Bug 1910842 - fix non-scaling-stroke when outer svg element has a CSS transform r...
[gecko.git] / media / libjpeg / jquant2.c
blob9ba51fa8872b240befc8bbd38810098839423f91
1 /*
2 * jquant2.c
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, 2014-2015, 2020, 2022-2023, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
11 * This file contains 2-pass color quantization (color mapping) routines.
12 * These routines provide selection of a custom color map for an image,
13 * followed by mapping of the image to that color map, with optional
14 * Floyd-Steinberg dithering.
15 * It is also possible to use just the second pass to map to an arbitrary
16 * externally-given color map.
18 * Note: ordered dithering is not supported, since there isn't any fast
19 * way to compute intercolor distances; it's unclear that ordered dither's
20 * fundamental assumptions even hold with an irregularly spaced color map.
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "jsamplecomp.h"
28 #if defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
32 * This module implements the well-known Heckbert paradigm for color
33 * quantization. Most of the ideas used here can be traced back to
34 * Heckbert's seminal paper
35 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
36 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
38 * In the first pass over the image, we accumulate a histogram showing the
39 * usage count of each possible color. To keep the histogram to a reasonable
40 * size, we reduce the precision of the input; typical practice is to retain
41 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
42 * in the same histogram cell.
44 * Next, the color-selection step begins with a box representing the whole
45 * color space, and repeatedly splits the "largest" remaining box until we
46 * have as many boxes as desired colors. Then the mean color in each
47 * remaining box becomes one of the possible output colors.
49 * The second pass over the image maps each input pixel to the closest output
50 * color (optionally after applying a Floyd-Steinberg dithering correction).
51 * This mapping is logically trivial, but making it go fast enough requires
52 * considerable care.
54 * Heckbert-style quantizers vary a good deal in their policies for choosing
55 * the "largest" box and deciding where to cut it. The particular policies
56 * used here have proved out well in experimental comparisons, but better ones
57 * may yet be found.
59 * In earlier versions of the IJG code, this module quantized in YCbCr color
60 * space, processing the raw upsampled data without a color conversion step.
61 * This allowed the color conversion math to be done only once per colormap
62 * entry, not once per pixel. However, that optimization precluded other
63 * useful optimizations (such as merging color conversion with upsampling)
64 * and it also interfered with desired capabilities such as quantizing to an
65 * externally-supplied colormap. We have therefore abandoned that approach.
66 * The present code works in the post-conversion color space, typically RGB.
68 * To improve the visual quality of the results, we actually work in scaled
69 * RGB space, giving G distances more weight than R, and R in turn more than
70 * B. To do everything in integer math, we must use integer scale factors.
71 * The 2/3/1 scale factors used here correspond loosely to the relative
72 * weights of the colors in the NTSC grayscale equation.
73 * If you want to use this code to quantize a non-RGB color space, you'll
74 * probably need to change these scale factors.
77 #define R_SCALE 2 /* scale R distances by this much */
78 #define G_SCALE 3 /* scale G distances by this much */
79 #define B_SCALE 1 /* and B by this much */
81 static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE };
82 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
83 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
84 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
87 * First we have the histogram data structure and routines for creating it.
89 * The number of bits of precision can be adjusted by changing these symbols.
90 * We recommend keeping 6 bits for G and 5 each for R and B.
91 * If you have plenty of memory and cycles, 6 bits all around gives marginally
92 * better results; if you are short of memory, 5 bits all around will save
93 * some space but degrade the results.
94 * To maintain a fully accurate histogram, we'd need to allocate a "long"
95 * (preferably unsigned long) for each cell. In practice this is overkill;
96 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
97 * and clamping those that do overflow to the maximum value will give close-
98 * enough results. This reduces the recommended histogram size from 256Kb
99 * to 128Kb, which is a useful savings on PC-class machines.
100 * (In the second pass the histogram space is re-used for pixel mapping data;
101 * in that capacity, each cell must be able to store zero to the number of
102 * desired colors. 16 bits/cell is plenty for that too.)
103 * Since the JPEG code is intended to run in small memory model on 80x86
104 * machines, we can't just allocate the histogram in one chunk. Instead
105 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
106 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
107 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
110 #define MAXNUMCOLORS (_MAXJSAMPLE + 1) /* maximum size of colormap */
112 /* These will do the right thing for either R,G,B or B,G,R color order,
113 * but you may not like the results for other color orders.
115 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
116 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
117 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
119 /* Number of elements along histogram axes. */
120 #define HIST_C0_ELEMS (1 << HIST_C0_BITS)
121 #define HIST_C1_ELEMS (1 << HIST_C1_BITS)
122 #define HIST_C2_ELEMS (1 << HIST_C2_BITS)
124 /* These are the amounts to shift an input value to get a histogram index. */
125 #define C0_SHIFT (BITS_IN_JSAMPLE - HIST_C0_BITS)
126 #define C1_SHIFT (BITS_IN_JSAMPLE - HIST_C1_BITS)
127 #define C2_SHIFT (BITS_IN_JSAMPLE - HIST_C2_BITS)
130 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
132 typedef histcell *histptr; /* for pointers to histogram cells */
134 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
135 typedef hist1d *hist2d; /* type for the 2nd-level pointers */
136 typedef hist2d *hist3d; /* type for top-level pointer */
139 /* Declarations for Floyd-Steinberg dithering.
141 * Errors are accumulated into the array fserrors[], at a resolution of
142 * 1/16th of a pixel count. The error at a given pixel is propagated
143 * to its not-yet-processed neighbors using the standard F-S fractions,
144 * ... (here) 7/16
145 * 3/16 5/16 1/16
146 * We work left-to-right on even rows, right-to-left on odd rows.
