1 /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
3 This program is free software: you can redistribute it and/or modify
4 it under the terms of the GNU General Public License as published by
5 the Free Software Foundation; either version 3 of the License, or
6 (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program. If not, see <https://www.gnu.org/licenses/>. */
21 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
31 /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_atanl.c. */
35 * Inverse circular tangent for 128-bit long double precision
42 * long double x, y, atanl();
50 * Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
52 * The function uses a rational approximation of the form
53 * t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375.
55 * The argument is reduced using the identity
56 * arctan x - arctan u = arctan ((x-u)/(1 + ux))
57 * and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25.
58 * Use of the table improves the execution speed of the routine.
65 * arithmetic domain # trials peak rms
66 * IEEE -19, 19 4e5 1.7e-34 5.4e-35
71 * This program uses integer operations on bit fields of floating-point
72 * numbers. It does not work with data structures other than the
77 /* arctan(k/8), k = 0, ..., 82 */
78 static const long double atantbl
[84] = {
79 0.0000000000000000000000000000000000000000E0L
,
80 1.2435499454676143503135484916387102557317E-1L, /* arctan(0.125) */
81 2.4497866312686415417208248121127581091414E-1L,
82 3.5877067027057222039592006392646049977698E-1L,
83 4.6364760900080611621425623146121440202854E-1L,
84 5.5859931534356243597150821640166127034645E-1L,
85 6.4350110879328438680280922871732263804151E-1L,
86 7.1882999962162450541701415152590465395142E-1L,
87 7.8539816339744830961566084581987572104929E-1L,
88 8.4415398611317100251784414827164750652594E-1L,
89 8.9605538457134395617480071802993782702458E-1L,
90 9.4200004037946366473793717053459358607166E-1L,
91 9.8279372324732906798571061101466601449688E-1L,
92 1.0191413442663497346383429170230636487744E0L
,
93 1.0516502125483736674598673120862998296302E0L
,
94 1.0808390005411683108871567292171998202703E0L
,
95 1.1071487177940905030170654601785370400700E0L
,
96 1.1309537439791604464709335155363278047493E0L
,
97 1.1525719972156675180401498626127513797495E0L
,
98 1.1722738811284763866005949441337046149712E0L
,
99 1.1902899496825317329277337748293183376012E0L
,
100 1.2068173702852525303955115800565576303133E0L
,
101 1.2220253232109896370417417439225704908830E0L
,
102 1.2360594894780819419094519711090786987027E0L
,
103 1.2490457723982544258299170772810901230778E0L
,
104 1.2610933822524404193139408812473357720101E0L
,
105 1.2722973952087173412961937498224804940684E0L
,
106 1.2827408797442707473628852511364955306249E0L
,
107 1.2924966677897852679030914214070816845853E0L
,
108 1.3016288340091961438047858503666855921414E0L
,
109 1.3101939350475556342564376891719053122733E0L
,
110 1.3182420510168370498593302023271362531155E0L
,
111 1.3258176636680324650592392104284756311844E0L
,
112 1.3329603993374458675538498697331558093700E0L
,
113 1.3397056595989995393283037525895557411039E0L
,
114 1.3460851583802539310489409282517796256512E0L
,
115 1.3521273809209546571891479413898128509842E0L
,
116 1.3578579772154994751124898859640585287459E0L
,
117 1.3633001003596939542892985278250991189943E0L
,
118 1.3684746984165928776366381936948529556191E0L
,
119 1.3734007669450158608612719264449611486510E0L
,
120 1.3780955681325110444536609641291551522494E0L
