1 /* Exponential base 2 function.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
24 /* Best possible approximation of log(2) as a 'double'. */
25 #define LOG2 0.693147180559945309417232121458176568075
27 /* Best possible approximation of 1/log(2) as a 'double'. */
28 #define LOG2_INVERSE 1.44269504088896340735992468100189213743
30 /* Best possible approximation of log(2)/256 as a 'double'. */
31 #define LOG2_BY_256 0.00270760617406228636491106297444600221904
33 /* Best possible approximation of 256/log(2) as a 'double'. */
34 #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181
39 /* exp2(x) = exp(x*log(2)).
40 If we would compute it like this, there would be rounding errors for
41 integer or near-integer values of x. To avoid these, we inline the
42 algorithm for exp(), and the multiplication with log(2) cancels a
43 division by log(2). */
48 if (x
> (double) DBL_MAX_EXP
)
50 hence exp2(x) > 2^DBL_MAX_EXP, overflows to Infinity. */
53 if (x
< (double) (DBL_MIN_EXP
- 1 - DBL_MANT_DIG
))
54 /* x < (DBL_MIN_EXP - 1 - DBL_MANT_DIG)
55 hence exp2(x) < 2^(DBL_MIN_EXP-1-DBL_MANT_DIG),
56 underflows to zero. */
60 x = n + m/256 + y/log(2)
63 m is an integer, -128 <= m <= 128,
64 y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
66 exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
67 The first factor is an ldexpl() call.
68 The second factor is a table lookup.
69 The third factor is computed
70 - either as sinh(y) + cosh(y)
71 where sinh(y) is computed through the power series:
72 sinh(y) = y + y^3/3! + y^5/5! + ...
73 and cosh(y) is computed as hypot(1, sinh(y)),
74 - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
76 and tanh(z) is computed through its power series:
83 + 21844/6081075 * z^13
84 - 929569/638512875 * z^15
86 Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
87 z^7 term is < 0.0007^6 < 2^-60 <= 2^-DBL_MANT_DIG, therefore we can
88 truncate the series after the z^5 term. */
91 double nm
= round (x
* 256.0); /* = 256 * n + m */
92 double z
= (x
* 256.0 - nm
) * (LOG2_BY_256
* 0.5);
94 /* Coefficients of the power series for tanh(z). */
95 #define TANH_COEFF_1 1.0
96 #define TANH_COEFF_3 -0.333333333333333333333333333333333333334
97 #define TANH_COEFF_5 0.133333333333333333333333333333333333334
98 #define TANH_COEFF_7 -0.053968253968253968253968253968253968254
99 #define TANH_COEFF_9 0.0218694885361552028218694885361552028218
100 #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886
101 #define TANH_COEFF_13 0.00359212803657248101692546136990581435026
102 #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904
111 double exp_y
= (1.0 + tanh_z
) / (1.0 - tanh_z
);
113 int n
= (int) round (nm
* (1.0 / 256.0));
114 int m
= (int) nm
- 256 * n
;
116 /* exp_table[i] = exp((i - 128) * log(2)/256).
117 Computed in GNU clisp through
118 (setf (long-float-digits) 128)
120 (setf (long-float-digits) 256)
123 (float (exp (* (/ (- i 128) 256) (log 2L0))) a))) */
124 static const double exp_table
[257] =
126 0.707106781186547524400844362104849039284,
127 0.709023942160207598920563322257676190836,
128 0.710946301084582779904674297352120049962,
129 0.71287387205274715340350157671438300618,
130 0.714806669195985005617532889137569953044,
131 0.71674470668389442125974978427737336719,
132 0.71868799872449116280161304224785251353,
133 0.720636559564312831364255957304947586072,
134 0.72259040348852331001850312073583545284,
135 0.724549544821017490259402705487111270714,
136 0.726513997924526282423036245842287293786,
137 0.728483777200721910815451524818606761737,
138 0.730458897090323494325651445155310766577,
139 0.732439372073202913296664682112279175616,
140 0.734425216668490963430822513132890712652,
141 0.736416445434683797507470506133110286942,
142 0.738413072969749655693453740187024961962,
143 0.740415113911235885228829945155951253966,
144 0.742422582936376250272386395864403155277,
145 0.744435494762198532693663597314273242753,
146 0.746453864145632424600321765743336770838,
147 0.748477705883617713391824861712720862423,
148 0.750507034813212760132561481529764324813,
149 0.752541865811703272039672277899716132493,
150 0.75458221379671136988300977551659676571,
151 0.756628093726304951096818488157633113612,
152 0.75867952059910734940489114658718937343,
153 0.760736509454407291763130627098242426467,
154 0.762799075372269153425626844758470477304,
155 0.76486723347364351194254345936342587308,
156 0.766940998920478000900300751753859329456,
157 0.769020386915828464216738479594307884331,
158 0.771105412703970411806145931045367420652,
159 0.773196091570510777431255778146135325272,
160 0.77529243884249997956151370535341912283,
161 0.777394469888544286059157168801667390437,
162 0.779502200118918483516864044737428940745,
163 0.781615644985678852072965367573877941354,
164 0.783734819982776446532455855478222575498,
165 0.78585974064617068462428149076570281356,
166 0.787990422553943243227635080090952504452,
167 0.790126881326412263402248482007960521995,
168 0.79226913262624686505993407346567890838,
169 0.794417192158581972116898048814333564685,
170 0.796571075671133448968624321559534367934,
171 0.798730798954313549131410147104316569576,
172 0.800896377841346676896923120795476813684,
173 0.803067828208385462848443946517563571584,
174 0.805245165974627154089760333678700291728,
175 0.807428407102430320039984581575729114268,
176 0.809617567597431874649880866726368203972,
177 0.81181266350866441589760797777344082227,
178 0.814013710928673883424109261007007338614,
179 0.816220725993637535170713864466769240053,
180 0.818433724883482243883852017078007231025,
181 0.82065272382200311435413206848451310067,
182 0.822877739076982422259378362362911222833,
183 0.825108786960308875483586738272485101678,
184 0.827345883828097198786118571797909120834,
185 0.829589046080808042697824787210781231927,
186 0.831838290163368217523168228488195222638,
187 0.834093632565291253329796170708536192903,
188 0.836355089820798286809404612069230711295,
189 0.83862267850893927589613232455870870518,
190 0.84089641525371454303112547623321489504,
191 0.84317631672419664796432298771385230143,
192 0.84546239963465259098692866759361830709,
193 0.84775468074466634749045860363936420312,
194 0.850053176859261734750681286748751167545,
195 0.852357904829025611837203530384718316326,
196 0.854668881550231413551897437515331498025,
197 0.856986123964963019301812477839166009452,
198 0.859309649061238957814672188228156252257,
199 0.861639473873136948607517116872358729753,
200 0.863975615480918781121524414614366207052,
201 0.866318091011155532438509953514163469652,
202 0.868666917636853124497101040936083380124,
203 0.871022112577578221729056715595464682243,
204 0.873383693099584470038708278290226842228,
205 0.875751676515939078050995142767930296012,
206 0.878126080186649741556080309687656610647,
207 0.880506921518791912081045787323636256171,
208 0.882894217966636410521691124969260937028,
209 0.885287987031777386769987907431242017412,
210 0.88768824626326062627527960009966160388,
211 0.89009501325771220447985955243623523504,
212 0.892508305659467490072110281986409916153,
213 0.8949281411607004980029443898876582985,
214 0.897354537501553593213851621063890907178,
215 0.899787512470267546027427696662514569756,
216 0.902227083903311940153838631655504844215,
217 0.904673269685515934269259325789226871994,
218 0.907126087750199378124917300181170171233,
219 0.909585556079304284147971563828178746372,
220 0.91205169270352665549806275316460097744,
221 0.914524515702448671545983912696158354092,
222 0.91700404320467123174354159479414442804,
223 0.919490293387946858856304371174663918816,
224 0.921983284479312962533570386670938449637,
225 0.92448303475522546419252726694739603678,
226 0.92698956254169278419622653516884831976,
227 0.929502886214410192307650717745572682403,
228 0.932023024198894522404814545597236289343,
229 0.934549994970619252444512104439799143264,
230 0.93708381705514995066499947497722326722,
231 0.93962450902828008902058735120448448827,
232 0.942172089516167224843810351983745154882,
233 0.944726577195469551733539267378681531548,
234 0.947287990793482820670109326713462307376,
235 0.949856349088277632361251759806996099924,
236 0.952431670908837101825337466217860725517,
237 0.955013975135194896221170529572799135168,
238 0.957603280698573646936305635147915443924,
239 0.960199606581523736948607188887070611744,
240 0.962802971818062464478519115091191368377,
241 0.965413395493813583952272948264534783197,
242 0.968030896746147225299027952283345762418,
243 0.970655494764320192607710617437589705184,
244 0.973287208789616643172102023321302921373,
245 0.97592605811548914795551023340047499377,
246 0.978572062087700134509161125813435745597,
247 0.981225240104463713381244885057070325016,
248 0.983885611616587889056366801238014683926,
249 0.98655319612761715646797006813220671315,
250 0.989228013193975484129124959065583667775,
251 0.99191008242510968492991311132615581644,
252 0.994599423483633175652477686222166314457,
253 0.997296056085470126257659913847922601123,
255 1.00271127505020248543074558845036204047,
256 1.0054299011128028213513839559347998147,
257 1.008155898118417515783094890817201039276,
258 1.01088928605170046002040979056186052439,
259 1.013630084951489438840258929063939929597,
260 1.01637831491095303794049311378629406276,
261 1.0191339960777379496848780958207928794,
262 1.02189714865411667823448013478329943978,
263 1.02466779289713564514828907627081492763,
264 1.0274459491187636965388611939222137815,
265 1.030231637686041012871707902453904567093,
266 1.033024879021228422500108283970460918086,
267 1.035825693601957120029983209018081371844,
268 1.03863410196137879061243669795463973258,
269 1.04145012468831614126454607901189312648,
270 1.044273782427413840321966478739929008784,
271 1.04710509587928986612990725022711224056,
272 1.04994408580068726608203812651590790906,
273 1.05279077300462632711989120298074630319,
274 1.05564517836055715880834132515293865216,
275 1.058507322794512690105772109683716645074,
276 1.061377227289262080950567678003883726294,
277 1.06425491288446454978861125700158022068,
278 1.06714040067682361816952112099280916261,
279 1.0700337118202417735424119367576235685,
280 1.072934867525975551385035450873827585343,
281 1.075843889062791037803228648476057074063,
282 1.07876079775711979374068003743848295849,
283 1.081685614993215201942115594422531125643,
284 1.08461836221330923781610517190661434161,
285 1.087559060917769665346797830944039707867,
286 1.09050773266525765920701065576070797899,
287 1.09346439907288585422822014625044716208,
288 1.096429081816376823386138295859248481766,
289 1.09940180263022198546369696823882990404,
290 1.10238258330784094355641420942564685751,
291 1.10537144570174125558827469625695031104,
292 1.108368411723678638009423649426619850137,
293 1.111373503344817603850149254228916637444,
294 1.1143867425958925363088129569196030678,
295 1.11740815156736919905457996308578026665,
296 1.12043775240960668442900387986631301277,
