findprog-in: Relicense under LGPLv2+.
[gnulib.git] / lib / acosl.c
blob634c247dd658c8717b0c99f39794c494ba706ce0
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 #include <config.h>
14 /* Specification. */
15 #include <math.h>
17 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
19 long double
20 acosl (long double x)
22 return acos (x);
25 #else
27 /* Code based on glibc/sysdeps/ieee754/ldbl-128/e_asinl.c
28 and glibc/sysdeps/ieee754/ldbl-128/e_acosl.c. */
31 Long double expansions contributed by
32 Stephen L. Moshier <moshier@na-net.ornl.gov>
35 /* asin(x)
36 * Method :
37 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
38 * we approximate asin(x) on [0,0.5] by
39 * asin(x) = x + x*x^2*R(x^2)
40 * Between .5 and .625 the approximation is
41 * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
42 * For x in [0.625,1]
43 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
45 * Special cases:
46 * if x is NaN, return x itself;
47 * if |x|>1, return NaN with invalid signal.
52 static const long double
53 one = 1.0L,
54 huge = 1.0e+4932L,
55 pi = 3.1415926535897932384626433832795028841972L,
56 pio2_hi = 1.5707963267948966192313216916397514420986L,
57 pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
58 pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
60 /* coefficient for R(x^2) */
62 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
63 0 <= x <= 0.5
64 peak relative error 1.9e-35 */
65 pS0 = -8.358099012470680544198472400254596543711E2L,
66 pS1 = 3.674973957689619490312782828051860366493E3L,
67 pS2 = -6.730729094812979665807581609853656623219E3L,
68 pS3 = 6.643843795209060298375552684423454077633E3L,
69 pS4 = -3.817341990928606692235481812252049415993E3L,
70 pS5 = 1.284635388402653715636722822195716476156E3L,
71 pS6 = -2.410736125231549204856567737329112037867E2L,
72 pS7 = 2.219191969382402856557594215833622156220E1L,
73 pS8 = -7.249056260830627156600112195061001036533E-1L,
74 pS9 = 1.055923570937755300061509030361395604448E-3L,
76 qS0 = -5.014859407482408326519083440151745519205E3L,
77 qS1 = 2.430653047950480068881028451580393430537E4L,
78 qS2 = -4.997904737193653607449250593976069726962E4L,
79 qS3 = 5.675712336110456923807959930107347511086E4L,
80 qS4 = -3.881523118339661268482937768522572588022E4L,
81 qS5 = 1.634202194895541569749717032234510811216E4L,
82 qS6 = -4.151452662440709301601820849901296953752E3L,
83 qS7 = 5.956050864057192019085175976175695342168E2L,
84 qS8 = -4.175375777334867025769346564600396877176E1L,
85 /* 1.000000000000000000000000000000000000000E0 */
87 /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
88 -0.0625 <= x <= 0.0625
89 peak relative error 3.3e-35 */
90 rS0 = -5.619049346208901520945464704848780243887E0L,
91 rS1 = 4.460504162777731472539175700169871920352E1L,
92 rS2 = -1.317669505315409261479577040530751477488E2L,
93 rS3 = 1.626532582423661989632442410808596009227E2L,
94 rS4 = -3.144806644195158614904369445440583873264E1L,
95 rS5 = -9.806674443470740708765165604769099559553E1L,
96 rS6 = 5.708468492052010816555762842394927806920E1L,
97 rS7 = 1.396540499232262112248553357962639431922E1L,
98 rS8 = -1.126243289311910363001762058295832610344E1L,
99 rS9 = -4.956179821329901954211277873774472383512E-1L,
100 rS10 = 3.313227657082367169241333738391762525780E-1L,
102 sS0 = -4.645814742084009935700221277307007679325E0L,
103 sS1 = 3.879074822457694323970438316317961918430E1L,