148 * We can get away with a single array (holding one row's worth of errors)
149 * by using it to store the current row's errors at pixel columns not yet
150 * processed, but the next row's errors at columns already processed. We
151 * need only a few extra variables to hold the errors immediately around the
152 * current column. (If we are lucky, those variables are in registers, but
153 * even if not, they're probably cheaper to access than array elements are.)
155 * The fserrors[] array has (#columns + 2) entries; the extra entry at
156 * each end saves us from special-casing the first and last pixels.
157 * Each entry is three values long, one value for each color component.
160 #if BITS_IN_JSAMPLE == 8
161 typedef INT16 FSERROR; /* 16 bits should be enough */
162 typedef int LOCFSERROR; /* use 'int' for calculation temps */
163 #else
164 typedef JLONG FSERROR; /* may need more than 16 bits */
165 typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */
166 #endif
168 typedef FSERROR *FSERRPTR; /* pointer to error array */
171 /* Private subobject */
173 typedef struct {
174 struct jpeg_color_quantizer pub; /* public fields */
176 /* Space for the eventually created colormap is stashed here */
177 _JSAMPARRAY sv_colormap; /* colormap allocated at init time */
178 int desired; /* desired # of colors = size of colormap */
180 /* Variables for accumulating image statistics */
181 hist3d histogram; /* pointer to the histogram */
183 boolean needs_zeroed; /* TRUE if next pass must zero histogram */
185 /* Variables for Floyd-Steinberg dithering */
186 FSERRPTR fserrors; /* accumulated errors */
187 boolean on_odd_row; /* flag to remember which row we are on */
188 int *error_limiter; /* table for clamping the applied error */
189 } my_cquantizer;
191 typedef my_cquantizer *my_cquantize_ptr;
195 * Prescan some rows of pixels.
196 * In this module the prescan simply updates the histogram, which has been
197 * initialized to zeroes by start_pass.
198 * An output_buf parameter is required by the method signature, but no data
199 * is actually output (in fact the buffer controller is probably passing a
200 * NULL pointer).
203 METHODDEF(void)
204 prescan_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
205 _JSAMPARRAY output_buf, int num_rows)
207 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
208 register _JSAMPROW ptr;
209 register histptr histp;
210 register hist3d histogram = cquantize->histogram;
211 int row;
212 JDIMENSION col;
213 JDIMENSION width = cinfo->output_width;
215 for (row = 0; row < num_rows; row++) {
216 ptr = input_buf[row];
217 for (col = width; col > 0; col--) {
218 /* get pixel value and index into the histogram */
219 histp = &histogram[ptr[0] >> C0_SHIFT]
220 [ptr[1] >> C1_SHIFT]
221 [ptr[2] >> C2_SHIFT];
222 /* increment, check for overflow and undo increment if so. */
223 if (++(*histp) <= 0)
224 (*histp)--;
225 ptr += 3;
232 * Next we have the really interesting routines: selection of a colormap
233 * given the completed histogram.
234 * These routines work with a list of "boxes", each representing a rectangular
235 * subset of the input color space (to histogram precision).
238 typedef struct {
239 /* The bounds of the box (inclusive); expressed as histogram indexes */
240 int c0min, c0max;
241 int c1min, c1max;
242 int c2min, c2max;
243 /* The volume (actually 2-norm) of the box */
244 JLONG volume;
245 /* The number of nonzero histogram cells within this box */
246 long colorcount;
247 } box;
249 typedef box *boxptr;
252 LOCAL(boxptr)
253 find_biggest_color_pop(boxptr boxlist, int numboxes)
254 /* Find the splittable box with the largest color population */
255 /* Returns NULL if no splittable boxes remain */
257 register boxptr boxp;
258 register int i;
259 register long maxc = 0;
260 boxptr which = NULL;
262 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
263 if (boxp->colorcount > maxc && boxp->volume > 0) {
264 which = boxp;
265 maxc = boxp->colorcount;
268 return which;
272 LOCAL(boxptr)
273 find_biggest_volume(boxptr boxlist, int numboxes)
274 /* Find the splittable box with the largest (scaled) volume */
275 /* Returns NULL if no splittable boxes remain */
277 register boxptr boxp;
278 register int i;
279 register JLONG maxv = 0;
280 boxptr which = NULL;
282 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
283 if (boxp->volume > maxv) {
284 which = boxp;
285 maxv = boxp->volume;
288 return which;
292 LOCAL(void)
293 update_box(j_decompress_ptr cinfo, boxptr boxp)
294 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
295 /* and recompute its volume and population */
297 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
298 hist3d histogram = cquantize->histogram;
299 histptr histp;
300 int c0, c1, c2;
301 int c0min, c0max, c1min, c1max, c2min, c2max;
302 JLONG dist0, dist1, dist2;
303 long ccount;
305 c0min = boxp->c0min; c0max = boxp->c0max;
306 c1min = boxp->c1min; c1max = boxp->c1max;
307 c2min = boxp->c2min; c2max = boxp->c2max;
309 if (c0max > c0min)
310 for (c0 = c0min; c0 <= c0max; c0++)
311 for (c1 = c1min; c1 <= c1max; c1++) {
312 histp = &histogram[c0][c1][c2min];
313 for (c2 = c2min; c2 <= c2max; c2++)
314 if (*histp++ != 0) {
315 boxp->c0min = c0min = c0;
316 goto have_c0min;
319 have_c0min:
320 if (c0max > c0min)
321 for (c0 = c0max; c0 >= c0min; c0--)
322 for (c1 = c1min; c1 <= c1max; c1++) {
323 histp = &histogram[c0][c1][c2min];
324 for (c2 = c2min; c2 <= c2max; c2++)
325 if (*histp++ != 0) {
326 boxp->c0max = c0max = c0;
327 goto have_c0max;
330 have_c0max:
331 if (c1max > c1min)
332 for (c1 = c1min; c1 <= c1max; c1++)
333 for (c0 = c0min; c0 <= c0max; c0++) {
334 histp = &histogram[c0][c1][c2min];
335 for (c2 = c2min; c2 <= c2max; c2++)
336 if (*histp++ != 0) {
337 boxp->c1min = c1min = c1;
338 goto have_c1min;
341 have_c1min:
342 if (c1max > c1min)
343 for (c1 = c1max; c1 >= c1min; c1--)
344 for (c0 = c0min; c0 <= c0max; c0++) {
345 histp = &histogram[c0][c1][c2min];
346 for (c2 = c2min; c2 <= c2max; c2++)
347 if (*histp++ != 0) {
348 boxp->c1max = c1max = c1;
349 goto have_c1max;
352 have_c1max:
353 if (c2max > c2min)
354 for (c2 = c2min; c2 <= c2max; c2++)
355 for (c0 = c0min; c0 <= c0max; c0++) {
356 histp = &histogram[c0][c1min][c2];
357 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
358 if (*histp != 0) {
359 boxp->c2min = c2min = c2;
360 goto have_c2min;
363 have_c2min:
364 if (c2max > c2min)
365 for (c2 = c2max; c2 >= c2min; c2--)
366 for (c0 = c0min; c0 <= c0max; c0++) {
367 histp = &histogram[c0][c1min][c2];
368 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
369 if (*histp != 0) {
370 boxp->c2max = c2max = c2;
371 goto have_c2max;
374 have_c2max:
376 /* Update box volume.
377 * We use 2-norm rather than real volume here; this biases the method
378 * against making long narrow boxes, and it has the side benefit that
379 * a box is splittable iff norm > 0.
380 * Since the differences are expressed in histogram-cell units,
381 * we have to shift back to _JSAMPLE units to get consistent distances;
382 * after which, we scale according to the selected distance scale factors.
384 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
385 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
386 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
387 boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
389 /* Now scan remaining volume of box and compute population */
390 ccount = 0;
391 for (c0 = c0min; c0 <= c0max; c0++)
392 for (c1 = c1min; c1 <= c1max; c1++) {
393 histp = &histogram[c0][c1][c2min];
394 for (c2 = c2min; c2 <= c2max; c2++, histp++)
395 if (*histp != 0) {
396 ccount++;
399 boxp->colorcount = ccount;
403 LOCAL(int)
404 median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
405 int desired_colors)
406 /* Repeatedly select and split the largest box until we have enough boxes */
408 int n, lb;
409 int c0, c1, c2, cmax;
410 register boxptr b1, b2;
412 while (numboxes < desired_colors) {
413 /* Select box to split.
414 * Current algorithm: by population for first half, then by volume.
416 if (numboxes * 2 <= desired_colors) {
417 b1 = find_biggest_color_pop(boxlist, numboxes);
418 } else {
419 b1 = find_biggest_volume(boxlist, numboxes);
421 if (b1 == NULL) /* no splittable boxes left! */
422 break;
423 b2 = &boxlist[numboxes]; /* where new box will go */
424 /* Copy the color bounds to the new box. */
425 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
426 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
427 /* Choose which axis to split the box on.
428 * Current algorithm: longest scaled axis.
429 * See notes in update_box about scaling distances.
431 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
432 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
433 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
434 /* We want to break any ties in favor of green, then red, blue last.
435 * This code does the right thing for R,G,B or B,G,R color orders only.
437 if (rgb_red[cinfo->out_color_space] == 0) {
438 cmax = c1; n = 1;
439 if (c0 > cmax) { cmax = c0; n = 0; }
440 if (c2 > cmax) { n = 2; }
441 } else {
442 cmax = c1; n = 1;
443 if (c2 > cmax) { cmax = c2; n = 2; }
444 if (c0 > cmax) { n = 0; }
446 /* Choose split point along selected axis, and update box bounds.
447 * Current algorithm: split at halfway point.
448 * (Since the box has been shrunk to minimum volume,
449 * any split will produce two nonempty subboxes.)
450 * Note that lb value is max for lower box, so must be < old max.
452 switch (n) {
453 case 0:
454 lb = (b1->c0max + b1->c0min) / 2;
455 b1->c0max = lb;
456 b2->c0min = lb + 1;
457 break;
458 case 1:
459 lb = (b1->c1max + b1->c1min) / 2;
460 b1->c1max = lb;
461 b2->c1min = lb + 1;
462 break;
463 case 2:
464 lb = (b1->c2max + b1->c2min) / 2;
465 b1->c2max = lb;
466 b2->c2min = lb + 1;
467 break;
469 /* Update stats for boxes */
470 update_box(cinfo, b1);
471 update_box(cinfo, b2);
472 numboxes++;
474 return numboxes;
478 LOCAL(void)
479 compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor)
480 /* Compute representative color for a box, put it in colormap[icolor] */
482 /* Current algorithm: mean weighted by pixels (not colors) */
483 /* Note it is important to get the rounding correct! */
484 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
485 hist3d histogram = cquantize->histogram;
486 histptr histp;
487 int c0, c1, c2;
488 int c0min, c0max, c1min, c1max, c2min, c2max;
489 long count;
490 long total = 0;
491 long c0total = 0;
492 long c1total = 0;
493 long c2total = 0;
495 c0min = boxp->c0min; c0max = boxp->c0max;
496 c1min = boxp->c1min; c1max = boxp->c1max;
497 c2min = boxp->c2min; c2max = boxp->c2max;
499 for (c0 = c0min; c0 <= c0max; c0++)
500 for (c1 = c1min; c1 <= c1max; c1++) {
501 histp = &histogram[c0][c1][c2min];
502 for (c2 = c2min; c2 <= c2max; c2++) {
503 if ((count = *histp++) != 0) {
504 total += count;
505 c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
506 c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
507 c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
512 ((_JSAMPARRAY)cinfo->colormap)[0][icolor] =
513 (_JSAMPLE)((c0total + (total >> 1)) / total);
514 ((_JSAMPARRAY)cinfo->colormap)[1][icolor] =
515 (_JSAMPLE)((c1total + (total >> 1)) / total);
516 ((_JSAMPARRAY)cinfo->colormap)[2][icolor] =
517 (_JSAMPLE)((c2total + (total >> 1)) / total);
521 LOCAL(void)
522 select_colors(j_decompress_ptr cinfo, int desired_colors)
523 /* Master routine for color selection */
525 boxptr boxlist;
526 int numboxes;
527 int i;
529 /* Allocate workspace for box list */
530 boxlist = (boxptr)(*cinfo->mem->alloc_small)
531 ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
532 /* Initialize one box containing whole space */
533 numboxes = 1;
534 boxlist[0].c0min = 0;
535 boxlist[0].c0max = _MAXJSAMPLE >> C0_SHIFT;
536 boxlist[0].c1min = 0;
537 boxlist[0].c1max = _MAXJSAMPLE >> C1_SHIFT;
538 boxlist[0].c2min = 0;
539 boxlist[0].c2max = _MAXJSAMPLE >> C2_SHIFT;
540 /* Shrink it to actually-used volume and set its statistics */
541 update_box(cinfo, &boxlist[0]);
542 /* Perform median-cut to produce final box list */
543 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
544 /* Compute the representative color for each box, fill colormap */
545 for (i = 0; i < numboxes; i++)
546 compute_color(cinfo, &boxlist[i], i);
547 cinfo->actual_number_of_colors = numboxes;
548 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
553 * These routines are concerned with the time-critical task of mapping input
554 * colors to the nearest color in the selected colormap.
556 * We re-use the histogram space as an "inverse color map", essentially a
557 * cache for the results of nearest-color searches. All colors within a
558 * histogram cell will be mapped to the same colormap entry, namely the one
559 * closest to the cell's center. This may not be quite the closest entry to
560 * the actual input color, but it's almost as good. A zero in the cache
561 * indicates we haven't found the nearest color for that cell yet; the array
562 * is cleared to zeroes before starting the mapping pass. When we find the
563 * nearest color for a cell, its colormap index plus one is recorded in the
564 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
565 * when they need to use an unfilled entry in the cache.
567 * Our method of efficiently finding nearest colors is based on the "locally
568 * sorted search" idea described by Heckbert and on the incremental distance
569 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
570 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
571 * the distances from a given colormap entry to each cell of the histogram can
572 * be computed quickly using an incremental method: the differences between
573 * distances to adjacent cells themselves differ by a constant. This allows a
574 * fairly fast implementation of the "brute force" approach of computing the
575 * distance from every colormap entry to every histogram cell. Unfortunately,
576 * it needs a work array to hold the best-distance-so-far for each histogram
577 * cell (because the inner loop has to be over cells, not colormap entries).
578 * The work array elements have to be JLONGs, so the work array would need
579 * 256Kb at our recommended precision. This is not feasible in DOS machines.
581 * To get around these problems, we apply Thomas' method to compute the
582 * nearest colors for only the cells within a small subbox of the histogram.
583 * The work array need be only as big as the subbox, so the memory usage
584 * problem is solved. Furthermore, we need not fill subboxes that are never
585 * referenced in pass2; many images use only part of the color gamut, so a
586 * fair amount of work is saved. An additional advantage of this
587 * approach is that we can apply Heckbert's locality criterion to quickly
588 * eliminate colormap entries that are far away from the subbox; typically
589 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
590 * and we need not compute their distances to individual cells in the subbox.
591 * The speed of this approach is heavily influenced by the subbox size: too
592 * small means too much overhead, too big loses because Heckbert's criterion
593 * can't eliminate as many colormap entries. Empirically the best subbox
594 * size seems to be about 1/512th of the histogram (1/8th in each direction).
596 * Thomas' article also describes a refined method which is asymptotically
597 * faster than the brute-force method, but it is also far more complex and
598 * cannot efficiently be applied to small subboxes. It is therefore not
599 * useful for programs intended to be portable to DOS machines. On machines
600 * with plenty of memory, filling the whole histogram in one shot with Thomas'
601 * refined method might be faster than the present code --- but then again,
602 * it might not be any faster, and it's certainly more complicated.
606 /* log2(histogram cells in update box) for each axis; this can be adjusted */
607 #define BOX_C0_LOG (HIST_C0_BITS - 3)
608 #define BOX_C1_LOG (HIST_C1_BITS - 3)
609 #define BOX_C2_LOG (HIST_C2_BITS - 3)
611 #define BOX_C0_ELEMS (1 << BOX_C0_LOG) /* # of hist cells in update box */
612 #define BOX_C1_ELEMS (1 << BOX_C1_LOG)
613 #define BOX_C2_ELEMS (1 << BOX_C2_LOG)
615 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
616 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
617 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
621 * The next three routines implement inverse colormap filling. They could
622 * all be folded into one big routine, but splitting them up this way saves
623 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
624 * and may allow some compilers to produce better code by registerizing more
625 * inner-loop variables.
628 LOCAL(int)
629 find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
630 _JSAMPLE colorlist[])
631 /* Locate the colormap entries close enough to an update box to be candidates
632 * for the nearest entry to some cell(s) in the update box. The update box
633 * is specified by the center coordinates of its first cell. The number of
634 * candidate colormap entries is returned, and their colormap indexes are
635 * placed in colorlist[].
636 * This routine uses Heckbert's "locally sorted search" criterion to select
637 * the colors that need further consideration.
640 int numcolors = cinfo->actual_number_of_colors;
641 int maxc0, maxc1, maxc2;
642 int centerc0, centerc1, centerc2;
643 int i, x, ncolors;
644 JLONG minmaxdist, min_dist, max_dist, tdist;
645 JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
647 /* Compute true coordinates of update box's upper corner and center.
648 * Actually we compute the coordinates of the center of the upper-corner
649 * histogram cell, which are the upper bounds of the volume we care about.
650 * Note that since ">>" rounds down, the "center" values may be closer to
651 * min than to max; hence comparisons to them must be "<=", not "<".
653 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
654 centerc0 = (minc0 + maxc0) >> 1;
655 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
656 centerc1 = (minc1 + maxc1) >> 1;
657 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
658 centerc2 = (minc2 + maxc2) >> 1;
660 /* For each color in colormap, find:
661 * 1. its minimum squared-distance to any point in the update box
662 * (zero if color is within update box);
663 * 2. its maximum squared-distance to any point in the update box.
664 * Both of these can be found by considering only the corners of the box.
665 * We save the minimum distance for each color in mindist[];
666 * only the smallest maximum distance is of interest.
668 minmaxdist = 0x7FFFFFFFL;
670 for (i = 0; i < numcolors; i++) {
671 /* We compute the squared-c0-distance term, then add in the other two. */
672 x = ((_JSAMPARRAY)cinfo->colormap)[0][i];
673 if (x < minc0) {
674 tdist = (x - minc0) * C0_SCALE;
675 min_dist = tdist * tdist;
676 tdist = (x - maxc0) * C0_SCALE;
677 max_dist = tdist * tdist;
678 } else if (x > maxc0) {
679 tdist = (x - maxc0) * C0_SCALE;
680 min_dist = tdist * tdist;
681 tdist = (x - minc0) * C0_SCALE;
682 max_dist = tdist * tdist;
683 } else {
684 /* within cell range so no contribution to min_dist */
685 min_dist = 0;
686 if (x <= centerc0) {
687 tdist = (x - maxc0) * C0_SCALE;
688 max_dist = tdist * tdist;
689 } else {
690 tdist = (x - minc0) * C0_SCALE;
691 max_dist = tdist * tdist;
695 x = ((_JSAMPARRAY)cinfo->colormap)[1][i];
696 if (x < minc1) {
697 tdist = (x - minc1) * C1_SCALE;
698 min_dist += tdist * tdist;
699 tdist = (x - maxc1) * C1_SCALE;
700 max_dist += tdist * tdist;
701 } else if (x > maxc1) {
702 tdist = (x - maxc1) * C1_SCALE;
703 min_dist += tdist * tdist;
704 tdist = (x - minc1) * C1_SCALE;
705 max_dist += tdist * tdist;
706 } else {
707 /* within cell range so no contribution to min_dist */
708 if (x <= centerc1) {
709 tdist = (x - maxc1) * C1_SCALE;
710 max_dist += tdist * tdist;
711 } else {
712 tdist = (x - minc1) * C1_SCALE;
713 max_dist += tdist * tdist;
717 x = ((_JSAMPARRAY)cinfo->colormap)[2][i];
718 if (x < minc2) {
719 tdist = (x - minc2) * C2_SCALE;
720 min_dist += tdist * tdist;
721 tdist = (x - maxc2) * C2_SCALE;
722 max_dist += tdist * tdist;
723 } else if (x > maxc2) {
724 tdist = (x - maxc2) * C2_SCALE;
725 min_dist += tdist * tdist;
726 tdist = (x - minc2) * C2_SCALE;
727 max_dist += tdist * tdist;
728 } else {
729 /* within cell range so no contribution to min_dist */
730 if (x <= centerc2) {
731 tdist = (x - maxc2) * C2_SCALE;
732 max_dist += tdist * tdist;
733 } else {
734 tdist = (x - minc2) * C2_SCALE;
735 max_dist += tdist * tdist;
739 mindist[i] = min_dist; /* save away the results */
740 if (max_dist < minmaxdist)
741 minmaxdist = max_dist;
744 /* Now we know that no cell in the update box is more than minmaxdist
745 * away from some colormap entry. Therefore, only colors that are
746 * within minmaxdist of some part of the box need be considered.
748 ncolors = 0;
749 for (i = 0; i < numcolors; i++) {
750 if (mindist[i] <= minmaxdist)
751 colorlist[ncolors++] = (_JSAMPLE)i;
753 return ncolors;
757 LOCAL(void)
758 find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
759 int numcolors, _JSAMPLE colorlist[], _JSAMPLE bestcolor[])
760 /* Find the closest colormap entry for each cell in the update box,
761 * given the list of candidate colors prepared by find_nearby_colors.
762 * Return the indexes of the closest entries in the bestcolor[] array.
763 * This routine uses Thomas' incremental distance calculation method to
764 * find the distance from a colormap entry to successive cells in the box.
767 int ic0, ic1, ic2;
768 int i, icolor;
769 register JLONG *bptr; /* pointer into bestdist[] array */
770 _JSAMPLE *cptr; /* pointer into bestcolor[] array */
771 JLONG dist0, dist1; /* initial distance values */
772 register JLONG dist2; /* current distance in inner loop */
773 JLONG xx0, xx1; /* distance increments */
774 register JLONG xx2;
775 JLONG inc0, inc1, inc2; /* initial values for increments */
776 /* This array holds the distance to the nearest-so-far color for each cell */
777 JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
779 /* Initialize best-distance for each cell of the update box */
780 bptr = bestdist;
781 for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
782 *bptr++ = 0x7FFFFFFFL;
784 /* For each color selected by find_nearby_colors,
785 * compute its distance to the center of each cell in the box.
786 * If that's less than best-so-far, update best distance and color number.
789 /* Nominal steps between cell centers ("x" in Thomas article) */
790 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
791 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
792 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
794 for (i = 0; i < numcolors; i++) {
795 icolor = colorlist[i];
796 /* Compute (square of) distance from minc0/c1/c2 to this color */
797 inc0 = (minc0 - ((_JSAMPARRAY)cinfo->colormap)[0][icolor]) * C0_SCALE;
798 dist0 = inc0 * inc0;
799 inc1 = (minc1 - ((_JSAMPARRAY)cinfo->colormap)[1][icolor]) * C1_SCALE;
800 dist0 += inc1 * inc1;
801 inc2 = (minc2 - ((_JSAMPARRAY)cinfo->colormap)[2][icolor]) * C2_SCALE;
802 dist0 += inc2 * inc2;
803 /* Form the initial difference increments */
804 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
805 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
806 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
807 /* Now loop over all cells in box, updating distance per Thomas method */
808 bptr = bestdist;
809 cptr = bestcolor;
810 xx0 = inc0;
811 for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) {
812 dist1 = dist0;
813 xx1 = inc1;
814 for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) {
815 dist2 = dist1;
816 xx2 = inc2;
817 for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) {
818 if (dist2 < *bptr) {
819 *bptr = dist2;
820 *cptr = (_JSAMPLE)icolor;
822 dist2 += xx2;
823 xx2 += 2 * STEP_C2 * STEP_C2;
824 bptr++;
825 cptr++;
827 dist1 += xx1;
828 xx1 += 2 * STEP_C1 * STEP_C1;
830 dist0 += xx0;
831 xx0 += 2 * STEP_C0 * STEP_C0;
837 LOCAL(void)
838 fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2)
839 /* Fill the inverse-colormap entries in the update box that contains */
840 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
841 /* we can fill as many others as we wish.) */
843 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
844 hist3d histogram = cquantize->histogram;
845 int minc0, minc1, minc2; /* lower left corner of update box */
846 int ic0, ic1, ic2;
847 register _JSAMPLE *cptr; /* pointer into bestcolor[] array */
848 register histptr cachep; /* pointer into main cache array */
849 /* This array lists the candidate colormap indexes. */
850 _JSAMPLE colorlist[MAXNUMCOLORS];
851 int numcolors; /* number of candidate colors */
852 /* This array holds the actually closest colormap index for each cell. */
853 _JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
855 /* Convert cell coordinates to update box ID */
856 c0 >>= BOX_C0_LOG;
857 c1 >>= BOX_C1_LOG;
858 c2 >>= BOX_C2_LOG;
860 /* Compute true coordinates of update box's origin corner.
861 * Actually we compute the coordinates of the center of the corner
862 * histogram cell, which are the lower bounds of the volume we care about.
864 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
865 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
866 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
868 /* Determine which colormap entries are close enough to be candidates
869 * for the nearest entry to some cell in the update box.
871 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
873 /* Determine the actually nearest colors. */
874 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
875 bestcolor);
877 /* Save the best color numbers (plus 1) in the main cache array */
878 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
879 c1 <<= BOX_C1_LOG;
880 c2 <<= BOX_C2_LOG;
881 cptr = bestcolor;
882 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
883 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
884 cachep = &histogram[c0 + ic0][c1 + ic1][c2];
885 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
886 *cachep++ = (histcell)((*cptr++) + 1);
894 * Map some rows of pixels to the output colormapped representation.
897 METHODDEF(void)
898 pass2_no_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
899 _JSAMPARRAY output_buf, int num_rows)
900 /* This version performs no dithering */
902 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
903 hist3d histogram = cquantize->histogram;
904 register _JSAMPROW inptr, outptr;
905 register histptr cachep;
906 register int c0, c1, c2;
907 int row;
908 JDIMENSION col;
909 JDIMENSION width = cinfo->output_width;
911 for (row = 0; row < num_rows; row++) {
912 inptr = input_buf[row];
913 outptr = output_buf[row];
914 for (col = width; col > 0; col--) {
915 /* get pixel value and index into the cache */
916 c0 = (*inptr++) >> C0_SHIFT;
917 c1 = (*inptr++) >> C1_SHIFT;
918 c2 = (*inptr++) >> C2_SHIFT;
919 cachep = &histogram[c0][c1][c2];
920 /* If we have not seen this color before, find nearest colormap entry */
921 /* and update the cache */
922 if (*cachep == 0)
923 fill_inverse_cmap(cinfo, c0, c1, c2);
924 /* Now emit the colormap index for this cell */
925 *outptr++ = (_JSAMPLE)(*cachep - 1);
931 METHODDEF(void)
932 pass2_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
933 _JSAMPARRAY output_buf, int num_rows)
934 /* This version performs Floyd-Steinberg dithering */
936 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
937 hist3d histogram = cquantize->histogram;
938 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
939 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
940 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
941 register FSERRPTR errorptr; /* => fserrors[] at column before current */
942 _JSAMPROW inptr; /* => current input pixel */
943 _JSAMPROW outptr; /* => current output pixel */
944 histptr cachep;
945 int dir; /* +1 or -1 depending on direction */
946 int dir3; /* 3*dir, for advancing inptr & errorptr */
947 int row;
948 JDIMENSION col;
949 JDIMENSION width = cinfo->output_width;
950 _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
951 int *error_limit = cquantize->error_limiter;
952 _JSAMPROW colormap0 = ((_JSAMPARRAY)cinfo->colormap)[0];
953 _JSAMPROW colormap1 = ((_JSAMPARRAY)cinfo->colormap)[1];
954 _JSAMPROW colormap2 = ((_JSAMPARRAY)cinfo->colormap)[2];
955 SHIFT_TEMPS
957 for (row = 0; row < num_rows; row++) {
958 inptr = input_buf[row];
959 outptr = output_buf[row];
960 if (cquantize->on_odd_row) {
961 /* work right to left in this row */
962 inptr += (width - 1) * 3; /* so point to rightmost pixel */
963 outptr += width - 1;
964 dir = -1;
965 dir3 = -3;
966 errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
967 cquantize->on_odd_row = FALSE; /* flip for next time */
968 } else {
969 /* work left to right in this row */
970 dir = 1;
971 dir3 = 3;
972 errorptr = cquantize->fserrors; /* => entry before first real column */
973 cquantize->on_odd_row = TRUE; /* flip for next time */
975 /* Preset error values: no error propagated to first pixel from left */
976 cur0 = cur1 = cur2 = 0;
977 /* and no error propagated to row below yet */
978 belowerr0 = belowerr1 = belowerr2 = 0;
979 bpreverr0 = bpreverr1 = bpreverr2 = 0;
981 for (col = width; col > 0; col--) {
982 /* curN holds the error propagated from the previous pixel on the
983 * current line. Add the error propagated from the previous line
984 * to form the complete error correction term for this pixel, and
985 * round the error term (which is expressed * 16) to an integer.
986 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
987 * for either sign of the error value.
988 * Note: errorptr points to *previous* column's array entry.
990 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
991 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
992 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
993 /* Limit the error using transfer function set by init_error_limit.
994 * See comments with init_error_limit for rationale.
996 cur0 = error_limit[cur0];
997 cur1 = error_limit[cur1];
998 cur2 = error_limit[cur2];
999 /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.
1000 * The maximum error is +- _MAXJSAMPLE (or less with error limiting);
1001 * this sets the required size of the range_limit array.
1003 cur0 += inptr[0];
1004 cur1 += inptr[1];
1005 cur2 += inptr[2];
1006 cur0 = range_limit[cur0];
1007 cur1 = range_limit[cur1];
1008 cur2 = range_limit[cur2];
1009 /* Index into the cache with adjusted pixel value */
1010 cachep =
1011 &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1012 /* If we have not seen this color before, find nearest colormap */
1013 /* entry and update the cache */
1014 if (*cachep == 0)
1015 fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,
1016 cur2 >> C2_SHIFT);
1017 /* Now emit the colormap index for this cell */
1019 register int pixcode = *cachep - 1;
1020 *outptr = (_JSAMPLE)pixcode;
1021 /* Compute representation error for this pixel */
1022 cur0 -= colormap0[pixcode];
1023 cur1 -= colormap1[pixcode];
1024 cur2 -= colormap2[pixcode];
1026 /* Compute error fractions to be propagated to adjacent pixels.
1027 * Add these into the running sums, and simultaneously shift the
1028 * next-line error sums left by 1 column.
1031 register LOCFSERROR bnexterr;
1033 bnexterr = cur0; /* Process component 0 */
1034 errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3);
1035 bpreverr0 = belowerr0 + cur0 * 5;
1036 belowerr0 = bnexterr;
1037 cur0 *= 7;
1038 bnexterr = cur1; /* Process component 1 */
1039 errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3);
1040 bpreverr1 = belowerr1 + cur1 * 5;
1041 belowerr1 = bnexterr;
1042 cur1 *= 7;
1043 bnexterr = cur2; /* Process component 2 */
1044 errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3);
1045 bpreverr2 = belowerr2 + cur2 * 5;
1046 belowerr2 = bnexterr;
1047 cur2 *= 7;
1049 /* At this point curN contains the 7/16 error value to be propagated
1050 * to the next pixel on the current line, and all the errors for the
1051 * next line have been shifted over. We are therefore ready to move on.
1053 inptr += dir3; /* Advance pixel pointers to next column */
1054 outptr += dir;
1055 errorptr += dir3; /* advance errorptr to current column */
1057 /* Post-loop cleanup: we must unload the final error values into the
1058 * final fserrors[] entry. Note we need not unload belowerrN because
1059 * it is for the dummy column before or after the actual array.
1061 errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */
1062 errorptr[1] = (FSERROR)bpreverr1;
1063 errorptr[2] = (FSERROR)bpreverr2;
1069 * Initialize the error-limiting transfer function (lookup table).
1070 * The raw F-S error computation can potentially compute error values of up to
1071 * +- _MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1072 * much less, otherwise obviously wrong pixels will be created. (Typical
1073 * effects include weird fringes at color-area boundaries, isolated bright
1074 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1075 * is to ensure that the "corners" of the color cube are allocated as output
1076 * colors; then repeated errors in the same direction cannot cause cascading
1077 * error buildup. However, that only prevents the error from getting
1078 * completely out of hand; Aaron Giles reports that error limiting improves
1079 * the results even with corner colors allocated.
1080 * A simple clamping of the error values to about +- _MAXJSAMPLE/8 works pretty
1081 * well, but the smoother transfer function used below is even better. Thanks
1082 * to Aaron Giles for this idea.
1085 LOCAL(void)
1086 init_error_limit(j_decompress_ptr cinfo)
1087 /* Allocate and fill in the error_limiter table */
1089 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1090 int *table;
1091 int in, out;
1093 table = (int *)(*cinfo->mem->alloc_small)
1094 ((j_common_ptr)cinfo, JPOOL_IMAGE, (_MAXJSAMPLE * 2 + 1) * sizeof(int));
1095 table += _MAXJSAMPLE; /* so can index -_MAXJSAMPLE .. +_MAXJSAMPLE */
1096 cquantize->error_limiter = table;
1098 #define STEPSIZE ((_MAXJSAMPLE + 1) / 16)
1099 /* Map errors 1:1 up to +- _MAXJSAMPLE/16 */
1100 out = 0;
1101 for (in = 0; in < STEPSIZE; in++, out++) {
1102 table[in] = out; table[-in] = -out;
1104 /* Map errors 1:2 up to +- 3*_MAXJSAMPLE/16 */
1105 for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
1106 table[in] = out; table[-in] = -out;
1108 /* Clamp the rest to final out value (which is (_MAXJSAMPLE+1)/8) */
1109 for (; in <= _MAXJSAMPLE; in++) {
1110 table[in] = out; table[-in] = -out;
1112 #undef STEPSIZE
1117 * Finish up at the end of each pass.
1120 METHODDEF(void)
1121 finish_pass1(j_decompress_ptr cinfo)
1123 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1125 /* Select the representative colors and fill in cinfo->colormap */
1126 cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;
1127 select_colors(cinfo, cquantize->desired);
1128 /* Force next pass to zero the color index table */
1129 cquantize->needs_zeroed = TRUE;
1133 METHODDEF(void)
1134 finish_pass2(j_decompress_ptr cinfo)
1136 /* no work */
1141 * Initialize for each processing pass.
1144 METHODDEF(void)
1145 start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
1147 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1148 hist3d histogram = cquantize->histogram;
1149 int i;
1151 /* Only F-S dithering or no dithering is supported. */
1152 /* If user asks for ordered dither, give them F-S. */
1153 if (cinfo->dither_mode != JDITHER_NONE)
1154 cinfo->dither_mode = JDITHER_FS;
1156 if (is_pre_scan) {
1157 /* Set up method pointers */
1158 cquantize->pub._color_quantize = prescan_quantize;
1159 cquantize->pub.finish_pass = finish_pass1;
1160 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1161 } else {
1162 /* Set up method pointers */
1163 if (cinfo->dither_mode == JDITHER_FS)
1164 cquantize->pub._color_quantize = pass2_fs_dither;
1165 else
1166 cquantize->pub._color_quantize = pass2_no_dither;
1167 cquantize->pub.finish_pass = finish_pass2;
1169 /* Make sure color count is acceptable */
1170 i = cinfo->actual_number_of_colors;
1171 if (i < 1)
1172 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1173 if (i > MAXNUMCOLORS)
1174 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1176 if (cinfo->dither_mode == JDITHER_FS) {
1177 size_t arraysize =
1178 (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)));
1179 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1180 if (cquantize->fserrors == NULL)
1181 cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1182 ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
1183 /* Initialize the propagated errors to zero. */
1184 jzero_far((void *)cquantize->fserrors, arraysize);
1185 /* Make the error-limit table if we didn't already. */
1186 if (cquantize->error_limiter == NULL)
1187 init_error_limit(cinfo);
1188 cquantize->on_odd_row = FALSE;
1192 /* Zero the histogram or inverse color map, if necessary */
1193 if (cquantize->needs_zeroed) {
1194 for (i = 0; i < HIST_C0_ELEMS; i++) {
1195 jzero_far((void *)histogram[i],
1196 HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1198 cquantize->needs_zeroed = FALSE;
1204 * Switch to a new external colormap between output passes.
1207 METHODDEF(void)
1208 new_color_map_2_quant(j_decompress_ptr cinfo)
1210 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1212 /* Reset the inverse color map */
1213 cquantize->needs_zeroed = TRUE;
1218 * Module initialization routine for 2-pass color quantization.
1221 GLOBAL(void)
1222 _jinit_2pass_quantizer(j_decompress_ptr cinfo)
1224 my_cquantize_ptr cquantize;
1225 int i;
1227 if (cinfo->data_precision != BITS_IN_JSAMPLE)
1228 ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
1230 cquantize = (my_cquantize_ptr)
1231 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1232 sizeof(my_cquantizer));
1233 cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
1234 cquantize->pub.start_pass = start_pass_2_quant;
1235 cquantize->pub.new_color_map = new_color_map_2_quant;
1236 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1237 cquantize->error_limiter = NULL;
1239 /* Make sure jdmaster didn't give me a case I can't handle */
1240 if (cinfo->out_color_components != 3 ||
1241 cinfo->out_color_space == JCS_RGB565 || cinfo->master->lossless)
1242 ERREXIT(cinfo, JERR_NOTIMPL);
1244 /* Allocate the histogram/inverse colormap storage */
1245 cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small)
1246 ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1247 for (i = 0; i < HIST_C0_ELEMS; i++) {
1248 cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large)
1249 ((j_common_ptr)cinfo, JPOOL_IMAGE,
1250 HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1252 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1254 /* Allocate storage for the completed colormap, if required.
1255 * We do this now since it may affect the memory manager's space
1256 * calculations.
1258 if (cinfo->enable_2pass_quant) {
1259 /* Make sure color count is acceptable */
1260 int desired = cinfo->desired_number_of_colors;
1261 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1262 if (desired < 8)
1263 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1264 /* Make sure colormap indexes can be represented by _JSAMPLEs */
1265 if (desired > MAXNUMCOLORS)
1266 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1267 cquantize->sv_colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
1268 ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3);
1269 cquantize->desired = desired;
1270 } else
1271 cquantize->sv_colormap = NULL;
1273 /* Only F-S dithering or no dithering is supported. */
1274 /* If user asks for ordered dither, give them F-S. */
1275 if (cinfo->dither_mode != JDITHER_NONE)
1276 cinfo->dither_mode = JDITHER_FS;
1278 /* Allocate Floyd-Steinberg workspace if necessary.
1279 * This isn't really needed until pass 2, but again it may affect the memory
1280 * manager's space calculations. Although we will cope with a later change
1281 * in dither_mode, we do not promise to honor max_memory_to_use if
1282 * dither_mode changes.
1284 if (cinfo->dither_mode == JDITHER_FS) {
1285 cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1286 ((j_common_ptr)cinfo, JPOOL_IMAGE,
1287 (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1288 /* Might as well create the error-limiting table too. */
1289 init_error_limit(cinfo);
1293 #endif /* defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */