we allocate a larger
79 chunk, and then copy the partly formed object from the end of the old
80 chunk to the beginning of the new larger chunk. We then carry on
81 accreting characters to the end of the object as we normally would.
83 A special macro is provided to add a single char at a time to a
84 growing object. This allows the use of register variables, which
85 break the ordinary 'growth' macro.
88 We allocate large chunks.
89 We carve out one object at a time from the current chunk.
90 Once carved, an object never moves.
91 We are free to append data of any size to the currently
93 Exactly one object is growing in an obstack at any one time.
94 You can run one obstack per control block.
95 You may have as many control blocks as you dare.
96 Because of the way we do it, you can "unwind" an obstack
97 back to a previous state. (You may remove objects much
98 as you would with a stack.)
102 /* Don't do the contents of this file more than once. */
107 #ifndef _OBSTACK_INTERFACE_VERSION
108 # define _OBSTACK_INTERFACE_VERSION 2
111 #include <stddef.h> /* For size_t and ptrdiff_t. */
112 #include <string.h> /* For __GNU_LIBRARY__, and memcpy. */
114 #if __STDC_VERSION__ < 199901L
115 # define __FLEXIBLE_ARRAY_MEMBER 1
117 # define __FLEXIBLE_ARRAY_MEMBER
120 #if _OBSTACK_INTERFACE_VERSION == 1
121 /* For binary compatibility with obstack version 1, which used "int"
122 and "long" for these two types. */
123 # define _OBSTACK_SIZE_T unsigned int
124 # define _CHUNK_SIZE_T unsigned long
125 # define _OBSTACK_CAST(type, expr) ((type) (expr))
127 /* Version 2 with sane types, especially for 64-bit hosts. */
128 # define _OBSTACK_SIZE_T size_t
129 # define _CHUNK_SIZE_T size_t
130 # define _OBSTACK_CAST(type, expr) (expr)
133 /* If B is the base of an object addressed by P, return the result of
134 aligning P to the next multiple of A + 1. B and P must be of type
135 char *. A + 1 must be a power of 2. */
137 #define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
139 /* Similar to __BPTR_ALIGN (B, P, A), except optimize the common case
140 where pointers can be converted to integers, aligned as integers,
141 and converted back again. If ptrdiff_t is narrower than a
142 pointer (e.g., the AS/400), play it safe and compute the alignment
143 relative to B. Otherwise, use the faster strategy of computing the
144 alignment relative to 0. */
146 #define __PTR_ALIGN(B, P, A) \
147 __BPTR_ALIGN (sizeof (ptrdiff_t) < sizeof (void *) ? (B) : (char *) 0, \
150 #ifndef __attribute_pure__
151 # define __attribute_pure__ _GL_ATTRIBUTE_PURE
154 /* Not the same as _Noreturn, since it also works with function pointers. */
155 #ifndef __attribute_noreturn__
156 # if 2 < __GNUC__ + (8 <= __GNUC_MINOR__) || 0x5110 <= __SUNPRO_C
157 # define __attribute_noreturn__ __attribute__ ((__noreturn__))
159 # define __attribute_noreturn__
167 struct _obstack_chunk
/* Lives at front of each chunk. */
169 char *limit
; /* 1 past end of this chunk */
170 struct _obstack_chunk
*prev
; /* address of prior chunk or NULL */
171 char contents
[__FLEXIBLE_ARRAY_MEMBER
]; /* objects begin here */
174 struct obstack
/* control current object in current chunk */
176 _CHUNK_SIZE_T chunk_size
; /* preferred size to allocate chunks in */
177 struct _obstack_chunk
*chunk
; /* address of current struct obstack_chunk */
178 char *object_base
; /* address of object we are building */
179 char *next_free
; /* where to add next char to current object */
180 char *chunk_limit
; /* address of char after current chunk */
185 } temp
; /* Temporary for some macros. */
186 _OBSTACK_SIZE_T alignment_mask
; /* Mask of alignment for each object. */
188 /* These prototypes vary based on 'use_extra_arg'. */
191 void *(*plain
) (size_t);
192 void *(*extra
) (void *, size_t);
196 void (*plain
) (void *);
197 void (*extra
) (void *, void *);
200 void *extra_arg
; /* first arg for chunk alloc/dealloc funcs */
201 unsigned use_extra_arg
: 1; /* chunk alloc/dealloc funcs take extra arg */
202 unsigned maybe_empty_object
: 1; /* There is a possibility that the current
203 chunk contains a zero-length object. This
204 prevents freeing the chunk if we allocate
205 a bigger chunk to replace it. */
206 unsigned alloc_failed
: 1; /* No longer used, as we now call the failed
207 handler on error, but retained for binary
211 /* Declare the external functions we use; they are in obstack.c. */
213 extern void _obstack_newchunk (struct obstack
*, _OBSTACK_SIZE_T
);
214 extern void _obstack_free (struct obstack
*, void *);
215 extern int _obstack_begin (struct obstack
*,
216 _OBSTACK_SIZE_T
, _OBSTACK_SIZE_T
,
217 void *(*) (size_t), void (*) (void *));
218 extern int _obstack_begin_1 (struct obstack
*,
219 _OBSTACK_SIZE_T
, _OBSTACK_SIZE_T
,
220 void *(*) (void *, size_t),
221 void (*) (void *, void *), void *);
222 extern _OBSTACK_SIZE_T
_obstack_memory_used (struct obstack
*)
226 /* Error handler called when 'obstack_chunk_alloc' failed to allocate
227 more memory. This can be set to a user defined function which
228 should either abort gracefully or use longjump - but shouldn't
229 return. The default action is to print a message and abort. */
230 extern __attribute_noreturn__
void (*obstack_alloc_failed_handler
) (void);
232 /* Exit value used when 'print_and_abort' is used. */
233 extern int obstack_exit_failure
;
235 /* Pointer to beginning of object being allocated or to be allocated next.
236 Note that this might not be the final address of the object
237 because a new chunk might be needed to hold the final size. */
239 #define obstack_base(h) ((void *) (h)->object_base)
241 /* Size for allocating ordinary chunks. */
243 #define obstack_chunk_size(h) ((h)->chunk_size)
245 /* Pointer to next byte not yet allocated in current chunk. */
247 #define obstack_next_free(h) ((void *) (h)->next_free)
249 /* Mask specifying low bits that should be clear in address of an object. */
251 #define obstack_alignment_mask(h) ((h)->alignment_mask)
253 /* To prevent prototype warnings provide complete argument list. */
254 #define obstack_init(h) \
255 _obstack_begin ((h), 0, 0, \
256 _OBSTACK_CAST (void *(*) (size_t), obstack_chunk_alloc), \
257 _OBSTACK_CAST (void (*) (void *), obstack_chunk_free))
259 #define obstack_begin(h, size) \
260 _obstack_begin ((h), (size), 0, \
261 _OBSTACK_CAST (void *(*) (size_t), obstack_chunk_alloc), \
262 _OBSTACK_CAST (void (*) (void *), obstack_chunk_free))
264 #define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
265 _obstack_begin ((h), (size), (alignment), \
266 _OBSTACK_CAST (void *(*) (size_t), chunkfun), \
267 _OBSTACK_CAST (void (*) (void *), freefun))
269 #define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
270 _obstack_begin_1 ((h), (size), (alignment), \
271 _OBSTACK_CAST (void *(*) (void *, size_t), chunkfun), \
272 _OBSTACK_CAST (void (*) (void *, void *), freefun), arg)
274 #define obstack_chunkfun(h, newchunkfun) \
275 ((void) ((h)->chunkfun.extra = (void *(*) (void *, size_t)) (newchunkfun)))
277 #define obstack_freefun(h, newfreefun) \
278 ((void) ((h)->freefun.extra = (void *(*) (void *, void *)) (newfreefun)))
280 #define obstack_1grow_fast(h, achar) ((void) (*((h)->next_free)++ = (achar)))
282 #define obstack_blank_fast(h, n) ((void) ((h)->next_free += (n)))
284 #define obstack_memory_used(h) _obstack_memory_used (h)
287 # if !defined __GNUC_MINOR__ || __GNUC__ * 1000 + __GNUC_MINOR__ < 2008
288 # define __extension__
291 /* For GNU C, if not -traditional,
292 we can define these macros to compute all args only once
293 without using a global variable.
