1 ///////////////////////////////////////////////////////////////////////////////
3 // Copyright (c) 2015 Microsoft Corporation. All rights reserved.
5 // This code is licensed under the MIT License (MIT).
7 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
15 ///////////////////////////////////////////////////////////////////////////////
18 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/span
20 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/gsl_util
22 #ifndef mozilla_Span_h
23 #define mozilla_Span_h
31 #include <type_traits>
34 #include "mozilla/Assertions.h"
35 #include "mozilla/Attributes.h"
36 #include "mozilla/Casting.h"
37 #include "mozilla/UniquePtr.h"
41 template <typename T
, size_t Length
>
44 // Stuff from gsl_util
46 // narrow_cast(): a searchable way to do narrowing casts of values
47 template <class T
, class U
>
48 inline constexpr T
narrow_cast(U
&& u
) {
49 return static_cast<T
>(std::forward
<U
>(u
));
54 // [views.constants], constants
55 // This was -1 in gsl::span, but using size_t for sizes instead of ptrdiff_t
56 // and reserving a magic value that realistically doesn't occur in
57 // compile-time-constant Span sizes makes things a lot less messy in terms of
58 // comparison between signed and unsigned.
59 constexpr const size_t dynamic_extent
= std::numeric_limits
<size_t>::max();
61 template <class ElementType
, size_t Extent
= dynamic_extent
>
64 // implementation details
65 namespace span_details
{
68 struct is_span_oracle
: std::false_type
{};
70 template <class ElementType
, size_t Extent
>
71 struct is_span_oracle
<mozilla::Span
<ElementType
, Extent
>> : std::true_type
{};
74 struct is_span
: public is_span_oracle
<std::remove_cv_t
<T
>> {};
77 struct is_std_array_oracle
: std::false_type
{};
79 template <class ElementType
, size_t Extent
>
80 struct is_std_array_oracle
<std::array
<ElementType
, Extent
>> : std::true_type
{};
83 struct is_std_array
: public is_std_array_oracle
<std::remove_cv_t
<T
>> {};
85 template <size_t From
, size_t To
>
86 struct is_allowed_extent_conversion
87 : public std::integral_constant
<bool, From
== To
||
88 From
== mozilla::dynamic_extent
||
89 To
== mozilla::dynamic_extent
> {};
91 template <class From
, class To
>
92 struct is_allowed_element_type_conversion
93 : public std::integral_constant
<
94 bool, std::is_convertible_v
<From (*)[], To (*)[]>> {};
96 struct SpanKnownBounds
{};
98 template <class SpanT
, bool IsConst
>
100 using element_type_
= typename
SpanT::element_type
;
102 template <class ElementType
, size_t Extent
>
103 friend class ::mozilla::Span
;
106 using iterator_category
= std::random_access_iterator_tag
;
107 using value_type
= std::remove_const_t
<element_type_
>;
108 using difference_type
= typename
SpanT::index_type
;
111 std::conditional_t
<IsConst
, const element_type_
, element_type_
>&;
112 using pointer
= std::add_pointer_t
<reference
>;
114 constexpr span_iterator() : span_iterator(nullptr, 0, SpanKnownBounds
{}) {}
116 constexpr span_iterator(const SpanT
* span
, typename
SpanT::index_type index
)
117 : span_(span
), index_(index
) {
118 MOZ_RELEASE_ASSERT(span
== nullptr ||
119 (index_
>= 0 && index
<= span_
->Length()));
123 // For whatever reason, the compiler doesn't like optimizing away the above
124 // MOZ_RELEASE_ASSERT when `span_iterator` is constructed for
125 // obviously-correct cases like `span.begin()` or `span.end()`. We provide
126 // this private constructor for such cases.
127 constexpr span_iterator(const SpanT
* span
, typename
SpanT::index_type index
,
129 : span_(span
), index_(index
) {}
132 // `other` is already correct by construction; we do not need to go through
133 // the release assert above. Put differently, this constructor is effectively
134 // a copy constructor and therefore needs no assertions.