,
121 1.3825748214901258580599674177685685125566E0L
,
122 1.3868528702577214543289381097042486034883E0L
,
123 1.3909428270024183486427686943836432060856E0L
,
124 1.3948567013423687823948122092044222644895E0L
,
125 1.3986055122719575950126700816114282335732E0L
,
126 1.4021993871854670105330304794336492676944E0L
,
127 1.4056476493802697809521934019958079881002E0L
,
128 1.4089588955564736949699075250792569287156E0L
,
129 1.4121410646084952153676136718584891599630E0L
,
130 1.4152014988178669079462550975833894394929E0L
,
131 1.4181469983996314594038603039700989523716E0L
,
132 1.4209838702219992566633046424614466661176E0L
,
133 1.4237179714064941189018190466107297503086E0L
,
134 1.4263547484202526397918060597281265695725E0L
,
135 1.4288992721907326964184700745371983590908E0L
,
136 1.4313562697035588982240194668401779312122E0L
,
137 1.4337301524847089866404719096698873648610E0L
,
138 1.4360250423171655234964275337155008780675E0L
,
139 1.4382447944982225979614042479354815855386E0L
,
140 1.4403930189057632173997301031392126865694E0L
,
141 1.4424730991091018200252920599377292525125E0L
,
142 1.4444882097316563655148453598508037025938E0L
,
143 1.4464413322481351841999668424758804165254E0L
,
144 1.4483352693775551917970437843145232637695E0L
,
145 1.4501726582147939000905940595923466567576E0L
,
146 1.4519559822271314199339700039142990228105E0L
,
147 1.4536875822280323362423034480994649820285E0L
,
148 1.4553696664279718992423082296859928222270E0L
,
149 1.4570043196511885530074841089245667532358E0L
,
150 1.4585935117976422128825857356750737658039E0L
,
151 1.4601391056210009726721818194296893361233E0L
,
152 1.4616428638860188872060496086383008594310E0L
,
153 1.4631064559620759326975975316301202111560E0L
,
154 1.4645314639038178118428450961503371619177E0L
,
155 1.4659193880646627234129855241049975398470E0L
,
156 1.4672716522843522691530527207287398276197E0L
,
157 1.4685896086876430842559640450619880951144E0L
,
158 1.4698745421276027686510391411132998919794E0L
,
159 1.4711276743037345918528755717617308518553E0L
,
160 1.4723501675822635384916444186631899205983E0L
,
161 1.4735431285433308455179928682541563973416E0L
, /* arctan(10.25) */
162 1.5707963267948966192313216916397514420986E0L
/* pi/2 */
166 /* arctan t = t + t^3 p(t^2) / q(t^2)
168 peak relative error 5.3e-37 */
170 static const long double
171 p0
= -4.283708356338736809269381409828726405572E1L
,
172 p1
= -8.636132499244548540964557273544599863825E1L
,
173 p2
= -5.713554848244551350855604111031839613216E1L
,
174 p3
= -1.371405711877433266573835355036413750118E1L
,
175 p4
= -8.638214309119210906997318946650189640184E-1L,
176 q0
= 1.285112506901621042780814422948906537959E2L
,
177 q1
= 3.361907253914337187957855834229672347089E2L
,
178 q2
= 3.180448303864130128268191635189365331680E2L
,
179 q3
= 1.307244136980865800160844625025280344686E2L
,
180 q4
= 2.173623741810414221251136181221172551416E1L
;
181 /* q5 = 1.000000000000000000000000000000000000000E0 */
185 atanl (long double x
)
188 long double t
, u
, p
, q
;
190 /* Check for zero or NaN. */
191 if (isnanl (x
) || x
== 0.0)
215 /* Index of nearest table element.
216 Roundoff to integer is asymmetrical to avoid cancellation when t < 0
220 /* Small arctan argument. */
221 t
= (x
- u
) / (1.0 + x
* u
);
224 /* Arctan of small argument t. */
226 p
= ((((p4
* u
) + p3
) * u
+ p2
) * u
+ p1
) * u
+ p0
;
227 q
= ((((u
+ q4
) * u
+ q3
) * u
+ q2
) * u
+ q1
) * u
+ q0
;
228 u
= t
* u
* p
/ q
+ t
;
230 /* arctan x = arctan u + arctan t */