4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, 2014-2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
11 * This file contains 2-pass color quantization (color mapping) routines.
12 * These routines provide selection of a custom color map for an image,
13 * followed by mapping of the image to that color map, with optional
14 * Floyd-Steinberg dithering.
15 * It is also possible to use just the second pass to map to an arbitrary
16 * externally-given color map.
18 * Note: ordered dithering is not supported, since there isn't any fast
19 * way to compute intercolor distances; it's unclear that ordered dither's
20 * fundamental assumptions even hold with an irregularly spaced color map.
23 #define JPEG_INTERNALS
27 #ifdef QUANT_2PASS_SUPPORTED
31 * This module implements the well-known Heckbert paradigm for color
32 * quantization. Most of the ideas used here can be traced back to
33 * Heckbert's seminal paper
34 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
35 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
37 * In the first pass over the image, we accumulate a histogram showing the
38 * usage count of each possible color. To keep the histogram to a reasonable
39 * size, we reduce the precision of the input; typical practice is to retain
40 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
41 * in the same histogram cell.
43 * Next, the color-selection step begins with a box representing the whole
44 * color space, and repeatedly splits the "largest" remaining box until we
45 * have as many boxes as desired colors. Then the mean color in each
46 * remaining box becomes one of the possible output colors.
48 * The second pass over the image maps each input pixel to the closest output
49 * color (optionally after applying a Floyd-Steinberg dithering correction).
50 * This mapping is logically trivial, but making it go fast enough requires
53 * Heckbert-style quantizers vary a good deal in their policies for choosing
54 * the "largest" box and deciding where to cut it. The particular policies
55 * used here have proved out well in experimental comparisons, but better ones
58 * In earlier versions of the IJG code, this module quantized in YCbCr color
59 * space, processing the raw upsampled data without a color conversion step.
60 * This allowed the color conversion math to be done only once per colormap
61 * entry, not once per pixel. However, that optimization precluded other
62 * useful optimizations (such as merging color conversion with upsampling)
63 * and it also interfered with desired capabilities such as quantizing to an
64 * externally-supplied colormap. We have therefore abandoned that approach.
65 * The present code works in the post-conversion color space, typically RGB.
67 * To improve the visual quality of the results, we actually work in scaled
68 * RGB space, giving G distances more weight than R, and R in turn more than
69 * B. To do everything in integer math, we must use integer scale factors.
70 * The 2/3/1 scale factors used here correspond loosely to the relative
71 * weights of the colors in the NTSC grayscale equation.
72 * If you want to use this code to quantize a non-RGB color space, you'll
73 * probably need to change these scale factors.
76 #define R_SCALE 2 /* scale R distances by this much */
77 #define G_SCALE 3 /* scale G distances by this much */
78 #define B_SCALE 1 /* and B by this much */
80 static const int c_scales
[3] = { R_SCALE
, G_SCALE
, B_SCALE
};
81 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
82 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
83 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
86 * First we have the histogram data structure and routines for creating it.
88 * The number of bits of precision can be adjusted by changing these symbols.
89 * We recommend keeping 6 bits for G and 5 each for R and B.
90 * If you have plenty of memory and cycles, 6 bits all around gives marginally
91 * better results; if you are short of memory, 5 bits all around will save
92 * some space but degrade the results.
93 * To maintain a fully accurate histogram, we'd need to allocate a "long"
94 * (preferably unsigned long) for each cell. In practice this is overkill;
95 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
96 * and clamping those that do overflow to the maximum value will give close-
97 * enough results. This reduces the recommended histogram size from 256Kb
98 * to 128Kb, which is a useful savings on PC-class machines.
99 * (In the second pass the histogram space is re-used for pixel mapping data;
100 * in that capacity, each cell must be able to store zero to the number of
101 * desired colors. 16 bits/cell is plenty for that too.)
102 * Since the JPEG code is intended to run in small memory model on 80x86
103 * machines, we can't just allocate the histogram in one chunk. Instead
104 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
105 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
106 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
109 #define MAXNUMCOLORS (MAXJSAMPLE + 1) /* maximum size of colormap */
111 /* These will do the right thing for either R,G,B or B,G,R color order,
112 * but you may not like the results for other color orders.
114 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
115 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
116 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
118 /* Number of elements along histogram axes. */
119 #define HIST_C0_ELEMS (1 << HIST_C0_BITS)
120 #define HIST_C1_ELEMS (1 << HIST_C1_BITS)
121 #define HIST_C2_ELEMS (1 << HIST_C2_BITS)
123 /* These are the amounts to shift an input value to get a histogram index. */
124 #define C0_SHIFT (BITS_IN_JSAMPLE - HIST_C0_BITS)
125 #define C1_SHIFT (BITS_IN_JSAMPLE - HIST_C1_BITS)
126 #define C2_SHIFT (BITS_IN_JSAMPLE - HIST_C2_BITS)
129 typedef UINT16 histcell
; /* histogram cell; prefer an unsigned type */
131 typedef histcell
*histptr
; /* for pointers to histogram cells */
133 typedef histcell hist1d
[HIST_C2_ELEMS
]; /* typedefs for the array */
134 typedef hist1d
*hist2d
; /* type for the 2nd-level pointers */
135 typedef hist2d
*hist3d
; /* type for top-level pointer */
138 /* Declarations for Floyd-Steinberg dithering.
140 * Errors are accumulated into the array fserrors[], at a resolution of
141 * 1/16th of a pixel count. The error at a given pixel is propagated
142 * to its not-yet-processed neighbors using the standard F-S fractions,
145 * We work left-to-right on even rows, right-to-left on odd rows.
147 * We can get away with a single array (holding one row's worth of errors)
148 * by using it to store the current row's errors at pixel columns not yet
149 * processed, but the next row's errors at columns already processed. We
150 * need only a few extra variables to hold the errors immediately around the
151 * current column. (If we are lucky, those variables are in registers, but
152 * even if not, they're probably cheaper to access than array elements are.)
154 * The fserrors[] array has (#columns + 2) entries; the extra entry at
155 * each end saves us from special-casing the first and last pixels.
156 * Each entry is three values long, one value for each color component.
159 #if BITS_IN_JSAMPLE == 8
160 typedef INT16 FSERROR
; /* 16 bits should be enough */
161 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
163 typedef JLONG FSERROR
; /* may need more than 16 bits */
164 typedef JLONG LOCFSERROR
; /* be sure calculation temps are big enough */
167 typedef FSERROR
*FSERRPTR
; /* pointer to error array */
170 /* Private subobject */
173 struct jpeg_color_quantizer pub
; /* public fields */
175 /* Space for the eventually created colormap is stashed here */
176 JSAMPARRAY sv_colormap
; /* colormap allocated at init time */
177 int desired
; /* desired # of colors = size of colormap */
179 /* Variables for accumulating image statistics */
180 hist3d histogram
; /* pointer to the histogram */
182 boolean needs_zeroed
; /* TRUE if next pass must zero histogram */
184 /* Variables for Floyd-Steinberg dithering */
185 FSERRPTR fserrors
; /* accumulated errors */
186 boolean on_odd_row
; /* flag to remember which row we are on */
187 int *error_limiter
; /* table for clamping the applied error */
190 typedef my_cquantizer
*my_cquantize_ptr
;
194 * Prescan some rows of pixels.
195 * In this module the prescan simply updates the histogram, which has been
196 * initialized to zeroes by start_pass.
197 * An output_buf parameter is required by the method signature, but no data
198 * is actually output (in fact the buffer controller is probably passing a
203 prescan_quantize(j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
204 JSAMPARRAY output_buf
, int num_rows
)
206 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
207 register JSAMPROW ptr
;
208 register histptr histp
;
209 register hist3d histogram
= cquantize
->histogram
;
212 JDIMENSION width
= cinfo
->output_width
;
214 for (row
= 0; row
< num_rows
; row
++) {
215 ptr
= input_buf
[row
];
216 for (col
= width
; col
> 0; col
--) {
217 /* get pixel value and index into the histogram */
218 histp
= &histogram
[GETJSAMPLE(ptr
[0]) >> C0_SHIFT
]
219 [GETJSAMPLE(ptr
[1]) >> C1_SHIFT
]
220 [GETJSAMPLE(ptr
[2]) >> C2_SHIFT
];
221 /* increment, check for overflow and undo increment if so. */
231 * Next we have the really interesting routines: selection of a colormap
232 * given the completed histogram.
233 * These routines work with a list of "boxes", each representing a rectangular
234 * subset of the input color space (to histogram precision).
238 /* The bounds of the box (inclusive); expressed as histogram indexes */
242 /* The volume (actually 2-norm) of the box */
244 /* The number of nonzero histogram cells within this box */
252 find_biggest_color_pop(boxptr boxlist
, int numboxes
)
253 /* Find the splittable box with the largest color population */
254 /* Returns NULL if no splittable boxes remain */
256 register boxptr boxp
;
258 register long maxc
= 0;
261 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
262 if (boxp
->colorcount
> maxc
&& boxp
->volume
> 0) {
264 maxc
= boxp
->colorcount
;
272 find_biggest_volume(boxptr boxlist
, int numboxes
)
273 /* Find the splittable box with the largest (scaled) volume */
274 /* Returns NULL if no splittable boxes remain */
276 register boxptr boxp
;
278 register JLONG maxv
= 0;
281 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
282 if (boxp
->volume
> maxv
) {
292 update_box(j_decompress_ptr cinfo
, boxptr boxp
)
293 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
294 /* and recompute its volume and population */
296 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
297 hist3d histogram
= cquantize
->histogram
;
300 int c0min
, c0max
, c1min
, c1max
, c2min
, c2max
;
301 JLONG dist0
, dist1
, dist2
;
304 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
305 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
306 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
309 for (c0
= c0min
; c0
<= c0max
; c0
++)
310 for (c1
= c1min
; c1
<= c1max
; c1
++) {
311 histp
= &histogram
[c0
][c1
][c2min
];
312 for (c2
= c2min
; c2
<= c2max
; c2
++)
314 boxp
->c0min
= c0min
= c0
;
320 for (c0
= c0max
; c0
>= c0min
; c0
--)
321 for (c1
= c1min
; c1
<= c1max
; c1
++) {
322 histp
= &histogram
[c0
][c1
][c2min
];
323 for (c2
= c2min
; c2
<= c2max
; c2
++)
325 boxp
->c0max
= c0max
= c0
;
331 for (c1
= c1min
; c1
<= c1max
; c1
++)
332 for (c0
= c0min
; c0
<= c0max
; c0
++) {
333 histp
= &histogram
[c0
][c1
][c2min
];
334 for (c2
= c2min
; c2
<= c2max
; c2
++)
336 boxp
->c1min
= c1min
= c1
;
342 for (c1
= c1max
; c1
>= c1min
; c1
--)
343 for (c0
= c0min
; c0
<= c0max
; c0
++) {
344 histp
= &histogram
[c0
][c1
][c2min
];
345 for (c2
= c2min
; c2
<= c2max
; c2
++)
347 boxp
->c1max
= c1max
= c1
;
353 for (c2
= c2min
; c2
<= c2max
; c2
++)
354 for (c0
= c0min
; c0
<= c0max
; c0
++) {
355 histp
= &histogram
[c0
][c1min
][c2
];
356 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
358 boxp
->c2min
= c2min
= c2
;
364 for (c2
= c2max
; c2
>= c2min
; c2
--)
365 for (c0
= c0min
; c0
<= c0max
; c0
++) {
366 histp
= &histogram
[c0
][c1min
][c2
];
367 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
369 boxp
->c2max
= c2max
= c2
;
375 /* Update box volume.
376 * We use 2-norm rather than real volume here; this biases the method
377 * against making long narrow boxes, and it has the side benefit that
378 * a box is splittable iff norm > 0.
379 * Since the differences are expressed in histogram-cell units,
380 * we have to shift back to JSAMPLE units to get consistent distances;
381 * after which, we scale according to the selected distance scale factors.
383 dist0
= ((c0max
- c0min
) << C0_SHIFT
) * C0_SCALE
;
384 dist1
= ((c1max
- c1min
) << C1_SHIFT
) * C1_SCALE
;
385 dist2
= ((c2max
- c2min
) << C2_SHIFT
) * C2_SCALE
;
386 boxp
->volume
= dist0
* dist0
+ dist1
* dist1
+ dist2
* dist2
;
388 /* Now scan remaining volume of box and compute population */
390 for (c0
= c0min
; c0
<= c0max
; c0
++)
391 for (c1
= c1min
; c1
<= c1max
; c1
++) {
392 histp
= &histogram
[c0
][c1
][c2min
];
393 for (c2
= c2min
; c2
<= c2max
; c2
++, histp
++)
398 boxp
->colorcount
= ccount
;
403 median_cut(j_decompress_ptr cinfo
, boxptr boxlist
, int numboxes
,
405 /* Repeatedly select and split the largest box until we have enough boxes */
408 int c0
, c1
, c2
, cmax
;
409 register boxptr b1
, b2
;
411 while (numboxes
< desired_colors
) {
412 /* Select box to split.
413 * Current algorithm: by population for first half, then by volume.
415 if (numboxes
* 2 <= desired_colors
) {
416 b1
= find_biggest_color_pop(boxlist
, numboxes
);
418 b1
= find_biggest_volume(boxlist
, numboxes
);
420 if (b1
== NULL
) /* no splittable boxes left! */
422 b2
= &boxlist
[numboxes
]; /* where new box will go */
423 /* Copy the color bounds to the new box. */
424 b2
->c0max
= b1
->c0max
; b2
->c1max
= b1
->c1max
; b2
->c2max
= b1
->c2max
;
425 b2
->c0min
= b1
->c0min
; b2
->c1min
= b1
->c1min
; b2
->c2min
= b1
->c2min
;
426 /* Choose which axis to split the box on.
427 * Current algorithm: longest scaled axis.
428 * See notes in update_box about scaling distances.
430 c0
= ((b1
->c0max
- b1
->c0min
) << C0_SHIFT
) * C0_SCALE
;
431 c1
= ((b1
->c1max
- b1
->c1min
) << C1_SHIFT
) * C1_SCALE
;
432 c2
= ((b1
->c2max
- b1
->c2min
) << C2_SHIFT
) * C2_SCALE
;
433 /* We want to break any ties in favor of green, then red, blue last.
434 * This code does the right thing for R,G,B or B,G,R color orders only.
436 if (rgb_red
[cinfo
->out_color_space
] == 0) {
438 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
439 if (c2
> cmax
) { n
= 2; }
442 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
443 if (c0
> cmax
) { n
= 0; }
445 /* Choose split point along selected axis, and update box bounds.
446 * Current algorithm: split at halfway point.
447 * (Since the box has been shrunk to minimum volume,
448 * any split will produce two nonempty subboxes.)
449 * Note that lb value is max for lower box, so must be < old max.
453 lb
= (b1
->c0max
+ b1
->c0min
) / 2;
458 lb
= (b1
->c1max
+ b1
->c1min
) / 2;
463 lb
= (b1
->c2max
+ b1
->c2min
) / 2;
468 /* Update stats for boxes */
469 update_box(cinfo
, b1
);
470 update_box(cinfo
, b2
);
478 compute_color(j_decompress_ptr cinfo
, boxptr boxp
, int icolor
)
479 /* Compute representative color for a box, put it in colormap[icolor] */
481 /* Current algorithm: mean weighted by pixels (not colors) */
482 /* Note it is important to get the rounding correct! */
483 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
484 hist3d histogram
= cquantize
->histogram
;
487 int c0min
, c0max
, c1min
, c1max
, c2min
, c2max
;
494 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
495 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
496 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
498 for (c0
= c0min
; c0
<= c0max
; c0
++)
499 for (c1
= c1min
; c1
<= c1max
; c1
++) {
500 histp
= &histogram
[c0
][c1
][c2min
];
501 for (c2
= c2min
; c2
<= c2max
; c2
++) {
502 if ((count
= *histp
++) != 0) {
504 c0total
+= ((c0
<< C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1)) * count
;
505 c1total
+= ((c1
<< C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1)) * count
;
506 c2total
+= ((c2
<< C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1)) * count
;
511 cinfo
->colormap
[0][icolor
] = (JSAMPLE
)((c0total
+ (total
>> 1)) / total
);
512 cinfo
->colormap
[1][icolor
] = (JSAMPLE
)((c1total
+ (total
>> 1)) / total
);
513 cinfo
->colormap
[2][icolor
] = (JSAMPLE
)((c2total
+ (total
>> 1)) / total
);
518 select_colors(j_decompress_ptr cinfo
, int desired_colors
)
519 /* Master routine for color selection */
525 /* Allocate workspace for box list */
526 boxlist
= (boxptr
)(*cinfo
->mem
->alloc_small
)
527 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, desired_colors
* sizeof(box
));
528 /* Initialize one box containing whole space */
530 boxlist
[0].c0min
= 0;
531 boxlist
[0].c0max
= MAXJSAMPLE
>> C0_SHIFT
;
532 boxlist
[0].c1min
= 0;
533 boxlist
[0].c1max
= MAXJSAMPLE
>> C1_SHIFT
;
534 boxlist
[0].c2min
= 0;
535 boxlist
[0].c2max
= MAXJSAMPLE
>> C2_SHIFT
;
536 /* Shrink it to actually-used volume and set its statistics */
537 update_box(cinfo
, &boxlist
[0]);
538 /* Perform median-cut to produce final box list */
539 numboxes
= median_cut(cinfo
, boxlist
, numboxes
, desired_colors
);
540 /* Compute the representative color for each box, fill colormap */
541 for (i
= 0; i
< numboxes
; i
++)
542 compute_color(cinfo
, &boxlist
[i
], i
);
543 cinfo
->actual_number_of_colors
= numboxes
;
544 TRACEMS1(cinfo
, 1, JTRC_QUANT_SELECTED
, numboxes
);
549 * These routines are concerned with the time-critical task of mapping input
550 * colors to the nearest color in the selected colormap.
552 * We re-use the histogram space as an "inverse color map", essentially a
553 * cache for the results of nearest-color searches. All colors within a
554 * histogram cell will be mapped to the same colormap entry, namely the one
555 * closest to the cell's center. This may not be quite the closest entry to
556 * the actual input color, but it's almost as good. A zero in the cache
557 * indicates we haven't found the nearest color for that cell yet; the array
558 * is cleared to zeroes before starting the mapping pass. When we find the
559 * nearest color for a cell, its colormap index plus one is recorded in the
560 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
561 * when they need to use an unfilled entry in the cache.
563 * Our method of efficiently finding nearest colors is based on the "locally
564 * sorted search" idea described by Heckbert and on the incremental distance
565 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
566 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
567 * the distances from a given colormap entry to each cell of the histogram can
568 * be computed quickly using an incremental method: the differences between
569 * distances to adjacent cells themselves differ by a constant. This allows a
570 * fairly fast implementation of the "brute force" approach of computing the
571 * distance from every colormap entry to every histogram cell. Unfortunately,
572 * it needs a work array to hold the best-distance-so-far for each histogram
573 * cell (because the inner loop has to be over cells, not colormap entries).
574 * The work array elements have to be JLONGs, so the work array would need
575 * 256Kb at our recommended precision. This is not feasible in DOS machines.
577 * To get around these problems, we apply Thomas' method to compute the
578 * nearest colors for only the cells within a small subbox of the histogram.
579 * The work array need be only as big as the subbox, so the memory usage
580 * problem is solved. Furthermore, we need not fill subboxes that are never
581 * referenced in pass2; many images use only part of the color gamut, so a
582 * fair amount of work is saved. An additional advantage of this
583 * approach is that we can apply Heckbert's locality criterion to quickly
584 * eliminate colormap entries that are far away from the subbox; typically
585 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
586 * and we need not compute their distances to individual cells in the subbox.
587 * The speed of this approach is heavily influenced by the subbox size: too
588 * small means too much overhead, too big loses because Heckbert's criterion
589 * can't eliminate as many colormap entries. Empirically the best subbox
590 * size seems to be about 1/512th of the histogram (1/8th in each direction).
592 * Thomas' article also describes a refined method which is asymptotically
593 * faster than the brute-force method, but it is also far more complex and
594 * cannot efficiently be applied to small subboxes. It is therefore not
595 * useful for programs intended to be portable to DOS machines. On machines
596 * with plenty of memory, filling the whole histogram in one shot with Thomas'
597 * refined method might be faster than the present code --- but then again,
598 * it might not be any faster, and it's certainly more complicated.
602 /* log2(histogram cells in update box) for each axis; this can be adjusted */
603 #define BOX_C0_LOG (HIST_C0_BITS - 3)
604 #define BOX_C1_LOG (HIST_C1_BITS - 3)
605 #define BOX_C2_LOG (HIST_C2_BITS - 3)
607 #define BOX_C0_ELEMS (1 << BOX_C0_LOG) /* # of hist cells in update box */
608 #define BOX_C1_ELEMS (1 << BOX_C1_LOG)
609 #define BOX_C2_ELEMS (1 << BOX_C2_LOG)
611 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
612 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
613 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
617 * The next three routines implement inverse colormap filling. They could
618 * all be folded into one big routine, but splitting them up this way saves
619 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
620 * and may allow some compilers to produce better code by registerizing more
621 * inner-loop variables.
625 find_nearby_colors(j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
627 /* Locate the colormap entries close enough to an update box to be candidates
628 * for the nearest entry to some cell(s) in the update box. The update box
629 * is specified by the center coordinates of its first cell. The number of
630 * candidate colormap entries is returned, and their colormap indexes are
631 * placed in colorlist[].
632 * This routine uses Heckbert's "locally sorted search" criterion to select
633 * the colors that need further consideration.
636 int numcolors
= cinfo
->actual_number_of_colors
;
637 int maxc0
, maxc1
, maxc2
;
638 int centerc0
, centerc1
, centerc2
;
640 JLONG minmaxdist
, min_dist
, max_dist
, tdist
;
641 JLONG mindist
[MAXNUMCOLORS
]; /* min distance to colormap entry i */
643 /* Compute true coordinates of update box's upper corner and center.
644 * Actually we compute the coordinates of the center of the upper-corner
645 * histogram cell, which are the upper bounds of the volume we care about.
646 * Note that since ">>" rounds down, the "center" values may be closer to
647 * min than to max; hence comparisons to them must be "<=", not "<".
649 maxc0
= minc0
+ ((1 << BOX_C0_SHIFT
) - (1 << C0_SHIFT
));
650 centerc0
= (minc0
+ maxc0
) >> 1;
651 maxc1
= minc1
+ ((1 << BOX_C1_SHIFT
) - (1 << C1_SHIFT
));
652 centerc1
= (minc1
+ maxc1
) >> 1;
653 maxc2
= minc2
+ ((1 << BOX_C2_SHIFT
) - (1 << C2_SHIFT
));
654 centerc2
= (minc2
+ maxc2
) >> 1;
656 /* For each color in colormap, find:
657 * 1. its minimum squared-distance to any point in the update box
658 * (zero if color is within update box);
659 * 2. its maximum squared-distance to any point in the update box.
660 * Both of these can be found by considering only the corners of the box.
661 * We save the minimum distance for each color in mindist[];
662 * only the smallest maximum distance is of interest.
664 minmaxdist
= 0x7FFFFFFFL
;
666 for (i
= 0; i
< numcolors
; i
++) {
667 /* We compute the squared-c0-distance term, then add in the other two. */
668 x
= GETJSAMPLE(cinfo
->colormap
[0][i
]);
670 tdist
= (x
- minc0
) * C0_SCALE
;
671 min_dist
= tdist
* tdist
;
672 tdist
= (x
- maxc0
) * C0_SCALE
;
673 max_dist
= tdist
* tdist
;
674 } else if (x
> maxc0
) {
675 tdist
= (x
- maxc0
) * C0_SCALE
;
676 min_dist
= tdist
* tdist
;
677 tdist
= (x
- minc0
) * C0_SCALE
;
678 max_dist
= tdist
* tdist
;
680 /* within cell range so no contribution to min_dist */
683 tdist
= (x
- maxc0
) * C0_SCALE
;
684 max_dist
= tdist
* tdist
;
686 tdist
= (x
- minc0
) * C0_SCALE
;
687 max_dist
= tdist
* tdist
;
691 x
= GETJSAMPLE(cinfo
->colormap
[1][i
]);
693 tdist
= (x
- minc1
) * C1_SCALE
;
694 min_dist
+= tdist
* tdist
;
695 tdist
= (x
- maxc1
) * C1_SCALE
;
696 max_dist
+= tdist
* tdist
;
697 } else if (x
> maxc1
) {
698 tdist
= (x
- maxc1
) * C1_SCALE
;
699 min_dist
+= tdist
* tdist
;
700 tdist
= (x
- minc1
) * C1_SCALE
;
701 max_dist
+= tdist
* tdist
;
703 /* within cell range so no contribution to min_dist */
705 tdist
= (x
- maxc1
) * C1_SCALE
;
706 max_dist
+= tdist
* tdist
;
708 tdist
= (x
- minc1
) * C1_SCALE
;
709 max_dist
+= tdist
* tdist
;
713 x
= GETJSAMPLE(cinfo
->colormap
[2][i
]);
715 tdist
= (x
- minc2
) * C2_SCALE
;
716 min_dist
+= tdist
* tdist
;
717 tdist
= (x
- maxc2
) * C2_SCALE
;
718 max_dist
+= tdist
* tdist
;
719 } else if (x
> maxc2
) {
720 tdist
= (x
- maxc2
) * C2_SCALE
;
721 min_dist
+= tdist
* tdist
;
722 tdist
= (x
- minc2
) * C2_SCALE
;
723 max_dist
+= tdist
* tdist
;
725 /* within cell range so no contribution to min_dist */
727 tdist
= (x
- maxc2
) * C2_SCALE
;
728 max_dist
+= tdist
* tdist
;
730 tdist
= (x
- minc2
) * C2_SCALE
;
731 max_dist
+= tdist
* tdist
;
735 mindist
[i
] = min_dist
; /* save away the results */
736 if (max_dist
< minmaxdist
)
737 minmaxdist
= max_dist
;
740 /* Now we know that no cell in the update box is more than minmaxdist
741 * away from some colormap entry. Therefore, only colors that are
742 * within minmaxdist of some part of the box need be considered.
745 for (i
= 0; i
< numcolors
; i
++) {
746 if (mindist
[i
] <= minmaxdist
)
747 colorlist
[ncolors
++] = (JSAMPLE
)i
;
754 find_best_colors(j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
755 int numcolors
, JSAMPLE colorlist
[], JSAMPLE bestcolor
[])
756 /* Find the closest colormap entry for each cell in the update box,
757 * given the list of candidate colors prepared by find_nearby_colors.
758 * Return the indexes of the closest entries in the bestcolor[] array.
759 * This routine uses Thomas' incremental distance calculation method to
760 * find the distance from a colormap entry to successive cells in the box.
765 register JLONG
*bptr
; /* pointer into bestdist[] array */
766 JSAMPLE
*cptr
; /* pointer into bestcolor[] array */
767 JLONG dist0
, dist1
; /* initial distance values */
768 register JLONG dist2
; /* current distance in inner loop */
769 JLONG xx0
, xx1
; /* distance increments */
771 JLONG inc0
, inc1
, inc2
; /* initial values for increments */
772 /* This array holds the distance to the nearest-so-far color for each cell */
773 JLONG bestdist
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
775 /* Initialize best-distance for each cell of the update box */
777 for (i
= BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
- 1; i
>= 0; i
--)
778 *bptr
++ = 0x7FFFFFFFL
;
780 /* For each color selected by find_nearby_colors,
781 * compute its distance to the center of each cell in the box.
782 * If that's less than best-so-far, update best distance and color number.
785 /* Nominal steps between cell centers ("x" in Thomas article) */
786 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
787 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
788 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
790 for (i
= 0; i
< numcolors
; i
++) {
791 icolor
= GETJSAMPLE(colorlist
[i
]);
792 /* Compute (square of) distance from minc0/c1/c2 to this color */
793 inc0
= (minc0
- GETJSAMPLE(cinfo
->colormap
[0][icolor
])) * C0_SCALE
;
795 inc1
= (minc1
- GETJSAMPLE(cinfo
->colormap
[1][icolor
])) * C1_SCALE
;
796 dist0
+= inc1
* inc1
;
797 inc2
= (minc2
- GETJSAMPLE(cinfo
->colormap
[2][icolor
])) * C2_SCALE
;
798 dist0
+= inc2
* inc2
;
799 /* Form the initial difference increments */
800 inc0
= inc0
* (2 * STEP_C0
) + STEP_C0
* STEP_C0
;
801 inc1
= inc1
* (2 * STEP_C1
) + STEP_C1
* STEP_C1
;
802 inc2
= inc2
* (2 * STEP_C2
) + STEP_C2
* STEP_C2
;
803 /* Now loop over all cells in box, updating distance per Thomas method */
807 for (ic0
= BOX_C0_ELEMS
- 1; ic0
>= 0; ic0
--) {
810 for (ic1
= BOX_C1_ELEMS
- 1; ic1
>= 0; ic1
--) {
813 for (ic2
= BOX_C2_ELEMS
- 1; ic2
>= 0; ic2
--) {
816 *cptr
= (JSAMPLE
)icolor
;
819 xx2
+= 2 * STEP_C2
* STEP_C2
;
824 xx1
+= 2 * STEP_C1
* STEP_C1
;
827 xx0
+= 2 * STEP_C0
* STEP_C0
;
834 fill_inverse_cmap(j_decompress_ptr cinfo
, int c0
, int c1
, int c2
)
835 /* Fill the inverse-colormap entries in the update box that contains */
836 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
837 /* we can fill as many others as we wish.) */
839 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
840 hist3d histogram
= cquantize
->histogram
;
841 int minc0
, minc1
, minc2
; /* lower left corner of update box */
843 register JSAMPLE
*cptr
; /* pointer into bestcolor[] array */
844 register histptr cachep
; /* pointer into main cache array */
845 /* This array lists the candidate colormap indexes. */
846 JSAMPLE colorlist
[MAXNUMCOLORS
];
847 int numcolors
; /* number of candidate colors */
848 /* This array holds the actually closest colormap index for each cell. */
849 JSAMPLE bestcolor
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
851 /* Convert cell coordinates to update box ID */
856 /* Compute true coordinates of update box's origin corner.
857 * Actually we compute the coordinates of the center of the corner
858 * histogram cell, which are the lower bounds of the volume we care about.
860 minc0
= (c0
<< BOX_C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1);
861 minc1
= (c1
<< BOX_C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1);
862 minc2
= (c2
<< BOX_C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1);
864 /* Determine which colormap entries are close enough to be candidates
865 * for the nearest entry to some cell in the update box.
867 numcolors
= find_nearby_colors(cinfo
, minc0
, minc1
, minc2
, colorlist
);
869 /* Determine the actually nearest colors. */
870 find_best_colors(cinfo
, minc0
, minc1
, minc2
, numcolors
, colorlist
,
873 /* Save the best color numbers (plus 1) in the main cache array */
874 c0
<<= BOX_C0_LOG
; /* convert ID back to base cell indexes */
878 for (ic0
= 0; ic0
< BOX_C0_ELEMS
; ic0
++) {
879 for (ic1
= 0; ic1
< BOX_C1_ELEMS
; ic1
++) {
880 cachep
= &histogram
[c0
+ ic0
][c1
+ ic1
][c2
];
881 for (ic2
= 0; ic2
< BOX_C2_ELEMS
; ic2
++) {
882 *cachep
++ = (histcell
)(GETJSAMPLE(*cptr
++) + 1);
890 * Map some rows of pixels to the output colormapped representation.
894 pass2_no_dither(j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
895 JSAMPARRAY output_buf
, int num_rows
)
896 /* This version performs no dithering */
898 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
899 hist3d histogram
= cquantize
->histogram
;
900 register JSAMPROW inptr
, outptr
;
901 register histptr cachep
;
902 register int c0
, c1
, c2
;
905 JDIMENSION width
= cinfo
->output_width
;
907 for (row
= 0; row
< num_rows
; row
++) {
908 inptr
= input_buf
[row
];
909 outptr
= output_buf
[row
];
910 for (col
= width
; col
> 0; col
--) {
911 /* get pixel value and index into the cache */
912 c0
= GETJSAMPLE(*inptr
++) >> C0_SHIFT
;
913 c1
= GETJSAMPLE(*inptr
++) >> C1_SHIFT
;
914 c2
= GETJSAMPLE(*inptr
++) >> C2_SHIFT
;
915 cachep
= &histogram
[c0
][c1
][c2
];
916 /* If we have not seen this color before, find nearest colormap entry */
917 /* and update the cache */
919 fill_inverse_cmap(cinfo
, c0
, c1
, c2
);
920 /* Now emit the colormap index for this cell */
921 *outptr
++ = (JSAMPLE
)(*cachep
- 1);
928 pass2_fs_dither(j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
929 JSAMPARRAY output_buf
, int num_rows
)
930 /* This version performs Floyd-Steinberg dithering */
932 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
933 hist3d histogram
= cquantize
->histogram
;
934 register LOCFSERROR cur0
, cur1
, cur2
; /* current error or pixel value */
935 LOCFSERROR belowerr0
, belowerr1
, belowerr2
; /* error for pixel below cur */
936 LOCFSERROR bpreverr0
, bpreverr1
, bpreverr2
; /* error for below/prev col */
937 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
938 JSAMPROW inptr
; /* => current input pixel */
939 JSAMPROW outptr
; /* => current output pixel */
941 int dir
; /* +1 or -1 depending on direction */
942 int dir3
; /* 3*dir, for advancing inptr & errorptr */
945 JDIMENSION width
= cinfo
->output_width
;
946 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
947 int *error_limit
= cquantize
->error_limiter
;
948 JSAMPROW colormap0
= cinfo
->colormap
[0];
949 JSAMPROW colormap1
= cinfo
->colormap
[1];
950 JSAMPROW colormap2
= cinfo
->colormap
[2];
953 for (row
= 0; row
< num_rows
; row
++) {
954 inptr
= input_buf
[row
];
955 outptr
= output_buf
[row
];
956 if (cquantize
->on_odd_row
) {
957 /* work right to left in this row */
958 inptr
+= (width
- 1) * 3; /* so point to rightmost pixel */
962 errorptr
= cquantize
->fserrors
+ (width
+ 1) * 3; /* => entry after last column */
963 cquantize
->on_odd_row
= FALSE
; /* flip for next time */
965 /* work left to right in this row */
968 errorptr
= cquantize
->fserrors
; /* => entry before first real column */
969 cquantize
->on_odd_row
= TRUE
; /* flip for next time */
971 /* Preset error values: no error propagated to first pixel from left */
972 cur0
= cur1
= cur2
= 0;
973 /* and no error propagated to row below yet */
974 belowerr0
= belowerr1
= belowerr2
= 0;
975 bpreverr0
= bpreverr1
= bpreverr2
= 0;
977 for (col
= width
; col
> 0; col
--) {
978 /* curN holds the error propagated from the previous pixel on the
979 * current line. Add the error propagated from the previous line
980 * to form the complete error correction term for this pixel, and
981 * round the error term (which is expressed * 16) to an integer.
982 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
983 * for either sign of the error value.
984 * Note: errorptr points to *previous* column's array entry.
986 cur0
= RIGHT_SHIFT(cur0
+ errorptr
[dir3
+ 0] + 8, 4);
987 cur1
= RIGHT_SHIFT(cur1
+ errorptr
[dir3
+ 1] + 8, 4);
988 cur2
= RIGHT_SHIFT(cur2
+ errorptr
[dir3
+ 2] + 8, 4);
989 /* Limit the error using transfer function set by init_error_limit.
990 * See comments with init_error_limit for rationale.
992 cur0
= error_limit
[cur0
];
993 cur1
= error_limit
[cur1
];
994 cur2
= error_limit
[cur2
];
995 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
996 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
997 * this sets the required size of the range_limit array.
999 cur0
+= GETJSAMPLE(inptr
[0]);
1000 cur1
+= GETJSAMPLE(inptr
[1]);
1001 cur2
+= GETJSAMPLE(inptr
[2]);
1002 cur0
= GETJSAMPLE(range_limit
[cur0
]);
1003 cur1
= GETJSAMPLE(range_limit
[cur1
]);
1004 cur2
= GETJSAMPLE(range_limit
[cur2
]);
1005 /* Index into the cache with adjusted pixel value */
1007 &histogram
[cur0
>> C0_SHIFT
][cur1
>> C1_SHIFT
][cur2
>> C2_SHIFT
];
1008 /* If we have not seen this color before, find nearest colormap */
1009 /* entry and update the cache */
1011 fill_inverse_cmap(cinfo
, cur0
>> C0_SHIFT
, cur1
>> C1_SHIFT
,
1013 /* Now emit the colormap index for this cell */
1015 register int pixcode
= *cachep
- 1;
1016 *outptr
= (JSAMPLE
)pixcode
;
1017 /* Compute representation error for this pixel */
1018 cur0
-= GETJSAMPLE(colormap0
[pixcode
]);
1019 cur1
-= GETJSAMPLE(colormap1
[pixcode
]);
1020 cur2
-= GETJSAMPLE(colormap2
[pixcode
]);
1022 /* Compute error fractions to be propagated to adjacent pixels.
1023 * Add these into the running sums, and simultaneously shift the
1024 * next-line error sums left by 1 column.
1027 register LOCFSERROR bnexterr
;
1029 bnexterr
= cur0
; /* Process component 0 */
1030 errorptr
[0] = (FSERROR
)(bpreverr0
+ cur0
* 3);
1031 bpreverr0
= belowerr0
+ cur0
* 5;
1032 belowerr0
= bnexterr
;
1034 bnexterr
= cur1
; /* Process component 1 */
1035 errorptr
[1] = (FSERROR
)(bpreverr1
+ cur1
* 3);
1036 bpreverr1
= belowerr1
+ cur1
* 5;
1037 belowerr1
= bnexterr
;
1039 bnexterr
= cur2
; /* Process component 2 */
1040 errorptr
[2] = (FSERROR
)(bpreverr2
+ cur2
* 3);
1041 bpreverr2
= belowerr2
+ cur2
* 5;
1042 belowerr2
= bnexterr
;
1045 /* At this point curN contains the 7/16 error value to be propagated
1046 * to the next pixel on the current line, and all the errors for the
1047 * next line have been shifted over. We are therefore ready to move on.
1049 inptr
+= dir3
; /* Advance pixel pointers to next column */
1051 errorptr
+= dir3
; /* advance errorptr to current column */
1053 /* Post-loop cleanup: we must unload the final error values into the
1054 * final fserrors[] entry. Note we need not unload belowerrN because
1055 * it is for the dummy column before or after the actual array.
1057 errorptr
[0] = (FSERROR
)bpreverr0
; /* unload prev errs into array */
1058 errorptr
[1] = (FSERROR
)bpreverr1
;
1059 errorptr
[2] = (FSERROR
)bpreverr2
;
1065 * Initialize the error-limiting transfer function (lookup table).
1066 * The raw F-S error computation can potentially compute error values of up to
1067 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1068 * much less, otherwise obviously wrong pixels will be created. (Typical
1069 * effects include weird fringes at color-area boundaries, isolated bright
1070 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1071 * is to ensure that the "corners" of the color cube are allocated as output
1072 * colors; then repeated errors in the same direction cannot cause cascading
1073 * error buildup. However, that only prevents the error from getting
1074 * completely out of hand; Aaron Giles reports that error limiting improves
1075 * the results even with corner colors allocated.
1076 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1077 * well, but the smoother transfer function used below is even better. Thanks
1078 * to Aaron Giles for this idea.
1082 init_error_limit(j_decompress_ptr cinfo
)
1083 /* Allocate and fill in the error_limiter table */
1085 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
1089 table
= (int *)(*cinfo
->mem
->alloc_small
)
1090 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, (MAXJSAMPLE
* 2 + 1) * sizeof(int));
1091 table
+= MAXJSAMPLE
; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1092 cquantize
->error_limiter
= table
;
1094 #define STEPSIZE ((MAXJSAMPLE + 1) / 16)
1095 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1097 for (in
= 0; in
< STEPSIZE
; in
++, out
++) {
1098 table
[in
] = out
; table
[-in
] = -out
;
1100 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1101 for (; in
< STEPSIZE
* 3; in
++, out
+= (in
& 1) ? 0 : 1) {
1102 table
[in
] = out
; table
[-in
] = -out
;
1104 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1105 for (; in
<= MAXJSAMPLE
; in
++) {
1106 table
[in
] = out
; table
[-in
] = -out
;
1113 * Finish up at the end of each pass.
1117 finish_pass1(j_decompress_ptr cinfo
)
1119 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
1121 /* Select the representative colors and fill in cinfo->colormap */
1122 cinfo
->colormap
= cquantize
->sv_colormap
;
1123 select_colors(cinfo
, cquantize
->desired
);
1124 /* Force next pass to zero the color index table */
1125 cquantize
->needs_zeroed
= TRUE
;
1130 finish_pass2(j_decompress_ptr cinfo
)
1137 * Initialize for each processing pass.
1141 start_pass_2_quant(j_decompress_ptr cinfo
, boolean is_pre_scan
)
1143 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
1144 hist3d histogram
= cquantize
->histogram
;
1147 /* Only F-S dithering or no dithering is supported. */
1148 /* If user asks for ordered dither, give him F-S. */
1149 if (cinfo
->dither_mode
!= JDITHER_NONE
)
1150 cinfo
->dither_mode
= JDITHER_FS
;
1153 /* Set up method pointers */
1154 cquantize
->pub
.color_quantize
= prescan_quantize
;
1155 cquantize
->pub
.finish_pass
= finish_pass1
;
1156 cquantize
->needs_zeroed
= TRUE
; /* Always zero histogram */
1158 /* Set up method pointers */
1159 if (cinfo
->dither_mode
== JDITHER_FS
)
1160 cquantize
->pub
.color_quantize
= pass2_fs_dither
;
1162 cquantize
->pub
.color_quantize
= pass2_no_dither
;
1163 cquantize
->pub
.finish_pass
= finish_pass2
;
1165 /* Make sure color count is acceptable */
1166 i
= cinfo
->actual_number_of_colors
;
1168 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, 1);
1169 if (i
> MAXNUMCOLORS
)
1170 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXNUMCOLORS
);
1172 if (cinfo
->dither_mode
== JDITHER_FS
) {
1174 (size_t)((cinfo
->output_width
+ 2) * (3 * sizeof(FSERROR
)));
1175 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1176 if (cquantize
->fserrors
== NULL
)
1177 cquantize
->fserrors
= (FSERRPTR
)(*cinfo
->mem
->alloc_large
)
1178 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, arraysize
);
1179 /* Initialize the propagated errors to zero. */
1180 jzero_far((void *)cquantize
->fserrors
, arraysize
);
1181 /* Make the error-limit table if we didn't already. */
1182 if (cquantize
->error_limiter
== NULL
)
1183 init_error_limit(cinfo
);
1184 cquantize
->on_odd_row
= FALSE
;
1188 /* Zero the histogram or inverse color map, if necessary */
1189 if (cquantize
->needs_zeroed
) {
1190 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1191 jzero_far((void *)histogram
[i
],
1192 HIST_C1_ELEMS
* HIST_C2_ELEMS
* sizeof(histcell
));
1194 cquantize
->needs_zeroed
= FALSE
;
1200 * Switch to a new external colormap between output passes.
1204 new_color_map_2_quant(j_decompress_ptr cinfo
)
1206 my_cquantize_ptr cquantize
= (my_cquantize_ptr
)cinfo
->cquantize
;
1208 /* Reset the inverse color map */
1209 cquantize
->needs_zeroed
= TRUE
;
1214 * Module initialization routine for 2-pass color quantization.
1218 jinit_2pass_quantizer(j_decompress_ptr cinfo
)
1220 my_cquantize_ptr cquantize
;
1223 cquantize
= (my_cquantize_ptr
)
1224 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
1225 sizeof(my_cquantizer
));
1226 cinfo
->cquantize
= (struct jpeg_color_quantizer
*)cquantize
;
1227 cquantize
->pub
.start_pass
= start_pass_2_quant
;
1228 cquantize
->pub
.new_color_map
= new_color_map_2_quant
;
1229 cquantize
->fserrors
= NULL
; /* flag optional arrays not allocated */
1230 cquantize
->error_limiter
= NULL
;
1232 /* Make sure jdmaster didn't give me a case I can't handle */
1233 if (cinfo
->out_color_components
!= 3)
1234 ERREXIT(cinfo
, JERR_NOTIMPL
);
1236 /* Allocate the histogram/inverse colormap storage */
1237 cquantize
->histogram
= (hist3d
)(*cinfo
->mem
->alloc_small
)
1238 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, HIST_C0_ELEMS
* sizeof(hist2d
));
1239 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1240 cquantize
->histogram
[i
] = (hist2d
)(*cinfo
->mem
->alloc_large
)
1241 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
1242 HIST_C1_ELEMS
* HIST_C2_ELEMS
* sizeof(histcell
));
1244 cquantize
->needs_zeroed
= TRUE
; /* histogram is garbage now */
1246 /* Allocate storage for the completed colormap, if required.
1247 * We do this now since it may affect the memory manager's space
1250 if (cinfo
->enable_2pass_quant
) {
1251 /* Make sure color count is acceptable */
1252 int desired
= cinfo
->desired_number_of_colors
;
1253 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1255 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, 8);
1256 /* Make sure colormap indexes can be represented by JSAMPLEs */
1257 if (desired
> MAXNUMCOLORS
)
1258 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXNUMCOLORS
);
1259 cquantize
->sv_colormap
= (*cinfo
->mem
->alloc_sarray
)
1260 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, (JDIMENSION
)desired
, (JDIMENSION
)3);
1261 cquantize
->desired
= desired
;
1263 cquantize
->sv_colormap
= NULL
;
1265 /* Only F-S dithering or no dithering is supported. */
1266 /* If user asks for ordered dither, give him F-S. */
1267 if (cinfo
->dither_mode
!= JDITHER_NONE
)
1268 cinfo
->dither_mode
= JDITHER_FS
;
1270 /* Allocate Floyd-Steinberg workspace if necessary.
1271 * This isn't really needed until pass 2, but again it may affect the memory
1272 * manager's space calculations. Although we will cope with a later change
1273 * in dither_mode, we do not promise to honor max_memory_to_use if
1274 * dither_mode changes.
1276 if (cinfo
->dither_mode
== JDITHER_FS
) {
1277 cquantize
->fserrors
= (FSERRPTR
)(*cinfo
->mem
->alloc_large
)
1278 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
1279 (size_t)((cinfo
->output_width
+ 2) * (3 * sizeof(FSERROR
))));
1280 /* Might as well create the error-limiting table too. */
1281 init_error_limit(cinfo
);
1285 #endif /* QUANT_2PASS_SUPPORTED */