135 friend class span_iterator
<SpanT
, true>;
136 constexpr MOZ_IMPLICIT
span_iterator(const span_iterator
<SpanT
, false>& other
)
137 : span_(other
.span_
), index_(other
.index_
) {}
139 constexpr span_iterator
<SpanT
, IsConst
>& operator=(
140 const span_iterator
<SpanT
, IsConst
>&) = default;
142 constexpr reference
operator*() const {
143 MOZ_RELEASE_ASSERT(span_
);
144 return (*span_
)[index_
];
147 constexpr pointer
operator->() const {
148 MOZ_RELEASE_ASSERT(span_
);
149 return &((*span_
)[index_
]);
152 constexpr span_iterator
& operator++() {
157 constexpr span_iterator
operator++(int) {
163 constexpr span_iterator
& operator--() {
168 constexpr span_iterator
operator--(int) {
174 constexpr span_iterator
operator+(difference_type n
) const {
179 constexpr span_iterator
& operator+=(difference_type n
) {
180 MOZ_RELEASE_ASSERT(span_
&& (index_
+ n
) >= 0 &&
181 (index_
+ n
) <= span_
->Length());
186 constexpr span_iterator
operator-(difference_type n
) const {
191 constexpr span_iterator
& operator-=(difference_type n
) { return *this += -n
; }
193 constexpr difference_type
operator-(const span_iterator
& rhs
) const {
194 MOZ_RELEASE_ASSERT(span_
== rhs
.span_
);
195 return index_
- rhs
.index_
;
198 constexpr reference
operator[](difference_type n
) const {
202 constexpr friend bool operator==(const span_iterator
& lhs
,
203 const span_iterator
& rhs
) {
204 // Iterators from different spans are uncomparable. A diagnostic assertion
205 // should be enough to check this, though. To ensure that no iterators from
206 // different spans are ever considered equal, still compare them in release
208 MOZ_DIAGNOSTIC_ASSERT(lhs
.span_
== rhs
.span_
);
209 return lhs
.index_
== rhs
.index_
&& lhs
.span_
== rhs
.span_
;
212 constexpr friend bool operator!=(const span_iterator
& lhs
,
213 const span_iterator
& rhs
) {
214 return !(lhs
== rhs
);
217 constexpr friend bool operator<(const span_iterator
& lhs
,
218 const span_iterator
& rhs
) {
219 MOZ_DIAGNOSTIC_ASSERT(lhs
.span_
== rhs
.span_
);
220 return lhs
.index_
< rhs
.index_
;
223 constexpr friend bool operator<=(const span_iterator
& lhs
,
224 const span_iterator
& rhs
) {
228 constexpr friend bool operator>(const span_iterator
& lhs
,
229 const span_iterator
& rhs
) {
233 constexpr friend bool operator>=(const span_iterator
& lhs
,
234 const span_iterator
& rhs
) {
238 void swap(span_iterator
& rhs
) {
239 std::swap(index_
, rhs
.index_
);
240 std::swap(span_
, rhs
.span_
);
248 template <class Span
, bool IsConst
>
249 inline constexpr span_iterator
<Span
, IsConst
> operator+(
250 typename span_iterator
<Span
, IsConst
>::difference_type n
,
251 const span_iterator
<Span
, IsConst
>& rhs
) {
255 template <size_t Ext
>
258 using index_type
= size_t;
260 static_assert(Ext
>= 0, "A fixed-size Span must be >= 0 in size.");
262 constexpr extent_type() = default;
264 template <index_type Other
>
265 constexpr MOZ_IMPLICIT
extent_type(extent_type
<Other
> ext
) {
267 Other
== Ext
|| Other
== dynamic_extent
,
268 "Mismatch between fixed-size extent and size of initializing data.");
269 MOZ_RELEASE_ASSERT(ext
.size() == Ext
);
272 constexpr MOZ_IMPLICIT
extent_type(index_type length
) {
273 MOZ_RELEASE_ASSERT(length
== Ext
);
276 constexpr index_type
size() const { return Ext
; }
280 class extent_type
<dynamic_extent
> {
282 using index_type
= size_t;
284 template <index_type Other
>
285 explicit constexpr extent_type(extent_type
<Other
> ext
) : size_(ext
.size()) {}
287 explicit constexpr extent_type(index_type length
) : size_(length
) {}
289 constexpr index_type
size() const { return size_
; }
294 } // namespace span_details
297 * Span - slices for C++
299 * Span implements Rust's slice concept for C++. It's called "Span" instead of
300 * "Slice" to follow the naming used in C++ Core Guidelines.
