unistr/u{8,16,32}-uctomb: Avoid possible trouble with huge strings.
[gnulib.git] / lib / md4.c
blob46917191e6e25c120c58fb59aeb3c74430510b95
1 /* Functions to compute MD4 message digest of files or memory blocks.
2 according to the definition of MD4 in RFC 1320 from April 1992.
3 Copyright (C) 1995-1997, 1999-2003, 2005-2006, 2008-2020 Free Software
4 Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <https://www.gnu.org/licenses/>. */
19 /* Adapted by Simon Josefsson from gnulib md5.? and Libgcrypt
20 cipher/md4.c . */
22 #include <config.h>
24 #include "md4.h"
26 #include <stdalign.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
36 #include <byteswap.h>
37 #ifdef WORDS_BIGENDIAN
38 # define SWAP(n) bswap_32 (n)
39 #else
40 # define SWAP(n) (n)
41 #endif
43 #define BLOCKSIZE 32768
44 #if BLOCKSIZE % 64 != 0
45 # error "invalid BLOCKSIZE"
46 #endif
48 /* This array contains the bytes used to pad the buffer to the next
49 64-byte boundary. (RFC 1320, 3.1: Step 1) */
50 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
53 /* Initialize structure containing state of computation.
54 (RFC 1320, 3.3: Step 3) */
55 void
56 md4_init_ctx (struct md4_ctx *ctx)
58 ctx->A = 0x67452301;
59 ctx->B = 0xefcdab89;
60 ctx->C = 0x98badcfe;
61 ctx->D = 0x10325476;
63 ctx->total[0] = ctx->total[1] = 0;
64 ctx->buflen = 0;
67 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
68 If your architecture allows unaligned access this is equivalent to
69 * (uint32_t *) cp = v */
70 static void
71 set_uint32 (char *cp, uint32_t v)
73 memcpy (cp, &v, sizeof v);
76 /* Put result from CTX in first 16 bytes following RESBUF. The result
77 must be in little endian byte order. */
78 void *
79 md4_read_ctx (const struct md4_ctx *ctx, void *resbuf)
81 char *r = resbuf;
82 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
83 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
84 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
85 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
87 return resbuf;
90 /* Process the remaining bytes in the internal buffer and the usual
91 prolog according to the standard and write the result to RESBUF. */
92 void *
93 md4_finish_ctx (struct md4_ctx *ctx, void *resbuf)
95 /* Take yet unprocessed bytes into account. */
96 uint32_t bytes = ctx->buflen;
97 size_t pad;
99 /* Now count remaining bytes. */
100 ctx->total[0] += bytes;
101 if (ctx->total[0] < bytes)
102 ++ctx->total[1];
104 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
105 memcpy (&((char*)ctx->buffer)[bytes], fillbuf, pad);
107 /* Put the 64-bit file length in *bits* at the end of the buffer. */
108 ctx->buffer[(bytes + pad) / 4] = SWAP (ctx->total[0] << 3);
109 ctx->buffer[(bytes + pad) / 4 + 1] = SWAP ((ctx->total[1] << 3) |
110 (ctx->total[0] >> 29));
112 /* Process last bytes. */
113 md4_process_block (ctx->buffer, bytes + pad + 8, ctx);
115 return md4_read_ctx (ctx, resbuf);
118 /* Compute MD4 message digest for bytes read from STREAM. The
119 resulting message digest number will be written into the 16 bytes
120 beginning at RESBLOCK. */
122 md4_stream (FILE * stream, void *resblock)
124 struct md4_ctx ctx;
125 size_t sum;
127 char *buffer = malloc (BLOCKSIZE + 72);
128 if (!buffer)
129 return 1;
131 /* Initialize the computation context. */
132 md4_init_ctx (&ctx);
134 /* Iterate over full file contents. */
135 while (1)
137 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
138 computation function processes the whole buffer so that with the
139 next round of the loop another block can be read. */
140 size_t n;
141 sum = 0;
143 /* Read block. Take care for partial reads. */
144 while (1)
146 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
148 sum += n;
150 if (sum == BLOCKSIZE)
151 break;
153 if (n == 0)
155 /* Check for the error flag IFF N == 0, so that we don't
156 exit the loop after a partial read due to e.g., EAGAIN
157 or EWOULDBLOCK. */
158 if (ferror (stream))
160 free (buffer);
161 return 1;
163 goto process_partial_block;
166 /* We've read at least one byte, so ignore errors. But always
167 check for EOF, since feof may be true even though N > 0.