104 sS2 = -1.221986588013474694623973554726201001066E2L,
105 sS3 = 1.658821150347718105012079876756201905822E2L,
106 sS4 = -4.804379630977558197953176474426239748977E1L,
107 sS5 = -1.004296417397316948114344573811562952793E2L,
108 sS6 = 7.530281592861320234941101403870010111138E1L,
109 sS7 = 1.270735595411673647119592092304357226607E1L,
110 sS8 = -1.815144839646376500705105967064792930282E1L,
111 sS9 = -7.821597334910963922204235247786840828217E-2L,
112 /* 1.000000000000000000000000000000000000000E0 */
114 asinr5625 = 5.9740641664535021430381036628424864397707E-1L;
117 long double
118 acosl (long double x)
120 long double t, p, q;
122 if (x < 0.0L)
124 t = pi - acosl (-x);
125 if (huge + x > one) /* return with inexact */
126 return t;
129 if (x >= 1.0L) /* |x|>= 1 */
131 if (x == 1.0L)
132 return 0.0L; /* return zero */
134 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
137 else if (x < 0.5L) /* |x| < 0.5 */
139 if (x < 0.000000000000000006938893903907228377647697925567626953125L) /* |x| < 2**-57 */
140 /* acos(0)=+-pi/2 with inexact */
141 return x * pio2_hi + x * pio2_lo;
143 t = x * x;
144 p = (((((((((pS9 * t
145 + pS8) * t
146 + pS7) * t
147 + pS6) * t
148 + pS5) * t
149 + pS4) * t
150 + pS3) * t
151 + pS2) * t
152 + pS1) * t
153 + pS0) * t;
155 q = (((((((( t
156 + qS8) * t
157 + qS7) * t
158 + qS6) * t
159 + qS5) * t
160 + qS4) * t
161 + qS3) * t
162 + qS2) * t
163 + qS1) * t
164 + qS0;
166 return pio2_hi - (x + x * (p / q) - pio2_lo);
169 else if (x < 0.625) /* 0.625 */
171 t = x - 0.5625;
172 p = ((((((((((rS10 * t
173 + rS9) * t
174 + rS8) * t
175 + rS7) * t
176 + rS6) * t
177 + rS5) * t
178 + rS4) * t
179 + rS3) * t
180 + rS2) * t
181 + rS1) * t
182 + rS0) * t;
184 q = ((((((((( t
185 + sS9) * t
186 + sS8) * t
187 + sS7) * t
188 + sS6) * t
189 + sS5) * t
190 + sS4) * t
191 + sS3) * t
192 + sS2) * t
193 + sS1) * t
194 + sS0;
196 return (pio2_hi - asinr5625) - (p / q - pio2_lo);
198 else
199 return 2 * asinl (sqrtl ((1 - x) / 2));
202 #endif
204 #if 0
206 main (void)
208 printf ("%.18Lg %.18Lg\n",
209 acosl (1.0L),
210 1.5707963267948966192313216916397514420984L -
211 1.5707963267948966192313216916397514420984L);
212 printf ("%.18Lg %.18Lg\n",
213 acosl (0.7071067811865475244008443621048490392848L),
214 1.5707963267948966192313216916397514420984L -
215 0.7853981633974483096156608458198757210492L);
216 printf ("%.18Lg %.18Lg\n",
217 acosl (0.5L),
218 1.5707963267948966192313216916397514420984L -
219 0.5235987755982988730771072305465838140328L);
220 printf ("%.18Lg %.18Lg\n",
221 acosl (0.3090169943749474241022934171828190588600L),
222 1.5707963267948966192313216916397514420984L -
223 0.3141592653589793238462643383279502884196L);
224 printf ("%.18Lg %.18Lg\n",
225 acosl (-1.0L),
226 1.5707963267948966192313216916397514420984L -
227 -1.5707963267948966192313216916397514420984L);
228 printf ("%.18Lg %.18Lg\n",
229 acosl (-0.7071067811865475244008443621048490392848L),
230 1.5707963267948966192313216916397514420984L -
231 -0.7853981633974483096156608458198757210492L);
232 printf ("%.18Lg %.18Lg\n",
233 acosl (-0.5L),
234 1.5707963267948966192313216916397514420984L -
235 -0.5235987755982988730771072305465838140328L);
236 printf ("%.18Lg %.18Lg\n",
237 acosl (-0.3090169943749474241022934171828190588600L),
238 1.5707963267948966192313216916397514420984L -
239 -0.3141592653589793238462643383279502884196L);
241 #endif