302 * A Span wraps a pointer and a length that identify a non-owning view to a
303 * contiguous block of memory of objects of the same type. Various types,
304 * including (pre-decay) C arrays, XPCOM strings, nsTArray, mozilla::Array,
305 * mozilla::Range and contiguous standard-library containers, auto-convert
306 * into Spans when attempting to pass them as arguments to methods that take
307 * Spans. (Span itself autoconverts into mozilla::Range.)
309 * Like Rust's slices, Span provides safety against out-of-bounds access by
310 * performing run-time bound checks. However, unlike Rust's slices, Span
311 * cannot provide safety against use-after-free.
313 * (Note: Span is like Rust's slice only conceptually. Due to the lack of
314 * ABI guarantees, you should still decompose spans/slices to raw pointer
315 * and length parts when crossing the FFI. The Elements() and data() methods
316 * are guaranteed to return a non-null pointer even for zero-length spans,
317 * so the pointer can be used as a raw part of a Rust slice without further
320 * In addition to having constructors (with the support of deduction guides)
321 * that take various well-known types, a Span for an arbitrary type can be
322 * constructed from a pointer and a length or a pointer and another pointer
323 * pointing just past the last element.
325 * A Span<const char> or Span<const char16_t> can be obtained for const char*
326 * or const char16_t pointing to a zero-terminated string using the
327 * MakeStringSpan() function (which treats a nullptr argument equivalently
328 * to the empty string). Corresponding implicit constructor does not exist
329 * in order to avoid accidental construction in cases where const char* or
330 * const char16_t* do not point to a zero-terminated string.
332 * Span has methods that follow the Mozilla naming style and methods that
333 * don't. The methods that follow the Mozilla naming style are meant to be
334 * used directly from Mozilla code. The methods that don't are meant for
335 * integration with C++11 range-based loops and with meta-programming that
336 * expects the same methods that are found on the standard-library
337 * containers. For example, to decompose a Span into its parts in Mozilla
338 * code, use Elements() and Length() (as with nsTArray) instead of data()
339 * and size() (as with std::vector).
341 * The pointer and length wrapped by a Span cannot be changed after a Span has
342 * been created. When new values are required, simply create a new Span. Span
343 * has a method called Subspan() that works analogously to the Substring()
344 * method of XPCOM strings taking a start index and an optional length. As a
345 * Mozilla extension (relative to Microsoft's gsl::span that mozilla::Span is
346 * based on), Span has methods From(start), To(end) and FromTo(start, end)
347 * that correspond to Rust's &slice[start..], &slice[..end] and
348 * &slice[start..end], respectively. (That is, the end index is the index of
349 * the first element not to be included in the new subspan.)
351 * When indicating a Span that's only read from, const goes inside the type
352 * parameter. Don't put const in front of Span. That is:
353 * size_t ReadsFromOneSpanAndWritesToAnother(Span<const uint8_t> aReadFrom,
354 * Span<uint8_t> aWrittenTo);
356 * Any Span<const T> can be viewed as Span<const uint8_t> using the function
357 * AsBytes(). Any Span<T> can be viewed as Span<uint8_t> using the function
360 * Note that iterators from different Span instances are uncomparable, even if
361 * they refer to the same memory. This also applies to any spans derived via
364 template <class ElementType
, size_t Extent
/* = dynamic_extent */>
367 // constants and types
368 using element_type
= ElementType
;
369 using index_type
= size_t;
370 using pointer
= element_type
*;
371 using reference
= element_type
&;
374 span_details::span_iterator
<Span
<ElementType
, Extent
>, false>;
375 using const_iterator
=
376 span_details::span_iterator
<Span
<ElementType
, Extent
>, true>;
377 using reverse_iterator
= std::reverse_iterator
<iterator
>;
378 using const_reverse_iterator
= std::reverse_iterator
<const_iterator
>;
380 constexpr static const index_type extent
= Extent
;
382 // [Span.cons], Span constructors, copy, assignment, and destructor
383 // "Dependent" is needed to make "std::enable_if_t<(Dependent ||
384 // Extent == 0 || Extent == dynamic_extent)>" SFINAE,
386 // "std::enable_if_t<(Extent == 0 || Extent == dynamic_extent)>" is
387 // ill-formed when Extent is neither of the extreme values.
