1 /* Compute cubic root of long double value.
2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
3 Cephes Math Library Release 2.2: January, 1991
4 Copyright 1984, 1991 by Stephen L. Moshier
5 Adapted for glibc October, 2001.
7 This program is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <https://www.gnu.org/licenses/>. */
25 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
35 /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_cbrtl.c. */
39 * Cube root, long double precision
45 * long double x, y, cbrtl();
53 * Returns the cube root of the argument, which may be negative.
55 * Range reduction involves determining the power of 2 of
56 * the argument. A polynomial of degree 2 applied to the
57 * mantissa, and multiplication by the cube root of 1, 2, or 4
58 * approximates the root to within about 0.1%. Then Newton's
59 * iteration is used three times to converge to an accurate
67 * arithmetic domain # trials peak rms
68 * IEEE -8,8 100000 1.3e-34 3.9e-35
69 * IEEE exp(+-707) 100000 1.3e-34 4.3e-35
73 static const long double CBRT2
= 1.259921049894873164767210607278228350570251L;
74 static const long double CBRT4
= 1.587401051968199474751705639272308260391493L;
75 static const long double CBRT2I
= 0.7937005259840997373758528196361541301957467L;
76 static const long double CBRT4I
= 0.6299605249474365823836053036391141752851257L;
81 if (isfinite (x
) && x
!= 0.0L)
95 /* extract power of 2, leaving mantissa between 0.5 and 1 */
98 /* Approximate cube root of number between .5 and 1,
99 peak relative error = 1.2e-6 */
100 x
= ((((1.3584464340920900529734e-1L * x
101 - 6.3986917220457538402318e-1L) * x
102 + 1.2875551670318751538055e0L
) * x
103 - 1.4897083391357284957891e0L
) * x
104 + 1.3304961236013647092521e0L
) * x
+ 3.7568280825958912391243e-1L;
106 /* exponent divided by 3 */
118 { /* argument less than 1 */
130 /* multiply by power of 2 */
133 /* Newton iteration */
134 x
-= (x
- (z
/ (x
* x
))) * 0.3333333333333333333333333333333333333333L;
135 x
-= (x
- (z
/ (x
* x
))) * 0.3333333333333333333333333333333333333333L;
136 x
-= (x
- (z
/ (x
* x
))) * 0.3333333333333333333333333333333333333333L;
144 # ifdef __sgi /* so that when x == -0.0L, the result is -0.0L not +0.0L */