Bug 1919824 - Make `NativeKey::GetFollowingCharMessage` return `false` when removed...
[gecko.git] / mfbt / Span.h
blobca754f3810fdd016143420834a2d0d9e9f110a40
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2015 Microsoft Corporation. All rights reserved.
4 //
5 // This code is licensed under the MIT License (MIT).
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
13 // THE SOFTWARE.
15 ///////////////////////////////////////////////////////////////////////////////
17 // Adapted from
18 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/span
19 // and
20 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/gsl_util
22 #ifndef mozilla_Span_h
23 #define mozilla_Span_h
25 #include <array>
26 #include <cstddef>
27 #include <cstdint>
28 #include <iterator>
29 #include <limits>
30 #include <string>
31 #include <type_traits>
32 #include <utility>
34 #include "mozilla/Assertions.h"
35 #include "mozilla/Attributes.h"
36 #include "mozilla/Casting.h"
37 #include "mozilla/UniquePtr.h"
39 namespace mozilla {
41 template <typename T, size_t Length>
42 class Array;
44 template <typename Enum, typename T, size_t Length>
45 class EnumeratedArray;
47 // Stuff from gsl_util
49 // narrow_cast(): a searchable way to do narrowing casts of values
50 template <class T, class U>
51 inline constexpr T narrow_cast(U&& u) {
52 return static_cast<T>(std::forward<U>(u));
55 // end gsl_util
57 // [views.constants], constants
58 // This was -1 in gsl::span, but using size_t for sizes instead of ptrdiff_t
59 // and reserving a magic value that realistically doesn't occur in
60 // compile-time-constant Span sizes makes things a lot less messy in terms of
61 // comparison between signed and unsigned.
62 constexpr const size_t dynamic_extent = std::numeric_limits<size_t>::max();
64 template <class ElementType, size_t Extent = dynamic_extent>
65 class Span;
67 // implementation details
68 namespace span_details {
70 template <class T>
71 struct is_span_oracle : std::false_type {};
73 template <class ElementType, size_t Extent>
74 struct is_span_oracle<mozilla::Span<ElementType, Extent>> : std::true_type {};
76 template <class T>
77 struct is_span : public is_span_oracle<std::remove_cv_t<T>> {};
79 template <class T>
80 struct is_std_array_oracle : std::false_type {};
82 template <class ElementType, size_t Extent>
83 struct is_std_array_oracle<std::array<ElementType, Extent>> : std::true_type {};
85 template <class T>
86 struct is_std_array : public is_std_array_oracle<std::remove_cv_t<T>> {};
88 template <size_t From, size_t To>
89 struct is_allowed_extent_conversion
90 : public std::integral_constant<bool, From == To ||
91 From == mozilla::dynamic_extent ||
92 To == mozilla::dynamic_extent> {};
94 template <class From, class To>
95 struct is_allowed_element_type_conversion
96 : public std::integral_constant<
97 bool, std::is_convertible_v<From (*)[], To (*)[]>> {};
99 struct SpanKnownBounds {};
101 template <class SpanT, bool IsConst>
102 class span_iterator {
103 using element_type_ = typename SpanT::element_type;
105 template <class ElementType, size_t Extent>
106 friend class ::mozilla::Span;
108 public:
109 using iterator_category = std::random_access_iterator_tag;
110 using value_type = std::remove_const_t<element_type_>;
111 using difference_type = ptrdiff_t;
113 using reference =
114 std::conditional_t<IsConst, const element_type_, element_type_>&;
115 using pointer = std::add_pointer_t<reference>;
117 constexpr span_iterator() : span_iterator(nullptr, 0, SpanKnownBounds{}) {}
119 constexpr span_iterator(const SpanT* span, typename SpanT::index_type index)
120 : span_(span), index_(index) {
121 MOZ_RELEASE_ASSERT(span == nullptr ||
122 (index_ >= 0 && index <= span_->Length()));
125 private:
126 // For whatever reason, the compiler doesn't like optimizing away the above
127 // MOZ_RELEASE_ASSERT when `span_iterator` is constructed for
128 // obviously-correct cases like `span.begin()` or `span.end()`. We provide
129 // this private constructor for such cases.
130 constexpr span_iterator(const SpanT* span, typename SpanT::index_type index,
131 SpanKnownBounds)
132 : span_(span), index_(index) {}
134 public:
135 // `other` is already correct by construction; we do not need to go through
136 // the release assert above. Put differently, this constructor is effectively
137 // a copy constructor and therefore needs no assertions.
138 friend class span_iterator<SpanT, true>;
139 constexpr MOZ_IMPLICIT span_iterator(const span_iterator<SpanT, false>& other)
140 : span_(other.span_), index_(other.index_) {}
142 constexpr span_iterator<SpanT, IsConst>& operator=(
143 const span_iterator<SpanT, IsConst>&) = default;
145 constexpr reference operator*() const {
146 MOZ_RELEASE_ASSERT(span_);
147 return (*span_)[index_];
150 constexpr pointer operator->() const {
151 MOZ_RELEASE_ASSERT(span_);
152 return &((*span_)[index_]);
155 constexpr span_iterator& operator++() {
156 ++index_;
157 return *this;
160 constexpr span_iterator operator++(int) {
161 auto ret = *this;
162 ++(*this);
163 return ret;
166 constexpr span_iterator& operator--() {
167 --index_;
168 return *this;
171 constexpr span_iterator operator--(int) {
172 auto ret = *this;
173 --(*this);
174 return ret;
177 constexpr span_iterator operator+(difference_type n) const {
178 auto ret = *this;
179 return ret += n;
182 constexpr span_iterator& operator+=(difference_type n) {
183 MOZ_RELEASE_ASSERT(span_ && (index_ + n) >= 0 &&
184 (index_ + n) <= span_->Length());
185 index_ += n;
186 return *this;
189 constexpr span_iterator operator-(difference_type n) const {
190 auto ret = *this;
191 return ret -= n;
194 constexpr span_iterator& operator-=(difference_type n) { return *this += -n; }
196 constexpr difference_type operator-(const span_iterator& rhs) const {
197 MOZ_RELEASE_ASSERT(span_ == rhs.span_);
198 return index_ - rhs.index_;
201 constexpr reference operator[](difference_type n) const {
202 return *(*this + n);
205 constexpr friend bool operator==(const span_iterator& lhs,
206 const span_iterator& rhs) {
207 // Iterators from different spans are uncomparable. A diagnostic assertion
208 // should be enough to check this, though. To ensure that no iterators from
209 // different spans are ever considered equal, still compare them in release
210 // builds.
211 MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
212 return lhs.index_ == rhs.index_ && lhs.span_ == rhs.span_;
215 constexpr friend bool operator!=(const span_iterator& lhs,
216 const span_iterator& rhs) {
217 return !(lhs == rhs);
220 constexpr friend bool operator<(const span_iterator& lhs,
221 const span_iterator& rhs) {
222 MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
223 return lhs.index_ < rhs.index_;
226 constexpr friend bool operator<=(const span_iterator& lhs,
227 const span_iterator& rhs) {
228 return !(rhs < lhs);
231 constexpr friend bool operator>(const span_iterator& lhs,
232 const span_iterator& rhs) {
233 return rhs < lhs;
236 constexpr friend bool operator>=(const span_iterator& lhs,
237 const span_iterator& rhs) {
238 return !(rhs > lhs);
241 void swap(span_iterator& rhs) {
242 std::swap(index_, rhs.index_);
243 std::swap(span_, rhs.span_);
246 protected:
247 const SpanT* span_;
248 size_t index_;
251 template <class Span, bool IsConst>
252 inline constexpr span_iterator<Span, IsConst> operator+(
253 typename span_iterator<Span, IsConst>::difference_type n,
254 const span_iterator<Span, IsConst>& rhs) {
255 return rhs + n;
258 template <size_t Ext>
259 class extent_type {
260 public:
261 using index_type = size_t;
263 static_assert(Ext >= 0, "A fixed-size Span must be >= 0 in size.");
265 constexpr extent_type() = default;
267 template <index_type Other>
268 constexpr MOZ_IMPLICIT extent_type(extent_type<Other> ext) {
269 static_assert(
270 Other == Ext || Other == dynamic_extent,
271 "Mismatch between fixed-size extent and size of initializing data.");
272 MOZ_RELEASE_ASSERT(ext.size() == Ext);
275 constexpr MOZ_IMPLICIT extent_type(index_type length) {
276 MOZ_RELEASE_ASSERT(length == Ext);
279 constexpr index_type size() const { return Ext; }
282 template <>
283 class extent_type<dynamic_extent> {
284 public:
285 using index_type = size_t;
287 template <index_type Other>
288 explicit constexpr extent_type(extent_type<Other> ext) : size_(ext.size()) {}
290 explicit constexpr extent_type(index_type length) : size_(length) {}
292 constexpr index_type size() const { return size_; }
294 private:
295 index_type size_;
297 } // namespace span_details
300 * Span - slices for C++
302 * Span implements Rust's slice concept for C++. It's called "Span" instead of
303 * "Slice" to follow the naming used in C++ Core Guidelines.
305 * A Span wraps a pointer and a length that identify a non-owning view to a
306 * contiguous block of memory of objects of the same type. Various types,
307 * including (pre-decay) C arrays, XPCOM strings, nsTArray, mozilla::Array,
308 * mozilla::Range and contiguous standard-library containers, auto-convert
309 * into Spans when attempting to pass them as arguments to methods that take
310 * Spans. (Span itself autoconverts into mozilla::Range.)
312 * Like Rust's slices, Span provides safety against out-of-bounds access by
313 * performing run-time bound checks. However, unlike Rust's slices, Span
314 * cannot provide safety against use-after-free.
316 * (Note: Span is like Rust's slice only conceptually. Due to the lack of
317 * ABI guarantees, you should still decompose spans/slices to raw pointer
318 * and length parts when crossing the FFI. The Elements() and data() methods
319 * are guaranteed to return a non-null pointer even for zero-length spans,
320 * so the pointer can be used as a raw part of a Rust slice without further
321 * checks.)
323 * In addition to having constructors (with the support of deduction guides)
324 * that take various well-known types, a Span for an arbitrary type can be
325 * constructed from a pointer and a length or a pointer and another pointer
326 * pointing just past the last element.
328 * A Span<const char> or Span<const char16_t> can be obtained for const char*
329 * or const char16_t pointing to a zero-terminated string using the
330 * MakeStringSpan() function (which treats a nullptr argument equivalently
331 * to the empty string). Corresponding implicit constructor does not exist
332 * in order to avoid accidental construction in cases where const char* or
333 * const char16_t* do not point to a zero-terminated string.
335 * Span has methods that follow the Mozilla naming style and methods that
336 * don't. The methods that follow the Mozilla naming style are meant to be
337 * used directly from Mozilla code. The methods that don't are meant for
338 * integration with C++11 range-based loops and with meta-programming that
339 * expects the same methods that are found on the standard-library
340 * containers. For example, to decompose a Span into its parts in Mozilla
341 * code, use Elements() and Length() (as with nsTArray) instead of data()
342 * and size() (as with std::vector).
344 * The pointer and length wrapped by a Span cannot be changed after a Span has
345 * been created. When new values are required, simply create a new Span. Span
346 * has a method called Subspan() that works analogously to the Substring()
347 * method of XPCOM strings taking a start index and an optional length. As a
348 * Mozilla extension (relative to Microsoft's gsl::span that mozilla::Span is
349 * based on), Span has methods From(start), To(end) and FromTo(start, end)
350 * that correspond to Rust's &slice[start..], &slice[..end] and
351 * &slice[start..end], respectively. (That is, the end index is the index of
352 * the first element not to be included in the new subspan.)
354 * When indicating a Span that's only read from, const goes inside the type
355 * parameter. Don't put const in front of Span. That is:
356 * size_t ReadsFromOneSpanAndWritesToAnother(Span<const uint8_t> aReadFrom,
357 * Span<uint8_t> aWrittenTo);
359 * Any Span<const T> can be viewed as Span<const uint8_t> using the function
360 * AsBytes(). Any Span<T> can be viewed as Span<uint8_t> using the function
361 * AsWritableBytes().
363 * Note that iterators from different Span instances are uncomparable, even if
364 * they refer to the same memory. This also applies to any spans derived via
365 * Subspan etc.
367 template <class ElementType, size_t Extent /* = dynamic_extent */>
368 class Span {
369 public:
370 // constants and types
371 using element_type = ElementType;
372 using value_type = std::remove_cv_t<element_type>;
373 using index_type = size_t;
374 using pointer = element_type*;
375 using reference = element_type&;
377 using iterator =
378 span_details::span_iterator<Span<ElementType, Extent>, false>;
379 using const_iterator =
380 span_details::span_iterator<Span<ElementType, Extent>, true>;
381 using reverse_iterator = std::reverse_iterator<iterator>;
382 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
384 constexpr static const index_type extent = Extent;
386 // [Span.cons], Span constructors, copy, assignment, and destructor
387 // "Dependent" is needed to make "std::enable_if_t<(Dependent ||
388 // Extent == 0 || Extent == dynamic_extent)>" SFINAE,
389 // since
390 // "std::enable_if_t<(Extent == 0 || Extent == dynamic_extent)>" is
391 // ill-formed when Extent is neither of the extreme values.
393 * Constructor with no args.
395 template <bool Dependent = false,
396 class = std::enable_if_t<(Dependent || Extent == 0 ||
397 Extent == dynamic_extent)>>
398 constexpr Span() : storage_(nullptr, span_details::extent_type<0>()) {}
401 * Constructor for nullptr.
403 constexpr MOZ_IMPLICIT Span(std::nullptr_t) : Span() {}
406 * Constructor for pointer and length.
408 constexpr Span(pointer aPtr, index_type aLength) : storage_(aPtr, aLength) {}
411 * Constructor for start pointer and pointer past end.
413 constexpr Span(pointer aStartPtr, pointer aEndPtr)
414 : storage_(aStartPtr, std::distance(aStartPtr, aEndPtr)) {}
417 * Constructor for pair of Span iterators.
419 template <typename OtherElementType, size_t OtherExtent, bool IsConst>
420 constexpr Span(
421 span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
422 aBegin,
423 span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
424 aEnd)
425 : storage_(aBegin == aEnd ? nullptr : &*aBegin, aEnd - aBegin) {}
428 * Constructor for {iterator,size_t}
430 template <typename OtherElementType, size_t OtherExtent, bool IsConst>
431 constexpr Span(
432 span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
433 aBegin,
434 index_type aLength)
435 : storage_(!aLength ? nullptr : &*aBegin, aLength) {}
438 * Constructor for C array.
440 template <size_t N>
441 constexpr MOZ_IMPLICIT Span(element_type (&aArr)[N])
442 : storage_(&aArr[0], span_details::extent_type<N>()) {}
444 // Implicit constructors for char* and char16_t* pointers are deleted in order
445 // to avoid accidental construction in cases where a pointer does not point to
446 // a zero-terminated string. A Span<const char> or Span<const char16_t> can be
447 // obtained for const char* or const char16_t pointing to a zero-terminated
448 // string using the MakeStringSpan() function.
449 // (This must be a template because otherwise it will prevent the previous
450 // array constructor to match because an array decays to a pointer. This only
451 // exists to point to the above explanation, since there's no other
452 // constructor that would match.)
453 template <
454 typename T,
455 typename = std::enable_if_t<
456 std::is_pointer_v<T> &&
457 (std::is_same_v<std::remove_const_t<std::decay_t<T>>, char> ||
458 std::is_same_v<std::remove_const_t<std::decay_t<T>>, char16_t>)>>
459 Span(T& aStr) = delete;
462 * Constructor for std::array.
464 template <size_t N,
465 class ArrayElementType = std::remove_const_t<element_type>>
466 constexpr MOZ_IMPLICIT Span(std::array<ArrayElementType, N>& aArr)
467 : storage_(&aArr[0], span_details::extent_type<N>()) {}
470 * Constructor for const std::array.
472 template <size_t N>
473 constexpr MOZ_IMPLICIT Span(
474 const std::array<std::remove_const_t<element_type>, N>& aArr)
475 : storage_(&aArr[0], span_details::extent_type<N>()) {}
478 * Constructor for mozilla::Array.
480 template <size_t N,
481 class ArrayElementType = std::remove_const_t<element_type>>
482 constexpr MOZ_IMPLICIT Span(mozilla::Array<ArrayElementType, N>& aArr)
483 : storage_(&aArr[0], span_details::extent_type<N>()) {}
486 * Constructor for const mozilla::Array.
488 template <size_t N>
489 constexpr MOZ_IMPLICIT Span(
490 const mozilla::Array<std::remove_const_t<element_type>, N>& aArr)
491 : storage_(&aArr[0], span_details::extent_type<N>()) {}
494 * Constructor for mozilla::EnumeratedArray.
496 template <size_t N, class Enum,
497 class ArrayElementType = std::remove_const_t<element_type>>
498 constexpr MOZ_IMPLICIT Span(
499 mozilla::EnumeratedArray<Enum, ArrayElementType, N>& aArr)
500 : storage_(&aArr[Enum(0)], span_details::extent_type<N>()) {}
503 * Constructor for const mozilla::EnumeratedArray.
505 template <size_t N, class Enum>
506 constexpr MOZ_IMPLICIT Span(const mozilla::EnumeratedArray<
507 Enum, std::remove_const_t<element_type>, N>& aArr)
508 : storage_(&aArr[Enum(0)], span_details::extent_type<N>()) {}
511 * Constructor for mozilla::UniquePtr holding an array and length.
513 template <class ArrayElementType = std::add_pointer<element_type>,
514 class DeleterType>
515 constexpr Span(const mozilla::UniquePtr<ArrayElementType, DeleterType>& aPtr,
516 index_type aLength)
517 : storage_(aPtr.get(), aLength) {}
519 // NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the
520 // requirement on Container to be a contiguous sequence container.
522 * Constructor for standard-library containers.
524 template <
525 class Container,
526 class Dummy = std::enable_if_t<
527 !std::is_const_v<Container> &&
528 !span_details::is_span<Container>::value &&
529 !span_details::is_std_array<Container>::value &&
530 std::is_convertible_v<typename Container::pointer, pointer> &&
531 std::is_convertible_v<typename Container::pointer,
532 decltype(std::declval<Container>().data())>,
533 Container>>
534 constexpr MOZ_IMPLICIT Span(Container& cont, Dummy* = nullptr)
535 : Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
538 * Constructor for standard-library containers (const version).
540 template <
541 class Container,
542 class = std::enable_if_t<
543 std::is_const_v<element_type> &&
544 !span_details::is_span<Container>::value &&
545 std::is_convertible_v<typename Container::pointer, pointer> &&
546 std::is_convertible_v<typename Container::pointer,
547 decltype(std::declval<Container>().data())>>>
548 constexpr MOZ_IMPLICIT Span(const Container& cont)
549 : Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
551 // NB: the SFINAE here uses .Elements() as a incomplete/imperfect proxy for
552 // the requirement on Container to be a contiguous sequence container.
554 * Constructor for contiguous Mozilla containers.
556 template <
557 class Container,
558 class = std::enable_if_t<
559 !std::is_const_v<Container> &&
560 !span_details::is_span<Container>::value &&
561 !span_details::is_std_array<Container>::value &&
562 std::is_convertible_v<typename Container::value_type*, pointer> &&
563 std::is_convertible_v<
564 typename Container::value_type*,
565 decltype(std::declval<Container>().Elements())>>>
566 constexpr MOZ_IMPLICIT Span(Container& cont, void* = nullptr)
567 : Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
570 * Constructor for contiguous Mozilla containers (const version).
572 template <
573 class Container,
574 class = std::enable_if_t<
575 std::is_const_v<element_type> &&
576 !span_details::is_span<Container>::value &&
577 std::is_convertible_v<typename Container::value_type*, pointer> &&
578 std::is_convertible_v<
579 typename Container::value_type*,
580 decltype(std::declval<Container>().Elements())>>>
581 constexpr MOZ_IMPLICIT Span(const Container& cont, void* = nullptr)
582 : Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
585 * Constructor from other Span.
587 constexpr Span(const Span& other) = default;
590 * Constructor from other Span.
592 constexpr Span(Span&& other) = default;
595 * Constructor from other Span with conversion of element type.
597 template <
598 class OtherElementType, size_t OtherExtent,
599 class = std::enable_if_t<span_details::is_allowed_extent_conversion<
600 OtherExtent, Extent>::value &&
601 span_details::is_allowed_element_type_conversion<
602 OtherElementType, element_type>::value>>
603 constexpr MOZ_IMPLICIT Span(const Span<OtherElementType, OtherExtent>& other)
604 : storage_(other.data(),
605 span_details::extent_type<OtherExtent>(other.size())) {}
608 * Constructor from other Span with conversion of element type.
610 template <
611 class OtherElementType, size_t OtherExtent,
612 class = std::enable_if_t<span_details::is_allowed_extent_conversion<
613 OtherExtent, Extent>::value &&
614 span_details::is_allowed_element_type_conversion<
615 OtherElementType, element_type>::value>>
616 constexpr MOZ_IMPLICIT Span(Span<OtherElementType, OtherExtent>&& other)
617 : storage_(other.data(),
618 span_details::extent_type<OtherExtent>(other.size())) {}
620 ~Span() = default;
621 constexpr Span& operator=(const Span& other) = default;
623 constexpr Span& operator=(Span&& other) = default;
625 // [Span.sub], Span subviews
627 * Subspan with first N elements with compile-time N.
629 template <size_t Count>
630 constexpr Span<element_type, Count> First() const {
631 MOZ_RELEASE_ASSERT(Count <= size());
632 return {data(), Count};
636 * Subspan with last N elements with compile-time N.
638 template <size_t Count>
639 constexpr Span<element_type, Count> Last() const {
640 const size_t len = size();
641 MOZ_RELEASE_ASSERT(Count <= len);
642 return {data() + (len - Count), Count};
646 * Subspan with compile-time start index and length.
648 template <size_t Offset, size_t Count = dynamic_extent>
649 constexpr Span<element_type, Count> Subspan() const {
650 const size_t len = size();
651 MOZ_RELEASE_ASSERT(Offset <= len &&
652 (Count == dynamic_extent || (Offset + Count <= len)));
653 return {data() + Offset, Count == dynamic_extent ? len - Offset : Count};
657 * Subspan with first N elements with run-time N.
659 constexpr Span<element_type, dynamic_extent> First(index_type aCount) const {
660 MOZ_RELEASE_ASSERT(aCount <= size());
661 return {data(), aCount};
665 * Subspan with last N elements with run-time N.
667 constexpr Span<element_type, dynamic_extent> Last(index_type aCount) const {
668 const size_t len = size();
669 MOZ_RELEASE_ASSERT(aCount <= len);
670 return {data() + (len - aCount), aCount};
674 * Subspan with run-time start index and length.
676 constexpr Span<element_type, dynamic_extent> Subspan(
677 index_type aStart, index_type aLength = dynamic_extent) const {
678 const size_t len = size();
679 MOZ_RELEASE_ASSERT(aStart <= len && (aLength == dynamic_extent ||
680 (aStart + aLength <= len)));
681 return {data() + aStart,
682 aLength == dynamic_extent ? len - aStart : aLength};
686 * Subspan with run-time start index. (Rust's &foo[start..])
688 constexpr Span<element_type, dynamic_extent> From(index_type aStart) const {
689 return Subspan(aStart);
693 * Subspan with run-time exclusive end index. (Rust's &foo[..end])
695 constexpr Span<element_type, dynamic_extent> To(index_type aEnd) const {
696 return Subspan(0, aEnd);
699 /// std::span-compatible method name
700 constexpr auto subspan(index_type aStart,
701 index_type aLength = dynamic_extent) const {
702 return Subspan(aStart, aLength);
704 /// std::span-compatible method name
705 constexpr auto from(index_type aStart) const { return From(aStart); }
706 /// std::span-compatible method name
707 constexpr auto to(index_type aEnd) const { return To(aEnd); }
710 * Subspan with run-time start index and exclusive end index.
711 * (Rust's &foo[start..end])
713 constexpr Span<element_type, dynamic_extent> FromTo(index_type aStart,
714 index_type aEnd) const {
715 MOZ_RELEASE_ASSERT(aStart <= aEnd);
716 return Subspan(aStart, aEnd - aStart);
719 // [Span.obs], Span observers
721 * Number of elements in the span.
723 constexpr index_type Length() const { return size(); }
726 * Number of elements in the span (standard-libray duck typing version).
728 constexpr index_type size() const { return storage_.size(); }
731 * Size of the span in bytes.
733 constexpr index_type LengthBytes() const { return size_bytes(); }
736 * Size of the span in bytes (standard-library naming style version).
738 constexpr index_type size_bytes() const {
739 return size() * narrow_cast<index_type>(sizeof(element_type));
743 * Checks if the the length of the span is zero.
745 constexpr bool IsEmpty() const { return empty(); }
748 * Checks if the the length of the span is zero (standard-libray duck
749 * typing version).
751 constexpr bool empty() const { return size() == 0; }
753 // [Span.elem], Span element access
754 constexpr reference operator[](index_type idx) const {
755 MOZ_RELEASE_ASSERT(idx < storage_.size());
756 return data()[idx];
760 * Access element of span by index (standard-library duck typing version).
762 constexpr reference at(index_type idx) const { return this->operator[](idx); }
764 constexpr reference operator()(index_type idx) const {
765 return this->operator[](idx);
769 * Pointer to the first element of the span. The return value is never
770 * nullptr, not ever for zero-length spans, so it can be passed as-is
771 * to std::slice::from_raw_parts() in Rust.
773 constexpr pointer Elements() const { return data(); }
776 * Pointer to the first element of the span (standard-libray duck typing
777 * version). The return value is never nullptr, not ever for zero-length
778 * spans, so it can be passed as-is to std::slice::from_raw_parts() in Rust.
780 constexpr pointer data() const { return storage_.data(); }
782 // [Span.iter], Span iterator support
783 iterator begin() const { return {this, 0, span_details::SpanKnownBounds{}}; }
784 iterator end() const {
785 return {this, Length(), span_details::SpanKnownBounds{}};
788 const_iterator cbegin() const {
789 return {this, 0, span_details::SpanKnownBounds{}};
791 const_iterator cend() const {
792 return {this, Length(), span_details::SpanKnownBounds{}};
795 reverse_iterator rbegin() const { return reverse_iterator{end()}; }
796 reverse_iterator rend() const { return reverse_iterator{begin()}; }
798 const_reverse_iterator crbegin() const {
799 return const_reverse_iterator{cend()};
801 const_reverse_iterator crend() const {
802 return const_reverse_iterator{cbegin()};
805 template <size_t SplitPoint>
806 constexpr std::pair<Span<ElementType, SplitPoint>,
807 Span<ElementType, Extent - SplitPoint>>
808 SplitAt() const {
809 static_assert(Extent != dynamic_extent);
810 static_assert(SplitPoint <= Extent);
811 return {First<SplitPoint>(), Last<Extent - SplitPoint>()};
814 constexpr std::pair<Span<ElementType, dynamic_extent>,
815 Span<ElementType, dynamic_extent>>
816 SplitAt(const index_type aSplitPoint) const {
817 MOZ_RELEASE_ASSERT(aSplitPoint <= Length());
818 return {First(aSplitPoint), Last(Length() - aSplitPoint)};
821 constexpr Span<std::add_const_t<ElementType>, Extent> AsConst() const {
822 return {Elements(), Length()};
825 private:
826 // this implementation detail class lets us take advantage of the
827 // empty base class optimization to pay for only storage of a single
828 // pointer in the case of fixed-size Spans
829 template <class ExtentType>
830 class storage_type : public ExtentType {
831 public:
832 template <class OtherExtentType>
833 constexpr storage_type(pointer elements, OtherExtentType ext)
834 : ExtentType(ext)
835 // Replace nullptr with aligned bogus pointer for Rust slice
836 // compatibility. See
837 // https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
839 data_(elements ? elements
840 : reinterpret_cast<pointer>(alignof(element_type))) {
841 const size_t extentSize = ExtentType::size();
842 MOZ_RELEASE_ASSERT((!elements && extentSize == 0) ||
843 (elements && extentSize != dynamic_extent));
846 constexpr pointer data() const { return data_; }
848 private:
849 pointer data_;
852 storage_type<span_details::extent_type<Extent>> storage_;
855 template <typename T, size_t OtherExtent, bool IsConst>
856 Span(span_details::span_iterator<Span<T, OtherExtent>, IsConst> aBegin,
857 span_details::span_iterator<Span<T, OtherExtent>, IsConst> aEnd)
858 -> Span<std::conditional_t<IsConst, std::add_const_t<T>, T>>;
860 template <typename T, size_t Extent>
861 Span(T (&)[Extent]) -> Span<T, Extent>;
863 template <class Container>
864 Span(Container&) -> Span<typename Container::value_type>;
866 template <class Container>
867 Span(const Container&) -> Span<const typename Container::value_type>;
869 template <typename T, size_t Extent>
870 Span(mozilla::Array<T, Extent>&) -> Span<T, Extent>;
872 template <typename T, size_t Extent>
873 Span(const mozilla::Array<T, Extent>&) -> Span<const T, Extent>;
875 template <typename Enum, typename T, size_t Extent>
876 Span(mozilla::EnumeratedArray<Enum, T, Extent>&) -> Span<T, Extent>;
878 template <typename Enum, typename T, size_t Extent>
879 Span(const mozilla::EnumeratedArray<Enum, T, Extent>&) -> Span<const T, Extent>;
881 // [Span.comparison], Span comparison operators
882 template <class ElementType, size_t FirstExtent, size_t SecondExtent>
883 inline constexpr bool operator==(const Span<ElementType, FirstExtent>& l,
884 const Span<ElementType, SecondExtent>& r) {
885 return (l.size() == r.size()) &&
886 std::equal(l.data(), l.data() + l.size(), r.data());
889 template <class ElementType, size_t Extent>
890 inline constexpr bool operator!=(const Span<ElementType, Extent>& l,
891 const Span<ElementType, Extent>& r) {
892 return !(l == r);
895 template <class ElementType, size_t Extent>
896 inline constexpr bool operator<(const Span<ElementType, Extent>& l,
897 const Span<ElementType, Extent>& r) {
898 return std::lexicographical_compare(l.data(), l.data() + l.size(), r.data(),
899 r.data() + r.size());
902 template <class ElementType, size_t Extent>
903 inline constexpr bool operator<=(const Span<ElementType, Extent>& l,
904 const Span<ElementType, Extent>& r) {
905 return !(l > r);
908 template <class ElementType, size_t Extent>
909 inline constexpr bool operator>(const Span<ElementType, Extent>& l,
910 const Span<ElementType, Extent>& r) {
911 return r < l;
914 template <class ElementType, size_t Extent>
915 inline constexpr bool operator>=(const Span<ElementType, Extent>& l,
916 const Span<ElementType, Extent>& r) {
917 return !(l < r);
920 namespace span_details {
921 // if we only supported compilers with good constexpr support then
922 // this pair of classes could collapse down to a constexpr function
924 // we should use a narrow_cast<> to go to size_t, but older compilers may not
925 // see it as constexpr and so will fail compilation of the template
926 template <class ElementType, size_t Extent>
927 struct calculate_byte_size
928 : std::integral_constant<size_t,
929 static_cast<size_t>(sizeof(ElementType) *
930 static_cast<size_t>(Extent))> {
933 template <class ElementType>
934 struct calculate_byte_size<ElementType, dynamic_extent>
935 : std::integral_constant<size_t, dynamic_extent> {};
936 } // namespace span_details
938 // [Span.objectrep], views of object representation
940 * View span as Span<const uint8_t>.
942 template <class ElementType, size_t Extent>
943 Span<const uint8_t,
944 span_details::calculate_byte_size<ElementType, Extent>::value>
945 AsBytes(Span<ElementType, Extent> s) {
946 return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
950 * View span as Span<uint8_t>.
952 template <class ElementType, size_t Extent,
953 class = std::enable_if_t<!std::is_const_v<ElementType>>>
954 Span<uint8_t, span_details::calculate_byte_size<ElementType, Extent>::value>
955 AsWritableBytes(Span<ElementType, Extent> s) {
956 return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
960 * View a span of uint8_t as a span of char.
962 inline Span<const char> AsChars(Span<const uint8_t> s) {
963 return {reinterpret_cast<const char*>(s.data()), s.size()};
967 * View a writable span of uint8_t as a span of char.
969 inline Span<char> AsWritableChars(Span<uint8_t> s) {
970 return {reinterpret_cast<char*>(s.data()), s.size()};
974 * Create span from a zero-terminated C string. nullptr is
975 * treated as the empty string.
977 constexpr Span<const char> MakeStringSpan(const char* aZeroTerminated) {
978 if (!aZeroTerminated) {
979 return Span<const char>();
981 return Span<const char>(aZeroTerminated,
982 std::char_traits<char>::length(aZeroTerminated));
986 * Create span from a zero-terminated UTF-16 C string. nullptr is
987 * treated as the empty string.
989 constexpr Span<const char16_t> MakeStringSpan(const char16_t* aZeroTerminated) {
990 if (!aZeroTerminated) {
991 return Span<const char16_t>();
993 return Span<const char16_t>(
994 aZeroTerminated, std::char_traits<char16_t>::length(aZeroTerminated));
997 } // namespace mozilla
999 #endif // mozilla_Span_h