294 Also, we can avoid using the 'temp' slot, to make faster code. */
296 # define obstack_object_size(OBSTACK) \
298 ({ struct obstack const *__o = (OBSTACK); \
299 (_OBSTACK_SIZE_T) (__o->next_free - __o->object_base); })
301 /* The local variable is named __o1 to avoid a shadowed variable
302 warning when invoked from other obstack macros. */
303 # define obstack_room(OBSTACK) \
305 ({ struct obstack const *__o1 = (OBSTACK); \
306 (_OBSTACK_SIZE_T) (__o1->chunk_limit - __o1->next_free); })
308 # define obstack_make_room(OBSTACK, length) \
310 ({ struct obstack *__o = (OBSTACK); \
311 _OBSTACK_SIZE_T __len = (length); \
312 if (obstack_room (__o) < __len) \
313 _obstack_newchunk (__o, __len); \
316 # define obstack_empty_p(OBSTACK) \
318 ({ struct obstack const *__o = (OBSTACK); \
319 (__o->chunk->prev == 0 \
320 && __o->next_free == __PTR_ALIGN ((char *) __o->chunk, \
321 __o->chunk->contents, \
322 __o->alignment_mask)); })
324 # define obstack_grow(OBSTACK, where, length) \
326 ({ struct obstack *__o = (OBSTACK); \
327 _OBSTACK_SIZE_T __len = (length); \
328 if (obstack_room (__o) < __len) \
329 _obstack_newchunk (__o, __len); \
330 memcpy (__o->next_free, where, __len); \
331 __o->next_free += __len; \
334 # define obstack_grow0(OBSTACK, where, length) \
336 ({ struct obstack *__o = (OBSTACK); \
337 _OBSTACK_SIZE_T __len = (length); \
338 if (obstack_room (__o) < __len + 1) \
339 _obstack_newchunk (__o, __len + 1); \
340 memcpy (__o->next_free, where, __len); \
341 __o->next_free += __len; \
342 *(__o->next_free)++ = 0; \
345 # define obstack_1grow(OBSTACK, datum) \
347 ({ struct obstack *__o = (OBSTACK); \
348 if (obstack_room (__o) < 1) \
349 _obstack_newchunk (__o, 1); \
350 obstack_1grow_fast (__o, datum); })
352 /* These assume that the obstack alignment is good enough for pointers
353 or ints, and that the data added so far to the current object
354 shares that much alignment. */
356 # define obstack_ptr_grow(OBSTACK, datum) \
358 ({ struct obstack *__o = (OBSTACK); \
359 if (obstack_room (__o) < sizeof (void *)) \
360 _obstack_newchunk (__o, sizeof (void *)); \
361 obstack_ptr_grow_fast (__o, datum); })
363 # define obstack_int_grow(OBSTACK, datum) \
365 ({ struct obstack *__o = (OBSTACK); \
366 if (obstack_room (__o) < sizeof (int)) \
367 _obstack_newchunk (__o, sizeof (int)); \
368 obstack_int_grow_fast (__o, datum); })
370 # define obstack_ptr_grow_fast(OBSTACK, aptr) \
372 ({ struct obstack *__o1 = (OBSTACK); \
373 void *__p1 = __o1->next_free; \
374 *(const void **) __p1 = (aptr); \
375 __o1->next_free += sizeof (const void *); \
378 # define obstack_int_grow_fast(OBSTACK, aint) \
380 ({ struct obstack *__o1 = (OBSTACK); \
381 void *__p1 = __o1->next_free; \
382 *(int *) __p1 = (aint); \
383 __o1->next_free += sizeof (int); \
386 # define obstack_blank(OBSTACK, length) \
388 ({ struct obstack *__o = (OBSTACK); \
389 _OBSTACK_SIZE_T __len = (length); \
390 if (obstack_room (__o) < __len) \
391 _obstack_newchunk (__o, __len); \
392 obstack_blank_fast (__o, __len); })
394 # define obstack_alloc(OBSTACK, length) \
396 ({ struct obstack *__h = (OBSTACK); \
397 obstack_blank (__h, (length)); \
398 obstack_finish (__h); })
400 # define obstack_copy(OBSTACK, where, length) \
402 ({ struct obstack *__h = (OBSTACK); \
403 obstack_grow (__h, (where), (length)); \
404 obstack_finish (__h); })
406 # define obstack_copy0(OBSTACK, where, length) \
408 ({ struct obstack *__h = (OBSTACK); \
409 obstack_grow0 (__h, (where), (length)); \
410 obstack_finish (__h); })
412 /* The local variable is named __o1 to avoid a shadowed variable
413 warning when invoked from other obstack macros, typically obstack_free. */
414 # define obstack_finish(OBSTACK) \
416 ({ struct obstack *__o1 = (OBSTACK); \
417 void *__value = (void *) __o1->object_base; \
418 if (__o1->next_free == __value) \
419 __o1->maybe_empty_object = 1; \
421 = __PTR_ALIGN (__o1->object_base, __o1->next_free, \
422 __o1->alignment_mask); \
423 if ((size_t) (__o1->next_free - (char *) __o1->chunk) \
424 > (size_t) (__o1->chunk_limit - (char *) __o1->chunk)) \
425 __o1->next_free = __o1->chunk_limit; \
426 __o1->object_base = __o1->next_free; \
429 # define obstack_free(OBSTACK, OBJ) \
431 ({ struct obstack *__o = (OBSTACK); \
432 void *__obj = (void *) (OBJ); \
433 if (__obj > (void *) __o->chunk && __obj < (void *) __o->chunk_limit) \
434 __o->next_free = __o->object_base = (char *) __obj; \
436 _obstack_free (__o, __obj); })
438 #else /* not __GNUC__ */
440 # define obstack_object_size(h) \
441 ((_OBSTACK_SIZE_T) ((h)->next_free - (h)->object_base))
443 # define obstack_room(h) \
444 ((_OBSTACK_SIZE_T) ((h)->chunk_limit - (h)->next_free))
446 # define obstack_empty_p(h) \
447 ((h)->chunk->prev == 0 \
448 && (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk, \
449 (h)->chunk->contents, \
450 (h)->alignment_mask))
452 /* Note that the call to _obstack_newchunk is enclosed in (..., 0)
453 so that we can avoid having void expressions
454 in the arms of the conditional expression.
455 Casting the third operand to void was tried before,
456 but some compilers won't accept it. */
458 # define obstack_make_room(h, length) \
459 ((h)->temp.i = (length), \
460 ((obstack_room (h) < (h)->temp.i) \
461 ? (_obstack_newchunk (h, (h)->temp.i), 0) : 0), \
464 # define obstack_grow(h, where, length) \
465 ((h)->temp.i = (length), \
466 ((obstack_room (h) < (h)->temp.i) \
467 ? (_obstack_newchunk ((h), (h)->temp.i), 0) : 0), \
468 memcpy ((h)->next_free, where, (h)->temp.i), \
469 (h)->next_free += (h)->temp.i, \
472 # define obstack_grow0(h, where, length) \
473 ((h)->temp.i = (length), \
474 ((obstack_room (h) < (h)->temp.i + 1) \
475 ? (_obstack_newchunk ((h), (h)->temp.i + 1), 0) : 0), \
476 memcpy ((h)->next_free, where, (h)->temp.i), \
477 (h)->next_free += (h)->temp.i, \
478 *((h)->next_free)++ = 0, \
481 # define obstack_1grow(h, datum) \
482 (((obstack_room (h) < 1) \
483 ? (_obstack_newchunk ((h), 1), 0) : 0), \
484 obstack_1grow_fast (h, datum))
486 # define obstack_ptr_grow(h, datum) \
487 (((obstack_room (h) < sizeof (char *)) \
488 ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \
489 obstack_ptr_grow_fast (h, datum))
491 # define obstack_int_grow(h, datum) \
492 (((obstack_room (h) < sizeof (int)) \
493 ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \
494 obstack_int_grow_fast (h, datum))
496 # define obstack_ptr_grow_fast(h, aptr) \
497 (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr), \
500 # define obstack_int_grow_fast(h, aint) \
501 (((int *) ((h)->next_free += sizeof (int)))[-1] = (aint), \
504 # define obstack_blank(h, length) \
505 ((h)->temp.i = (length), \
506 ((obstack_room (h) < (h)->temp.i) \
507 ? (_obstack_newchunk ((h), (h)->temp.i), 0) : 0), \
508 obstack_blank_fast (h, (h)->temp.i))
510 # define obstack_alloc(h, length) \
511 (obstack_blank ((h), (length)), obstack_finish ((h)))
513 # define obstack_copy(h, where, length) \
514 (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
516 # define obstack_copy0(h, where, length) \
517 (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
519 # define obstack_finish(h) \
520 (((h)->next_free == (h)->object_base \
521 ? (((h)->maybe_empty_object = 1), 0) \
523 (h)->temp.p = (h)->object_base, \
525 = __PTR_ALIGN ((h)->object_base, (h)->next_free, \
526 (h)->alignment_mask), \
527 (((size_t) ((h)->next_free - (char *) (h)->chunk) \
528 > (size_t) ((h)->chunk_limit - (char *) (h)->chunk)) \
529 ? ((h)->next_free = (h)->chunk_limit) : 0), \
530 (h)->object_base = (h)->next_free, \
533 # define obstack_free(h, obj) \
534 ((h)->temp.p = (void *) (obj), \
535 (((h)->temp.p > (void *) (h)->chunk \
536 && (h)->temp.p < (void *) (h)->chunk_limit) \
537 ? (void) ((h)->next_free = (h)->object_base = (char *) (h)->temp.p) \
538 : _obstack_free ((h), (h)->temp.p)))
540 #endif /* not __GNUC__ */
546 #endif /* _OBSTACK_H */