sigabbrev_np: Add tests.
[gnulib.git] / doc / gcd.texi
blob20a92abfa8f55621b3cc16ae0638099b23409dcb
1 @node gcd
2 @section gcd: greatest common divisor
3 @findex gcd
5 @c Copyright (C) 2006, 2009--2020 Free Software Foundation, Inc.
7 @c Permission is granted to copy, distribute and/or modify this document
8 @c under the terms of the GNU Free Documentation License, Version 1.3 or
9 @c any later version published by the Free Software Foundation; with no
10 @c Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A
11 @c copy of the license is at <https://www.gnu.org/licenses/fdl-1.3.en.html>.
13 The @code{gcd} function returns the greatest common divisor of two numbers
14 @code{a > 0} and @code{b > 0}.  It is the caller's responsibility to ensure
15 that the arguments are non-zero.
17 If you need a gcd function for an integer type larger than
18 @samp{unsigned long}, you can include the @file{gcd.c} implementation file
19 with parametrization.  The parameters are:
21 @itemize @bullet
22 @item WORD_T
23 Define this to the unsigned integer type that you need this function for.
25 @item GCD
26 Define this to the name of the function to be created.
27 @end itemize
29 The created function has the prototype
30 @smallexample
31 WORD_T GCD (WORD_T a, WORD_T b);
32 @end smallexample
34 If you need the least common multiple of two numbers, it can be computed
35 like this: @code{lcm(a,b) = (a / gcd(a,b)) * b} or
36 @code{lcm(a,b) = a * (b / gcd(a,b))}.
37 Avoid the formula @code{lcm(a,b) = (a * b) / gcd(a,b)} because---although
38 mathematically correct---it can yield a wrong result, due to integer overflow.
40 In some applications it is useful to have a function taking the gcd of two
41 signed numbers. In this case, the gcd function result is usually normalized
42 to be non-negative (so that two gcd results can be compared in magnitude
43 or compared against 1, etc.). Note that in this case the prototype of the
44 function has to be
45 @smallexample
46 unsigned long gcd (long a, long b);
47 @end smallexample
48 and not
49 @smallexample
50 long gcd (long a, long b);
51 @end smallexample
52 because @code{gcd(LONG_MIN,LONG_MIN) = -LONG_MIN = LONG_MAX + 1} does not
53 fit into a signed @samp{long}.