297 1.123475567333019800733729739775321431954,
298 1.12652161860824189979479864378703477763,
299 1.129575928566288145997264988840249825907,
300 1.13263851959871922798707372367762308438,
301 1.13570941415780551424039033067611701343,
302 1.13878863475669165370383028384151125472,
303 1.14187620396956162271229760828788093894,
304 1.14497214443180421939441388822291589579,
305 1.14807647884017900677879966269734268003,
306 1.15118922995298270581775963520198253612,
307 1.154310420590216039548221528724806960684,
308 1.157440073633751029613085766293796821106,
309 1.16057821202749874636945947257609098625,
310 1.16372485877757751381357359909218531234,
311 1.166880036952481570555516298414089287834,
312 1.170043769683250188080259035792738573,
313 1.17321608016363724753480435451324538889,
314 1.176396991650281276284645728483848641054,
315 1.17958652746287594548610056676944051898,
316 1.182784710984341029924457204693850757966,
317 1.18599156566099383137126564953421556374,
318 1.18920711500272106671749997056047591529,
319 1.19243138258315122214272755814543101148,
320 1.195664392039827374583837049865451975705,
321 1.19890616707438048177030255797630020695,
322 1.202156731452703142096396957497765876003,
323 1.205416109005123825604211432558411335666,
324 1.208684323626581577354792255889216998484,
325 1.21196139927680119446816891773249304545,
326 1.215247359980468878116520251338798457624,
327 1.218542229827408361758207148117394510724,
328 1.221846032972757516903891841911570785836,
329 1.225158793637145437709464594384845353707,
330 1.22848053610687000569400895779278184036,
331 1.2318112847340759358845566532127948166,
332 1.235151063936933305692912507415415760294,
333 1.238499898199816567833368865859612431545,
334 1.24185781207348404859367746872659560551,
335 1.24522483017525793277520496748615267417,
336 1.24860097718920473662176609730249554519,
337 1.25198627786631627006020603178920359732,
338 1.255380757024691089579390657442301194595,
339 1.25878443954971644307786044181516261876,
340 1.26219735039425070801401025851841645967,
341 1.265619514578806324196273999873453036296,
342 1.26905095719173322255441908103233800472,
343 1.27249170338940275123669204418460217677,
344 1.27594177839639210038120243475928938891,
345 1.27940120750566922691358797002785254596,
346 1.28287001607877828072666978102151405111,
347 1.286348229546025533601482208069738348355,
348 1.28983587340666581223274729549155218968,
349 1.293332973229089436725559789048704304684,
350 1.296839554651009665933754117792451159835,
351 1.30035564337965065101414056707091779129,
352 1.30388126519193589857452364895199736833,
353 1.30741644593467724479715157747196172848,
354 1.310961211524764341922991786330755849366,
355 1.314515587949354658485983613383997794965,
356 1.318079601266063994690185647066116617664,
357 1.32165327760315751432651181233060922616,
358 1.32523664315974129462953709549872167411,
359 1.32882972420595439547865089632866510792,
360 1.33243254708316144935164337949073577407,
361 1.33604513820414577344262790437186975929,
362 1.33966752405330300536003066972435257602,
363 1.34329973118683526382421714618163087542,
364 1.346941786232945835788173713229537282075,
365 1.35059371589203439140852219606013396004,
366 1.35425554693689272829801474014070280434,
367 1.357927306212901046494536695671766697446,
368 1.36160902063822475558553593883194147464,
369 1.36530071720401181543069836033754285543,
370 1.36900242297459061192960113298219283217,
371 1.37271416508766836928499785714471721579,
372 1.37643597075453010021632280551868696026,
373 1.380167867260238095581945274358283464697,
374 1.383909881963831954872659527265192818,
375 1.387662042298529159042861017950775988896,
376 1.39142437577192618714983552956624344668,
377 1.395196909966200178275574599249220994716,
378 1.398979672538311140209528136715194969206,
379 1.40277269122020470637471352433337881711,
380 1.40657599381901544248361973255451684411,
381 1.410389608217270704414375128268675481145,
382 1.41421356237309504880168872420969807857
385 return ldexp (exp_table
[128 + m
] * exp_y
, n
);