crypto: use byteswap
[gnulib.git] / lib / sha512.c
blob503a54fe8ae417e2539f4c2330cfcd8da4fac666
1 /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-2.
4 Copyright (C) 2005-2006, 2008-2018 Free Software Foundation, Inc.
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <https://www.gnu.org/licenses/>. */
19 /* Written by David Madore, considerably copypasting from
20 Scott G. Miller's sha1.c
23 #include <config.h>
25 #if HAVE_OPENSSL_SHA512
26 # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
27 #endif
28 #include "sha512.h"
30 #include <stdalign.h>
31 #include <stdint.h>
32 #include <stdlib.h>
33 #include <string.h>
35 #if USE_UNLOCKED_IO
36 # include "unlocked-io.h"
37 #endif
39 #include <byteswap.h>
40 #ifdef WORDS_BIGENDIAN
41 # define SWAP(n) (n)
42 #else
43 # define SWAP(n) bswap_64 (n)
44 #endif
46 #define BLOCKSIZE 32768
47 #if BLOCKSIZE % 128 != 0
48 # error "invalid BLOCKSIZE"
49 #endif
51 #if ! HAVE_OPENSSL_SHA512
52 /* This array contains the bytes used to pad the buffer to the next
53 128-byte boundary. */
54 static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
58 Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
59 initializes it to the start constants of the SHA512 algorithm. This
60 must be called before using hash in the call to sha512_hash
62 void
63 sha512_init_ctx (struct sha512_ctx *ctx)
65 ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
66 ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
67 ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
68 ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
69 ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
70 ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
71 ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
72 ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
74 ctx->total[0] = ctx->total[1] = u64lo (0);
75 ctx->buflen = 0;
78 void
79 sha384_init_ctx (struct sha512_ctx *ctx)
81 ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
82 ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
83 ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
84 ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
85 ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
86 ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
87 ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
88 ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
90 ctx->total[0] = ctx->total[1] = u64lo (0);
91 ctx->buflen = 0;
94 /* Copy the value from V into the memory location pointed to by *CP,
95 If your architecture allows unaligned access, this is equivalent to
96 * (__typeof__ (v) *) cp = v */
97 static void
98 set_uint64 (char *cp, u64 v)
100 memcpy (cp, &v, sizeof v);
103 /* Put result from CTX in first 64 bytes following RESBUF.
104 The result must be in little endian byte order. */
105 void *
106 sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
108 int i;
109 char *r = resbuf;
111 for (i = 0; i < 8; i++)
112 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
114 return resbuf;
117 void *
118 sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
120 int i;
121 char *r = resbuf;
123 for (i = 0; i < 6; i++)
124 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
126 return resbuf;
129 /* Process the remaining bytes in the internal buffer and the usual
130 prolog according to the standard and write the result to RESBUF. */
131 static void
132 sha512_conclude_ctx (struct sha512_ctx *ctx)
134 /* Take yet unprocessed bytes into account. */
135 size_t bytes = ctx->buflen;
136 size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
138 /* Now count remaining bytes. */
139 ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
140 if (u64lt (ctx->total[0], u64lo (bytes)))
141 ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
143 /* Put the 128-bit file length in *bits* at the end of the buffer.
144 Use set_uint64 rather than a simple assignment, to avoid risk of
145 unaligned access. */
146 set_uint64 ((char *) &ctx->buffer[size - 2],
147 SWAP (u64or (u64shl (ctx->total[1], 3),
148 u64shr (ctx->total[0], 61))));
149 set_uint64 ((char *) &ctx->buffer[size - 1],
150 SWAP (u64shl (ctx->total[0], 3)));
152 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
154 /* Process last bytes. */
155 sha512_process_block (ctx->buffer, size * 8, ctx);
158 void *
159 sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
161 sha512_conclude_ctx (ctx);
162 return sha512_read_ctx (ctx, resbuf);
165 void *
166 sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
168 sha512_conclude_ctx (ctx);
169 return sha384_read_ctx (ctx, resbuf);
171 #endif
173 #ifdef GL_COMPILE_CRYPTO_STREAM
175 #include "af_alg.h"
177 /* Compute message digest for bytes read from STREAM using algorithm ALG.
