2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
17 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
27 /* Code based on glibc/sysdeps/ieee754/ldbl-128/e_asinl.c
28 and glibc/sysdeps/ieee754/ldbl-128/e_acosl.c. */
31 Long double expansions contributed by
32 Stephen L. Moshier <moshier@na-net.ornl.gov>
37 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
38 * we approximate asin(x) on [0,0.5] by
39 * asin(x) = x + x*x^2*R(x^2)
40 * Between .5 and .625 the approximation is
41 * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
43 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
46 * if x is NaN, return x itself;
47 * if |x|>1, return NaN with invalid signal.
52 static const long double
55 pi
= 3.1415926535897932384626433832795028841972L,
56 pio2_hi
= 1.5707963267948966192313216916397514420986L,
57 pio2_lo
= 4.3359050650618905123985220130216759843812E-35L,
58 pio4_hi
= 7.8539816339744830961566084581987569936977E-1L,
60 /* coefficient for R(x^2) */
62 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
64 peak relative error 1.9e-35 */
65 pS0
= -8.358099012470680544198472400254596543711E2L
,
66 pS1
= 3.674973957689619490312782828051860366493E3L
,
67 pS2
= -6.730729094812979665807581609853656623219E3L
,
68 pS3
= 6.643843795209060298375552684423454077633E3L
,
69 pS4
= -3.817341990928606692235481812252049415993E3L
,
70 pS5
= 1.284635388402653715636722822195716476156E3L
,
71 pS6
= -2.410736125231549204856567737329112037867E2L
,
72 pS7
= 2.219191969382402856557594215833622156220E1L
,
73 pS8
= -7.249056260830627156600112195061001036533E-1L,
74 pS9
= 1.055923570937755300061509030361395604448E-3L,
76 qS0
= -5.014859407482408326519083440151745519205E3L
,
77 qS1
= 2.430653047950480068881028451580393430537E4L
,
78 qS2
= -4.997904737193653607449250593976069726962E4L
,
79 qS3
= 5.675712336110456923807959930107347511086E4L
,
80 qS4
= -3.881523118339661268482937768522572588022E4L
,
81 qS5
= 1.634202194895541569749717032234510811216E4L
,
82 qS6
= -4.151452662440709301601820849901296953752E3L
,
83 qS7
= 5.956050864057192019085175976175695342168E2L
,
84 qS8
= -4.175375777334867025769346564600396877176E1L
,
85 /* 1.000000000000000000000000000000000000000E0 */
87 /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
88 -0.0625 <= x <= 0.0625
89 peak relative error 3.3e-35 */
90 rS0
= -5.619049346208901520945464704848780243887E0L
,
91 rS1
= 4.460504162777731472539175700169871920352E1L
,
92 rS2
= -1.317669505315409261479577040530751477488E2L
,
93 rS3
= 1.626532582423661989632442410808596009227E2L
,
94 rS4
= -3.144806644195158614904369445440583873264E1L
,
95 rS5
= -9.806674443470740708765165604769099559553E1L
,
96 rS6
= 5.708468492052010816555762842394927806920E1L
,
97 rS7
= 1.396540499232262112248553357962639431922E1L
,
98 rS8
= -1.126243289311910363001762058295832610344E1L
,
99 rS9
= -4.956179821329901954211277873774472383512E-1L,
100 rS10
= 3.313227657082367169241333738391762525780E-1L,
102 sS0
= -4.645814742084009935700221277307007679325E0L
,
103 sS1
= 3.879074822457694323970438316317961918430E1L
,
104 sS2
= -1.221986588013474694623973554726201001066E2L
,
105 sS3
= 1.658821150347718105012079876756201905822E2L
,
106 sS4
= -4.804379630977558197953176474426239748977E1L
,
107 sS5
= -1.004296417397316948114344573811562952793E2L
,
108 sS6
= 7.530281592861320234941101403870010111138E1L
,
109 sS7
= 1.270735595411673647119592092304357226607E1L
,
110 sS8
= -1.815144839646376500705105967064792930282E1L
,
111 sS9
= -7.821597334910963922204235247786840828217E-2L,
112 /* 1.000000000000000000000000000000000000000E0 */
114 asinr5625
= 5.9740641664535021430381036628424864397707E-1L;
118 acosl (long double x
)
125 if (huge
+ x
> one
) /* return with inexact */
129 if (x
>= 1.0L) /* |x|>= 1 */
132 return 0.0L; /* return zero */
134 return (x
- x
) / (x
- x
); /* asin(|x|>1) is NaN */
137 else if (x
< 0.5L) /* |x| < 0.5 */
139 if (x
< 0.000000000000000006938893903907228377647697925567626953125L) /* |x| < 2**-57 */
140 /* acos(0)=+-pi/2 with inexact */
141 return x
* pio2_hi
+ x
* pio2_lo
;
166 return pio2_hi
- (x
+ x
* (p
/ q
) - pio2_lo
);
169 else if (x
< 0.625) /* 0.625 */
172 p
= ((((((((((rS10
* t
196 return (pio2_hi
- asinr5625
) - (p
/ q
- pio2_lo
);
199 return 2 * asinl (sqrtl ((1 - x
) / 2));
208 printf ("%.18Lg %.18Lg\n",
210 1.5707963267948966192313216916397514420984L -
211 1.5707963267948966192313216916397514420984L);
212 printf ("%.18Lg %.18Lg\n",
213 acosl (0.7071067811865475244008443621048490392848L),
214 1.5707963267948966192313216916397514420984L -
215 0.7853981633974483096156608458198757210492L);
216 printf ("%.18Lg %.18Lg\n",
218 1.5707963267948966192313216916397514420984L -
219 0.5235987755982988730771072305465838140328L);
220 printf ("%.18Lg %.18Lg\n",
221 acosl (0.3090169943749474241022934171828190588600L),
222 1.5707963267948966192313216916397514420984L -
223 0.3141592653589793238462643383279502884196L);
224 printf ("%.18Lg %.18Lg\n",
226 1.5707963267948966192313216916397514420984L -
227 -1.5707963267948966192313216916397514420984L);
228 printf ("%.18Lg %.18Lg\n",
229 acosl (-0.7071067811865475244008443621048490392848L),
230 1.5707963267948966192313216916397514420984L -
231 -0.7853981633974483096156608458198757210492L);
232 printf ("%.18Lg %.18Lg\n",
234 1.5707963267948966192313216916397514420984L -
235 -0.5235987755982988730771072305465838140328L);
236 printf ("%.18Lg %.18Lg\n",
237 acosl (-0.3090169943749474241022934171828190588600L),
238 1.5707963267948966192313216916397514420984L -
239 -0.3141592653589793238462643383279502884196L);