389 * Constructor with no args.
391 template <bool Dependent
= false,
392 class = std::enable_if_t
<(Dependent
|| Extent
== 0 ||
393 Extent
== dynamic_extent
)>>
394 constexpr Span() : storage_(nullptr, span_details::extent_type
<0>()) {}
397 * Constructor for nullptr.
399 constexpr MOZ_IMPLICIT
Span(std::nullptr_t
) : Span() {}
402 * Constructor for pointer and length.
404 constexpr Span(pointer aPtr
, index_type aLength
) : storage_(aPtr
, aLength
) {}
407 * Constructor for start pointer and pointer past end.
409 constexpr Span(pointer aStartPtr
, pointer aEndPtr
)
410 : storage_(aStartPtr
, std::distance(aStartPtr
, aEndPtr
)) {}
413 * Constructor for pair of Span iterators.
415 template <typename OtherElementType
, size_t OtherExtent
, bool IsConst
>
417 span_details::span_iterator
<Span
<OtherElementType
, OtherExtent
>, IsConst
>
419 span_details::span_iterator
<Span
<OtherElementType
, OtherExtent
>, IsConst
>
421 : storage_(aBegin
== aEnd
? nullptr : &*aBegin
, aEnd
- aBegin
) {}
424 * Constructor for C array.
427 constexpr MOZ_IMPLICIT
Span(element_type (&aArr
)[N
])
428 : storage_(&aArr
[0], span_details::extent_type
<N
>()) {}
430 // Implicit constructors for char* and char16_t* pointers are deleted in order
431 // to avoid accidental construction in cases where a pointer does not point to
432 // a zero-terminated string. A Span<const char> or Span<const char16_t> can be
433 // obtained for const char* or const char16_t pointing to a zero-terminated
434 // string using the MakeStringSpan() function.
435 // (This must be a template because otherwise it will prevent the previous
436 // array constructor to match because an array decays to a pointer. This only
437 // exists to point to the above explanation, since there's no other
438 // constructor that would match.)
441 typename
= std::enable_if_t
<
442 std::is_pointer_v
<T
> &&
443 (std::is_same_v
<std::remove_const_t
<std::decay_t
<T
>>, char> ||
444 std::is_same_v
<std::remove_const_t
<std::decay_t
<T
>>, char16_t
>)>>
445 Span(T
& aStr
) = delete;
448 * Constructor for std::array.
451 class ArrayElementType
= std::remove_const_t
<element_type
>>
452 constexpr MOZ_IMPLICIT
Span(std::array
<ArrayElementType
, N
>& aArr
)
453 : storage_(&aArr
[0], span_details::extent_type
<N
>()) {}
456 * Constructor for const std::array.
459 constexpr MOZ_IMPLICIT
Span(
460 const std::array
<std::remove_const_t
<element_type
>, N
>& aArr
)
461 : storage_(&aArr
[0], span_details::extent_type
<N
>()) {}
464 * Constructor for mozilla::Array.
467 class ArrayElementType
= std::remove_const_t
<element_type
>>
468 constexpr MOZ_IMPLICIT
Span(mozilla::Array
<ArrayElementType
, N
>& aArr
)
469 : storage_(&aArr
[0], span_details::extent_type
<N
>()) {}
472 * Constructor for const mozilla::Array.
475 constexpr MOZ_IMPLICIT
Span(
476 const mozilla::Array
<std::remove_const_t
<element_type
>, N
>& aArr
)
477 : storage_(&aArr
[0], span_details::extent_type
<N
>()) {}
480 * Constructor for mozilla::UniquePtr holding an array and length.
482 template <class ArrayElementType
= std::add_pointer
<element_type
>>
483 constexpr Span(const mozilla::UniquePtr
<ArrayElementType
>& aPtr
,
485 : storage_(aPtr
.get(), aLength
) {}
487 // NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the
488 // requirement on Container to be a contiguous sequence container.
490 * Constructor for standard-library containers.
494 class Dummy
= std::enable_if_t
<
495 !std::is_const_v
<Container
> &&
496 !span_details::is_span
<Container
>::value
&&
497 !span_details::is_std_array
<Container
>::value
&&
498 std::is_convertible_v
<typename
Container::pointer
, pointer
> &&
499 std::is_convertible_v
<typename
Container::pointer
,
500 decltype(std::declval
<Container
>().data())>,
502 constexpr MOZ_IMPLICIT
Span(Container
& cont
, Dummy
* = nullptr)
503 : Span(cont
.data(), ReleaseAssertedCast
<index_type
>(cont
.size())) {}
506 * Constructor for standard-library containers (const version).
510 class = std::enable_if_t
<
511 std::is_const_v
<element_type
> &&
512 !span_details::is_span
<Container
>::value
&&
513 std::is_convertible_v
<typename
Container::pointer
, pointer
> &&
514 std::is_convertible_v
<typename
Container::pointer
,
515 decltype(std::declval
<Container
>().data())>>>
516 constexpr MOZ_IMPLICIT
Span(const Container
& cont
)
517 : Span(cont
.data(), ReleaseAssertedCast
<index_type
>(cont
.size())) {}
519 // NB: the SFINAE here uses .Elements() as a incomplete/imperfect proxy for
520 // the requirement on Container to be a contiguous sequence container.
522 * Constructor for contiguous Mozilla containers.
526 class = std::enable_if_t
<
527 !std::is_const_v
<Container
> &&
528 !span_details::is_span
<Container
>::value
&&
529 !span_details::is_std_array
<Container
>::value
&&
530 std::is_convertible_v
<typename
Container::elem_type
*, pointer
> &&
531 std::is_convertible_v
<
532 typename
Container::elem_type
*,
533 decltype(std::declval
<Container
>().Elements())>>>
534 constexpr MOZ_IMPLICIT
Span(Container
& cont
, void* = nullptr)
535 : Span(cont
.Elements(), ReleaseAssertedCast
<index_type
>(cont
.Length())) {}
538 * Constructor for contiguous Mozilla containers (const version).
542 class = std::enable_if_t
<
543 std::is_const_v
<element_type
> &&
544 !span_details::is_span
<Container
>::value
&&
545 std::is_convertible_v
<typename
Container::elem_type
*, pointer
> &&
546 std::is_convertible_v
<
547 typename
Container::elem_type
*,
548 decltype(std::declval
<Container
>().Elements())>>>
549 constexpr MOZ_IMPLICIT
Span(const Container
& cont
, void* = nullptr)
550 : Span(cont
.Elements(), ReleaseAssertedCast
<index_type
>(cont
.Length())) {}
553 * Constructor from other Span.
555 constexpr Span(const Span
& other
) = default;
558 * Constructor from other Span.
560 constexpr Span(Span
&& other
) = default;
563 * Constructor from other Span with conversion of element type.
566 class OtherElementType
, size_t OtherExtent
,
567 class = std::enable_if_t
<span_details::is_allowed_extent_conversion
<
568 OtherExtent
, Extent
>::value
&&
569 span_details::is_allowed_element_type_conversion
<
570 OtherElementType
, element_type
>::value
>>
571 constexpr MOZ_IMPLICIT
Span(const Span
<OtherElementType
, OtherExtent
>& other
)
572 : storage_(other
.data(),
573 span_details::extent_type
<OtherExtent
>(other
.size())) {}
576 * Constructor from other Span with conversion of element type.
579 class OtherElementType
, size_t OtherExtent
,
580 class = std::enable_if_t
<span_details::is_allowed_extent_conversion
<
581 OtherExtent
, Extent
>::value
&&
582 span_details::is_allowed_element_type_conversion
<
583 OtherElementType
, element_type
>::value
>>
584 constexpr MOZ_IMPLICIT
Span(Span
<OtherElementType
, OtherExtent
>&& other
)
585 : storage_(other
.data(),
586 span_details::extent_type
<OtherExtent
>(other
.size())) {}
589 constexpr Span
& operator=(const Span
& other
) = default;
591 constexpr Span
& operator=(Span
&& other
) = default;
593 // [Span.sub], Span subviews
595 * Subspan with first N elements with compile-time N.