178 Write the message digest into RESBLOCK, which contains HASHLEN bytes.
179 The initial and finishing operations are INIT_CTX and FINISH_CTX.
180 Return zero if and only if successful. */
181 static int
182 shaxxx_stream (FILE *stream, char const *alg, void *resblock,
183 ssize_t hashlen, void (*init_ctx) (struct sha512_ctx *),
184 void *(*finish_ctx) (struct sha512_ctx *, void *))
186 switch (afalg_stream (stream, alg, resblock, hashlen))
188 case 0: return 0;
189 case -EIO: return 1;
192 char *buffer = malloc (BLOCKSIZE + 72);
193 if (!buffer)
194 return 1;
196 struct sha512_ctx ctx;
197 init_ctx (&ctx);
198 size_t sum;
200 /* Iterate over full file contents. */
201 while (1)
203 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
204 computation function processes the whole buffer so that with the
205 next round of the loop another block can be read. */
206 size_t n;
207 sum = 0;
209 /* Read block. Take care for partial reads. */
210 while (1)
212 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
214 sum += n;
216 if (sum == BLOCKSIZE)
217 break;
219 if (n == 0)
221 /* Check for the error flag IFF N == 0, so that we don't
222 exit the loop after a partial read due to e.g., EAGAIN
223 or EWOULDBLOCK. */
224 if (ferror (stream))
226 free (buffer);
227 return 1;
229 goto process_partial_block;
232 /* We've read at least one byte, so ignore errors. But always
233 check for EOF, since feof may be true even though N > 0.
234 Otherwise, we could end up calling fread after EOF. */
235 if (feof (stream))
236 goto process_partial_block;
239 /* Process buffer with BLOCKSIZE bytes. Note that
240 BLOCKSIZE % 128 == 0
242 sha512_process_block (buffer, BLOCKSIZE, &ctx);
245 process_partial_block:;
247 /* Process any remaining bytes. */
248 if (sum > 0)
249 sha512_process_bytes (buffer, sum, &ctx);
251 /* Construct result in desired memory. */
252 finish_ctx (&ctx, resblock);
253 free (buffer);
254 return 0;
258 sha512_stream (FILE *stream, void *resblock)
260 return shaxxx_stream (stream, "sha512", resblock, SHA512_DIGEST_SIZE,
261 sha512_init_ctx, sha512_finish_ctx);
265 sha384_stream (FILE *stream, void *resblock)
267 return shaxxx_stream (stream, "sha384", resblock, SHA384_DIGEST_SIZE,
268 sha384_init_ctx, sha384_finish_ctx);
270 #endif
272 #if ! HAVE_OPENSSL_SHA512
273 /* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
274 result is always in little endian byte order, so that a byte-wise
275 output yields to the wanted ASCII representation of the message
276 digest. */
277 void *
278 sha512_buffer (const char *buffer, size_t len, void *resblock)
280 struct sha512_ctx ctx;
282 /* Initialize the computation context. */
283 sha512_init_ctx (&ctx);
285 /* Process whole buffer but last len % 128 bytes. */
286 sha512_process_bytes (buffer, len, &ctx);
288 /* Put result in desired memory area. */
289 return sha512_finish_ctx (&ctx, resblock);
292 void *
293 sha384_buffer (const char *buffer, size_t len, void *resblock)
295 struct sha512_ctx ctx;
297 /* Initialize the computation context. */
298 sha384_init_ctx (&ctx);
300 /* Process whole buffer but last len % 128 bytes. */
301 sha512_process_bytes (buffer, len, &ctx);
303 /* Put result in desired memory area. */
304 return sha384_finish_ctx (&ctx, resblock);
307 void
308 sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
310 /* When we already have some bits in our internal buffer concatenate
311 both inputs first. */
312 if (ctx->buflen != 0)
314 size_t left_over = ctx->buflen;
315 size_t add = 256 - left_over > len ? len : 256 - left_over;
317 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
318 ctx->buflen += add;
320 if (ctx->buflen > 128)
322 sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
324 ctx->buflen &= 127;
325 /* The regions in the following copy operation cannot overlap,
326 because ctx->buflen < 128 ≤ (left_over + add) & ~127. */
327 memcpy (ctx->buffer,
328 &((char *) ctx->buffer)[(left_over + add) & ~127],
329 ctx->buflen);
332 buffer = (const char *) buffer + add;
333 len -= add;
336 /* Process available complete blocks. */
337 if (len >= 128)
339 #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
340 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0)
341 if (UNALIGNED_P (buffer))
342 while (len > 128)
344 sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
345 buffer = (const char *) buffer + 128;
346 len -= 128;
348 else
349 #endif
351 sha512_process_block (buffer, len & ~127, ctx);
352 buffer = (const char *) buffer + (len & ~127);
353 len &= 127;
357 /* Move remaining bytes in internal buffer. */
358 if (len > 0)
360 size_t left_over = ctx->buflen;
362 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
363 left_over += len;
364 if (left_over >= 128)
366 sha512_process_block (ctx->buffer, 128, ctx);
367 left_over -= 128;
368 /* The regions in the following copy operation cannot overlap,
369 because left_over ≤ 128. */
370 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
372 ctx->buflen = left_over;
376 /* --- Code below is the primary difference between sha1.c and sha512.c --- */
378 /* SHA512 round constants */
379 #define K(I) sha512_round_constants[I]
380 static u64 const sha512_round_constants[80] = {
381 u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
382 u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
383 u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
384 u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
385 u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
386 u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
387 u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
388 u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
389 u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
390 u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
391 u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
392 u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
393 u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
394 u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
395 u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
396 u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
397 u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
398 u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
399 u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
400 u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
401 u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
402 u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
403 u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
404 u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
405 u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
406 u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
407 u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
408 u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
409 u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
410 u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
411 u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
412 u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
413 u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
414 u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
415 u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
416 u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
417 u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
418 u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
419 u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
420 u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
423 /* Round functions. */
424 #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
425 #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
427 /* Process LEN bytes of BUFFER, accumulating context into CTX.