168 Otherwise, we could end up calling fread after EOF. */
169 if (feof (stream))
170 goto process_partial_block;
173 /* Process buffer with BLOCKSIZE bytes. Note that
174 BLOCKSIZE % 64 == 0
176 md4_process_block (buffer, BLOCKSIZE, &ctx);
179 process_partial_block:;
181 /* Process any remaining bytes. */
182 if (sum > 0)
183 md4_process_bytes (buffer, sum, &ctx);
185 /* Construct result in desired memory. */
186 md4_finish_ctx (&ctx, resblock);
187 free (buffer);
188 return 0;
191 /* Compute MD4 message digest for LEN bytes beginning at BUFFER. The
192 result is always in little endian byte order, so that a byte-wise
193 output yields to the wanted ASCII representation of the message
194 digest. */
195 void *
196 md4_buffer (const char *buffer, size_t len, void *resblock)
198 struct md4_ctx ctx;
200 /* Initialize the computation context. */
201 md4_init_ctx (&ctx);
203 /* Process whole buffer but last len % 64 bytes. */
204 md4_process_bytes (buffer, len, &ctx);
206 /* Put result in desired memory area. */
207 return md4_finish_ctx (&ctx, resblock);
210 void
211 md4_process_bytes (const void *buffer, size_t len, struct md4_ctx *ctx)
213 /* When we already have some bits in our internal buffer concatenate
214 both inputs first. */
215 if (ctx->buflen != 0)
217 size_t left_over = ctx->buflen;
218 size_t add = 128 - left_over > len ? len : 128 - left_over;
220 memcpy (&((char*)ctx->buffer)[left_over], buffer, add);
221 ctx->buflen += add;
223 if (ctx->buflen > 64)
225 md4_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
227 ctx->buflen &= 63;
228 /* The regions in the following copy operation cannot overlap. */
229 memcpy (ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63],
230 ctx->buflen);
233 buffer = (const char *) buffer + add;
234 len -= add;
237 /* Process available complete blocks. */
238 if (len >= 64)
240 #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
241 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
242 if (UNALIGNED_P (buffer))
243 while (len > 64)
245 md4_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
246 buffer = (const char *) buffer + 64;
247 len -= 64;
249 else
250 #endif
252 md4_process_block (buffer, len & ~63, ctx);
253 buffer = (const char *) buffer + (len & ~63);
254 len &= 63;
258 /* Move remaining bytes in internal buffer. */
259 if (len > 0)
261 size_t left_over = ctx->buflen;
263 memcpy (&((char*)ctx->buffer)[left_over], buffer, len);
264 left_over += len;
265 if (left_over >= 64)
267 md4_process_block (ctx->buffer, 64, ctx);
268 left_over -= 64;
269 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
271 ctx->buflen = left_over;
275 /* --- Code below is the primary difference between md5.c and md4.c --- */
277 /* MD4 round constants */
278 #define K1 0x5a827999
279 #define K2 0x6ed9eba1
281 /* Round functions. */
282 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
283 #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
284 #define H(x, y, z) ((x) ^ (y) ^ (z))
285 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
286 #define R1(a,b,c,d,k,s) a=rol(a+F(b,c,d)+x[k],s);
287 #define R2(a,b,c,d,k,s) a=rol(a+G(b,c,d)+x[k]+K1,s);
288 #define R3(a,b,c,d,k,s) a=rol(a+H(b,c,d)+x[k]+K2,s);
290 /* Process LEN bytes of BUFFER, accumulating context into CTX.
291 It is assumed that LEN % 64 == 0. */
293 void
294 md4_process_block (const void *buffer, size_t len, struct md4_ctx *ctx)
296 const uint32_t *words = buffer;
297 size_t nwords = len / sizeof (uint32_t);
298 const uint32_t *endp = words + nwords;
299 uint32_t x[16];
300 uint32_t A = ctx->A;
301 uint32_t B = ctx->B;
302 uint32_t C = ctx->C;
303 uint32_t D = ctx->D;
304 uint32_t lolen = len;
306 /* First increment the byte count. RFC 1320 specifies the possible
307 length of the file up to 2^64 bits. Here we only compute the
308 number of bytes. Do a double word increment. */
309 ctx->total[0] += lolen;
310 ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
312 /* Process all bytes in the buffer with 64 bytes in each round of
313 the loop. */
314 while (words < endp)
316 int t;
317 for (t = 0; t < 16; t++)
319 x[t] = SWAP (*words);
320 words++;
323 /* Round 1. */
324 R1 (A, B, C, D, 0, 3);
325 R1 (D, A, B, C, 1, 7);
326 R1 (C, D, A, B, 2, 11);
327 R1 (B, C, D, A, 3, 19);
328 R1 (A, B, C, D, 4, 3);
329 R1 (D, A, B, C, 5, 7);
330 R1 (C, D, A, B, 6, 11);
331 R1 (B, C, D, A, 7, 19);
332 R1 (A, B, C, D, 8, 3);
333 R1 (D, A, B, C, 9, 7);
334 R1 (C, D, A, B, 10, 11);
335 R1 (B, C, D, A, 11, 19);
336 R1 (A, B, C, D, 12, 3);
337 R1 (D, A, B, C, 13, 7);
338 R1 (C, D, A, B, 14, 11);
339 R1 (B, C, D, A, 15, 19);
341 /* Round 2. */
342 R2 (A, B, C, D, 0, 3);
343 R2 (D, A, B, C, 4, 5);
344 R2 (C, D, A, B, 8, 9);
345 R2 (B, C, D, A, 12, 13);
346 R2 (A, B, C, D, 1, 3);
347 R2 (D, A, B, C, 5, 5);
348 R2 (C, D, A, B, 9, 9);
349 R2 (B, C, D, A, 13, 13);
350 R2 (A, B, C, D, 2, 3);
351 R2 (D, A, B, C, 6, 5);
352 R2 (C, D, A, B, 10, 9);
353 R2 (B, C, D, A, 14, 13);
354 R2 (A, B, C, D, 3, 3);
355 R2 (D, A, B, C, 7, 5);
356 R2 (C, D, A, B, 11, 9);
357 R2 (B, C, D, A, 15, 13);
359 /* Round 3. */
360 R3 (A, B, C, D, 0, 3);
361 R3 (D, A, B, C, 8, 9);
362 R3 (C, D, A, B, 4, 11);
363 R3 (B, C, D, A, 12, 15);
364 R3 (A, B, C, D, 2, 3);
365 R3 (D, A, B, C, 10, 9);
366 R3 (C, D, A, B, 6, 11);
367 R3 (B, C, D, A, 14, 15);
368 R3 (A, B, C, D, 1, 3);
369 R3 (D, A, B, C, 9, 9);
370 R3 (C, D, A, B, 5, 11);
371 R3 (B, C, D, A, 13, 15);
372 R3 (A, B, C, D, 3, 3);
373 R3 (D, A, B, C, 11, 9);
374 R3 (C, D, A, B, 7, 11);
375 R3 (B, C, D, A, 15, 15);
377 A = ctx->A += A;
378 B = ctx->B += B;
379 C = ctx->C += C;
380 D = ctx->D += D;