597 template <size_t Count
>
598 constexpr Span
<element_type
, Count
> First() const {
599 MOZ_RELEASE_ASSERT(Count
<= size());
600 return {data(), Count
};
604 * Subspan with last N elements with compile-time N.
606 template <size_t Count
>
607 constexpr Span
<element_type
, Count
> Last() const {
608 const size_t len
= size();
609 MOZ_RELEASE_ASSERT(Count
<= len
);
610 return {data() + (len
- Count
), Count
};
614 * Subspan with compile-time start index and length.
616 template <size_t Offset
, size_t Count
= dynamic_extent
>
617 constexpr Span
<element_type
, Count
> Subspan() const {
618 const size_t len
= size();
619 MOZ_RELEASE_ASSERT(Offset
<= len
&&
620 (Count
== dynamic_extent
|| (Offset
+ Count
<= len
)));
621 return {data() + Offset
, Count
== dynamic_extent
? len
- Offset
: Count
};
625 * Subspan with first N elements with run-time N.
627 constexpr Span
<element_type
, dynamic_extent
> First(index_type aCount
) const {
628 MOZ_RELEASE_ASSERT(aCount
<= size());
629 return {data(), aCount
};
633 * Subspan with last N elements with run-time N.
635 constexpr Span
<element_type
, dynamic_extent
> Last(index_type aCount
) const {
636 const size_t len
= size();
637 MOZ_RELEASE_ASSERT(aCount
<= len
);
638 return {data() + (len
- aCount
), aCount
};
642 * Subspan with run-time start index and length.
644 constexpr Span
<element_type
, dynamic_extent
> Subspan(
645 index_type aStart
, index_type aLength
= dynamic_extent
) const {
646 const size_t len
= size();
647 MOZ_RELEASE_ASSERT(aStart
<= len
&& (aLength
== dynamic_extent
||
648 (aStart
+ aLength
<= len
)));
649 return {data() + aStart
,
650 aLength
== dynamic_extent
? len
- aStart
: aLength
};
654 * Subspan with run-time start index. (Rust's &foo[start..])
656 constexpr Span
<element_type
, dynamic_extent
> From(index_type aStart
) const {
657 return Subspan(aStart
);
661 * Subspan with run-time exclusive end index. (Rust's &foo[..end])
663 constexpr Span
<element_type
, dynamic_extent
> To(index_type aEnd
) const {
664 return Subspan(0, aEnd
);
668 * Subspan with run-time start index and exclusive end index.
669 * (Rust's &foo[start..end])
671 constexpr Span
<element_type
, dynamic_extent
> FromTo(index_type aStart
,
672 index_type aEnd
) const {
673 MOZ_RELEASE_ASSERT(aStart
<= aEnd
);
674 return Subspan(aStart
, aEnd
- aStart
);
677 // [Span.obs], Span observers
679 * Number of elements in the span.
681 constexpr index_type
Length() const { return size(); }
684 * Number of elements in the span (standard-libray duck typing version).
686 constexpr index_type
size() const { return storage_
.size(); }
689 * Size of the span in bytes.
691 constexpr index_type
LengthBytes() const { return size_bytes(); }
694 * Size of the span in bytes (standard-library naming style version).
696 constexpr index_type
size_bytes() const {
697 return size() * narrow_cast
<index_type
>(sizeof(element_type
));
701 * Checks if the the length of the span is zero.
703 constexpr bool IsEmpty() const { return empty(); }
706 * Checks if the the length of the span is zero (standard-libray duck
709 constexpr bool empty() const { return size() == 0; }
711 // [Span.elem], Span element access
712 constexpr reference
operator[](index_type idx
) const {
713 MOZ_RELEASE_ASSERT(idx
< storage_
.size());
718 * Access element of span by index (standard-library duck typing version).
720 constexpr reference
at(index_type idx
) const { return this->operator[](idx
); }
722 constexpr reference
operator()(index_type idx
) const {
723 return this->operator[](idx
);
727 * Pointer to the first element of the span. The return value is never
728 * nullptr, not ever for zero-length spans, so it can be passed as-is
729 * to std::slice::from_raw_parts() in Rust.
731 constexpr pointer
Elements() const { return data(); }
734 * Pointer to the first element of the span (standard-libray duck typing
735 * version). The return value is never nullptr, not ever for zero-length
736 * spans, so it can be passed as-is to std::slice::from_raw_parts() in Rust.
738 constexpr pointer
data() const { return storage_
.data(); }
740 // [Span.iter], Span iterator support
741 iterator
begin() const { return {this, 0, span_details::SpanKnownBounds
{}}; }
742 iterator
end() const {
743 return {this, Length(), span_details::SpanKnownBounds
{}};
746 const_iterator
cbegin() const {
747 return {this, 0, span_details::SpanKnownBounds
{}};
749 const_iterator
cend() const {
750 return {this, Length(), span_details::SpanKnownBounds
{}};
753 reverse_iterator
rbegin() const { return reverse_iterator
{end()}; }
754 reverse_iterator
rend() const { return reverse_iterator
{begin()}; }
756 const_reverse_iterator
crbegin() const {
757 return const_reverse_iterator
{cend()};
759 const_reverse_iterator
crend() const {
760 return const_reverse_iterator
{cbegin()};
763 template <size_t SplitPoint
>
764 constexpr std::pair
<Span
<ElementType
, SplitPoint
>,
765 Span
<ElementType
, Extent
- SplitPoint
>>
767 static_assert(Extent
!= dynamic_extent
);
768 static_assert(SplitPoint
<= Extent
);
769 return {First
<SplitPoint
>(), Last
<Extent
- SplitPoint
>()};
772 constexpr std::pair
<Span
<ElementType
, dynamic_extent
>,
773 Span
<ElementType
, dynamic_extent
>>
774 SplitAt(const index_type aSplitPoint
) const {
775 MOZ_RELEASE_ASSERT(aSplitPoint
<= Length());
776 return {First(aSplitPoint
), Last(Length() - aSplitPoint
)};
779 constexpr Span
<std::add_const_t
<ElementType
>, Extent
> AsConst() const {
780 return {Elements(), Length()};
784 // this implementation detail class lets us take advantage of the
785 // empty base class optimization to pay for only storage of a single
786 // pointer in the case of fixed-size Spans
787 template <class ExtentType
>
788 class storage_type
: public ExtentType
{
790 template <class OtherExtentType
>
791 constexpr storage_type(pointer elements
, OtherExtentType ext
)
793 // Replace nullptr with aligned bogus pointer for Rust slice
794 // compatibility. See
795 // https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
797 data_(elements
? elements
798 : reinterpret_cast<pointer
>(alignof(element_type
))) {
799 const size_t extentSize
= ExtentType::size();
800 MOZ_RELEASE_ASSERT((!elements
&& extentSize
== 0) ||
801 (elements
&& extentSize
!= dynamic_extent
));
804 constexpr pointer
data() const { return data_
; }
810 storage_type
<span_details::extent_type
<Extent
>> storage_
;
813 template <typename T
, size_t OtherExtent
, bool IsConst
>
814 Span(span_details::span_iterator
<Span
<T
, OtherExtent
>, IsConst
> aBegin
,
815 span_details::span_iterator
<Span
<T
, OtherExtent
>, IsConst
> aEnd
)
816 -> Span
<std::conditional_t
<IsConst
, std::add_const_t
<T
>, T
>>;
818 template <typename T
, size_t Extent
>
819 Span(T (&)[Extent
]) -> Span
<T
, Extent
>;
821 template <class Container
>
822 Span(Container
&) -> Span
<typename
Container::value_type
>;
824 template <class Container
>
825 Span(const Container
&) -> Span
<const typename
Container::value_type
>;
827 template <typename T
, size_t Extent
>
828 Span(mozilla::Array
<T
, Extent
>&) -> Span
<T
, Extent
>;
830 template <typename T
, size_t Extent
>
831 Span(const mozilla::Array
<T
, Extent
>&) -> Span
<const T
, Extent
>;
833 // [Span.comparison], Span comparison operators
834 template <class ElementType
, size_t FirstExtent
, size_t SecondExtent
>
835 inline constexpr bool operator==(const Span
<ElementType
, FirstExtent
>& l
,
836 const Span
<ElementType
, SecondExtent
>& r
) {
837 return (l
.size() == r
.size()) &&
838 std::equal(l
.data(), l
.data() + l
.size(), r
.data());
841 template <class ElementType
, size_t Extent
>
842 inline constexpr bool operator!=(const Span
<ElementType
, Extent
>& l
,
843 const Span
<ElementType
, Extent
>& r
) {
847 template <class ElementType
, size_t Extent
>
848 inline constexpr bool operator<(const Span
<ElementType
, Extent
>& l
,
849 const Span
<ElementType
, Extent
>& r
) {
850 return std::lexicographical_compare(l
.data(), l
.data() + l
.size(), r
.data(),
851 r
.data() + r
.size());
854 template <class ElementType
, size_t Extent
>
855 inline constexpr bool operator<=(const Span
<ElementType
, Extent
>& l
,
856 const Span
<ElementType
, Extent
>& r
) {
860 template <class ElementType
, size_t Extent
>
861 inline constexpr bool operator>(const Span
<ElementType
, Extent
>& l
,
862 const Span
<ElementType
, Extent
>& r
) {
866 template <class ElementType
, size_t Extent
>
867 inline constexpr bool operator>=(const Span
<ElementType
, Extent
>& l
,
868 const Span
<ElementType
, Extent
>& r
) {
872 namespace span_details
{
873 // if we only supported compilers with good constexpr support then
874 // this pair of classes could collapse down to a constexpr function
876 // we should use a narrow_cast<> to go to size_t, but older compilers may not
877 // see it as constexpr and so will fail compilation of the template
878 template <class ElementType
, size_t Extent
>
879 struct calculate_byte_size
880 : std::integral_constant
<size_t,
881 static_cast<size_t>(sizeof(ElementType
) *
882 static_cast<size_t>(Extent
))> {
885 template <class ElementType
>
886 struct calculate_byte_size
<ElementType
, dynamic_extent
>
887 : std::integral_constant
<size_t, dynamic_extent
> {};
888 } // namespace span_details
890 // [Span.objectrep], views of object representation
892 * View span as Span<const uint8_t>.
894 template <class ElementType
, size_t Extent
>
896 span_details::calculate_byte_size
<ElementType
, Extent
>::value
>
897 AsBytes(Span
<ElementType
, Extent
> s
) {
898 return {reinterpret_cast<const uint8_t*>(s
.data()), s
.size_bytes()};
902 * View span as Span<uint8_t>.
904 template <class ElementType
, size_t Extent
,
905 class = std::enable_if_t
<!std::is_const_v
<ElementType
>>>
906 Span
<uint8_t, span_details::calculate_byte_size
<ElementType
, Extent
>::value
>
907 AsWritableBytes(Span
<ElementType
, Extent
> s
) {
908 return {reinterpret_cast<uint8_t*>(s
.data()), s
.size_bytes()};
912 * View a span of uint8_t as a span of char.
914 inline Span
<const char> AsChars(Span
<const uint8_t> s
) {
915 return {reinterpret_cast<const char*>(s
.data()), s
.size()};
919 * View a writable span of uint8_t as a span of char.
921 inline Span
<char> AsWritableChars(Span
<uint8_t> s
) {
922 return {reinterpret_cast<char*>(s
.data()), s
.size()};
926 * Create span from a zero-terminated C string. nullptr is
927 * treated as the empty string.
929 constexpr Span
<const char> MakeStringSpan(const char* aZeroTerminated
) {
930 if (!aZeroTerminated
) {
931 return Span
<const char>();
933 return Span
<const char>(aZeroTerminated
,
934 std::char_traits
<char>::length(aZeroTerminated
));
938 * Create span from a zero-terminated UTF-16 C string. nullptr is
939 * treated as the empty string.
941 constexpr Span
<const char16_t
> MakeStringSpan(const char16_t
* aZeroTerminated
) {
942 if (!aZeroTerminated
) {
943 return Span
<const char16_t
>();
945 return Span
<const char16_t
>(
946 aZeroTerminated
, std::char_traits
<char16_t
>::length(aZeroTerminated
));
949 } // namespace mozilla
951 #endif // mozilla_Span_h