428 It is assumed that LEN % 128 == 0.
429 Most of this code comes from GnuPG's cipher/sha1.c. */
431 void
432 sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
434 u64 const *words = buffer;
435 u64 const *endp = words + len / sizeof (u64);
436 u64 x[16];
437 u64 a = ctx->state[0];
438 u64 b = ctx->state[1];
439 u64 c = ctx->state[2];
440 u64 d = ctx->state[3];
441 u64 e = ctx->state[4];
442 u64 f = ctx->state[5];
443 u64 g = ctx->state[6];
444 u64 h = ctx->state[7];
445 u64 lolen = u64size (len);
447 /* First increment the byte count. FIPS PUB 180-2 specifies the possible
448 length of the file up to 2^128 bits. Here we only compute the
449 number of bytes. Do a double word increment. */
450 ctx->total[0] = u64plus (ctx->total[0], lolen);
451 ctx->total[1] = u64plus (ctx->total[1],
452 u64plus (u64size (len >> 31 >> 31 >> 2),
453 u64lo (u64lt (ctx->total[0], lolen))));
455 #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
456 #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
457 #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
458 #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
460 #define M(I) (x[(I) & 15] \
461 = u64plus (x[(I) & 15], \
462 u64plus (S1 (x[((I) - 2) & 15]), \
463 u64plus (x[((I) - 7) & 15], \
464 S0 (x[((I) - 15) & 15])))))
466 #define R(A, B, C, D, E, F, G, H, K, M) \
467 do \
469 u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
470 u64 t1 = \
471 u64plus (H, u64plus (SS1 (E), \
472 u64plus (F1 (E, F, G), u64plus (K, M)))); \
473 D = u64plus (D, t1); \
474 H = u64plus (t0, t1); \
476 while (0)
478 while (words < endp)
480 int t;
481 /* FIXME: see sha1.c for a better implementation. */
482 for (t = 0; t < 16; t++)
484 x[t] = SWAP (*words);
485 words++;
488 R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
489 R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
490 R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
491 R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
492 R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
493 R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
494 R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
495 R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
496 R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
497 R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
498 R( g, h, a, b, c, d, e, f, K(10), x[10] );
499 R( f, g, h, a, b, c, d, e, K(11), x[11] );
500 R( e, f, g, h, a, b, c, d, K(12), x[12] );
501 R( d, e, f, g, h, a, b, c, K(13), x[13] );
502 R( c, d, e, f, g, h, a, b, K(14), x[14] );
503 R( b, c, d, e, f, g, h, a, K(15), x[15] );
504 R( a, b, c, d, e, f, g, h, K(16), M(16) );
505 R( h, a, b, c, d, e, f, g, K(17), M(17) );
506 R( g, h, a, b, c, d, e, f, K(18), M(18) );
507 R( f, g, h, a, b, c, d, e, K(19), M(19) );
508 R( e, f, g, h, a, b, c, d, K(20), M(20) );
509 R( d, e, f, g, h, a, b, c, K(21), M(21) );
510 R( c, d, e, f, g, h, a, b, K(22), M(22) );
511 R( b, c, d, e, f, g, h, a, K(23), M(23) );
512 R( a, b, c, d, e, f, g, h, K(24), M(24) );
513 R( h, a, b, c, d, e, f, g, K(25), M(25) );
514 R( g, h, a, b, c, d, e, f, K(26), M(26) );
515 R( f, g, h, a, b, c, d, e, K(27), M(27) );
516 R( e, f, g, h, a, b, c, d, K(28), M(28) );
517 R( d, e, f, g, h, a, b, c, K(29), M(29) );
518 R( c, d, e, f, g, h, a, b, K(30), M(30) );
519 R( b, c, d, e, f, g, h, a, K(31), M(31) );
520 R( a, b, c, d, e, f, g, h, K(32), M(32) );
521 R( h, a, b, c, d, e, f, g, K(33), M(33) );
522 R( g, h, a, b, c, d, e, f, K(34), M(34) );
523 R( f, g, h, a, b, c, d, e, K(35), M(35) );
524 R( e, f, g, h, a, b, c, d, K(36), M(36) );
525 R( d, e, f, g, h, a, b, c, K(37), M(37) );
526 R( c, d, e, f, g, h, a, b, K(38), M(38) );
527 R( b, c, d, e, f, g, h, a, K(39), M(39) );
528 R( a, b, c, d, e, f, g, h, K(40), M(40) );
529 R( h, a, b, c, d, e, f, g, K(41), M(41) );
530 R( g, h, a, b, c, d, e, f, K(42), M(42) );
531 R( f, g, h, a, b, c, d, e, K(43), M(43) );
532 R( e, f, g, h, a, b, c, d, K(44), M(44) );
533 R( d, e, f, g, h, a, b, c, K(45), M(45) );
534 R( c, d, e, f, g, h, a, b, K(46), M(46) );
535 R( b, c, d, e, f, g, h, a, K(47), M(47) );
536 R( a, b, c, d, e, f, g, h, K(48), M(48) );
537 R( h, a, b, c, d, e, f, g, K(49), M(49) );
538 R( g, h, a, b, c, d, e, f, K(50), M(50) );
539 R( f, g, h, a, b, c, d, e, K(51), M(51) );
540 R( e, f, g, h, a, b, c, d, K(52), M(52) );
541 R( d, e, f, g, h, a, b, c, K(53), M(53) );
542 R( c, d, e, f, g, h, a, b, K(54), M(54) );
543 R( b, c, d, e, f, g, h, a, K(55), M(55) );
544 R( a, b, c, d, e, f, g, h, K(56), M(56) );
545 R( h, a, b, c, d, e, f, g, K(57), M(57) );
546 R( g, h, a, b, c, d, e, f, K(58), M(58) );
547 R( f, g, h, a, b, c, d, e, K(59), M(59) );
548 R( e, f, g, h, a, b, c, d, K(60), M(60) );
549 R( d, e, f, g, h, a, b, c, K(61), M(61) );
550 R( c, d, e, f, g, h, a, b, K(62), M(62) );
551 R( b, c, d, e, f, g, h, a, K(63), M(63) );
552 R( a, b, c, d, e, f, g, h, K(64), M(64) );
553 R( h, a, b, c, d, e, f, g, K(65), M(65) );
554 R( g, h, a, b, c, d, e, f, K(66), M(66) );
555 R( f, g, h, a, b, c, d, e, K(67), M(67) );
556 R( e, f, g, h, a, b, c, d, K(68), M(68) );
557 R( d, e, f, g, h, a, b, c, K(69), M(69) );
558 R( c, d, e, f, g, h, a, b, K(70), M(70) );
559 R( b, c, d, e, f, g, h, a, K(71), M(71) );
560 R( a, b, c, d, e, f, g, h, K(72), M(72) );
561 R( h, a, b, c, d, e, f, g, K(73), M(73) );
562 R( g, h, a, b, c, d, e, f, K(74), M(74) );
563 R( f, g, h, a, b, c, d, e, K(75), M(75) );
564 R( e, f, g, h, a, b, c, d, K(76), M(76) );
565 R( d, e, f, g, h, a, b, c, K(77), M(77) );
566 R( c, d, e, f, g, h, a, b, K(78), M(78) );
567 R( b, c, d, e, f, g, h, a, K(79), M(79) );
569 a = ctx->state[0] = u64plus (ctx->state[0], a);
570 b = ctx->state[1] = u64plus (ctx->state[1], b);
571 c = ctx->state[2] = u64plus (ctx->state[2], c);
572 d = ctx->state[3] = u64plus (ctx->state[3], d);
573 e = ctx->state[4] = u64plus (ctx->state[4], e);
574 f = ctx->state[5] = u64plus (ctx->state[5], f);
575 g = ctx->state[6] = u64plus (ctx->state[6], g);
576 h = ctx->state[7] = u64plus (ctx->state[7], h);
579 #endif
582 * Hey Emacs!
583 * Local Variables:
584 * coding: utf-8
585 * End: