2 * Copyright (c) 2005, Jon Seymour
4 * For more information about epoch theory on which this module is based,
5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
7 * for some of the algorithms used here.
12 /* Provides arbitrary precision integers required to accurately represent
14 #include <openssl/bn.h>
26 #define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
28 static BN_CTX
*context
= NULL
;
29 static struct fraction
*one
= NULL
;
30 static struct fraction
*zero
= NULL
;
32 static BN_CTX
*get_BN_CTX(void)
35 context
= BN_CTX_new();
40 static struct fraction
*new_zero(void)
42 struct fraction
*result
= xmalloc(sizeof(*result
));
43 BN_init(&result
->numerator
);
44 BN_init(&result
->denominator
);
45 BN_zero(&result
->numerator
);
46 BN_one(&result
->denominator
);
50 static void clear_fraction(struct fraction
*fraction
)
52 BN_clear(&fraction
->numerator
);
53 BN_clear(&fraction
->denominator
);
56 static struct fraction
*divide(struct fraction
*result
, struct fraction
*fraction
, int divisor
)
61 BN_set_word(&bn_divisor
, divisor
);
63 BN_copy(&result
->numerator
, &fraction
->numerator
);
64 BN_mul(&result
->denominator
, &fraction
->denominator
, &bn_divisor
, get_BN_CTX());
66 BN_clear(&bn_divisor
);
70 static struct fraction
*init_fraction(struct fraction
*fraction
)
72 BN_init(&fraction
->numerator
);
73 BN_init(&fraction
->denominator
);
74 BN_zero(&fraction
->numerator
);
75 BN_one(&fraction
->denominator
);
79 static struct fraction
*get_one(void)
83 BN_one(&one
->numerator
);
88 static struct fraction
*get_zero(void)
96 static struct fraction
*copy(struct fraction
*to
, struct fraction
*from
)
98 BN_copy(&to
->numerator
, &from
->numerator
);
99 BN_copy(&to
->denominator
, &from
->denominator
);
103 static struct fraction
*add(struct fraction
*result
, struct fraction
*left
, struct fraction
*right
)
111 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
112 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
113 BN_mul(&result
->denominator
, &left
->denominator
, &right
->denominator
, get_BN_CTX());
114 BN_add(&result
->numerator
, &a
, &b
);
116 BN_gcd(&gcd
, &result
->denominator
, &result
->numerator
, get_BN_CTX());
117 BN_div(&result
->denominator
, NULL
, &result
->denominator
, &gcd
, get_BN_CTX());
118 BN_div(&result
->numerator
, NULL
, &result
->numerator
, &gcd
, get_BN_CTX());
127 static int compare(struct fraction
*left
, struct fraction
*right
)
135 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
136 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
138 result
= BN_cmp(&a
, &b
);
146 struct mass_counter
{
147 struct fraction seen
;
148 struct fraction pending
;
151 static struct mass_counter
*new_mass_counter(struct commit
*commit
, struct fraction
*pending
)
153 struct mass_counter
*mass_counter
= xmalloc(sizeof(*mass_counter
));
154 memset(mass_counter
, 0, sizeof(*mass_counter
));
156 init_fraction(&mass_counter
->seen
);
157 init_fraction(&mass_counter
->pending
);
159 copy(&mass_counter
->pending
, pending
);
160 copy(&mass_counter
->seen
, get_zero());
162 if (commit
->object
.util
) {
163 die("multiple attempts to initialize mass counter for %s",
164 sha1_to_hex(commit
->object
.sha1
));
167 commit
->object
.util
= mass_counter
;
172 static void free_mass_counter(struct mass_counter
*counter
)
174 clear_fraction(&counter
->seen
);
175 clear_fraction(&counter
->pending
);
180 * Finds the base commit of a list of commits.
182 * One property of the commit being searched for is that every commit reachable
183 * from the base commit is reachable from the commits in the starting list only
184 * via paths that include the base commit.
186 * This algorithm uses a conservation of mass approach to find the base commit.
188 * We start by injecting one unit of mass into the graph at each
189 * of the commits in the starting list. Injecting mass into a commit
190 * is achieved by adding to its pending mass counter and, if it is not already
191 * enqueued, enqueuing the commit in a list of pending commits, in latest
192 * commit date first order.
194 * The algorithm then proceeds to visit each commit in the pending queue.
195 * Upon each visit, the pending mass is added to the mass already seen for that
196 * commit and then divided into N equal portions, where N is the number of
197 * parents of the commit being visited. The divided portions are then injected
198 * into each of the parents.
200 * The algorithm continues until we discover a commit which has seen all the
201 * mass originally injected or until we run out of things to do.
203 * If we find a commit that has seen all the original mass, we have found
204 * the common base of all the commits in the starting list.
206 * The algorithm does _not_ depend on accurate timestamps for correct operation.
207 * However, reasonably sane (e.g. non-random) timestamps are required in order
208 * to prevent an exponential performance characteristic. The occasional
209 * timestamp inaccuracy will not dramatically affect performance but may
210 * result in more nodes being processed than strictly necessary.
212 * This procedure sets *boundary to the address of the base commit. It returns
213 * non-zero if, and only if, there was a problem parsing one of the
214 * commits discovered during the traversal.
216 static int find_base_for_list(struct commit_list
*list
, struct commit
**boundary
)
219 struct commit_list
*cleaner
= NULL
;
220 struct commit_list
*pending
= NULL
;
221 struct fraction injected
;
222 init_fraction(&injected
);
225 for (; list
; list
= list
->next
) {
226 struct commit
*item
= list
->item
;
228 if (!item
->object
.util
) {
229 new_mass_counter(list
->item
, get_one());
230 add(&injected
, &injected
, get_one());
232 commit_list_insert(list
->item
, &cleaner
);
233 commit_list_insert(list
->item
, &pending
);
237 while (!*boundary
&& pending
&& !ret
) {
238 struct commit
*latest
= pop_commit(&pending
);
239 struct mass_counter
*latest_node
= (struct mass_counter
*) latest
->object
.util
;
242 if ((ret
= parse_commit(latest
)))
244 add(&latest_node
->seen
, &latest_node
->seen
, &latest_node
->pending
);
246 num_parents
= count_parents(latest
);
248 struct fraction distribution
;
249 struct commit_list
*parents
;
251 divide(init_fraction(&distribution
), &latest_node
->pending
, num_parents
);
253 for (parents
= latest
->parents
; parents
; parents
= parents
->next
) {
254 struct commit
*parent
= parents
->item
;
255 struct mass_counter
*parent_node
= (struct mass_counter
*) parent
->object
.util
;
258 parent_node
= new_mass_counter(parent
, &distribution
);
259 insert_by_date(parent
, &pending
);
260 commit_list_insert(parent
, &cleaner
);
262 if (!compare(&parent_node
->pending
, get_zero()))
263 insert_by_date(parent
, &pending
);
264 add(&parent_node
->pending
, &parent_node
->pending
, &distribution
);
268 clear_fraction(&distribution
);
271 if (!compare(&latest_node
->seen
, &injected
))
273 copy(&latest_node
->pending
, get_zero());
277 struct commit
*next
= pop_commit(&cleaner
);
278 free_mass_counter((struct mass_counter
*) next
->object
.util
);
279 next
->object
.util
= NULL
;
283 free_commit_list(pending
);
285 clear_fraction(&injected
);
291 * Finds the base of an minimal, non-linear epoch, headed at head, by
292 * applying the find_base_for_list to a list consisting of the parents
294 static int find_base(struct commit
*head
, struct commit
**boundary
)
297 struct commit_list
*pending
= NULL
;
298 struct commit_list
*next
;
300 for (next
= head
->parents
; next
; next
= next
->next
) {
301 commit_list_insert(next
->item
, &pending
);
303 ret
= find_base_for_list(pending
, boundary
);
304 free_commit_list(pending
);
310 * This procedure traverses to the boundary of the first epoch in the epoch
311 * sequence of the epoch headed at head_of_epoch. This is either the end of
312 * the maximal linear epoch or the base of a minimal non-linear epoch.
314 * The queue of pending nodes is sorted in reverse date order and each node
315 * is currently in the queue at most once.
317 static int find_next_epoch_boundary(struct commit
*head_of_epoch
, struct commit
**boundary
)
320 struct commit
*item
= head_of_epoch
;
322 ret
= parse_commit(item
);
326 if (HAS_EXACTLY_ONE_PARENT(item
)) {
328 * We are at the start of a maximimal linear epoch.
329 * Traverse to the end.
331 while (HAS_EXACTLY_ONE_PARENT(item
) && !ret
) {
332 item
= item
->parents
->item
;
333 ret
= parse_commit(item
);
339 * Otherwise, we are at the start of a minimal, non-linear
340 * epoch - find the common base of all parents.
342 ret
= find_base(item
, boundary
);
349 * Returns non-zero if parent is known to be a parent of child.
351 static int is_parent_of(struct commit
*parent
, struct commit
*child
)
353 struct commit_list
*parents
;
354 for (parents
= child
->parents
; parents
; parents
= parents
->next
) {
355 if (!memcmp(parent
->object
.sha1
, parents
->item
->object
.sha1
,
356 sizeof(parents
->item
->object
.sha1
)))
363 * Pushes an item onto the merge order stack. If the top of the stack is
364 * marked as being a possible "break", we check to see whether it actually
367 static void push_onto_merge_order_stack(struct commit_list
**stack
, struct commit
*item
)
369 struct commit_list
*top
= *stack
;
370 if (top
&& (top
->item
->object
.flags
& DISCONTINUITY
)) {
371 if (is_parent_of(top
->item
, item
)) {
372 top
->item
->object
.flags
&= ~DISCONTINUITY
;
375 commit_list_insert(item
, stack
);
379 * Marks all interesting, visited commits reachable from this commit
380 * as uninteresting. We stop recursing when we reach the epoch boundary,
381 * an unvisited node or a node that has already been marking uninteresting.
383 * This doesn't actually mark all ancestors between the start node and the
384 * epoch boundary uninteresting, but does ensure that they will eventually
385 * be marked uninteresting when the main sort_first_epoch() traversal
386 * eventually reaches them.
388 static void mark_ancestors_uninteresting(struct commit
*commit
)
390 unsigned int flags
= commit
->object
.flags
;
391 int visited
= flags
& VISITED
;
392 int boundary
= flags
& BOUNDARY
;
393 int uninteresting
= flags
& UNINTERESTING
;
394 struct commit_list
*next
;
396 commit
->object
.flags
|= UNINTERESTING
;
399 * We only need to recurse if
400 * we are not on the boundary and
401 * we have not already been marked uninteresting and
402 * we have already been visited.
404 * The main sort_first_epoch traverse will mark unreachable
405 * all uninteresting, unvisited parents as they are visited
406 * so there is no need to duplicate that traversal here.
408 * Similarly, if we are already marked uninteresting
409 * then either all ancestors have already been marked
410 * uninteresting or will be once the sort_first_epoch
411 * traverse reaches them.
414 if (uninteresting
|| boundary
|| !visited
)
417 for (next
= commit
->parents
; next
; next
= next
->next
)
418 mark_ancestors_uninteresting(next
->item
);
422 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
425 static void sort_first_epoch(struct commit
*head
, struct commit_list
**stack
)
427 struct commit_list
*parents
;
429 head
->object
.flags
|= VISITED
;
432 * TODO: By sorting the parents in a different order, we can alter the
433 * merge order to show contemporaneous changes in parallel branches
434 * occurring after "local" changes. This is useful for a developer
435 * when a developer wants to see all changes that were incorporated
436 * into the same merge as her own changes occur after her own
440 for (parents
= head
->parents
; parents
; parents
= parents
->next
) {
441 struct commit
*parent
= parents
->item
;
443 if (head
->object
.flags
& UNINTERESTING
) {
445 * Propagates the uninteresting bit to all parents.
446 * if we have already visited this parent, then
447 * the uninteresting bit will be propagated to each
448 * reachable commit that is still not marked
449 * uninteresting and won't otherwise be reached.
451 mark_ancestors_uninteresting(parent
);
454 if (!(parent
->object
.flags
& VISITED
)) {
455 if (parent
->object
.flags
& BOUNDARY
) {
457 die("something else is on the stack - %s",
458 sha1_to_hex((*stack
)->item
->object
.sha1
));
460 push_onto_merge_order_stack(stack
, parent
);
461 parent
->object
.flags
|= VISITED
;
464 sort_first_epoch(parent
, stack
);
467 * This indicates a possible
468 * discontinuity it may not be be
469 * actual discontinuity if the head
470 * of parent N happens to be the tail
473 * The next push onto the stack will
474 * resolve the question.
476 (*stack
)->item
->object
.flags
|= DISCONTINUITY
;
482 push_onto_merge_order_stack(stack
, head
);
486 * Emit the contents of the stack.
488 * The stack is freed and replaced by NULL.
490 * Sets the return value to STOP if no further output should be generated.
492 static int emit_stack(struct commit_list
**stack
, emitter_func emitter
, int include_last
)
494 unsigned int seen
= 0;
495 int action
= CONTINUE
;
497 while (*stack
&& (action
!= STOP
)) {
498 struct commit
*next
= pop_commit(stack
);
499 seen
|= next
->object
.flags
;
500 if (*stack
|| include_last
) {
502 next
->object
.flags
|= BOUNDARY
;
503 action
= emitter(next
);
508 free_commit_list(*stack
);
512 return (action
== STOP
|| (seen
& UNINTERESTING
)) ? STOP
: CONTINUE
;
516 * Sorts an arbitrary epoch into merge order by sorting each epoch
517 * of its epoch sequence into order.
519 * Note: this algorithm currently leaves traces of its execution in the
520 * object flags of nodes it discovers. This should probably be fixed.
522 static int sort_in_merge_order(struct commit
*head_of_epoch
, emitter_func emitter
)
524 struct commit
*next
= head_of_epoch
;
526 int action
= CONTINUE
;
528 ret
= parse_commit(head_of_epoch
);
530 next
->object
.flags
|= BOUNDARY
;
532 while (next
&& next
->parents
&& !ret
&& (action
!= STOP
)) {
533 struct commit
*base
= NULL
;
535 ret
= find_next_epoch_boundary(next
, &base
);
538 next
->object
.flags
|= BOUNDARY
;
540 base
->object
.flags
|= BOUNDARY
;
542 if (HAS_EXACTLY_ONE_PARENT(next
)) {
543 while (HAS_EXACTLY_ONE_PARENT(next
)
546 if (next
->object
.flags
& UNINTERESTING
) {
549 action
= emitter(next
);
551 if (action
!= STOP
) {
552 next
= next
->parents
->item
;
553 ret
= parse_commit(next
);
558 struct commit_list
*stack
= NULL
;
559 sort_first_epoch(next
, &stack
);
560 action
= emit_stack(&stack
, emitter
, (base
== NULL
));
565 if (next
&& (action
!= STOP
) && !ret
) {
573 * Sorts the nodes reachable from a starting list in merge order, we
574 * first find the base for the starting list and then sort all nodes
575 * in this subgraph using the sort_first_epoch algorithm. Once we have
576 * reached the base we can continue sorting using sort_in_merge_order.
578 int sort_list_in_merge_order(struct commit_list
*list
, emitter_func emitter
)
580 struct commit_list
*stack
= NULL
;
583 int action
= CONTINUE
;
584 struct commit_list
*reversed
= NULL
;
586 for (; list
; list
= list
->next
)
587 commit_list_insert(list
->item
, &reversed
);
591 else if (!reversed
->next
) {
593 * If there is only one element in the list, we can sort it
594 * using sort_in_merge_order.
596 base
= reversed
->item
;
599 * Otherwise, we search for the base of the list.
601 ret
= find_base_for_list(reversed
, &base
);
605 base
->object
.flags
|= BOUNDARY
;
608 struct commit
* next
= pop_commit(&reversed
);
610 if (!(next
->object
.flags
& VISITED
) && next
!=base
) {
611 sort_first_epoch(next
, &stack
);
614 * If we have more commits
615 * to push, then the first
616 * push for the next parent may
617 * (or may * not) represent a
618 * discontinuity with respect
619 * to the parent currently on
620 * the top of the stack.
622 * Mark it for checking here,
623 * and check it with the next
624 * push. See sort_first_epoch()
627 stack
->item
->object
.flags
|= DISCONTINUITY
;
632 action
= emit_stack(&stack
, emitter
, (base
==NULL
));
635 if (base
&& (action
!= STOP
)) {
636 ret
= sort_in_merge_order(base
, emitter
);