* m4/Makefile.am.in: updated file
[findutils.git] / lib / regex.c
blob74fcf9c45ebb593a9c53c923d18fe00e4cc1301f
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25 #endif
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
37 # else
38 # define PARAMS(args) ()
39 # endif /* GCC. */
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
59 #ifdef _LIBC
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
81 #define btowc __btowc
82 #endif
84 /* This is for other GNU distributions with internationalized messages. */
85 #if HAVE_LIBINTL_H || defined _LIBC
86 # include <libintl.h>
87 #else
88 # define gettext(msgid) (msgid)
89 #endif
91 #ifndef gettext_noop
92 /* This define is so xgettext can find the internationalizable
93 strings. */
94 # define gettext_noop(String) String
95 #endif
97 /* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
99 #ifdef emacs
101 # include "lisp.h"
102 # include "buffer.h"
103 # include "syntax.h"
105 #else /* not emacs */
107 /* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
110 # undef REL_ALLOC
112 # if defined STDC_HEADERS || defined _LIBC
113 # include <stdlib.h>
114 # else
115 char *malloc ();
116 char *realloc ();
117 # endif
119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121 # ifdef INHIBIT_STRING_HEADER
122 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123 # if !defined bzero && !defined bcopy
124 # undef INHIBIT_STRING_HEADER
125 # endif
126 # endif
127 # endif
129 /* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132 # ifndef INHIBIT_STRING_HEADER
133 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
134 # include <string.h>
135 # ifndef bzero
136 # ifndef _LIBC
137 # define bzero(s, n) (memset (s, '\0', n), (s))
138 # else
139 # define bzero(s, n) __bzero (s, n)
140 # endif
141 # endif
142 # else
143 # include <strings.h>
144 # ifndef memcmp
145 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
146 # endif
147 # ifndef memcpy
148 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
149 # endif
150 # endif
151 # endif
153 /* Define the syntax stuff for \<, \>, etc. */
155 /* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
157 # ifndef Sword
158 # define Sword 1
159 # endif
161 # ifdef SWITCH_ENUM_BUG
162 # define SWITCH_ENUM_CAST(x) ((int)(x))
163 # else
164 # define SWITCH_ENUM_CAST(x) (x)
165 # endif
167 /* How many characters in the character set. */
168 # define CHAR_SET_SIZE 256
170 # ifdef SYNTAX_TABLE
172 extern char *re_syntax_table;
174 # else /* not SYNTAX_TABLE */
176 static char re_syntax_table[CHAR_SET_SIZE];
178 static void
179 init_syntax_once ()
181 register int c;
182 static int done = 0;
184 if (done)
185 return;
187 bzero (re_syntax_table, sizeof re_syntax_table);
189 for (c = 'a'; c <= 'z'; c++)
190 re_syntax_table[c] = Sword;
192 for (c = 'A'; c <= 'Z'; c++)
193 re_syntax_table[c] = Sword;
195 for (c = '0'; c <= '9'; c++)
196 re_syntax_table[c] = Sword;
198 re_syntax_table['_'] = Sword;
200 done = 1;
203 # endif /* not SYNTAX_TABLE */
205 # define SYNTAX(c) re_syntax_table[c]
207 #endif /* not emacs */
209 /* Get the interface, including the syntax bits. */
210 #include <regex.h>
212 /* isalpha etc. are used for the character classes. */
213 #include <ctype.h>
215 /* Jim Meyering writes:
217 "... Some ctype macros are valid only for character codes that
218 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
219 using /bin/cc or gcc but without giving an ansi option). So, all
220 ctype uses should be through macros like ISPRINT... If
221 STDC_HEADERS is defined, then autoconf has verified that the ctype
222 macros don't need to be guarded with references to isascii. ...
223 Defining isascii to 1 should let any compiler worth its salt
224 eliminate the && through constant folding."
225 Solaris defines some of these symbols so we must undefine them first. */
227 #undef ISASCII
228 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
229 # define ISASCII(c) 1
230 #else
231 # define ISASCII(c) isascii(c)
232 #endif
234 #ifdef isblank
235 # define ISBLANK(c) (ISASCII (c) && isblank (c))
236 #else
237 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
238 #endif
239 #ifdef isgraph
240 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
241 #else
242 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
243 #endif
245 #undef ISPRINT
246 #define ISPRINT(c) (ISASCII (c) && isprint (c))
247 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
248 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
249 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
250 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
251 #define ISLOWER(c) (ISASCII (c) && islower (c))
252 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
253 #define ISSPACE(c) (ISASCII (c) && isspace (c))
254 #define ISUPPER(c) (ISASCII (c) && isupper (c))
255 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
257 #ifdef _tolower
258 # define TOLOWER(c) _tolower(c)
259 #else
260 # define TOLOWER(c) tolower(c)
261 #endif
263 #ifndef NULL
264 # define NULL (void *)0
265 #endif
267 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
268 since ours (we hope) works properly with all combinations of
269 machines, compilers, `char' and `unsigned char' argument types.
270 (Per Bothner suggested the basic approach.) */
271 #undef SIGN_EXTEND_CHAR
272 #if __STDC__
273 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
274 #else /* not __STDC__ */
275 /* As in Harbison and Steele. */
276 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
277 #endif
279 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
280 use `alloca' instead of `malloc'. This is because using malloc in
281 re_search* or re_match* could cause memory leaks when C-g is used in
282 Emacs; also, malloc is slower and causes storage fragmentation. On
283 the other hand, malloc is more portable, and easier to debug.
285 Because we sometimes use alloca, some routines have to be macros,
286 not functions -- `alloca'-allocated space disappears at the end of the
287 function it is called in. */
289 #ifdef REGEX_MALLOC
291 # define REGEX_ALLOCATE malloc
292 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
293 # define REGEX_FREE free
295 #else /* not REGEX_MALLOC */
297 /* Emacs already defines alloca, sometimes. */
298 # ifndef alloca
300 /* Make alloca work the best possible way. */
301 # ifdef __GNUC__
302 # define alloca __builtin_alloca
303 # else /* not __GNUC__ */
304 # if HAVE_ALLOCA_H
305 # include <alloca.h>
306 # endif /* HAVE_ALLOCA_H */
307 # endif /* not __GNUC__ */
309 # endif /* not alloca */
311 # define REGEX_ALLOCATE alloca
313 /* Assumes a `char *destination' variable. */
314 # define REGEX_REALLOCATE(source, osize, nsize) \
315 (destination = (char *) alloca (nsize), \
316 memcpy (destination, source, osize))
318 /* No need to do anything to free, after alloca. */
319 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
321 #endif /* not REGEX_MALLOC */
323 /* Define how to allocate the failure stack. */
325 #if defined REL_ALLOC && defined REGEX_MALLOC
327 # define REGEX_ALLOCATE_STACK(size) \
328 r_alloc (&failure_stack_ptr, (size))
329 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
330 r_re_alloc (&failure_stack_ptr, (nsize))
331 # define REGEX_FREE_STACK(ptr) \
332 r_alloc_free (&failure_stack_ptr)
334 #else /* not using relocating allocator */
336 # ifdef REGEX_MALLOC
338 # define REGEX_ALLOCATE_STACK malloc
339 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
340 # define REGEX_FREE_STACK free
342 # else /* not REGEX_MALLOC */
344 # define REGEX_ALLOCATE_STACK alloca
346 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
347 REGEX_REALLOCATE (source, osize, nsize)
348 /* No need to explicitly free anything. */
349 # define REGEX_FREE_STACK(arg)
351 # endif /* not REGEX_MALLOC */
352 #endif /* not using relocating allocator */
355 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
356 `string1' or just past its end. This works if PTR is NULL, which is
357 a good thing. */
358 #define FIRST_STRING_P(ptr) \
359 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
361 /* (Re)Allocate N items of type T using malloc, or fail. */
362 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
363 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
364 #define RETALLOC_IF(addr, n, t) \
365 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
366 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
368 #define BYTEWIDTH 8 /* In bits. */
370 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
372 #undef MAX
373 #undef MIN
374 #define MAX(a, b) ((a) > (b) ? (a) : (b))
375 #define MIN(a, b) ((a) < (b) ? (a) : (b))
377 typedef char boolean;
378 #define false 0
379 #define true 1
381 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
382 const char *string1, int size1,
383 const char *string2, int size2,
384 int pos,
385 struct re_registers *regs,
386 int stop));
388 /* These are the command codes that appear in compiled regular
389 expressions. Some opcodes are followed by argument bytes. A
390 command code can specify any interpretation whatsoever for its
391 arguments. Zero bytes may appear in the compiled regular expression. */
393 typedef enum
395 no_op = 0,
397 /* Succeed right away--no more backtracking. */
398 succeed,
400 /* Followed by one byte giving n, then by n literal bytes. */
401 exactn,
403 /* Matches any (more or less) character. */
404 anychar,
406 /* Matches any one char belonging to specified set. First
407 following byte is number of bitmap bytes. Then come bytes
408 for a bitmap saying which chars are in. Bits in each byte
409 are ordered low-bit-first. A character is in the set if its
410 bit is 1. A character too large to have a bit in the map is
411 automatically not in the set. */
412 charset,
414 /* Same parameters as charset, but match any character that is
415 not one of those specified. */
416 charset_not,
418 /* Start remembering the text that is matched, for storing in a
419 register. Followed by one byte with the register number, in
420 the range 0 to one less than the pattern buffer's re_nsub
421 field. Then followed by one byte with the number of groups
422 inner to this one. (This last has to be part of the
423 start_memory only because we need it in the on_failure_jump
424 of re_match_2.) */
425 start_memory,
427 /* Stop remembering the text that is matched and store it in a
428 memory register. Followed by one byte with the register
429 number, in the range 0 to one less than `re_nsub' in the
430 pattern buffer, and one byte with the number of inner groups,
431 just like `start_memory'. (We need the number of inner
432 groups here because we don't have any easy way of finding the
433 corresponding start_memory when we're at a stop_memory.) */
434 stop_memory,
436 /* Match a duplicate of something remembered. Followed by one
437 byte containing the register number. */
438 duplicate,
440 /* Fail unless at beginning of line. */
441 begline,
443 /* Fail unless at end of line. */
444 endline,
446 /* Succeeds if at beginning of buffer (if emacs) or at beginning
447 of string to be matched (if not). */
448 begbuf,
450 /* Analogously, for end of buffer/string. */
451 endbuf,
453 /* Followed by two byte relative address to which to jump. */
454 jump,
456 /* Same as jump, but marks the end of an alternative. */
457 jump_past_alt,
459 /* Followed by two-byte relative address of place to resume at
460 in case of failure. */
461 on_failure_jump,
463 /* Like on_failure_jump, but pushes a placeholder instead of the
464 current string position when executed. */
465 on_failure_keep_string_jump,
467 /* Throw away latest failure point and then jump to following
468 two-byte relative address. */
469 pop_failure_jump,
471 /* Change to pop_failure_jump if know won't have to backtrack to
472 match; otherwise change to jump. This is used to jump
473 back to the beginning of a repeat. If what follows this jump
474 clearly won't match what the repeat does, such that we can be
475 sure that there is no use backtracking out of repetitions
476 already matched, then we change it to a pop_failure_jump.
477 Followed by two-byte address. */
478 maybe_pop_jump,
480 /* Jump to following two-byte address, and push a dummy failure
481 point. This failure point will be thrown away if an attempt
482 is made to use it for a failure. A `+' construct makes this
483 before the first repeat. Also used as an intermediary kind
484 of jump when compiling an alternative. */
485 dummy_failure_jump,
487 /* Push a dummy failure point and continue. Used at the end of
488 alternatives. */
489 push_dummy_failure,
491 /* Followed by two-byte relative address and two-byte number n.
492 After matching N times, jump to the address upon failure. */
493 succeed_n,
495 /* Followed by two-byte relative address, and two-byte number n.
496 Jump to the address N times, then fail. */
497 jump_n,
499 /* Set the following two-byte relative address to the
500 subsequent two-byte number. The address *includes* the two
501 bytes of number. */
502 set_number_at,
504 wordchar, /* Matches any word-constituent character. */
505 notwordchar, /* Matches any char that is not a word-constituent. */
507 wordbeg, /* Succeeds if at word beginning. */
508 wordend, /* Succeeds if at word end. */
510 wordbound, /* Succeeds if at a word boundary. */
511 notwordbound /* Succeeds if not at a word boundary. */
513 #ifdef emacs
514 ,before_dot, /* Succeeds if before point. */
515 at_dot, /* Succeeds if at point. */
516 after_dot, /* Succeeds if after point. */
518 /* Matches any character whose syntax is specified. Followed by
519 a byte which contains a syntax code, e.g., Sword. */
520 syntaxspec,
522 /* Matches any character whose syntax is not that specified. */
523 notsyntaxspec
524 #endif /* emacs */
525 } re_opcode_t;
527 /* Common operations on the compiled pattern. */
529 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
531 #define STORE_NUMBER(destination, number) \
532 do { \
533 (destination)[0] = (number) & 0377; \
534 (destination)[1] = (number) >> 8; \
535 } while (0)
537 /* Same as STORE_NUMBER, except increment DESTINATION to
538 the byte after where the number is stored. Therefore, DESTINATION
539 must be an lvalue. */
541 #define STORE_NUMBER_AND_INCR(destination, number) \
542 do { \
543 STORE_NUMBER (destination, number); \
544 (destination) += 2; \
545 } while (0)
547 /* Put into DESTINATION a number stored in two contiguous bytes starting
548 at SOURCE. */
550 #define EXTRACT_NUMBER(destination, source) \
551 do { \
552 (destination) = *(source) & 0377; \
553 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
554 } while (0)
556 #ifdef DEBUG
557 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
558 static void
559 extract_number (dest, source)
560 int *dest;
561 unsigned char *source;
563 int temp = SIGN_EXTEND_CHAR (*(source + 1));
564 *dest = *source & 0377;
565 *dest += temp << 8;
568 # ifndef EXTRACT_MACROS /* To debug the macros. */
569 # undef EXTRACT_NUMBER
570 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
571 # endif /* not EXTRACT_MACROS */
573 #endif /* DEBUG */
575 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
576 SOURCE must be an lvalue. */
578 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
579 do { \
580 EXTRACT_NUMBER (destination, source); \
581 (source) += 2; \
582 } while (0)
584 #ifdef DEBUG
585 static void extract_number_and_incr _RE_ARGS ((int *destination,
586 unsigned char **source));
587 static void
588 extract_number_and_incr (destination, source)
589 int *destination;
590 unsigned char **source;
592 extract_number (destination, *source);
593 *source += 2;
596 # ifndef EXTRACT_MACROS
597 # undef EXTRACT_NUMBER_AND_INCR
598 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
599 extract_number_and_incr (&dest, &src)
600 # endif /* not EXTRACT_MACROS */
602 #endif /* DEBUG */
604 /* If DEBUG is defined, Regex prints many voluminous messages about what
605 it is doing (if the variable `debug' is nonzero). If linked with the
606 main program in `iregex.c', you can enter patterns and strings
607 interactively. And if linked with the main program in `main.c' and
608 the other test files, you can run the already-written tests. */
610 #ifdef DEBUG
612 /* We use standard I/O for debugging. */
613 # include <stdio.h>
615 /* It is useful to test things that ``must'' be true when debugging. */
616 # include <assert.h>
618 static int debug = 0;
620 # define DEBUG_STATEMENT(e) e
621 # define DEBUG_PRINT1(x) if (debug) printf (x)
622 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
623 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
624 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
625 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
626 if (debug) print_partial_compiled_pattern (s, e)
627 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
628 if (debug) print_double_string (w, s1, sz1, s2, sz2)
631 /* Print the fastmap in human-readable form. */
633 void
634 print_fastmap (fastmap)
635 char *fastmap;
637 unsigned was_a_range = 0;
638 unsigned i = 0;
640 while (i < (1 << BYTEWIDTH))
642 if (fastmap[i++])
644 was_a_range = 0;
645 putchar (i - 1);
646 while (i < (1 << BYTEWIDTH) && fastmap[i])
648 was_a_range = 1;
649 i++;
651 if (was_a_range)
653 printf ("-");
654 putchar (i - 1);
658 putchar ('\n');
662 /* Print a compiled pattern string in human-readable form, starting at
663 the START pointer into it and ending just before the pointer END. */
665 void
666 print_partial_compiled_pattern (start, end)
667 unsigned char *start;
668 unsigned char *end;
670 int mcnt, mcnt2;
671 unsigned char *p1;
672 unsigned char *p = start;
673 unsigned char *pend = end;
675 if (start == NULL)
677 printf ("(null)\n");
678 return;
681 /* Loop over pattern commands. */
682 while (p < pend)
684 printf ("%d:\t", p - start);
686 switch ((re_opcode_t) *p++)
688 case no_op:
689 printf ("/no_op");
690 break;
692 case exactn:
693 mcnt = *p++;
694 printf ("/exactn/%d", mcnt);
697 putchar ('/');
698 putchar (*p++);
700 while (--mcnt);
701 break;
703 case start_memory:
704 mcnt = *p++;
705 printf ("/start_memory/%d/%d", mcnt, *p++);
706 break;
708 case stop_memory:
709 mcnt = *p++;
710 printf ("/stop_memory/%d/%d", mcnt, *p++);
711 break;
713 case duplicate:
714 printf ("/duplicate/%d", *p++);
715 break;
717 case anychar:
718 printf ("/anychar");
719 break;
721 case charset:
722 case charset_not:
724 register int c, last = -100;
725 register int in_range = 0;
727 printf ("/charset [%s",
728 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
730 assert (p + *p < pend);
732 for (c = 0; c < 256; c++)
733 if (c / 8 < *p
734 && (p[1 + (c/8)] & (1 << (c % 8))))
736 /* Are we starting a range? */
737 if (last + 1 == c && ! in_range)
739 putchar ('-');
740 in_range = 1;
742 /* Have we broken a range? */
743 else if (last + 1 != c && in_range)
745 putchar (last);
746 in_range = 0;
749 if (! in_range)
750 putchar (c);
752 last = c;
755 if (in_range)
756 putchar (last);
758 putchar (']');
760 p += 1 + *p;
762 break;
764 case begline:
765 printf ("/begline");
766 break;
768 case endline:
769 printf ("/endline");
770 break;
772 case on_failure_jump:
773 extract_number_and_incr (&mcnt, &p);
774 printf ("/on_failure_jump to %d", p + mcnt - start);
775 break;
777 case on_failure_keep_string_jump:
778 extract_number_and_incr (&mcnt, &p);
779 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
780 break;
782 case dummy_failure_jump:
783 extract_number_and_incr (&mcnt, &p);
784 printf ("/dummy_failure_jump to %d", p + mcnt - start);
785 break;
787 case push_dummy_failure:
788 printf ("/push_dummy_failure");
789 break;
791 case maybe_pop_jump:
792 extract_number_and_incr (&mcnt, &p);
793 printf ("/maybe_pop_jump to %d", p + mcnt - start);
794 break;
796 case pop_failure_jump:
797 extract_number_and_incr (&mcnt, &p);
798 printf ("/pop_failure_jump to %d", p + mcnt - start);
799 break;
801 case jump_past_alt:
802 extract_number_and_incr (&mcnt, &p);
803 printf ("/jump_past_alt to %d", p + mcnt - start);
804 break;
806 case jump:
807 extract_number_and_incr (&mcnt, &p);
808 printf ("/jump to %d", p + mcnt - start);
809 break;
811 case succeed_n:
812 extract_number_and_incr (&mcnt, &p);
813 p1 = p + mcnt;
814 extract_number_and_incr (&mcnt2, &p);
815 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
816 break;
818 case jump_n:
819 extract_number_and_incr (&mcnt, &p);
820 p1 = p + mcnt;
821 extract_number_and_incr (&mcnt2, &p);
822 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
823 break;
825 case set_number_at:
826 extract_number_and_incr (&mcnt, &p);
827 p1 = p + mcnt;
828 extract_number_and_incr (&mcnt2, &p);
829 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
830 break;
832 case wordbound:
833 printf ("/wordbound");
834 break;
836 case notwordbound:
837 printf ("/notwordbound");
838 break;
840 case wordbeg:
841 printf ("/wordbeg");
842 break;
844 case wordend:
845 printf ("/wordend");
847 # ifdef emacs
848 case before_dot:
849 printf ("/before_dot");
850 break;
852 case at_dot:
853 printf ("/at_dot");
854 break;
856 case after_dot:
857 printf ("/after_dot");
858 break;
860 case syntaxspec:
861 printf ("/syntaxspec");
862 mcnt = *p++;
863 printf ("/%d", mcnt);
864 break;
866 case notsyntaxspec:
867 printf ("/notsyntaxspec");
868 mcnt = *p++;
869 printf ("/%d", mcnt);
870 break;
871 # endif /* emacs */
873 case wordchar:
874 printf ("/wordchar");
875 break;
877 case notwordchar:
878 printf ("/notwordchar");
879 break;
881 case begbuf:
882 printf ("/begbuf");
883 break;
885 case endbuf:
886 printf ("/endbuf");
887 break;
889 default:
890 printf ("?%d", *(p-1));
893 putchar ('\n');
896 printf ("%d:\tend of pattern.\n", p - start);
900 void
901 print_compiled_pattern (bufp)
902 struct re_pattern_buffer *bufp;
904 unsigned char *buffer = bufp->buffer;
906 print_partial_compiled_pattern (buffer, buffer + bufp->used);
907 printf ("%ld bytes used/%ld bytes allocated.\n",
908 bufp->used, bufp->allocated);
910 if (bufp->fastmap_accurate && bufp->fastmap)
912 printf ("fastmap: ");
913 print_fastmap (bufp->fastmap);
916 printf ("re_nsub: %d\t", bufp->re_nsub);
917 printf ("regs_alloc: %d\t", bufp->regs_allocated);
918 printf ("can_be_null: %d\t", bufp->can_be_null);
919 printf ("newline_anchor: %d\n", bufp->newline_anchor);
920 printf ("no_sub: %d\t", bufp->no_sub);
921 printf ("not_bol: %d\t", bufp->not_bol);
922 printf ("not_eol: %d\t", bufp->not_eol);
923 printf ("syntax: %lx\n", bufp->syntax);
924 /* Perhaps we should print the translate table? */
928 void
929 print_double_string (where, string1, size1, string2, size2)
930 const char *where;
931 const char *string1;
932 const char *string2;
933 int size1;
934 int size2;
936 int this_char;
938 if (where == NULL)
939 printf ("(null)");
940 else
942 if (FIRST_STRING_P (where))
944 for (this_char = where - string1; this_char < size1; this_char++)
945 putchar (string1[this_char]);
947 where = string2;
950 for (this_char = where - string2; this_char < size2; this_char++)
951 putchar (string2[this_char]);
955 void
956 printchar (c)
957 int c;
959 putc (c, stderr);
962 #else /* not DEBUG */
964 # undef assert
965 # define assert(e)
967 # define DEBUG_STATEMENT(e)
968 # define DEBUG_PRINT1(x)
969 # define DEBUG_PRINT2(x1, x2)
970 # define DEBUG_PRINT3(x1, x2, x3)
971 # define DEBUG_PRINT4(x1, x2, x3, x4)
972 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
973 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
975 #endif /* not DEBUG */
977 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
978 also be assigned to arbitrarily: each pattern buffer stores its own
979 syntax, so it can be changed between regex compilations. */
980 /* This has no initializer because initialized variables in Emacs
981 become read-only after dumping. */
982 reg_syntax_t re_syntax_options;
985 /* Specify the precise syntax of regexps for compilation. This provides
986 for compatibility for various utilities which historically have
987 different, incompatible syntaxes.
989 The argument SYNTAX is a bit mask comprised of the various bits
990 defined in regex.h. We return the old syntax. */
992 reg_syntax_t
993 re_set_syntax (syntax)
994 reg_syntax_t syntax;
996 reg_syntax_t ret = re_syntax_options;
998 re_syntax_options = syntax;
999 #ifdef DEBUG
1000 if (syntax & RE_DEBUG)
1001 debug = 1;
1002 else if (debug) /* was on but now is not */
1003 debug = 0;
1004 #endif /* DEBUG */
1005 return ret;
1007 #ifdef _LIBC
1008 weak_alias (__re_set_syntax, re_set_syntax)
1009 #endif
1011 /* This table gives an error message for each of the error codes listed
1012 in regex.h. Obviously the order here has to be same as there.
1013 POSIX doesn't require that we do anything for REG_NOERROR,
1014 but why not be nice? */
1016 static const char *re_error_msgid[] =
1018 gettext_noop ("Success"), /* REG_NOERROR */
1019 gettext_noop ("No match"), /* REG_NOMATCH */
1020 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1021 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1022 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1023 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1024 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1025 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1026 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1027 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1028 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1029 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1030 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1031 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1032 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1033 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1034 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1037 /* Avoiding alloca during matching, to placate r_alloc. */
1039 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1040 searching and matching functions should not call alloca. On some
1041 systems, alloca is implemented in terms of malloc, and if we're
1042 using the relocating allocator routines, then malloc could cause a
1043 relocation, which might (if the strings being searched are in the
1044 ralloc heap) shift the data out from underneath the regexp
1045 routines.
1047 Here's another reason to avoid allocation: Emacs
1048 processes input from X in a signal handler; processing X input may
1049 call malloc; if input arrives while a matching routine is calling
1050 malloc, then we're scrod. But Emacs can't just block input while
1051 calling matching routines; then we don't notice interrupts when
1052 they come in. So, Emacs blocks input around all regexp calls
1053 except the matching calls, which it leaves unprotected, in the
1054 faith that they will not malloc. */
1056 /* Normally, this is fine. */
1057 #define MATCH_MAY_ALLOCATE
1059 /* When using GNU C, we are not REALLY using the C alloca, no matter
1060 what config.h may say. So don't take precautions for it. */
1061 #ifdef __GNUC__
1062 # undef C_ALLOCA
1063 #endif
1065 /* The match routines may not allocate if (1) they would do it with malloc
1066 and (2) it's not safe for them to use malloc.
1067 Note that if REL_ALLOC is defined, matching would not use malloc for the
1068 failure stack, but we would still use it for the register vectors;
1069 so REL_ALLOC should not affect this. */
1070 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1071 # undef MATCH_MAY_ALLOCATE
1072 #endif
1075 /* Failure stack declarations and macros; both re_compile_fastmap and
1076 re_match_2 use a failure stack. These have to be macros because of
1077 REGEX_ALLOCATE_STACK. */
1080 /* Number of failure points for which to initially allocate space
1081 when matching. If this number is exceeded, we allocate more
1082 space, so it is not a hard limit. */
1083 #ifndef INIT_FAILURE_ALLOC
1084 # define INIT_FAILURE_ALLOC 5
1085 #endif
1087 /* Roughly the maximum number of failure points on the stack. Would be
1088 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1089 This is a variable only so users of regex can assign to it; we never
1090 change it ourselves. */
1092 #ifdef INT_IS_16BIT
1094 # if defined MATCH_MAY_ALLOCATE
1095 /* 4400 was enough to cause a crash on Alpha OSF/1,
1096 whose default stack limit is 2mb. */
1097 long int re_max_failures = 4000;
1098 # else
1099 long int re_max_failures = 2000;
1100 # endif
1102 union fail_stack_elt
1104 unsigned char *pointer;
1105 long int integer;
1108 typedef union fail_stack_elt fail_stack_elt_t;
1110 typedef struct
1112 fail_stack_elt_t *stack;
1113 unsigned long int size;
1114 unsigned long int avail; /* Offset of next open position. */
1115 } fail_stack_type;
1117 #else /* not INT_IS_16BIT */
1119 # if defined MATCH_MAY_ALLOCATE
1120 /* 4400 was enough to cause a crash on Alpha OSF/1,
1121 whose default stack limit is 2mb. */
1122 int re_max_failures = 20000;
1123 # else
1124 int re_max_failures = 2000;
1125 # endif
1127 union fail_stack_elt
1129 unsigned char *pointer;
1130 int integer;
1133 typedef union fail_stack_elt fail_stack_elt_t;
1135 typedef struct
1137 fail_stack_elt_t *stack;
1138 unsigned size;
1139 unsigned avail; /* Offset of next open position. */
1140 } fail_stack_type;
1142 #endif /* INT_IS_16BIT */
1144 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1145 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1146 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1149 /* Define macros to initialize and free the failure stack.
1150 Do `return -2' if the alloc fails. */
1152 #ifdef MATCH_MAY_ALLOCATE
1153 # define INIT_FAIL_STACK() \
1154 do { \
1155 fail_stack.stack = (fail_stack_elt_t *) \
1156 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1158 if (fail_stack.stack == NULL) \
1159 return -2; \
1161 fail_stack.size = INIT_FAILURE_ALLOC; \
1162 fail_stack.avail = 0; \
1163 } while (0)
1165 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1166 #else
1167 # define INIT_FAIL_STACK() \
1168 do { \
1169 fail_stack.avail = 0; \
1170 } while (0)
1172 # define RESET_FAIL_STACK()
1173 #endif
1176 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1178 Return 1 if succeeds, and 0 if either ran out of memory
1179 allocating space for it or it was already too large.
1181 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1183 #define DOUBLE_FAIL_STACK(fail_stack) \
1184 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1185 ? 0 \
1186 : ((fail_stack).stack = (fail_stack_elt_t *) \
1187 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1188 (fail_stack).size * sizeof (fail_stack_elt_t), \
1189 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1191 (fail_stack).stack == NULL \
1192 ? 0 \
1193 : ((fail_stack).size <<= 1, \
1194 1)))
1197 /* Push pointer POINTER on FAIL_STACK.
1198 Return 1 if was able to do so and 0 if ran out of memory allocating
1199 space to do so. */
1200 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1201 ((FAIL_STACK_FULL () \
1202 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1203 ? 0 \
1204 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1207 /* Push a pointer value onto the failure stack.
1208 Assumes the variable `fail_stack'. Probably should only
1209 be called from within `PUSH_FAILURE_POINT'. */
1210 #define PUSH_FAILURE_POINTER(item) \
1211 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1213 /* This pushes an integer-valued item onto the failure stack.
1214 Assumes the variable `fail_stack'. Probably should only
1215 be called from within `PUSH_FAILURE_POINT'. */
1216 #define PUSH_FAILURE_INT(item) \
1217 fail_stack.stack[fail_stack.avail++].integer = (item)
1219 /* Push a fail_stack_elt_t value onto the failure stack.
1220 Assumes the variable `fail_stack'. Probably should only
1221 be called from within `PUSH_FAILURE_POINT'. */
1222 #define PUSH_FAILURE_ELT(item) \
1223 fail_stack.stack[fail_stack.avail++] = (item)
1225 /* These three POP... operations complement the three PUSH... operations.
1226 All assume that `fail_stack' is nonempty. */
1227 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1228 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1229 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1231 /* Used to omit pushing failure point id's when we're not debugging. */
1232 #ifdef DEBUG
1233 # define DEBUG_PUSH PUSH_FAILURE_INT
1234 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1235 #else
1236 # define DEBUG_PUSH(item)
1237 # define DEBUG_POP(item_addr)
1238 #endif
1241 /* Push the information about the state we will need
1242 if we ever fail back to it.
1244 Requires variables fail_stack, regstart, regend, reg_info, and
1245 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1246 be declared.
1248 Does `return FAILURE_CODE' if runs out of memory. */
1250 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1251 do { \
1252 char *destination; \
1253 /* Must be int, so when we don't save any registers, the arithmetic \
1254 of 0 + -1 isn't done as unsigned. */ \
1255 /* Can't be int, since there is not a shred of a guarantee that int \
1256 is wide enough to hold a value of something to which pointer can \
1257 be assigned */ \
1258 active_reg_t this_reg; \
1260 DEBUG_STATEMENT (failure_id++); \
1261 DEBUG_STATEMENT (nfailure_points_pushed++); \
1262 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1263 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1264 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1266 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1267 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1269 /* Ensure we have enough space allocated for what we will push. */ \
1270 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1272 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1273 return failure_code; \
1275 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1276 (fail_stack).size); \
1277 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1280 /* Push the info, starting with the registers. */ \
1281 DEBUG_PRINT1 ("\n"); \
1283 if (1) \
1284 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1285 this_reg++) \
1287 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1288 DEBUG_STATEMENT (num_regs_pushed++); \
1290 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1291 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1293 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1294 PUSH_FAILURE_POINTER (regend[this_reg]); \
1296 DEBUG_PRINT2 (" info: %p\n ", \
1297 reg_info[this_reg].word.pointer); \
1298 DEBUG_PRINT2 (" match_null=%d", \
1299 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1300 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1301 DEBUG_PRINT2 (" matched_something=%d", \
1302 MATCHED_SOMETHING (reg_info[this_reg])); \
1303 DEBUG_PRINT2 (" ever_matched=%d", \
1304 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1305 DEBUG_PRINT1 ("\n"); \
1306 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1309 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1310 PUSH_FAILURE_INT (lowest_active_reg); \
1312 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1313 PUSH_FAILURE_INT (highest_active_reg); \
1315 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1316 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1317 PUSH_FAILURE_POINTER (pattern_place); \
1319 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1320 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1321 size2); \
1322 DEBUG_PRINT1 ("'\n"); \
1323 PUSH_FAILURE_POINTER (string_place); \
1325 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1326 DEBUG_PUSH (failure_id); \
1327 } while (0)
1329 /* This is the number of items that are pushed and popped on the stack
1330 for each register. */
1331 #define NUM_REG_ITEMS 3
1333 /* Individual items aside from the registers. */
1334 #ifdef DEBUG
1335 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1336 #else
1337 # define NUM_NONREG_ITEMS 4
1338 #endif
1340 /* We push at most this many items on the stack. */
1341 /* We used to use (num_regs - 1), which is the number of registers
1342 this regexp will save; but that was changed to 5
1343 to avoid stack overflow for a regexp with lots of parens. */
1344 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1346 /* We actually push this many items. */
1347 #define NUM_FAILURE_ITEMS \
1348 (((0 \
1349 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1350 * NUM_REG_ITEMS) \
1351 + NUM_NONREG_ITEMS)
1353 /* How many items can still be added to the stack without overflowing it. */
1354 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1357 /* Pops what PUSH_FAIL_STACK pushes.
1359 We restore into the parameters, all of which should be lvalues:
1360 STR -- the saved data position.
1361 PAT -- the saved pattern position.
1362 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1363 REGSTART, REGEND -- arrays of string positions.
1364 REG_INFO -- array of information about each subexpression.
1366 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1367 `pend', `string1', `size1', `string2', and `size2'. */
1369 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1371 DEBUG_STATEMENT (unsigned failure_id;) \
1372 active_reg_t this_reg; \
1373 const unsigned char *string_temp; \
1375 assert (!FAIL_STACK_EMPTY ()); \
1377 /* Remove failure points and point to how many regs pushed. */ \
1378 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1379 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1380 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1382 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1384 DEBUG_POP (&failure_id); \
1385 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1387 /* If the saved string location is NULL, it came from an \
1388 on_failure_keep_string_jump opcode, and we want to throw away the \
1389 saved NULL, thus retaining our current position in the string. */ \
1390 string_temp = POP_FAILURE_POINTER (); \
1391 if (string_temp != NULL) \
1392 str = (const char *) string_temp; \
1394 DEBUG_PRINT2 (" Popping string %p: `", str); \
1395 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1396 DEBUG_PRINT1 ("'\n"); \
1398 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1399 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1400 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1402 /* Restore register info. */ \
1403 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1404 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1406 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1407 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1409 if (1) \
1410 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1412 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1414 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1415 DEBUG_PRINT2 (" info: %p\n", \
1416 reg_info[this_reg].word.pointer); \
1418 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1419 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1421 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1422 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1424 else \
1426 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1428 reg_info[this_reg].word.integer = 0; \
1429 regend[this_reg] = 0; \
1430 regstart[this_reg] = 0; \
1432 highest_active_reg = high_reg; \
1435 set_regs_matched_done = 0; \
1436 DEBUG_STATEMENT (nfailure_points_popped++); \
1437 } /* POP_FAILURE_POINT */
1441 /* Structure for per-register (a.k.a. per-group) information.
1442 Other register information, such as the
1443 starting and ending positions (which are addresses), and the list of
1444 inner groups (which is a bits list) are maintained in separate
1445 variables.
1447 We are making a (strictly speaking) nonportable assumption here: that
1448 the compiler will pack our bit fields into something that fits into
1449 the type of `word', i.e., is something that fits into one item on the
1450 failure stack. */
1453 /* Declarations and macros for re_match_2. */
1455 typedef union
1457 fail_stack_elt_t word;
1458 struct
1460 /* This field is one if this group can match the empty string,
1461 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1462 #define MATCH_NULL_UNSET_VALUE 3
1463 unsigned match_null_string_p : 2;
1464 unsigned is_active : 1;
1465 unsigned matched_something : 1;
1466 unsigned ever_matched_something : 1;
1467 } bits;
1468 } register_info_type;
1470 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1471 #define IS_ACTIVE(R) ((R).bits.is_active)
1472 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1473 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1476 /* Call this when have matched a real character; it sets `matched' flags
1477 for the subexpressions which we are currently inside. Also records
1478 that those subexprs have matched. */
1479 #define SET_REGS_MATCHED() \
1480 do \
1482 if (!set_regs_matched_done) \
1484 active_reg_t r; \
1485 set_regs_matched_done = 1; \
1486 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1488 MATCHED_SOMETHING (reg_info[r]) \
1489 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1490 = 1; \
1494 while (0)
1496 /* Registers are set to a sentinel when they haven't yet matched. */
1497 static char reg_unset_dummy;
1498 #define REG_UNSET_VALUE (&reg_unset_dummy)
1499 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1501 /* Subroutine declarations and macros for regex_compile. */
1503 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1504 reg_syntax_t syntax,
1505 struct re_pattern_buffer *bufp));
1506 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1507 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1508 int arg1, int arg2));
1509 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1510 int arg, unsigned char *end));
1511 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1512 int arg1, int arg2, unsigned char *end));
1513 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1514 reg_syntax_t syntax));
1515 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1516 reg_syntax_t syntax));
1517 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1518 const char *pend,
1519 char *translate,
1520 reg_syntax_t syntax,
1521 unsigned char *b));
1523 /* Fetch the next character in the uncompiled pattern---translating it
1524 if necessary. Also cast from a signed character in the constant
1525 string passed to us by the user to an unsigned char that we can use
1526 as an array index (in, e.g., `translate'). */
1527 #ifndef PATFETCH
1528 # define PATFETCH(c) \
1529 do {if (p == pend) return REG_EEND; \
1530 c = (unsigned char) *p++; \
1531 if (translate) c = (unsigned char) translate[c]; \
1532 } while (0)
1533 #endif
1535 /* Fetch the next character in the uncompiled pattern, with no
1536 translation. */
1537 #define PATFETCH_RAW(c) \
1538 do {if (p == pend) return REG_EEND; \
1539 c = (unsigned char) *p++; \
1540 } while (0)
1542 /* Go backwards one character in the pattern. */
1543 #define PATUNFETCH p--
1546 /* If `translate' is non-null, return translate[D], else just D. We
1547 cast the subscript to translate because some data is declared as
1548 `char *', to avoid warnings when a string constant is passed. But
1549 when we use a character as a subscript we must make it unsigned. */
1550 #ifndef TRANSLATE
1551 # define TRANSLATE(d) \
1552 (translate ? (char) translate[(unsigned char) (d)] : (d))
1553 #endif
1556 /* Macros for outputting the compiled pattern into `buffer'. */
1558 /* If the buffer isn't allocated when it comes in, use this. */
1559 #define INIT_BUF_SIZE 32
1561 /* Make sure we have at least N more bytes of space in buffer. */
1562 #define GET_BUFFER_SPACE(n) \
1563 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1564 EXTEND_BUFFER ()
1566 /* Make sure we have one more byte of buffer space and then add C to it. */
1567 #define BUF_PUSH(c) \
1568 do { \
1569 GET_BUFFER_SPACE (1); \
1570 *b++ = (unsigned char) (c); \
1571 } while (0)
1574 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1575 #define BUF_PUSH_2(c1, c2) \
1576 do { \
1577 GET_BUFFER_SPACE (2); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1580 } while (0)
1583 /* As with BUF_PUSH_2, except for three bytes. */
1584 #define BUF_PUSH_3(c1, c2, c3) \
1585 do { \
1586 GET_BUFFER_SPACE (3); \
1587 *b++ = (unsigned char) (c1); \
1588 *b++ = (unsigned char) (c2); \
1589 *b++ = (unsigned char) (c3); \
1590 } while (0)
1593 /* Store a jump with opcode OP at LOC to location TO. We store a
1594 relative address offset by the three bytes the jump itself occupies. */
1595 #define STORE_JUMP(op, loc, to) \
1596 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1598 /* Likewise, for a two-argument jump. */
1599 #define STORE_JUMP2(op, loc, to, arg) \
1600 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1602 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1603 #define INSERT_JUMP(op, loc, to) \
1604 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1606 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1607 #define INSERT_JUMP2(op, loc, to, arg) \
1608 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1611 /* This is not an arbitrary limit: the arguments which represent offsets
1612 into the pattern are two bytes long. So if 2^16 bytes turns out to
1613 be too small, many things would have to change. */
1614 /* Any other compiler which, like MSC, has allocation limit below 2^16
1615 bytes will have to use approach similar to what was done below for
1616 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1617 reallocating to 0 bytes. Such thing is not going to work too well.
1618 You have been warned!! */
1619 #if defined _MSC_VER && !defined WIN32
1620 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1621 The REALLOC define eliminates a flurry of conversion warnings,
1622 but is not required. */
1623 # define MAX_BUF_SIZE 65500L
1624 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1625 #else
1626 # define MAX_BUF_SIZE (1L << 16)
1627 # define REALLOC(p,s) realloc ((p), (s))
1628 #endif
1630 /* Extend the buffer by twice its current size via realloc and
1631 reset the pointers that pointed into the old block to point to the
1632 correct places in the new one. If extending the buffer results in it
1633 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1634 #define EXTEND_BUFFER() \
1635 do { \
1636 unsigned char *old_buffer = bufp->buffer; \
1637 if (bufp->allocated == MAX_BUF_SIZE) \
1638 return REG_ESIZE; \
1639 bufp->allocated <<= 1; \
1640 if (bufp->allocated > MAX_BUF_SIZE) \
1641 bufp->allocated = MAX_BUF_SIZE; \
1642 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1643 if (bufp->buffer == NULL) \
1644 return REG_ESPACE; \
1645 /* If the buffer moved, move all the pointers into it. */ \
1646 if (old_buffer != bufp->buffer) \
1648 b = (b - old_buffer) + bufp->buffer; \
1649 begalt = (begalt - old_buffer) + bufp->buffer; \
1650 if (fixup_alt_jump) \
1651 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1652 if (laststart) \
1653 laststart = (laststart - old_buffer) + bufp->buffer; \
1654 if (pending_exact) \
1655 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1657 } while (0)
1660 /* Since we have one byte reserved for the register number argument to
1661 {start,stop}_memory, the maximum number of groups we can report
1662 things about is what fits in that byte. */
1663 #define MAX_REGNUM 255
1665 /* But patterns can have more than `MAX_REGNUM' registers. We just
1666 ignore the excess. */
1667 typedef unsigned regnum_t;
1670 /* Macros for the compile stack. */
1672 /* Since offsets can go either forwards or backwards, this type needs to
1673 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1674 /* int may be not enough when sizeof(int) == 2. */
1675 typedef long pattern_offset_t;
1677 typedef struct
1679 pattern_offset_t begalt_offset;
1680 pattern_offset_t fixup_alt_jump;
1681 pattern_offset_t inner_group_offset;
1682 pattern_offset_t laststart_offset;
1683 regnum_t regnum;
1684 } compile_stack_elt_t;
1687 typedef struct
1689 compile_stack_elt_t *stack;
1690 unsigned size;
1691 unsigned avail; /* Offset of next open position. */
1692 } compile_stack_type;
1695 #define INIT_COMPILE_STACK_SIZE 32
1697 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1698 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1700 /* The next available element. */
1701 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1704 /* Set the bit for character C in a list. */
1705 #define SET_LIST_BIT(c) \
1706 (b[((unsigned char) (c)) / BYTEWIDTH] \
1707 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1710 /* Get the next unsigned number in the uncompiled pattern. */
1711 #define GET_UNSIGNED_NUMBER(num) \
1712 { if (p != pend) \
1714 PATFETCH (c); \
1715 while (ISDIGIT (c)) \
1717 if (num < 0) \
1718 num = 0; \
1719 num = num * 10 + c - '0'; \
1720 if (p == pend) \
1721 break; \
1722 PATFETCH (c); \
1727 #if defined _LIBC || WIDE_CHAR_SUPPORT
1728 /* The GNU C library provides support for user-defined character classes
1729 and the functions from ISO C amendement 1. */
1730 # ifdef CHARCLASS_NAME_MAX
1731 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1732 # else
1733 /* This shouldn't happen but some implementation might still have this
1734 problem. Use a reasonable default value. */
1735 # define CHAR_CLASS_MAX_LENGTH 256
1736 # endif
1738 # ifdef _LIBC
1739 # define IS_CHAR_CLASS(string) __wctype (string)
1740 # else
1741 # define IS_CHAR_CLASS(string) wctype (string)
1742 # endif
1743 #else
1744 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1746 # define IS_CHAR_CLASS(string) \
1747 (STREQ (string, "alpha") || STREQ (string, "upper") \
1748 || STREQ (string, "lower") || STREQ (string, "digit") \
1749 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1750 || STREQ (string, "space") || STREQ (string, "print") \
1751 || STREQ (string, "punct") || STREQ (string, "graph") \
1752 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1753 #endif
1755 #ifndef MATCH_MAY_ALLOCATE
1757 /* If we cannot allocate large objects within re_match_2_internal,
1758 we make the fail stack and register vectors global.
1759 The fail stack, we grow to the maximum size when a regexp
1760 is compiled.
1761 The register vectors, we adjust in size each time we
1762 compile a regexp, according to the number of registers it needs. */
1764 static fail_stack_type fail_stack;
1766 /* Size with which the following vectors are currently allocated.
1767 That is so we can make them bigger as needed,
1768 but never make them smaller. */
1769 static int regs_allocated_size;
1771 static const char ** regstart, ** regend;
1772 static const char ** old_regstart, ** old_regend;
1773 static const char **best_regstart, **best_regend;
1774 static register_info_type *reg_info;
1775 static const char **reg_dummy;
1776 static register_info_type *reg_info_dummy;
1778 /* Make the register vectors big enough for NUM_REGS registers,
1779 but don't make them smaller. */
1781 static
1782 regex_grow_registers (num_regs)
1783 int num_regs;
1785 if (num_regs > regs_allocated_size)
1787 RETALLOC_IF (regstart, num_regs, const char *);
1788 RETALLOC_IF (regend, num_regs, const char *);
1789 RETALLOC_IF (old_regstart, num_regs, const char *);
1790 RETALLOC_IF (old_regend, num_regs, const char *);
1791 RETALLOC_IF (best_regstart, num_regs, const char *);
1792 RETALLOC_IF (best_regend, num_regs, const char *);
1793 RETALLOC_IF (reg_info, num_regs, register_info_type);
1794 RETALLOC_IF (reg_dummy, num_regs, const char *);
1795 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1797 regs_allocated_size = num_regs;
1801 #endif /* not MATCH_MAY_ALLOCATE */
1803 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1804 compile_stack,
1805 regnum_t regnum));
1807 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1808 Returns one of error codes defined in `regex.h', or zero for success.
1810 Assumes the `allocated' (and perhaps `buffer') and `translate'
1811 fields are set in BUFP on entry.
1813 If it succeeds, results are put in BUFP (if it returns an error, the
1814 contents of BUFP are undefined):
1815 `buffer' is the compiled pattern;
1816 `syntax' is set to SYNTAX;
1817 `used' is set to the length of the compiled pattern;
1818 `fastmap_accurate' is zero;
1819 `re_nsub' is the number of subexpressions in PATTERN;
1820 `not_bol' and `not_eol' are zero;
1822 The `fastmap' and `newline_anchor' fields are neither
1823 examined nor set. */
1825 /* Return, freeing storage we allocated. */
1826 #define FREE_STACK_RETURN(value) \
1827 return (free (compile_stack.stack), value)
1829 static reg_errcode_t
1830 regex_compile (pattern, size, syntax, bufp)
1831 const char *pattern;
1832 size_t size;
1833 reg_syntax_t syntax;
1834 struct re_pattern_buffer *bufp;
1836 /* We fetch characters from PATTERN here. Even though PATTERN is
1837 `char *' (i.e., signed), we declare these variables as unsigned, so
1838 they can be reliably used as array indices. */
1839 register unsigned char c, c1;
1841 /* A random temporary spot in PATTERN. */
1842 const char *p1;
1844 /* Points to the end of the buffer, where we should append. */
1845 register unsigned char *b;
1847 /* Keeps track of unclosed groups. */
1848 compile_stack_type compile_stack;
1850 /* Points to the current (ending) position in the pattern. */
1851 const char *p = pattern;
1852 const char *pend = pattern + size;
1854 /* How to translate the characters in the pattern. */
1855 RE_TRANSLATE_TYPE translate = bufp->translate;
1857 /* Address of the count-byte of the most recently inserted `exactn'
1858 command. This makes it possible to tell if a new exact-match
1859 character can be added to that command or if the character requires
1860 a new `exactn' command. */
1861 unsigned char *pending_exact = 0;
1863 /* Address of start of the most recently finished expression.
1864 This tells, e.g., postfix * where to find the start of its
1865 operand. Reset at the beginning of groups and alternatives. */
1866 unsigned char *laststart = 0;
1868 /* Address of beginning of regexp, or inside of last group. */
1869 unsigned char *begalt;
1871 /* Place in the uncompiled pattern (i.e., the {) to
1872 which to go back if the interval is invalid. */
1873 const char *beg_interval;
1875 /* Address of the place where a forward jump should go to the end of
1876 the containing expression. Each alternative of an `or' -- except the
1877 last -- ends with a forward jump of this sort. */
1878 unsigned char *fixup_alt_jump = 0;
1880 /* Counts open-groups as they are encountered. Remembered for the
1881 matching close-group on the compile stack, so the same register
1882 number is put in the stop_memory as the start_memory. */
1883 regnum_t regnum = 0;
1885 #ifdef DEBUG
1886 DEBUG_PRINT1 ("\nCompiling pattern: ");
1887 if (debug)
1889 unsigned debug_count;
1891 for (debug_count = 0; debug_count < size; debug_count++)
1892 putchar (pattern[debug_count]);
1893 putchar ('\n');
1895 #endif /* DEBUG */
1897 /* Initialize the compile stack. */
1898 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1899 if (compile_stack.stack == NULL)
1900 return REG_ESPACE;
1902 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1903 compile_stack.avail = 0;
1905 /* Initialize the pattern buffer. */
1906 bufp->syntax = syntax;
1907 bufp->fastmap_accurate = 0;
1908 bufp->not_bol = bufp->not_eol = 0;
1910 /* Set `used' to zero, so that if we return an error, the pattern
1911 printer (for debugging) will think there's no pattern. We reset it
1912 at the end. */
1913 bufp->used = 0;
1915 /* Always count groups, whether or not bufp->no_sub is set. */
1916 bufp->re_nsub = 0;
1918 #if !defined emacs && !defined SYNTAX_TABLE
1919 /* Initialize the syntax table. */
1920 init_syntax_once ();
1921 #endif
1923 if (bufp->allocated == 0)
1925 if (bufp->buffer)
1926 { /* If zero allocated, but buffer is non-null, try to realloc
1927 enough space. This loses if buffer's address is bogus, but
1928 that is the user's responsibility. */
1929 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1931 else
1932 { /* Caller did not allocate a buffer. Do it for them. */
1933 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1935 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1937 bufp->allocated = INIT_BUF_SIZE;
1940 begalt = b = bufp->buffer;
1942 /* Loop through the uncompiled pattern until we're at the end. */
1943 while (p != pend)
1945 PATFETCH (c);
1947 switch (c)
1949 case '^':
1951 if ( /* If at start of pattern, it's an operator. */
1952 p == pattern + 1
1953 /* If context independent, it's an operator. */
1954 || syntax & RE_CONTEXT_INDEP_ANCHORS
1955 /* Otherwise, depends on what's come before. */
1956 || at_begline_loc_p (pattern, p, syntax))
1957 BUF_PUSH (begline);
1958 else
1959 goto normal_char;
1961 break;
1964 case '$':
1966 if ( /* If at end of pattern, it's an operator. */
1967 p == pend
1968 /* If context independent, it's an operator. */
1969 || syntax & RE_CONTEXT_INDEP_ANCHORS
1970 /* Otherwise, depends on what's next. */
1971 || at_endline_loc_p (p, pend, syntax))
1972 BUF_PUSH (endline);
1973 else
1974 goto normal_char;
1976 break;
1979 case '+':
1980 case '?':
1981 if ((syntax & RE_BK_PLUS_QM)
1982 || (syntax & RE_LIMITED_OPS))
1983 goto normal_char;
1984 handle_plus:
1985 case '*':
1986 /* If there is no previous pattern... */
1987 if (!laststart)
1989 if (syntax & RE_CONTEXT_INVALID_OPS)
1990 FREE_STACK_RETURN (REG_BADRPT);
1991 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1992 goto normal_char;
1996 /* Are we optimizing this jump? */
1997 boolean keep_string_p = false;
1999 /* 1 means zero (many) matches is allowed. */
2000 char zero_times_ok = 0, many_times_ok = 0;
2002 /* If there is a sequence of repetition chars, collapse it
2003 down to just one (the right one). We can't combine
2004 interval operators with these because of, e.g., `a{2}*',
2005 which should only match an even number of `a's. */
2007 for (;;)
2009 zero_times_ok |= c != '+';
2010 many_times_ok |= c != '?';
2012 if (p == pend)
2013 break;
2015 PATFETCH (c);
2017 if (c == '*'
2018 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2021 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2023 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2025 PATFETCH (c1);
2026 if (!(c1 == '+' || c1 == '?'))
2028 PATUNFETCH;
2029 PATUNFETCH;
2030 break;
2033 c = c1;
2035 else
2037 PATUNFETCH;
2038 break;
2041 /* If we get here, we found another repeat character. */
2044 /* Star, etc. applied to an empty pattern is equivalent
2045 to an empty pattern. */
2046 if (!laststart)
2047 break;
2049 /* Now we know whether or not zero matches is allowed
2050 and also whether or not two or more matches is allowed. */
2051 if (many_times_ok)
2052 { /* More than one repetition is allowed, so put in at the
2053 end a backward relative jump from `b' to before the next
2054 jump we're going to put in below (which jumps from
2055 laststart to after this jump).
2057 But if we are at the `*' in the exact sequence `.*\n',
2058 insert an unconditional jump backwards to the .,
2059 instead of the beginning of the loop. This way we only
2060 push a failure point once, instead of every time
2061 through the loop. */
2062 assert (p - 1 > pattern);
2064 /* Allocate the space for the jump. */
2065 GET_BUFFER_SPACE (3);
2067 /* We know we are not at the first character of the pattern,
2068 because laststart was nonzero. And we've already
2069 incremented `p', by the way, to be the character after
2070 the `*'. Do we have to do something analogous here
2071 for null bytes, because of RE_DOT_NOT_NULL? */
2072 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2073 && zero_times_ok
2074 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2075 && !(syntax & RE_DOT_NEWLINE))
2076 { /* We have .*\n. */
2077 STORE_JUMP (jump, b, laststart);
2078 keep_string_p = true;
2080 else
2081 /* Anything else. */
2082 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2084 /* We've added more stuff to the buffer. */
2085 b += 3;
2088 /* On failure, jump from laststart to b + 3, which will be the
2089 end of the buffer after this jump is inserted. */
2090 GET_BUFFER_SPACE (3);
2091 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2092 : on_failure_jump,
2093 laststart, b + 3);
2094 pending_exact = 0;
2095 b += 3;
2097 if (!zero_times_ok)
2099 /* At least one repetition is required, so insert a
2100 `dummy_failure_jump' before the initial
2101 `on_failure_jump' instruction of the loop. This
2102 effects a skip over that instruction the first time
2103 we hit that loop. */
2104 GET_BUFFER_SPACE (3);
2105 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2106 b += 3;
2109 break;
2112 case '.':
2113 laststart = b;
2114 BUF_PUSH (anychar);
2115 break;
2118 case '[':
2120 boolean had_char_class = false;
2122 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2124 /* Ensure that we have enough space to push a charset: the
2125 opcode, the length count, and the bitset; 34 bytes in all. */
2126 GET_BUFFER_SPACE (34);
2128 laststart = b;
2130 /* We test `*p == '^' twice, instead of using an if
2131 statement, so we only need one BUF_PUSH. */
2132 BUF_PUSH (*p == '^' ? charset_not : charset);
2133 if (*p == '^')
2134 p++;
2136 /* Remember the first position in the bracket expression. */
2137 p1 = p;
2139 /* Push the number of bytes in the bitmap. */
2140 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2142 /* Clear the whole map. */
2143 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2145 /* charset_not matches newline according to a syntax bit. */
2146 if ((re_opcode_t) b[-2] == charset_not
2147 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2148 SET_LIST_BIT ('\n');
2150 /* Read in characters and ranges, setting map bits. */
2151 for (;;)
2153 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2155 PATFETCH (c);
2157 /* \ might escape characters inside [...] and [^...]. */
2158 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2160 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2162 PATFETCH (c1);
2163 SET_LIST_BIT (c1);
2164 continue;
2167 /* Could be the end of the bracket expression. If it's
2168 not (i.e., when the bracket expression is `[]' so
2169 far), the ']' character bit gets set way below. */
2170 if (c == ']' && p != p1 + 1)
2171 break;
2173 /* Look ahead to see if it's a range when the last thing
2174 was a character class. */
2175 if (had_char_class && c == '-' && *p != ']')
2176 FREE_STACK_RETURN (REG_ERANGE);
2178 /* Look ahead to see if it's a range when the last thing
2179 was a character: if this is a hyphen not at the
2180 beginning or the end of a list, then it's the range
2181 operator. */
2182 if (c == '-'
2183 && !(p - 2 >= pattern && p[-2] == '[')
2184 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2185 && *p != ']')
2187 reg_errcode_t ret
2188 = compile_range (&p, pend, translate, syntax, b);
2189 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2192 else if (p[0] == '-' && p[1] != ']')
2193 { /* This handles ranges made up of characters only. */
2194 reg_errcode_t ret;
2196 /* Move past the `-'. */
2197 PATFETCH (c1);
2199 ret = compile_range (&p, pend, translate, syntax, b);
2200 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2203 /* See if we're at the beginning of a possible character
2204 class. */
2206 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2207 { /* Leave room for the null. */
2208 char str[CHAR_CLASS_MAX_LENGTH + 1];
2210 PATFETCH (c);
2211 c1 = 0;
2213 /* If pattern is `[[:'. */
2214 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2216 for (;;)
2218 PATFETCH (c);
2219 if ((c == ':' && *p == ']') || p == pend)
2220 break;
2221 if (c1 < CHAR_CLASS_MAX_LENGTH)
2222 str[c1++] = c;
2223 else
2224 /* This is in any case an invalid class name. */
2225 str[0] = '\0';
2227 str[c1] = '\0';
2229 /* If isn't a word bracketed by `[:' and `:]':
2230 undo the ending character, the letters, and leave
2231 the leading `:' and `[' (but set bits for them). */
2232 if (c == ':' && *p == ']')
2234 #if defined _LIBC || WIDE_CHAR_SUPPORT
2235 boolean is_lower = STREQ (str, "lower");
2236 boolean is_upper = STREQ (str, "upper");
2237 wctype_t wt;
2238 int ch;
2240 wt = IS_CHAR_CLASS (str);
2241 if (wt == 0)
2242 FREE_STACK_RETURN (REG_ECTYPE);
2244 /* Throw away the ] at the end of the character
2245 class. */
2246 PATFETCH (c);
2248 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2250 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2252 # ifdef _LIBC
2253 if (__iswctype (__btowc (ch), wt))
2254 SET_LIST_BIT (ch);
2255 # else
2256 if (iswctype (btowc (ch), wt))
2257 SET_LIST_BIT (ch);
2258 # endif
2260 if (translate && (is_upper || is_lower)
2261 && (ISUPPER (ch) || ISLOWER (ch)))
2262 SET_LIST_BIT (ch);
2265 had_char_class = true;
2266 #else
2267 int ch;
2268 boolean is_alnum = STREQ (str, "alnum");
2269 boolean is_alpha = STREQ (str, "alpha");
2270 boolean is_blank = STREQ (str, "blank");
2271 boolean is_cntrl = STREQ (str, "cntrl");
2272 boolean is_digit = STREQ (str, "digit");
2273 boolean is_graph = STREQ (str, "graph");
2274 boolean is_lower = STREQ (str, "lower");
2275 boolean is_print = STREQ (str, "print");
2276 boolean is_punct = STREQ (str, "punct");
2277 boolean is_space = STREQ (str, "space");
2278 boolean is_upper = STREQ (str, "upper");
2279 boolean is_xdigit = STREQ (str, "xdigit");
2281 if (!IS_CHAR_CLASS (str))
2282 FREE_STACK_RETURN (REG_ECTYPE);
2284 /* Throw away the ] at the end of the character
2285 class. */
2286 PATFETCH (c);
2288 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2290 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2292 /* This was split into 3 if's to
2293 avoid an arbitrary limit in some compiler. */
2294 if ( (is_alnum && ISALNUM (ch))
2295 || (is_alpha && ISALPHA (ch))
2296 || (is_blank && ISBLANK (ch))
2297 || (is_cntrl && ISCNTRL (ch)))
2298 SET_LIST_BIT (ch);
2299 if ( (is_digit && ISDIGIT (ch))
2300 || (is_graph && ISGRAPH (ch))
2301 || (is_lower && ISLOWER (ch))
2302 || (is_print && ISPRINT (ch)))
2303 SET_LIST_BIT (ch);
2304 if ( (is_punct && ISPUNCT (ch))
2305 || (is_space && ISSPACE (ch))
2306 || (is_upper && ISUPPER (ch))
2307 || (is_xdigit && ISXDIGIT (ch)))
2308 SET_LIST_BIT (ch);
2309 if ( translate && (is_upper || is_lower)
2310 && (ISUPPER (ch) || ISLOWER (ch)))
2311 SET_LIST_BIT (ch);
2313 had_char_class = true;
2314 #endif /* libc || wctype.h */
2316 else
2318 c1++;
2319 while (c1--)
2320 PATUNFETCH;
2321 SET_LIST_BIT ('[');
2322 SET_LIST_BIT (':');
2323 had_char_class = false;
2326 else
2328 had_char_class = false;
2329 SET_LIST_BIT (c);
2333 /* Discard any (non)matching list bytes that are all 0 at the
2334 end of the map. Decrease the map-length byte too. */
2335 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2336 b[-1]--;
2337 b += b[-1];
2339 break;
2342 case '(':
2343 if (syntax & RE_NO_BK_PARENS)
2344 goto handle_open;
2345 else
2346 goto normal_char;
2349 case ')':
2350 if (syntax & RE_NO_BK_PARENS)
2351 goto handle_close;
2352 else
2353 goto normal_char;
2356 case '\n':
2357 if (syntax & RE_NEWLINE_ALT)
2358 goto handle_alt;
2359 else
2360 goto normal_char;
2363 case '|':
2364 if (syntax & RE_NO_BK_VBAR)
2365 goto handle_alt;
2366 else
2367 goto normal_char;
2370 case '{':
2371 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2372 goto handle_interval;
2373 else
2374 goto normal_char;
2377 case '\\':
2378 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2380 /* Do not translate the character after the \, so that we can
2381 distinguish, e.g., \B from \b, even if we normally would
2382 translate, e.g., B to b. */
2383 PATFETCH_RAW (c);
2385 switch (c)
2387 case '(':
2388 if (syntax & RE_NO_BK_PARENS)
2389 goto normal_backslash;
2391 handle_open:
2392 bufp->re_nsub++;
2393 regnum++;
2395 if (COMPILE_STACK_FULL)
2397 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2398 compile_stack_elt_t);
2399 if (compile_stack.stack == NULL) return REG_ESPACE;
2401 compile_stack.size <<= 1;
2404 /* These are the values to restore when we hit end of this
2405 group. They are all relative offsets, so that if the
2406 whole pattern moves because of realloc, they will still
2407 be valid. */
2408 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2409 COMPILE_STACK_TOP.fixup_alt_jump
2410 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2411 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2412 COMPILE_STACK_TOP.regnum = regnum;
2414 /* We will eventually replace the 0 with the number of
2415 groups inner to this one. But do not push a
2416 start_memory for groups beyond the last one we can
2417 represent in the compiled pattern. */
2418 if (regnum <= MAX_REGNUM)
2420 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2421 BUF_PUSH_3 (start_memory, regnum, 0);
2424 compile_stack.avail++;
2426 fixup_alt_jump = 0;
2427 laststart = 0;
2428 begalt = b;
2429 /* If we've reached MAX_REGNUM groups, then this open
2430 won't actually generate any code, so we'll have to
2431 clear pending_exact explicitly. */
2432 pending_exact = 0;
2433 break;
2436 case ')':
2437 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2439 if (COMPILE_STACK_EMPTY)
2441 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2442 goto normal_backslash;
2443 else
2444 FREE_STACK_RETURN (REG_ERPAREN);
2447 handle_close:
2448 if (fixup_alt_jump)
2449 { /* Push a dummy failure point at the end of the
2450 alternative for a possible future
2451 `pop_failure_jump' to pop. See comments at
2452 `push_dummy_failure' in `re_match_2'. */
2453 BUF_PUSH (push_dummy_failure);
2455 /* We allocated space for this jump when we assigned
2456 to `fixup_alt_jump', in the `handle_alt' case below. */
2457 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2460 /* See similar code for backslashed left paren above. */
2461 if (COMPILE_STACK_EMPTY)
2463 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2464 goto normal_char;
2465 else
2466 FREE_STACK_RETURN (REG_ERPAREN);
2469 /* Since we just checked for an empty stack above, this
2470 ``can't happen''. */
2471 assert (compile_stack.avail != 0);
2473 /* We don't just want to restore into `regnum', because
2474 later groups should continue to be numbered higher,
2475 as in `(ab)c(de)' -- the second group is #2. */
2476 regnum_t this_group_regnum;
2478 compile_stack.avail--;
2479 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2480 fixup_alt_jump
2481 = COMPILE_STACK_TOP.fixup_alt_jump
2482 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2483 : 0;
2484 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2485 this_group_regnum = COMPILE_STACK_TOP.regnum;
2486 /* If we've reached MAX_REGNUM groups, then this open
2487 won't actually generate any code, so we'll have to
2488 clear pending_exact explicitly. */
2489 pending_exact = 0;
2491 /* We're at the end of the group, so now we know how many
2492 groups were inside this one. */
2493 if (this_group_regnum <= MAX_REGNUM)
2495 unsigned char *inner_group_loc
2496 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2498 *inner_group_loc = regnum - this_group_regnum;
2499 BUF_PUSH_3 (stop_memory, this_group_regnum,
2500 regnum - this_group_regnum);
2503 break;
2506 case '|': /* `\|'. */
2507 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2508 goto normal_backslash;
2509 handle_alt:
2510 if (syntax & RE_LIMITED_OPS)
2511 goto normal_char;
2513 /* Insert before the previous alternative a jump which
2514 jumps to this alternative if the former fails. */
2515 GET_BUFFER_SPACE (3);
2516 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2517 pending_exact = 0;
2518 b += 3;
2520 /* The alternative before this one has a jump after it
2521 which gets executed if it gets matched. Adjust that
2522 jump so it will jump to this alternative's analogous
2523 jump (put in below, which in turn will jump to the next
2524 (if any) alternative's such jump, etc.). The last such
2525 jump jumps to the correct final destination. A picture:
2526 _____ _____
2527 | | | |
2528 | v | v
2529 a | b | c
2531 If we are at `b', then fixup_alt_jump right now points to a
2532 three-byte space after `a'. We'll put in the jump, set
2533 fixup_alt_jump to right after `b', and leave behind three
2534 bytes which we'll fill in when we get to after `c'. */
2536 if (fixup_alt_jump)
2537 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2539 /* Mark and leave space for a jump after this alternative,
2540 to be filled in later either by next alternative or
2541 when know we're at the end of a series of alternatives. */
2542 fixup_alt_jump = b;
2543 GET_BUFFER_SPACE (3);
2544 b += 3;
2546 laststart = 0;
2547 begalt = b;
2548 break;
2551 case '{':
2552 /* If \{ is a literal. */
2553 if (!(syntax & RE_INTERVALS)
2554 /* If we're at `\{' and it's not the open-interval
2555 operator. */
2556 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2557 || (p - 2 == pattern && p == pend))
2558 goto normal_backslash;
2560 handle_interval:
2562 /* If got here, then the syntax allows intervals. */
2564 /* At least (most) this many matches must be made. */
2565 int lower_bound = -1, upper_bound = -1;
2567 beg_interval = p - 1;
2569 if (p == pend)
2571 if (syntax & RE_NO_BK_BRACES)
2572 goto unfetch_interval;
2573 else
2574 FREE_STACK_RETURN (REG_EBRACE);
2577 GET_UNSIGNED_NUMBER (lower_bound);
2579 if (c == ',')
2581 GET_UNSIGNED_NUMBER (upper_bound);
2582 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2584 else
2585 /* Interval such as `{1}' => match exactly once. */
2586 upper_bound = lower_bound;
2588 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2589 || lower_bound > upper_bound)
2591 if (syntax & RE_NO_BK_BRACES)
2592 goto unfetch_interval;
2593 else
2594 FREE_STACK_RETURN (REG_BADBR);
2597 if (!(syntax & RE_NO_BK_BRACES))
2599 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2601 PATFETCH (c);
2604 if (c != '}')
2606 if (syntax & RE_NO_BK_BRACES)
2607 goto unfetch_interval;
2608 else
2609 FREE_STACK_RETURN (REG_BADBR);
2612 /* We just parsed a valid interval. */
2614 /* If it's invalid to have no preceding re. */
2615 if (!laststart)
2617 if (syntax & RE_CONTEXT_INVALID_OPS)
2618 FREE_STACK_RETURN (REG_BADRPT);
2619 else if (syntax & RE_CONTEXT_INDEP_OPS)
2620 laststart = b;
2621 else
2622 goto unfetch_interval;
2625 /* If the upper bound is zero, don't want to succeed at
2626 all; jump from `laststart' to `b + 3', which will be
2627 the end of the buffer after we insert the jump. */
2628 if (upper_bound == 0)
2630 GET_BUFFER_SPACE (3);
2631 INSERT_JUMP (jump, laststart, b + 3);
2632 b += 3;
2635 /* Otherwise, we have a nontrivial interval. When
2636 we're all done, the pattern will look like:
2637 set_number_at <jump count> <upper bound>
2638 set_number_at <succeed_n count> <lower bound>
2639 succeed_n <after jump addr> <succeed_n count>
2640 <body of loop>
2641 jump_n <succeed_n addr> <jump count>
2642 (The upper bound and `jump_n' are omitted if
2643 `upper_bound' is 1, though.) */
2644 else
2645 { /* If the upper bound is > 1, we need to insert
2646 more at the end of the loop. */
2647 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2649 GET_BUFFER_SPACE (nbytes);
2651 /* Initialize lower bound of the `succeed_n', even
2652 though it will be set during matching by its
2653 attendant `set_number_at' (inserted next),
2654 because `re_compile_fastmap' needs to know.
2655 Jump to the `jump_n' we might insert below. */
2656 INSERT_JUMP2 (succeed_n, laststart,
2657 b + 5 + (upper_bound > 1) * 5,
2658 lower_bound);
2659 b += 5;
2661 /* Code to initialize the lower bound. Insert
2662 before the `succeed_n'. The `5' is the last two
2663 bytes of this `set_number_at', plus 3 bytes of
2664 the following `succeed_n'. */
2665 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2666 b += 5;
2668 if (upper_bound > 1)
2669 { /* More than one repetition is allowed, so
2670 append a backward jump to the `succeed_n'
2671 that starts this interval.
2673 When we've reached this during matching,
2674 we'll have matched the interval once, so
2675 jump back only `upper_bound - 1' times. */
2676 STORE_JUMP2 (jump_n, b, laststart + 5,
2677 upper_bound - 1);
2678 b += 5;
2680 /* The location we want to set is the second
2681 parameter of the `jump_n'; that is `b-2' as
2682 an absolute address. `laststart' will be
2683 the `set_number_at' we're about to insert;
2684 `laststart+3' the number to set, the source
2685 for the relative address. But we are
2686 inserting into the middle of the pattern --
2687 so everything is getting moved up by 5.
2688 Conclusion: (b - 2) - (laststart + 3) + 5,
2689 i.e., b - laststart.
2691 We insert this at the beginning of the loop
2692 so that if we fail during matching, we'll
2693 reinitialize the bounds. */
2694 insert_op2 (set_number_at, laststart, b - laststart,
2695 upper_bound - 1, b);
2696 b += 5;
2699 pending_exact = 0;
2700 beg_interval = NULL;
2702 break;
2704 unfetch_interval:
2705 /* If an invalid interval, match the characters as literals. */
2706 assert (beg_interval);
2707 p = beg_interval;
2708 beg_interval = NULL;
2710 /* normal_char and normal_backslash need `c'. */
2711 PATFETCH (c);
2713 if (!(syntax & RE_NO_BK_BRACES))
2715 if (p > pattern && p[-1] == '\\')
2716 goto normal_backslash;
2718 goto normal_char;
2720 #ifdef emacs
2721 /* There is no way to specify the before_dot and after_dot
2722 operators. rms says this is ok. --karl */
2723 case '=':
2724 BUF_PUSH (at_dot);
2725 break;
2727 case 's':
2728 laststart = b;
2729 PATFETCH (c);
2730 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2731 break;
2733 case 'S':
2734 laststart = b;
2735 PATFETCH (c);
2736 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2737 break;
2738 #endif /* emacs */
2741 case 'w':
2742 if (syntax & RE_NO_GNU_OPS)
2743 goto normal_char;
2744 laststart = b;
2745 BUF_PUSH (wordchar);
2746 break;
2749 case 'W':
2750 if (syntax & RE_NO_GNU_OPS)
2751 goto normal_char;
2752 laststart = b;
2753 BUF_PUSH (notwordchar);
2754 break;
2757 case '<':
2758 if (syntax & RE_NO_GNU_OPS)
2759 goto normal_char;
2760 BUF_PUSH (wordbeg);
2761 break;
2763 case '>':
2764 if (syntax & RE_NO_GNU_OPS)
2765 goto normal_char;
2766 BUF_PUSH (wordend);
2767 break;
2769 case 'b':
2770 if (syntax & RE_NO_GNU_OPS)
2771 goto normal_char;
2772 BUF_PUSH (wordbound);
2773 break;
2775 case 'B':
2776 if (syntax & RE_NO_GNU_OPS)
2777 goto normal_char;
2778 BUF_PUSH (notwordbound);
2779 break;
2781 case '`':
2782 if (syntax & RE_NO_GNU_OPS)
2783 goto normal_char;
2784 BUF_PUSH (begbuf);
2785 break;
2787 case '\'':
2788 if (syntax & RE_NO_GNU_OPS)
2789 goto normal_char;
2790 BUF_PUSH (endbuf);
2791 break;
2793 case '1': case '2': case '3': case '4': case '5':
2794 case '6': case '7': case '8': case '9':
2795 if (syntax & RE_NO_BK_REFS)
2796 goto normal_char;
2798 c1 = c - '0';
2800 if (c1 > regnum)
2801 FREE_STACK_RETURN (REG_ESUBREG);
2803 /* Can't back reference to a subexpression if inside of it. */
2804 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2805 goto normal_char;
2807 laststart = b;
2808 BUF_PUSH_2 (duplicate, c1);
2809 break;
2812 case '+':
2813 case '?':
2814 if (syntax & RE_BK_PLUS_QM)
2815 goto handle_plus;
2816 else
2817 goto normal_backslash;
2819 default:
2820 normal_backslash:
2821 /* You might think it would be useful for \ to mean
2822 not to translate; but if we don't translate it
2823 it will never match anything. */
2824 c = TRANSLATE (c);
2825 goto normal_char;
2827 break;
2830 default:
2831 /* Expects the character in `c'. */
2832 normal_char:
2833 /* If no exactn currently being built. */
2834 if (!pending_exact
2836 /* If last exactn not at current position. */
2837 || pending_exact + *pending_exact + 1 != b
2839 /* We have only one byte following the exactn for the count. */
2840 || *pending_exact == (1 << BYTEWIDTH) - 1
2842 /* If followed by a repetition operator. */
2843 || *p == '*' || *p == '^'
2844 || ((syntax & RE_BK_PLUS_QM)
2845 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2846 : (*p == '+' || *p == '?'))
2847 || ((syntax & RE_INTERVALS)
2848 && ((syntax & RE_NO_BK_BRACES)
2849 ? *p == '{'
2850 : (p[0] == '\\' && p[1] == '{'))))
2852 /* Start building a new exactn. */
2854 laststart = b;
2856 BUF_PUSH_2 (exactn, 0);
2857 pending_exact = b - 1;
2860 BUF_PUSH (c);
2861 (*pending_exact)++;
2862 break;
2863 } /* switch (c) */
2864 } /* while p != pend */
2867 /* Through the pattern now. */
2869 if (fixup_alt_jump)
2870 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2872 if (!COMPILE_STACK_EMPTY)
2873 FREE_STACK_RETURN (REG_EPAREN);
2875 /* If we don't want backtracking, force success
2876 the first time we reach the end of the compiled pattern. */
2877 if (syntax & RE_NO_POSIX_BACKTRACKING)
2878 BUF_PUSH (succeed);
2880 free (compile_stack.stack);
2882 /* We have succeeded; set the length of the buffer. */
2883 bufp->used = b - bufp->buffer;
2885 #ifdef DEBUG
2886 if (debug)
2888 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2889 print_compiled_pattern (bufp);
2891 #endif /* DEBUG */
2893 #ifndef MATCH_MAY_ALLOCATE
2894 /* Initialize the failure stack to the largest possible stack. This
2895 isn't necessary unless we're trying to avoid calling alloca in
2896 the search and match routines. */
2898 int num_regs = bufp->re_nsub + 1;
2900 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2901 is strictly greater than re_max_failures, the largest possible stack
2902 is 2 * re_max_failures failure points. */
2903 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2905 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2907 # ifdef emacs
2908 if (! fail_stack.stack)
2909 fail_stack.stack
2910 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2911 * sizeof (fail_stack_elt_t));
2912 else
2913 fail_stack.stack
2914 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2915 (fail_stack.size
2916 * sizeof (fail_stack_elt_t)));
2917 # else /* not emacs */
2918 if (! fail_stack.stack)
2919 fail_stack.stack
2920 = (fail_stack_elt_t *) malloc (fail_stack.size
2921 * sizeof (fail_stack_elt_t));
2922 else
2923 fail_stack.stack
2924 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2925 (fail_stack.size
2926 * sizeof (fail_stack_elt_t)));
2927 # endif /* not emacs */
2930 regex_grow_registers (num_regs);
2932 #endif /* not MATCH_MAY_ALLOCATE */
2934 return REG_NOERROR;
2935 } /* regex_compile */
2937 /* Subroutines for `regex_compile'. */
2939 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2941 static void
2942 store_op1 (op, loc, arg)
2943 re_opcode_t op;
2944 unsigned char *loc;
2945 int arg;
2947 *loc = (unsigned char) op;
2948 STORE_NUMBER (loc + 1, arg);
2952 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2954 static void
2955 store_op2 (op, loc, arg1, arg2)
2956 re_opcode_t op;
2957 unsigned char *loc;
2958 int arg1, arg2;
2960 *loc = (unsigned char) op;
2961 STORE_NUMBER (loc + 1, arg1);
2962 STORE_NUMBER (loc + 3, arg2);
2966 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2967 for OP followed by two-byte integer parameter ARG. */
2969 static void
2970 insert_op1 (op, loc, arg, end)
2971 re_opcode_t op;
2972 unsigned char *loc;
2973 int arg;
2974 unsigned char *end;
2976 register unsigned char *pfrom = end;
2977 register unsigned char *pto = end + 3;
2979 while (pfrom != loc)
2980 *--pto = *--pfrom;
2982 store_op1 (op, loc, arg);
2986 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2988 static void
2989 insert_op2 (op, loc, arg1, arg2, end)
2990 re_opcode_t op;
2991 unsigned char *loc;
2992 int arg1, arg2;
2993 unsigned char *end;
2995 register unsigned char *pfrom = end;
2996 register unsigned char *pto = end + 5;
2998 while (pfrom != loc)
2999 *--pto = *--pfrom;
3001 store_op2 (op, loc, arg1, arg2);
3005 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3006 after an alternative or a begin-subexpression. We assume there is at
3007 least one character before the ^. */
3009 static boolean
3010 at_begline_loc_p (pattern, p, syntax)
3011 const char *pattern, *p;
3012 reg_syntax_t syntax;
3014 const char *prev = p - 2;
3015 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3017 return
3018 /* After a subexpression? */
3019 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3020 /* After an alternative? */
3021 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3025 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3026 at least one character after the $, i.e., `P < PEND'. */
3028 static boolean
3029 at_endline_loc_p (p, pend, syntax)
3030 const char *p, *pend;
3031 reg_syntax_t syntax;
3033 const char *next = p;
3034 boolean next_backslash = *next == '\\';
3035 const char *next_next = p + 1 < pend ? p + 1 : 0;
3037 return
3038 /* Before a subexpression? */
3039 (syntax & RE_NO_BK_PARENS ? *next == ')'
3040 : next_backslash && next_next && *next_next == ')')
3041 /* Before an alternative? */
3042 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3043 : next_backslash && next_next && *next_next == '|');
3047 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3048 false if it's not. */
3050 static boolean
3051 group_in_compile_stack (compile_stack, regnum)
3052 compile_stack_type compile_stack;
3053 regnum_t regnum;
3055 int this_element;
3057 for (this_element = compile_stack.avail - 1;
3058 this_element >= 0;
3059 this_element--)
3060 if (compile_stack.stack[this_element].regnum == regnum)
3061 return true;
3063 return false;
3067 /* Read the ending character of a range (in a bracket expression) from the
3068 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3069 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3070 Then we set the translation of all bits between the starting and
3071 ending characters (inclusive) in the compiled pattern B.
3073 Return an error code.
3075 We use these short variable names so we can use the same macros as
3076 `regex_compile' itself. */
3078 static reg_errcode_t
3079 compile_range (p_ptr, pend, translate, syntax, b)
3080 const char **p_ptr, *pend;
3081 RE_TRANSLATE_TYPE translate;
3082 reg_syntax_t syntax;
3083 unsigned char *b;
3085 unsigned this_char;
3087 const char *p = *p_ptr;
3088 unsigned int range_start, range_end;
3090 if (p == pend)
3091 return REG_ERANGE;
3093 /* Even though the pattern is a signed `char *', we need to fetch
3094 with unsigned char *'s; if the high bit of the pattern character
3095 is set, the range endpoints will be negative if we fetch using a
3096 signed char *.
3098 We also want to fetch the endpoints without translating them; the
3099 appropriate translation is done in the bit-setting loop below. */
3100 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3101 range_start = ((const unsigned char *) p)[-2];
3102 range_end = ((const unsigned char *) p)[0];
3104 /* Have to increment the pointer into the pattern string, so the
3105 caller isn't still at the ending character. */
3106 (*p_ptr)++;
3108 /* If the start is after the end, the range is empty. */
3109 if (range_start > range_end)
3110 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3112 /* Here we see why `this_char' has to be larger than an `unsigned
3113 char' -- the range is inclusive, so if `range_end' == 0xff
3114 (assuming 8-bit characters), we would otherwise go into an infinite
3115 loop, since all characters <= 0xff. */
3116 for (this_char = range_start; this_char <= range_end; this_char++)
3118 SET_LIST_BIT (TRANSLATE (this_char));
3121 return REG_NOERROR;
3124 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3125 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3126 characters can start a string that matches the pattern. This fastmap
3127 is used by re_search to skip quickly over impossible starting points.
3129 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3130 area as BUFP->fastmap.
3132 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3133 the pattern buffer.
3135 Returns 0 if we succeed, -2 if an internal error. */
3138 re_compile_fastmap (bufp)
3139 struct re_pattern_buffer *bufp;
3141 int j, k;
3142 #ifdef MATCH_MAY_ALLOCATE
3143 fail_stack_type fail_stack;
3144 #endif
3145 #ifndef REGEX_MALLOC
3146 char *destination;
3147 #endif
3149 register char *fastmap = bufp->fastmap;
3150 unsigned char *pattern = bufp->buffer;
3151 unsigned char *p = pattern;
3152 register unsigned char *pend = pattern + bufp->used;
3154 #ifdef REL_ALLOC
3155 /* This holds the pointer to the failure stack, when
3156 it is allocated relocatably. */
3157 fail_stack_elt_t *failure_stack_ptr;
3158 #endif
3160 /* Assume that each path through the pattern can be null until
3161 proven otherwise. We set this false at the bottom of switch
3162 statement, to which we get only if a particular path doesn't
3163 match the empty string. */
3164 boolean path_can_be_null = true;
3166 /* We aren't doing a `succeed_n' to begin with. */
3167 boolean succeed_n_p = false;
3169 assert (fastmap != NULL && p != NULL);
3171 INIT_FAIL_STACK ();
3172 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3173 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3174 bufp->can_be_null = 0;
3176 while (1)
3178 if (p == pend || *p == succeed)
3180 /* We have reached the (effective) end of pattern. */
3181 if (!FAIL_STACK_EMPTY ())
3183 bufp->can_be_null |= path_can_be_null;
3185 /* Reset for next path. */
3186 path_can_be_null = true;
3188 p = fail_stack.stack[--fail_stack.avail].pointer;
3190 continue;
3192 else
3193 break;
3196 /* We should never be about to go beyond the end of the pattern. */
3197 assert (p < pend);
3199 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3202 /* I guess the idea here is to simply not bother with a fastmap
3203 if a backreference is used, since it's too hard to figure out
3204 the fastmap for the corresponding group. Setting
3205 `can_be_null' stops `re_search_2' from using the fastmap, so
3206 that is all we do. */
3207 case duplicate:
3208 bufp->can_be_null = 1;
3209 goto done;
3212 /* Following are the cases which match a character. These end
3213 with `break'. */
3215 case exactn:
3216 fastmap[p[1]] = 1;
3217 break;
3220 case charset:
3221 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3222 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3223 fastmap[j] = 1;
3224 break;
3227 case charset_not:
3228 /* Chars beyond end of map must be allowed. */
3229 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3230 fastmap[j] = 1;
3232 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3233 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3234 fastmap[j] = 1;
3235 break;
3238 case wordchar:
3239 for (j = 0; j < (1 << BYTEWIDTH); j++)
3240 if (SYNTAX (j) == Sword)
3241 fastmap[j] = 1;
3242 break;
3245 case notwordchar:
3246 for (j = 0; j < (1 << BYTEWIDTH); j++)
3247 if (SYNTAX (j) != Sword)
3248 fastmap[j] = 1;
3249 break;
3252 case anychar:
3254 int fastmap_newline = fastmap['\n'];
3256 /* `.' matches anything ... */
3257 for (j = 0; j < (1 << BYTEWIDTH); j++)
3258 fastmap[j] = 1;
3260 /* ... except perhaps newline. */
3261 if (!(bufp->syntax & RE_DOT_NEWLINE))
3262 fastmap['\n'] = fastmap_newline;
3264 /* Return if we have already set `can_be_null'; if we have,
3265 then the fastmap is irrelevant. Something's wrong here. */
3266 else if (bufp->can_be_null)
3267 goto done;
3269 /* Otherwise, have to check alternative paths. */
3270 break;
3273 #ifdef emacs
3274 case syntaxspec:
3275 k = *p++;
3276 for (j = 0; j < (1 << BYTEWIDTH); j++)
3277 if (SYNTAX (j) == (enum syntaxcode) k)
3278 fastmap[j] = 1;
3279 break;
3282 case notsyntaxspec:
3283 k = *p++;
3284 for (j = 0; j < (1 << BYTEWIDTH); j++)
3285 if (SYNTAX (j) != (enum syntaxcode) k)
3286 fastmap[j] = 1;
3287 break;
3290 /* All cases after this match the empty string. These end with
3291 `continue'. */
3294 case before_dot:
3295 case at_dot:
3296 case after_dot:
3297 continue;
3298 #endif /* emacs */
3301 case no_op:
3302 case begline:
3303 case endline:
3304 case begbuf:
3305 case endbuf:
3306 case wordbound:
3307 case notwordbound:
3308 case wordbeg:
3309 case wordend:
3310 case push_dummy_failure:
3311 continue;
3314 case jump_n:
3315 case pop_failure_jump:
3316 case maybe_pop_jump:
3317 case jump:
3318 case jump_past_alt:
3319 case dummy_failure_jump:
3320 EXTRACT_NUMBER_AND_INCR (j, p);
3321 p += j;
3322 if (j > 0)
3323 continue;
3325 /* Jump backward implies we just went through the body of a
3326 loop and matched nothing. Opcode jumped to should be
3327 `on_failure_jump' or `succeed_n'. Just treat it like an
3328 ordinary jump. For a * loop, it has pushed its failure
3329 point already; if so, discard that as redundant. */
3330 if ((re_opcode_t) *p != on_failure_jump
3331 && (re_opcode_t) *p != succeed_n)
3332 continue;
3334 p++;
3335 EXTRACT_NUMBER_AND_INCR (j, p);
3336 p += j;
3338 /* If what's on the stack is where we are now, pop it. */
3339 if (!FAIL_STACK_EMPTY ()
3340 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3341 fail_stack.avail--;
3343 continue;
3346 case on_failure_jump:
3347 case on_failure_keep_string_jump:
3348 handle_on_failure_jump:
3349 EXTRACT_NUMBER_AND_INCR (j, p);
3351 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3352 end of the pattern. We don't want to push such a point,
3353 since when we restore it above, entering the switch will
3354 increment `p' past the end of the pattern. We don't need
3355 to push such a point since we obviously won't find any more
3356 fastmap entries beyond `pend'. Such a pattern can match
3357 the null string, though. */
3358 if (p + j < pend)
3360 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3362 RESET_FAIL_STACK ();
3363 return -2;
3366 else
3367 bufp->can_be_null = 1;
3369 if (succeed_n_p)
3371 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3372 succeed_n_p = false;
3375 continue;
3378 case succeed_n:
3379 /* Get to the number of times to succeed. */
3380 p += 2;
3382 /* Increment p past the n for when k != 0. */
3383 EXTRACT_NUMBER_AND_INCR (k, p);
3384 if (k == 0)
3386 p -= 4;
3387 succeed_n_p = true; /* Spaghetti code alert. */
3388 goto handle_on_failure_jump;
3390 continue;
3393 case set_number_at:
3394 p += 4;
3395 continue;
3398 case start_memory:
3399 case stop_memory:
3400 p += 2;
3401 continue;
3404 default:
3405 abort (); /* We have listed all the cases. */
3406 } /* switch *p++ */
3408 /* Getting here means we have found the possible starting
3409 characters for one path of the pattern -- and that the empty
3410 string does not match. We need not follow this path further.
3411 Instead, look at the next alternative (remembered on the
3412 stack), or quit if no more. The test at the top of the loop
3413 does these things. */
3414 path_can_be_null = false;
3415 p = pend;
3416 } /* while p */
3418 /* Set `can_be_null' for the last path (also the first path, if the
3419 pattern is empty). */
3420 bufp->can_be_null |= path_can_be_null;
3422 done:
3423 RESET_FAIL_STACK ();
3424 return 0;
3425 } /* re_compile_fastmap */
3426 #ifdef _LIBC
3427 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3428 #endif
3430 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3431 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3432 this memory for recording register information. STARTS and ENDS
3433 must be allocated using the malloc library routine, and must each
3434 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3436 If NUM_REGS == 0, then subsequent matches should allocate their own
3437 register data.
3439 Unless this function is called, the first search or match using
3440 PATTERN_BUFFER will allocate its own register data, without
3441 freeing the old data. */
3443 void
3444 re_set_registers (bufp, regs, num_regs, starts, ends)
3445 struct re_pattern_buffer *bufp;
3446 struct re_registers *regs;
3447 unsigned num_regs;
3448 regoff_t *starts, *ends;
3450 if (num_regs)
3452 bufp->regs_allocated = REGS_REALLOCATE;
3453 regs->num_regs = num_regs;
3454 regs->start = starts;
3455 regs->end = ends;
3457 else
3459 bufp->regs_allocated = REGS_UNALLOCATED;
3460 regs->num_regs = 0;
3461 regs->start = regs->end = (regoff_t *) 0;
3464 #ifdef _LIBC
3465 weak_alias (__re_set_registers, re_set_registers)
3466 #endif
3468 /* Searching routines. */
3470 /* Like re_search_2, below, but only one string is specified, and
3471 doesn't let you say where to stop matching. */
3474 re_search (bufp, string, size, startpos, range, regs)
3475 struct re_pattern_buffer *bufp;
3476 const char *string;
3477 int size, startpos, range;
3478 struct re_registers *regs;
3480 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3481 regs, size);
3483 #ifdef _LIBC
3484 weak_alias (__re_search, re_search)
3485 #endif
3488 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3489 virtual concatenation of STRING1 and STRING2, starting first at index
3490 STARTPOS, then at STARTPOS + 1, and so on.
3492 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3494 RANGE is how far to scan while trying to match. RANGE = 0 means try
3495 only at STARTPOS; in general, the last start tried is STARTPOS +
3496 RANGE.
3498 In REGS, return the indices of the virtual concatenation of STRING1
3499 and STRING2 that matched the entire BUFP->buffer and its contained
3500 subexpressions.
3502 Do not consider matching one past the index STOP in the virtual
3503 concatenation of STRING1 and STRING2.
3505 We return either the position in the strings at which the match was
3506 found, -1 if no match, or -2 if error (such as failure
3507 stack overflow). */
3510 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3511 struct re_pattern_buffer *bufp;
3512 const char *string1, *string2;
3513 int size1, size2;
3514 int startpos;
3515 int range;
3516 struct re_registers *regs;
3517 int stop;
3519 int val;
3520 register char *fastmap = bufp->fastmap;
3521 register RE_TRANSLATE_TYPE translate = bufp->translate;
3522 int total_size = size1 + size2;
3523 int endpos = startpos + range;
3525 /* Check for out-of-range STARTPOS. */
3526 if (startpos < 0 || startpos > total_size)
3527 return -1;
3529 /* Fix up RANGE if it might eventually take us outside
3530 the virtual concatenation of STRING1 and STRING2.
3531 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3532 if (endpos < 0)
3533 range = 0 - startpos;
3534 else if (endpos > total_size)
3535 range = total_size - startpos;
3537 /* If the search isn't to be a backwards one, don't waste time in a
3538 search for a pattern that must be anchored. */
3539 if (bufp->used > 0 && range > 0
3540 && ((re_opcode_t) bufp->buffer[0] == begbuf
3541 /* `begline' is like `begbuf' if it cannot match at newlines. */
3542 || ((re_opcode_t) bufp->buffer[0] == begline
3543 && !bufp->newline_anchor)))
3545 if (startpos > 0)
3546 return -1;
3547 else
3548 range = 1;
3551 #ifdef emacs
3552 /* In a forward search for something that starts with \=.
3553 don't keep searching past point. */
3554 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3556 range = PT - startpos;
3557 if (range <= 0)
3558 return -1;
3560 #endif /* emacs */
3562 /* Update the fastmap now if not correct already. */
3563 if (fastmap && !bufp->fastmap_accurate)
3564 if (re_compile_fastmap (bufp) == -2)
3565 return -2;
3567 /* Loop through the string, looking for a place to start matching. */
3568 for (;;)
3570 /* If a fastmap is supplied, skip quickly over characters that
3571 cannot be the start of a match. If the pattern can match the
3572 null string, however, we don't need to skip characters; we want
3573 the first null string. */
3574 if (fastmap && startpos < total_size && !bufp->can_be_null)
3576 if (range > 0) /* Searching forwards. */
3578 register const char *d;
3579 register int lim = 0;
3580 int irange = range;
3582 if (startpos < size1 && startpos + range >= size1)
3583 lim = range - (size1 - startpos);
3585 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3587 /* Written out as an if-else to avoid testing `translate'
3588 inside the loop. */
3589 if (translate)
3590 while (range > lim
3591 && !fastmap[(unsigned char)
3592 translate[(unsigned char) *d++]])
3593 range--;
3594 else
3595 while (range > lim && !fastmap[(unsigned char) *d++])
3596 range--;
3598 startpos += irange - range;
3600 else /* Searching backwards. */
3602 register char c = (size1 == 0 || startpos >= size1
3603 ? string2[startpos - size1]
3604 : string1[startpos]);
3606 if (!fastmap[(unsigned char) TRANSLATE (c)])
3607 goto advance;
3611 /* If can't match the null string, and that's all we have left, fail. */
3612 if (range >= 0 && startpos == total_size && fastmap
3613 && !bufp->can_be_null)
3614 return -1;
3616 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3617 startpos, regs, stop);
3618 #ifndef REGEX_MALLOC
3619 # ifdef C_ALLOCA
3620 alloca (0);
3621 # endif
3622 #endif
3624 if (val >= 0)
3625 return startpos;
3627 if (val == -2)
3628 return -2;
3630 advance:
3631 if (!range)
3632 break;
3633 else if (range > 0)
3635 range--;
3636 startpos++;
3638 else
3640 range++;
3641 startpos--;
3644 return -1;
3645 } /* re_search_2 */
3646 #ifdef _LIBC
3647 weak_alias (__re_search_2, re_search_2)
3648 #endif
3650 /* This converts PTR, a pointer into one of the search strings `string1'
3651 and `string2' into an offset from the beginning of that string. */
3652 #define POINTER_TO_OFFSET(ptr) \
3653 (FIRST_STRING_P (ptr) \
3654 ? ((regoff_t) ((ptr) - string1)) \
3655 : ((regoff_t) ((ptr) - string2 + size1)))
3657 /* Macros for dealing with the split strings in re_match_2. */
3659 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3661 /* Call before fetching a character with *d. This switches over to
3662 string2 if necessary. */
3663 #define PREFETCH() \
3664 while (d == dend) \
3666 /* End of string2 => fail. */ \
3667 if (dend == end_match_2) \
3668 goto fail; \
3669 /* End of string1 => advance to string2. */ \
3670 d = string2; \
3671 dend = end_match_2; \
3675 /* Test if at very beginning or at very end of the virtual concatenation
3676 of `string1' and `string2'. If only one string, it's `string2'. */
3677 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3678 #define AT_STRINGS_END(d) ((d) == end2)
3681 /* Test if D points to a character which is word-constituent. We have
3682 two special cases to check for: if past the end of string1, look at
3683 the first character in string2; and if before the beginning of
3684 string2, look at the last character in string1. */
3685 #define WORDCHAR_P(d) \
3686 (SYNTAX ((d) == end1 ? *string2 \
3687 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3688 == Sword)
3690 /* Disabled due to a compiler bug -- see comment at case wordbound */
3691 #if 0
3692 /* Test if the character before D and the one at D differ with respect
3693 to being word-constituent. */
3694 #define AT_WORD_BOUNDARY(d) \
3695 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3696 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3697 #endif
3699 /* Free everything we malloc. */
3700 #ifdef MATCH_MAY_ALLOCATE
3701 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3702 # define FREE_VARIABLES() \
3703 do { \
3704 REGEX_FREE_STACK (fail_stack.stack); \
3705 FREE_VAR (regstart); \
3706 FREE_VAR (regend); \
3707 FREE_VAR (old_regstart); \
3708 FREE_VAR (old_regend); \
3709 FREE_VAR (best_regstart); \
3710 FREE_VAR (best_regend); \
3711 FREE_VAR (reg_info); \
3712 FREE_VAR (reg_dummy); \
3713 FREE_VAR (reg_info_dummy); \
3714 } while (0)
3715 #else
3716 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3717 #endif /* not MATCH_MAY_ALLOCATE */
3719 /* These values must meet several constraints. They must not be valid
3720 register values; since we have a limit of 255 registers (because
3721 we use only one byte in the pattern for the register number), we can
3722 use numbers larger than 255. They must differ by 1, because of
3723 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3724 be larger than the value for the highest register, so we do not try
3725 to actually save any registers when none are active. */
3726 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3727 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3729 /* Matching routines. */
3731 #ifndef emacs /* Emacs never uses this. */
3732 /* re_match is like re_match_2 except it takes only a single string. */
3735 re_match (bufp, string, size, pos, regs)
3736 struct re_pattern_buffer *bufp;
3737 const char *string;
3738 int size, pos;
3739 struct re_registers *regs;
3741 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3742 pos, regs, size);
3743 # ifndef REGEX_MALLOC
3744 # ifdef C_ALLOCA
3745 alloca (0);
3746 # endif
3747 # endif
3748 return result;
3750 # ifdef _LIBC
3751 weak_alias (__re_match, re_match)
3752 # endif
3753 #endif /* not emacs */
3755 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3756 unsigned char *end,
3757 register_info_type *reg_info));
3758 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3759 unsigned char *end,
3760 register_info_type *reg_info));
3761 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3762 unsigned char *end,
3763 register_info_type *reg_info));
3764 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3765 int len, char *translate));
3767 /* re_match_2 matches the compiled pattern in BUFP against the
3768 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3769 and SIZE2, respectively). We start matching at POS, and stop
3770 matching at STOP.
3772 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3773 store offsets for the substring each group matched in REGS. See the
3774 documentation for exactly how many groups we fill.
3776 We return -1 if no match, -2 if an internal error (such as the
3777 failure stack overflowing). Otherwise, we return the length of the
3778 matched substring. */
3781 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3782 struct re_pattern_buffer *bufp;
3783 const char *string1, *string2;
3784 int size1, size2;
3785 int pos;
3786 struct re_registers *regs;
3787 int stop;
3789 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3790 pos, regs, stop);
3791 #ifndef REGEX_MALLOC
3792 # ifdef C_ALLOCA
3793 alloca (0);
3794 # endif
3795 #endif
3796 return result;
3798 #ifdef _LIBC
3799 weak_alias (__re_match_2, re_match_2)
3800 #endif
3802 /* This is a separate function so that we can force an alloca cleanup
3803 afterwards. */
3804 static int
3805 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3806 struct re_pattern_buffer *bufp;
3807 const char *string1, *string2;
3808 int size1, size2;
3809 int pos;
3810 struct re_registers *regs;
3811 int stop;
3813 /* General temporaries. */
3814 int mcnt;
3815 unsigned char *p1;
3817 /* Just past the end of the corresponding string. */
3818 const char *end1, *end2;
3820 /* Pointers into string1 and string2, just past the last characters in
3821 each to consider matching. */
3822 const char *end_match_1, *end_match_2;
3824 /* Where we are in the data, and the end of the current string. */
3825 const char *d, *dend;
3827 /* Where we are in the pattern, and the end of the pattern. */
3828 unsigned char *p = bufp->buffer;
3829 register unsigned char *pend = p + bufp->used;
3831 /* Mark the opcode just after a start_memory, so we can test for an
3832 empty subpattern when we get to the stop_memory. */
3833 unsigned char *just_past_start_mem = 0;
3835 /* We use this to map every character in the string. */
3836 RE_TRANSLATE_TYPE translate = bufp->translate;
3838 /* Failure point stack. Each place that can handle a failure further
3839 down the line pushes a failure point on this stack. It consists of
3840 restart, regend, and reg_info for all registers corresponding to
3841 the subexpressions we're currently inside, plus the number of such
3842 registers, and, finally, two char *'s. The first char * is where
3843 to resume scanning the pattern; the second one is where to resume
3844 scanning the strings. If the latter is zero, the failure point is
3845 a ``dummy''; if a failure happens and the failure point is a dummy,
3846 it gets discarded and the next next one is tried. */
3847 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3848 fail_stack_type fail_stack;
3849 #endif
3850 #ifdef DEBUG
3851 static unsigned failure_id = 0;
3852 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3853 #endif
3855 #ifdef REL_ALLOC
3856 /* This holds the pointer to the failure stack, when
3857 it is allocated relocatably. */
3858 fail_stack_elt_t *failure_stack_ptr;
3859 #endif
3861 /* We fill all the registers internally, independent of what we
3862 return, for use in backreferences. The number here includes
3863 an element for register zero. */
3864 size_t num_regs = bufp->re_nsub + 1;
3866 /* The currently active registers. */
3867 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3868 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3870 /* Information on the contents of registers. These are pointers into
3871 the input strings; they record just what was matched (on this
3872 attempt) by a subexpression part of the pattern, that is, the
3873 regnum-th regstart pointer points to where in the pattern we began
3874 matching and the regnum-th regend points to right after where we
3875 stopped matching the regnum-th subexpression. (The zeroth register
3876 keeps track of what the whole pattern matches.) */
3877 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3878 const char **regstart, **regend;
3879 #endif
3881 /* If a group that's operated upon by a repetition operator fails to
3882 match anything, then the register for its start will need to be
3883 restored because it will have been set to wherever in the string we
3884 are when we last see its open-group operator. Similarly for a
3885 register's end. */
3886 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3887 const char **old_regstart, **old_regend;
3888 #endif
3890 /* The is_active field of reg_info helps us keep track of which (possibly
3891 nested) subexpressions we are currently in. The matched_something
3892 field of reg_info[reg_num] helps us tell whether or not we have
3893 matched any of the pattern so far this time through the reg_num-th
3894 subexpression. These two fields get reset each time through any
3895 loop their register is in. */
3896 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3897 register_info_type *reg_info;
3898 #endif
3900 /* The following record the register info as found in the above
3901 variables when we find a match better than any we've seen before.
3902 This happens as we backtrack through the failure points, which in
3903 turn happens only if we have not yet matched the entire string. */
3904 unsigned best_regs_set = false;
3905 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3906 const char **best_regstart, **best_regend;
3907 #endif
3909 /* Logically, this is `best_regend[0]'. But we don't want to have to
3910 allocate space for that if we're not allocating space for anything
3911 else (see below). Also, we never need info about register 0 for
3912 any of the other register vectors, and it seems rather a kludge to
3913 treat `best_regend' differently than the rest. So we keep track of
3914 the end of the best match so far in a separate variable. We
3915 initialize this to NULL so that when we backtrack the first time
3916 and need to test it, it's not garbage. */
3917 const char *match_end = NULL;
3919 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3920 int set_regs_matched_done = 0;
3922 /* Used when we pop values we don't care about. */
3923 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3924 const char **reg_dummy;
3925 register_info_type *reg_info_dummy;
3926 #endif
3928 #ifdef DEBUG
3929 /* Counts the total number of registers pushed. */
3930 unsigned num_regs_pushed = 0;
3931 #endif
3933 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3935 INIT_FAIL_STACK ();
3937 #ifdef MATCH_MAY_ALLOCATE
3938 /* Do not bother to initialize all the register variables if there are
3939 no groups in the pattern, as it takes a fair amount of time. If
3940 there are groups, we include space for register 0 (the whole
3941 pattern), even though we never use it, since it simplifies the
3942 array indexing. We should fix this. */
3943 if (bufp->re_nsub)
3945 regstart = REGEX_TALLOC (num_regs, const char *);
3946 regend = REGEX_TALLOC (num_regs, const char *);
3947 old_regstart = REGEX_TALLOC (num_regs, const char *);
3948 old_regend = REGEX_TALLOC (num_regs, const char *);
3949 best_regstart = REGEX_TALLOC (num_regs, const char *);
3950 best_regend = REGEX_TALLOC (num_regs, const char *);
3951 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3952 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3953 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3955 if (!(regstart && regend && old_regstart && old_regend && reg_info
3956 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3958 FREE_VARIABLES ();
3959 return -2;
3962 else
3964 /* We must initialize all our variables to NULL, so that
3965 `FREE_VARIABLES' doesn't try to free them. */
3966 regstart = regend = old_regstart = old_regend = best_regstart
3967 = best_regend = reg_dummy = NULL;
3968 reg_info = reg_info_dummy = (register_info_type *) NULL;
3970 #endif /* MATCH_MAY_ALLOCATE */
3972 /* The starting position is bogus. */
3973 if (pos < 0 || pos > size1 + size2)
3975 FREE_VARIABLES ();
3976 return -1;
3979 /* Initialize subexpression text positions to -1 to mark ones that no
3980 start_memory/stop_memory has been seen for. Also initialize the
3981 register information struct. */
3982 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3984 regstart[mcnt] = regend[mcnt]
3985 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3987 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3988 IS_ACTIVE (reg_info[mcnt]) = 0;
3989 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3990 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3993 /* We move `string1' into `string2' if the latter's empty -- but not if
3994 `string1' is null. */
3995 if (size2 == 0 && string1 != NULL)
3997 string2 = string1;
3998 size2 = size1;
3999 string1 = 0;
4000 size1 = 0;
4002 end1 = string1 + size1;
4003 end2 = string2 + size2;
4005 /* Compute where to stop matching, within the two strings. */
4006 if (stop <= size1)
4008 end_match_1 = string1 + stop;
4009 end_match_2 = string2;
4011 else
4013 end_match_1 = end1;
4014 end_match_2 = string2 + stop - size1;
4017 /* `p' scans through the pattern as `d' scans through the data.
4018 `dend' is the end of the input string that `d' points within. `d'
4019 is advanced into the following input string whenever necessary, but
4020 this happens before fetching; therefore, at the beginning of the
4021 loop, `d' can be pointing at the end of a string, but it cannot
4022 equal `string2'. */
4023 if (size1 > 0 && pos <= size1)
4025 d = string1 + pos;
4026 dend = end_match_1;
4028 else
4030 d = string2 + pos - size1;
4031 dend = end_match_2;
4034 DEBUG_PRINT1 ("The compiled pattern is:\n");
4035 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4036 DEBUG_PRINT1 ("The string to match is: `");
4037 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4038 DEBUG_PRINT1 ("'\n");
4040 /* This loops over pattern commands. It exits by returning from the
4041 function if the match is complete, or it drops through if the match
4042 fails at this starting point in the input data. */
4043 for (;;)
4045 #ifdef _LIBC
4046 DEBUG_PRINT2 ("\n%p: ", p);
4047 #else
4048 DEBUG_PRINT2 ("\n0x%x: ", p);
4049 #endif
4051 if (p == pend)
4052 { /* End of pattern means we might have succeeded. */
4053 DEBUG_PRINT1 ("end of pattern ... ");
4055 /* If we haven't matched the entire string, and we want the
4056 longest match, try backtracking. */
4057 if (d != end_match_2)
4059 /* 1 if this match ends in the same string (string1 or string2)
4060 as the best previous match. */
4061 boolean same_str_p = (FIRST_STRING_P (match_end)
4062 == MATCHING_IN_FIRST_STRING);
4063 /* 1 if this match is the best seen so far. */
4064 boolean best_match_p;
4066 /* AIX compiler got confused when this was combined
4067 with the previous declaration. */
4068 if (same_str_p)
4069 best_match_p = d > match_end;
4070 else
4071 best_match_p = !MATCHING_IN_FIRST_STRING;
4073 DEBUG_PRINT1 ("backtracking.\n");
4075 if (!FAIL_STACK_EMPTY ())
4076 { /* More failure points to try. */
4078 /* If exceeds best match so far, save it. */
4079 if (!best_regs_set || best_match_p)
4081 best_regs_set = true;
4082 match_end = d;
4084 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4086 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4088 best_regstart[mcnt] = regstart[mcnt];
4089 best_regend[mcnt] = regend[mcnt];
4092 goto fail;
4095 /* If no failure points, don't restore garbage. And if
4096 last match is real best match, don't restore second
4097 best one. */
4098 else if (best_regs_set && !best_match_p)
4100 restore_best_regs:
4101 /* Restore best match. It may happen that `dend ==
4102 end_match_1' while the restored d is in string2.
4103 For example, the pattern `x.*y.*z' against the
4104 strings `x-' and `y-z-', if the two strings are
4105 not consecutive in memory. */
4106 DEBUG_PRINT1 ("Restoring best registers.\n");
4108 d = match_end;
4109 dend = ((d >= string1 && d <= end1)
4110 ? end_match_1 : end_match_2);
4112 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4114 regstart[mcnt] = best_regstart[mcnt];
4115 regend[mcnt] = best_regend[mcnt];
4118 } /* d != end_match_2 */
4120 succeed_label:
4121 DEBUG_PRINT1 ("Accepting match.\n");
4123 /* If caller wants register contents data back, do it. */
4124 if (regs && !bufp->no_sub)
4126 /* Have the register data arrays been allocated? */
4127 if (bufp->regs_allocated == REGS_UNALLOCATED)
4128 { /* No. So allocate them with malloc. We need one
4129 extra element beyond `num_regs' for the `-1' marker
4130 GNU code uses. */
4131 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4132 regs->start = TALLOC (regs->num_regs, regoff_t);
4133 regs->end = TALLOC (regs->num_regs, regoff_t);
4134 if (regs->start == NULL || regs->end == NULL)
4136 FREE_VARIABLES ();
4137 return -2;
4139 bufp->regs_allocated = REGS_REALLOCATE;
4141 else if (bufp->regs_allocated == REGS_REALLOCATE)
4142 { /* Yes. If we need more elements than were already
4143 allocated, reallocate them. If we need fewer, just
4144 leave it alone. */
4145 if (regs->num_regs < num_regs + 1)
4147 regs->num_regs = num_regs + 1;
4148 RETALLOC (regs->start, regs->num_regs, regoff_t);
4149 RETALLOC (regs->end, regs->num_regs, regoff_t);
4150 if (regs->start == NULL || regs->end == NULL)
4152 FREE_VARIABLES ();
4153 return -2;
4157 else
4159 /* These braces fend off a "empty body in an else-statement"
4160 warning under GCC when assert expands to nothing. */
4161 assert (bufp->regs_allocated == REGS_FIXED);
4164 /* Convert the pointer data in `regstart' and `regend' to
4165 indices. Register zero has to be set differently,
4166 since we haven't kept track of any info for it. */
4167 if (regs->num_regs > 0)
4169 regs->start[0] = pos;
4170 regs->end[0] = (MATCHING_IN_FIRST_STRING
4171 ? ((regoff_t) (d - string1))
4172 : ((regoff_t) (d - string2 + size1)));
4175 /* Go through the first `min (num_regs, regs->num_regs)'
4176 registers, since that is all we initialized. */
4177 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4178 mcnt++)
4180 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4181 regs->start[mcnt] = regs->end[mcnt] = -1;
4182 else
4184 regs->start[mcnt]
4185 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4186 regs->end[mcnt]
4187 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4191 /* If the regs structure we return has more elements than
4192 were in the pattern, set the extra elements to -1. If
4193 we (re)allocated the registers, this is the case,
4194 because we always allocate enough to have at least one
4195 -1 at the end. */
4196 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4197 regs->start[mcnt] = regs->end[mcnt] = -1;
4198 } /* regs && !bufp->no_sub */
4200 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4201 nfailure_points_pushed, nfailure_points_popped,
4202 nfailure_points_pushed - nfailure_points_popped);
4203 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4205 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4206 ? string1
4207 : string2 - size1);
4209 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4211 FREE_VARIABLES ();
4212 return mcnt;
4215 /* Otherwise match next pattern command. */
4216 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4218 /* Ignore these. Used to ignore the n of succeed_n's which
4219 currently have n == 0. */
4220 case no_op:
4221 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4222 break;
4224 case succeed:
4225 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4226 goto succeed_label;
4228 /* Match the next n pattern characters exactly. The following
4229 byte in the pattern defines n, and the n bytes after that
4230 are the characters to match. */
4231 case exactn:
4232 mcnt = *p++;
4233 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4235 /* This is written out as an if-else so we don't waste time
4236 testing `translate' inside the loop. */
4237 if (translate)
4241 PREFETCH ();
4242 if ((unsigned char) translate[(unsigned char) *d++]
4243 != (unsigned char) *p++)
4244 goto fail;
4246 while (--mcnt);
4248 else
4252 PREFETCH ();
4253 if (*d++ != (char) *p++) goto fail;
4255 while (--mcnt);
4257 SET_REGS_MATCHED ();
4258 break;
4261 /* Match any character except possibly a newline or a null. */
4262 case anychar:
4263 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4265 PREFETCH ();
4267 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4268 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4269 goto fail;
4271 SET_REGS_MATCHED ();
4272 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4273 d++;
4274 break;
4277 case charset:
4278 case charset_not:
4280 register unsigned char c;
4281 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4283 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4285 PREFETCH ();
4286 c = TRANSLATE (*d); /* The character to match. */
4288 /* Cast to `unsigned' instead of `unsigned char' in case the
4289 bit list is a full 32 bytes long. */
4290 if (c < (unsigned) (*p * BYTEWIDTH)
4291 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4292 not = !not;
4294 p += 1 + *p;
4296 if (!not) goto fail;
4298 SET_REGS_MATCHED ();
4299 d++;
4300 break;
4304 /* The beginning of a group is represented by start_memory.
4305 The arguments are the register number in the next byte, and the
4306 number of groups inner to this one in the next. The text
4307 matched within the group is recorded (in the internal
4308 registers data structure) under the register number. */
4309 case start_memory:
4310 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4312 /* Find out if this group can match the empty string. */
4313 p1 = p; /* To send to group_match_null_string_p. */
4315 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4316 REG_MATCH_NULL_STRING_P (reg_info[*p])
4317 = group_match_null_string_p (&p1, pend, reg_info);
4319 /* Save the position in the string where we were the last time
4320 we were at this open-group operator in case the group is
4321 operated upon by a repetition operator, e.g., with `(a*)*b'
4322 against `ab'; then we want to ignore where we are now in
4323 the string in case this attempt to match fails. */
4324 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4325 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4326 : regstart[*p];
4327 DEBUG_PRINT2 (" old_regstart: %d\n",
4328 POINTER_TO_OFFSET (old_regstart[*p]));
4330 regstart[*p] = d;
4331 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4333 IS_ACTIVE (reg_info[*p]) = 1;
4334 MATCHED_SOMETHING (reg_info[*p]) = 0;
4336 /* Clear this whenever we change the register activity status. */
4337 set_regs_matched_done = 0;
4339 /* This is the new highest active register. */
4340 highest_active_reg = *p;
4342 /* If nothing was active before, this is the new lowest active
4343 register. */
4344 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4345 lowest_active_reg = *p;
4347 /* Move past the register number and inner group count. */
4348 p += 2;
4349 just_past_start_mem = p;
4351 break;
4354 /* The stop_memory opcode represents the end of a group. Its
4355 arguments are the same as start_memory's: the register
4356 number, and the number of inner groups. */
4357 case stop_memory:
4358 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4360 /* We need to save the string position the last time we were at
4361 this close-group operator in case the group is operated
4362 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4363 against `aba'; then we want to ignore where we are now in
4364 the string in case this attempt to match fails. */
4365 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4366 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4367 : regend[*p];
4368 DEBUG_PRINT2 (" old_regend: %d\n",
4369 POINTER_TO_OFFSET (old_regend[*p]));
4371 regend[*p] = d;
4372 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4374 /* This register isn't active anymore. */
4375 IS_ACTIVE (reg_info[*p]) = 0;
4377 /* Clear this whenever we change the register activity status. */
4378 set_regs_matched_done = 0;
4380 /* If this was the only register active, nothing is active
4381 anymore. */
4382 if (lowest_active_reg == highest_active_reg)
4384 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4385 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4387 else
4388 { /* We must scan for the new highest active register, since
4389 it isn't necessarily one less than now: consider
4390 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4391 new highest active register is 1. */
4392 unsigned char r = *p - 1;
4393 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4394 r--;
4396 /* If we end up at register zero, that means that we saved
4397 the registers as the result of an `on_failure_jump', not
4398 a `start_memory', and we jumped to past the innermost
4399 `stop_memory'. For example, in ((.)*) we save
4400 registers 1 and 2 as a result of the *, but when we pop
4401 back to the second ), we are at the stop_memory 1.
4402 Thus, nothing is active. */
4403 if (r == 0)
4405 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4406 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4408 else
4409 highest_active_reg = r;
4412 /* If just failed to match something this time around with a
4413 group that's operated on by a repetition operator, try to
4414 force exit from the ``loop'', and restore the register
4415 information for this group that we had before trying this
4416 last match. */
4417 if ((!MATCHED_SOMETHING (reg_info[*p])
4418 || just_past_start_mem == p - 1)
4419 && (p + 2) < pend)
4421 boolean is_a_jump_n = false;
4423 p1 = p + 2;
4424 mcnt = 0;
4425 switch ((re_opcode_t) *p1++)
4427 case jump_n:
4428 is_a_jump_n = true;
4429 case pop_failure_jump:
4430 case maybe_pop_jump:
4431 case jump:
4432 case dummy_failure_jump:
4433 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4434 if (is_a_jump_n)
4435 p1 += 2;
4436 break;
4438 default:
4439 /* do nothing */ ;
4441 p1 += mcnt;
4443 /* If the next operation is a jump backwards in the pattern
4444 to an on_failure_jump right before the start_memory
4445 corresponding to this stop_memory, exit from the loop
4446 by forcing a failure after pushing on the stack the
4447 on_failure_jump's jump in the pattern, and d. */
4448 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4449 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4451 /* If this group ever matched anything, then restore
4452 what its registers were before trying this last
4453 failed match, e.g., with `(a*)*b' against `ab' for
4454 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4455 against `aba' for regend[3].
4457 Also restore the registers for inner groups for,
4458 e.g., `((a*)(b*))*' against `aba' (register 3 would
4459 otherwise get trashed). */
4461 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4463 unsigned r;
4465 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4467 /* Restore this and inner groups' (if any) registers. */
4468 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4469 r++)
4471 regstart[r] = old_regstart[r];
4473 /* xx why this test? */
4474 if (old_regend[r] >= regstart[r])
4475 regend[r] = old_regend[r];
4478 p1++;
4479 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4480 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4482 goto fail;
4486 /* Move past the register number and the inner group count. */
4487 p += 2;
4488 break;
4491 /* \<digit> has been turned into a `duplicate' command which is
4492 followed by the numeric value of <digit> as the register number. */
4493 case duplicate:
4495 register const char *d2, *dend2;
4496 int regno = *p++; /* Get which register to match against. */
4497 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4499 /* Can't back reference a group which we've never matched. */
4500 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4501 goto fail;
4503 /* Where in input to try to start matching. */
4504 d2 = regstart[regno];
4506 /* Where to stop matching; if both the place to start and
4507 the place to stop matching are in the same string, then
4508 set to the place to stop, otherwise, for now have to use
4509 the end of the first string. */
4511 dend2 = ((FIRST_STRING_P (regstart[regno])
4512 == FIRST_STRING_P (regend[regno]))
4513 ? regend[regno] : end_match_1);
4514 for (;;)
4516 /* If necessary, advance to next segment in register
4517 contents. */
4518 while (d2 == dend2)
4520 if (dend2 == end_match_2) break;
4521 if (dend2 == regend[regno]) break;
4523 /* End of string1 => advance to string2. */
4524 d2 = string2;
4525 dend2 = regend[regno];
4527 /* At end of register contents => success */
4528 if (d2 == dend2) break;
4530 /* If necessary, advance to next segment in data. */
4531 PREFETCH ();
4533 /* How many characters left in this segment to match. */
4534 mcnt = dend - d;
4536 /* Want how many consecutive characters we can match in
4537 one shot, so, if necessary, adjust the count. */
4538 if (mcnt > dend2 - d2)
4539 mcnt = dend2 - d2;
4541 /* Compare that many; failure if mismatch, else move
4542 past them. */
4543 if (translate
4544 ? bcmp_translate (d, d2, mcnt, translate)
4545 : memcmp (d, d2, mcnt))
4546 goto fail;
4547 d += mcnt, d2 += mcnt;
4549 /* Do this because we've match some characters. */
4550 SET_REGS_MATCHED ();
4553 break;
4556 /* begline matches the empty string at the beginning of the string
4557 (unless `not_bol' is set in `bufp'), and, if
4558 `newline_anchor' is set, after newlines. */
4559 case begline:
4560 DEBUG_PRINT1 ("EXECUTING begline.\n");
4562 if (AT_STRINGS_BEG (d))
4564 if (!bufp->not_bol) break;
4566 else if (d[-1] == '\n' && bufp->newline_anchor)
4568 break;
4570 /* In all other cases, we fail. */
4571 goto fail;
4574 /* endline is the dual of begline. */
4575 case endline:
4576 DEBUG_PRINT1 ("EXECUTING endline.\n");
4578 if (AT_STRINGS_END (d))
4580 if (!bufp->not_eol) break;
4583 /* We have to ``prefetch'' the next character. */
4584 else if ((d == end1 ? *string2 : *d) == '\n'
4585 && bufp->newline_anchor)
4587 break;
4589 goto fail;
4592 /* Match at the very beginning of the data. */
4593 case begbuf:
4594 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4595 if (AT_STRINGS_BEG (d))
4596 break;
4597 goto fail;
4600 /* Match at the very end of the data. */
4601 case endbuf:
4602 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4603 if (AT_STRINGS_END (d))
4604 break;
4605 goto fail;
4608 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4609 pushes NULL as the value for the string on the stack. Then
4610 `pop_failure_point' will keep the current value for the
4611 string, instead of restoring it. To see why, consider
4612 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4613 then the . fails against the \n. But the next thing we want
4614 to do is match the \n against the \n; if we restored the
4615 string value, we would be back at the foo.
4617 Because this is used only in specific cases, we don't need to
4618 check all the things that `on_failure_jump' does, to make
4619 sure the right things get saved on the stack. Hence we don't
4620 share its code. The only reason to push anything on the
4621 stack at all is that otherwise we would have to change
4622 `anychar's code to do something besides goto fail in this
4623 case; that seems worse than this. */
4624 case on_failure_keep_string_jump:
4625 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4627 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4628 #ifdef _LIBC
4629 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4630 #else
4631 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4632 #endif
4634 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4635 break;
4638 /* Uses of on_failure_jump:
4640 Each alternative starts with an on_failure_jump that points
4641 to the beginning of the next alternative. Each alternative
4642 except the last ends with a jump that in effect jumps past
4643 the rest of the alternatives. (They really jump to the
4644 ending jump of the following alternative, because tensioning
4645 these jumps is a hassle.)
4647 Repeats start with an on_failure_jump that points past both
4648 the repetition text and either the following jump or
4649 pop_failure_jump back to this on_failure_jump. */
4650 case on_failure_jump:
4651 on_failure:
4652 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4654 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4655 #ifdef _LIBC
4656 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4657 #else
4658 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4659 #endif
4661 /* If this on_failure_jump comes right before a group (i.e.,
4662 the original * applied to a group), save the information
4663 for that group and all inner ones, so that if we fail back
4664 to this point, the group's information will be correct.
4665 For example, in \(a*\)*\1, we need the preceding group,
4666 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4668 /* We can't use `p' to check ahead because we push
4669 a failure point to `p + mcnt' after we do this. */
4670 p1 = p;
4672 /* We need to skip no_op's before we look for the
4673 start_memory in case this on_failure_jump is happening as
4674 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4675 against aba. */
4676 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4677 p1++;
4679 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4681 /* We have a new highest active register now. This will
4682 get reset at the start_memory we are about to get to,
4683 but we will have saved all the registers relevant to
4684 this repetition op, as described above. */
4685 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4686 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4687 lowest_active_reg = *(p1 + 1);
4690 DEBUG_PRINT1 (":\n");
4691 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4692 break;
4695 /* A smart repeat ends with `maybe_pop_jump'.
4696 We change it to either `pop_failure_jump' or `jump'. */
4697 case maybe_pop_jump:
4698 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4699 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4701 register unsigned char *p2 = p;
4703 /* Compare the beginning of the repeat with what in the
4704 pattern follows its end. If we can establish that there
4705 is nothing that they would both match, i.e., that we
4706 would have to backtrack because of (as in, e.g., `a*a')
4707 then we can change to pop_failure_jump, because we'll
4708 never have to backtrack.
4710 This is not true in the case of alternatives: in
4711 `(a|ab)*' we do need to backtrack to the `ab' alternative
4712 (e.g., if the string was `ab'). But instead of trying to
4713 detect that here, the alternative has put on a dummy
4714 failure point which is what we will end up popping. */
4716 /* Skip over open/close-group commands.
4717 If what follows this loop is a ...+ construct,
4718 look at what begins its body, since we will have to
4719 match at least one of that. */
4720 while (1)
4722 if (p2 + 2 < pend
4723 && ((re_opcode_t) *p2 == stop_memory
4724 || (re_opcode_t) *p2 == start_memory))
4725 p2 += 3;
4726 else if (p2 + 6 < pend
4727 && (re_opcode_t) *p2 == dummy_failure_jump)
4728 p2 += 6;
4729 else
4730 break;
4733 p1 = p + mcnt;
4734 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4735 to the `maybe_finalize_jump' of this case. Examine what
4736 follows. */
4738 /* If we're at the end of the pattern, we can change. */
4739 if (p2 == pend)
4741 /* Consider what happens when matching ":\(.*\)"
4742 against ":/". I don't really understand this code
4743 yet. */
4744 p[-3] = (unsigned char) pop_failure_jump;
4745 DEBUG_PRINT1
4746 (" End of pattern: change to `pop_failure_jump'.\n");
4749 else if ((re_opcode_t) *p2 == exactn
4750 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4752 register unsigned char c
4753 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4755 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4757 p[-3] = (unsigned char) pop_failure_jump;
4758 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4759 c, p1[5]);
4762 else if ((re_opcode_t) p1[3] == charset
4763 || (re_opcode_t) p1[3] == charset_not)
4765 int not = (re_opcode_t) p1[3] == charset_not;
4767 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4768 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4769 not = !not;
4771 /* `not' is equal to 1 if c would match, which means
4772 that we can't change to pop_failure_jump. */
4773 if (!not)
4775 p[-3] = (unsigned char) pop_failure_jump;
4776 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4780 else if ((re_opcode_t) *p2 == charset)
4782 #ifdef DEBUG
4783 register unsigned char c
4784 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4785 #endif
4787 #if 0
4788 if ((re_opcode_t) p1[3] == exactn
4789 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4790 && (p2[2 + p1[5] / BYTEWIDTH]
4791 & (1 << (p1[5] % BYTEWIDTH)))))
4792 #else
4793 if ((re_opcode_t) p1[3] == exactn
4794 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4795 && (p2[2 + p1[4] / BYTEWIDTH]
4796 & (1 << (p1[4] % BYTEWIDTH)))))
4797 #endif
4799 p[-3] = (unsigned char) pop_failure_jump;
4800 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4801 c, p1[5]);
4804 else if ((re_opcode_t) p1[3] == charset_not)
4806 int idx;
4807 /* We win if the charset_not inside the loop
4808 lists every character listed in the charset after. */
4809 for (idx = 0; idx < (int) p2[1]; idx++)
4810 if (! (p2[2 + idx] == 0
4811 || (idx < (int) p1[4]
4812 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4813 break;
4815 if (idx == p2[1])
4817 p[-3] = (unsigned char) pop_failure_jump;
4818 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4821 else if ((re_opcode_t) p1[3] == charset)
4823 int idx;
4824 /* We win if the charset inside the loop
4825 has no overlap with the one after the loop. */
4826 for (idx = 0;
4827 idx < (int) p2[1] && idx < (int) p1[4];
4828 idx++)
4829 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4830 break;
4832 if (idx == p2[1] || idx == p1[4])
4834 p[-3] = (unsigned char) pop_failure_jump;
4835 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4840 p -= 2; /* Point at relative address again. */
4841 if ((re_opcode_t) p[-1] != pop_failure_jump)
4843 p[-1] = (unsigned char) jump;
4844 DEBUG_PRINT1 (" Match => jump.\n");
4845 goto unconditional_jump;
4847 /* Note fall through. */
4850 /* The end of a simple repeat has a pop_failure_jump back to
4851 its matching on_failure_jump, where the latter will push a
4852 failure point. The pop_failure_jump takes off failure
4853 points put on by this pop_failure_jump's matching
4854 on_failure_jump; we got through the pattern to here from the
4855 matching on_failure_jump, so didn't fail. */
4856 case pop_failure_jump:
4858 /* We need to pass separate storage for the lowest and
4859 highest registers, even though we don't care about the
4860 actual values. Otherwise, we will restore only one
4861 register from the stack, since lowest will == highest in
4862 `pop_failure_point'. */
4863 active_reg_t dummy_low_reg, dummy_high_reg;
4864 unsigned char *pdummy;
4865 const char *sdummy;
4867 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4868 POP_FAILURE_POINT (sdummy, pdummy,
4869 dummy_low_reg, dummy_high_reg,
4870 reg_dummy, reg_dummy, reg_info_dummy);
4872 /* Note fall through. */
4874 unconditional_jump:
4875 #ifdef _LIBC
4876 DEBUG_PRINT2 ("\n%p: ", p);
4877 #else
4878 DEBUG_PRINT2 ("\n0x%x: ", p);
4879 #endif
4880 /* Note fall through. */
4882 /* Unconditionally jump (without popping any failure points). */
4883 case jump:
4884 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4885 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4886 p += mcnt; /* Do the jump. */
4887 #ifdef _LIBC
4888 DEBUG_PRINT2 ("(to %p).\n", p);
4889 #else
4890 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4891 #endif
4892 break;
4895 /* We need this opcode so we can detect where alternatives end
4896 in `group_match_null_string_p' et al. */
4897 case jump_past_alt:
4898 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4899 goto unconditional_jump;
4902 /* Normally, the on_failure_jump pushes a failure point, which
4903 then gets popped at pop_failure_jump. We will end up at
4904 pop_failure_jump, also, and with a pattern of, say, `a+', we
4905 are skipping over the on_failure_jump, so we have to push
4906 something meaningless for pop_failure_jump to pop. */
4907 case dummy_failure_jump:
4908 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4909 /* It doesn't matter what we push for the string here. What
4910 the code at `fail' tests is the value for the pattern. */
4911 PUSH_FAILURE_POINT (NULL, NULL, -2);
4912 goto unconditional_jump;
4915 /* At the end of an alternative, we need to push a dummy failure
4916 point in case we are followed by a `pop_failure_jump', because
4917 we don't want the failure point for the alternative to be
4918 popped. For example, matching `(a|ab)*' against `aab'
4919 requires that we match the `ab' alternative. */
4920 case push_dummy_failure:
4921 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4922 /* See comments just above at `dummy_failure_jump' about the
4923 two zeroes. */
4924 PUSH_FAILURE_POINT (NULL, NULL, -2);
4925 break;
4927 /* Have to succeed matching what follows at least n times.
4928 After that, handle like `on_failure_jump'. */
4929 case succeed_n:
4930 EXTRACT_NUMBER (mcnt, p + 2);
4931 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4933 assert (mcnt >= 0);
4934 /* Originally, this is how many times we HAVE to succeed. */
4935 if (mcnt > 0)
4937 mcnt--;
4938 p += 2;
4939 STORE_NUMBER_AND_INCR (p, mcnt);
4940 #ifdef _LIBC
4941 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4942 #else
4943 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4944 #endif
4946 else if (mcnt == 0)
4948 #ifdef _LIBC
4949 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4950 #else
4951 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4952 #endif
4953 p[2] = (unsigned char) no_op;
4954 p[3] = (unsigned char) no_op;
4955 goto on_failure;
4957 break;
4959 case jump_n:
4960 EXTRACT_NUMBER (mcnt, p + 2);
4961 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4963 /* Originally, this is how many times we CAN jump. */
4964 if (mcnt)
4966 mcnt--;
4967 STORE_NUMBER (p + 2, mcnt);
4968 #ifdef _LIBC
4969 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4970 #else
4971 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4972 #endif
4973 goto unconditional_jump;
4975 /* If don't have to jump any more, skip over the rest of command. */
4976 else
4977 p += 4;
4978 break;
4980 case set_number_at:
4982 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4984 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4985 p1 = p + mcnt;
4986 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4987 #ifdef _LIBC
4988 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4989 #else
4990 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4991 #endif
4992 STORE_NUMBER (p1, mcnt);
4993 break;
4996 #if 0
4997 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4998 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4999 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5000 macro and introducing temporary variables works around the bug. */
5002 case wordbound:
5003 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5004 if (AT_WORD_BOUNDARY (d))
5005 break;
5006 goto fail;
5008 case notwordbound:
5009 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5010 if (AT_WORD_BOUNDARY (d))
5011 goto fail;
5012 break;
5013 #else
5014 case wordbound:
5016 boolean prevchar, thischar;
5018 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5019 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5020 break;
5022 prevchar = WORDCHAR_P (d - 1);
5023 thischar = WORDCHAR_P (d);
5024 if (prevchar != thischar)
5025 break;
5026 goto fail;
5029 case notwordbound:
5031 boolean prevchar, thischar;
5033 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5034 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5035 goto fail;
5037 prevchar = WORDCHAR_P (d - 1);
5038 thischar = WORDCHAR_P (d);
5039 if (prevchar != thischar)
5040 goto fail;
5041 break;
5043 #endif
5045 case wordbeg:
5046 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5047 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5048 break;
5049 goto fail;
5051 case wordend:
5052 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5053 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5054 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5055 break;
5056 goto fail;
5058 #ifdef emacs
5059 case before_dot:
5060 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5061 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5062 goto fail;
5063 break;
5065 case at_dot:
5066 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5067 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5068 goto fail;
5069 break;
5071 case after_dot:
5072 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5073 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5074 goto fail;
5075 break;
5077 case syntaxspec:
5078 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5079 mcnt = *p++;
5080 goto matchsyntax;
5082 case wordchar:
5083 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5084 mcnt = (int) Sword;
5085 matchsyntax:
5086 PREFETCH ();
5087 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5088 d++;
5089 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5090 goto fail;
5091 SET_REGS_MATCHED ();
5092 break;
5094 case notsyntaxspec:
5095 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5096 mcnt = *p++;
5097 goto matchnotsyntax;
5099 case notwordchar:
5100 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5101 mcnt = (int) Sword;
5102 matchnotsyntax:
5103 PREFETCH ();
5104 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5105 d++;
5106 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5107 goto fail;
5108 SET_REGS_MATCHED ();
5109 break;
5111 #else /* not emacs */
5112 case wordchar:
5113 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5114 PREFETCH ();
5115 if (!WORDCHAR_P (d))
5116 goto fail;
5117 SET_REGS_MATCHED ();
5118 d++;
5119 break;
5121 case notwordchar:
5122 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5123 PREFETCH ();
5124 if (WORDCHAR_P (d))
5125 goto fail;
5126 SET_REGS_MATCHED ();
5127 d++;
5128 break;
5129 #endif /* not emacs */
5131 default:
5132 abort ();
5134 continue; /* Successfully executed one pattern command; keep going. */
5137 /* We goto here if a matching operation fails. */
5138 fail:
5139 if (!FAIL_STACK_EMPTY ())
5140 { /* A restart point is known. Restore to that state. */
5141 DEBUG_PRINT1 ("\nFAIL:\n");
5142 POP_FAILURE_POINT (d, p,
5143 lowest_active_reg, highest_active_reg,
5144 regstart, regend, reg_info);
5146 /* If this failure point is a dummy, try the next one. */
5147 if (!p)
5148 goto fail;
5150 /* If we failed to the end of the pattern, don't examine *p. */
5151 assert (p <= pend);
5152 if (p < pend)
5154 boolean is_a_jump_n = false;
5156 /* If failed to a backwards jump that's part of a repetition
5157 loop, need to pop this failure point and use the next one. */
5158 switch ((re_opcode_t) *p)
5160 case jump_n:
5161 is_a_jump_n = true;
5162 case maybe_pop_jump:
5163 case pop_failure_jump:
5164 case jump:
5165 p1 = p + 1;
5166 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5167 p1 += mcnt;
5169 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5170 || (!is_a_jump_n
5171 && (re_opcode_t) *p1 == on_failure_jump))
5172 goto fail;
5173 break;
5174 default:
5175 /* do nothing */ ;
5179 if (d >= string1 && d <= end1)
5180 dend = end_match_1;
5182 else
5183 break; /* Matching at this starting point really fails. */
5184 } /* for (;;) */
5186 if (best_regs_set)
5187 goto restore_best_regs;
5189 FREE_VARIABLES ();
5191 return -1; /* Failure to match. */
5192 } /* re_match_2 */
5194 /* Subroutine definitions for re_match_2. */
5197 /* We are passed P pointing to a register number after a start_memory.
5199 Return true if the pattern up to the corresponding stop_memory can
5200 match the empty string, and false otherwise.
5202 If we find the matching stop_memory, sets P to point to one past its number.
5203 Otherwise, sets P to an undefined byte less than or equal to END.
5205 We don't handle duplicates properly (yet). */
5207 static boolean
5208 group_match_null_string_p (p, end, reg_info)
5209 unsigned char **p, *end;
5210 register_info_type *reg_info;
5212 int mcnt;
5213 /* Point to after the args to the start_memory. */
5214 unsigned char *p1 = *p + 2;
5216 while (p1 < end)
5218 /* Skip over opcodes that can match nothing, and return true or
5219 false, as appropriate, when we get to one that can't, or to the
5220 matching stop_memory. */
5222 switch ((re_opcode_t) *p1)
5224 /* Could be either a loop or a series of alternatives. */
5225 case on_failure_jump:
5226 p1++;
5227 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5229 /* If the next operation is not a jump backwards in the
5230 pattern. */
5232 if (mcnt >= 0)
5234 /* Go through the on_failure_jumps of the alternatives,
5235 seeing if any of the alternatives cannot match nothing.
5236 The last alternative starts with only a jump,
5237 whereas the rest start with on_failure_jump and end
5238 with a jump, e.g., here is the pattern for `a|b|c':
5240 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5241 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5242 /exactn/1/c
5244 So, we have to first go through the first (n-1)
5245 alternatives and then deal with the last one separately. */
5248 /* Deal with the first (n-1) alternatives, which start
5249 with an on_failure_jump (see above) that jumps to right
5250 past a jump_past_alt. */
5252 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5254 /* `mcnt' holds how many bytes long the alternative
5255 is, including the ending `jump_past_alt' and
5256 its number. */
5258 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5259 reg_info))
5260 return false;
5262 /* Move to right after this alternative, including the
5263 jump_past_alt. */
5264 p1 += mcnt;
5266 /* Break if it's the beginning of an n-th alternative
5267 that doesn't begin with an on_failure_jump. */
5268 if ((re_opcode_t) *p1 != on_failure_jump)
5269 break;
5271 /* Still have to check that it's not an n-th
5272 alternative that starts with an on_failure_jump. */
5273 p1++;
5274 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5275 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5277 /* Get to the beginning of the n-th alternative. */
5278 p1 -= 3;
5279 break;
5283 /* Deal with the last alternative: go back and get number
5284 of the `jump_past_alt' just before it. `mcnt' contains
5285 the length of the alternative. */
5286 EXTRACT_NUMBER (mcnt, p1 - 2);
5288 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5289 return false;
5291 p1 += mcnt; /* Get past the n-th alternative. */
5292 } /* if mcnt > 0 */
5293 break;
5296 case stop_memory:
5297 assert (p1[1] == **p);
5298 *p = p1 + 2;
5299 return true;
5302 default:
5303 if (!common_op_match_null_string_p (&p1, end, reg_info))
5304 return false;
5306 } /* while p1 < end */
5308 return false;
5309 } /* group_match_null_string_p */
5312 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5313 It expects P to be the first byte of a single alternative and END one
5314 byte past the last. The alternative can contain groups. */
5316 static boolean
5317 alt_match_null_string_p (p, end, reg_info)
5318 unsigned char *p, *end;
5319 register_info_type *reg_info;
5321 int mcnt;
5322 unsigned char *p1 = p;
5324 while (p1 < end)
5326 /* Skip over opcodes that can match nothing, and break when we get
5327 to one that can't. */
5329 switch ((re_opcode_t) *p1)
5331 /* It's a loop. */
5332 case on_failure_jump:
5333 p1++;
5334 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5335 p1 += mcnt;
5336 break;
5338 default:
5339 if (!common_op_match_null_string_p (&p1, end, reg_info))
5340 return false;
5342 } /* while p1 < end */
5344 return true;
5345 } /* alt_match_null_string_p */
5348 /* Deals with the ops common to group_match_null_string_p and
5349 alt_match_null_string_p.
5351 Sets P to one after the op and its arguments, if any. */
5353 static boolean
5354 common_op_match_null_string_p (p, end, reg_info)
5355 unsigned char **p, *end;
5356 register_info_type *reg_info;
5358 int mcnt;
5359 boolean ret;
5360 int reg_no;
5361 unsigned char *p1 = *p;
5363 switch ((re_opcode_t) *p1++)
5365 case no_op:
5366 case begline:
5367 case endline:
5368 case begbuf:
5369 case endbuf:
5370 case wordbeg:
5371 case wordend:
5372 case wordbound:
5373 case notwordbound:
5374 #ifdef emacs
5375 case before_dot:
5376 case at_dot:
5377 case after_dot:
5378 #endif
5379 break;
5381 case start_memory:
5382 reg_no = *p1;
5383 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5384 ret = group_match_null_string_p (&p1, end, reg_info);
5386 /* Have to set this here in case we're checking a group which
5387 contains a group and a back reference to it. */
5389 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5390 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5392 if (!ret)
5393 return false;
5394 break;
5396 /* If this is an optimized succeed_n for zero times, make the jump. */
5397 case jump:
5398 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5399 if (mcnt >= 0)
5400 p1 += mcnt;
5401 else
5402 return false;
5403 break;
5405 case succeed_n:
5406 /* Get to the number of times to succeed. */
5407 p1 += 2;
5408 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5410 if (mcnt == 0)
5412 p1 -= 4;
5413 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5414 p1 += mcnt;
5416 else
5417 return false;
5418 break;
5420 case duplicate:
5421 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5422 return false;
5423 break;
5425 case set_number_at:
5426 p1 += 4;
5428 default:
5429 /* All other opcodes mean we cannot match the empty string. */
5430 return false;
5433 *p = p1;
5434 return true;
5435 } /* common_op_match_null_string_p */
5438 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5439 bytes; nonzero otherwise. */
5441 static int
5442 bcmp_translate (s1, s2, len, translate)
5443 const char *s1, *s2;
5444 register int len;
5445 RE_TRANSLATE_TYPE translate;
5447 register const unsigned char *p1 = (const unsigned char *) s1;
5448 register const unsigned char *p2 = (const unsigned char *) s2;
5449 while (len)
5451 if (translate[*p1++] != translate[*p2++]) return 1;
5452 len--;
5454 return 0;
5457 /* Entry points for GNU code. */
5459 /* re_compile_pattern is the GNU regular expression compiler: it
5460 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5461 Returns 0 if the pattern was valid, otherwise an error string.
5463 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5464 are set in BUFP on entry.
5466 We call regex_compile to do the actual compilation. */
5468 const char *
5469 re_compile_pattern (pattern, length, bufp)
5470 const char *pattern;
5471 size_t length;
5472 struct re_pattern_buffer *bufp;
5474 reg_errcode_t ret;
5476 /* GNU code is written to assume at least RE_NREGS registers will be set
5477 (and at least one extra will be -1). */
5478 bufp->regs_allocated = REGS_UNALLOCATED;
5480 /* And GNU code determines whether or not to get register information
5481 by passing null for the REGS argument to re_match, etc., not by
5482 setting no_sub. */
5483 bufp->no_sub = 0;
5485 /* Match anchors at newline. */
5486 bufp->newline_anchor = 1;
5488 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5490 if (!ret)
5491 return NULL;
5492 return gettext (re_error_msgid[(int) ret]);
5494 #ifdef _LIBC
5495 weak_alias (__re_compile_pattern, re_compile_pattern)
5496 #endif
5498 /* Entry points compatible with 4.2 BSD regex library. We don't define
5499 them unless specifically requested. */
5501 #if defined _REGEX_RE_COMP || defined _LIBC
5503 /* BSD has one and only one pattern buffer. */
5504 static struct re_pattern_buffer re_comp_buf;
5506 char *
5507 #ifdef _LIBC
5508 /* Make these definitions weak in libc, so POSIX programs can redefine
5509 these names if they don't use our functions, and still use
5510 regcomp/regexec below without link errors. */
5511 weak_function
5512 #endif
5513 re_comp (s)
5514 const char *s;
5516 reg_errcode_t ret;
5518 if (!s)
5520 if (!re_comp_buf.buffer)
5521 return gettext ("No previous regular expression");
5522 return 0;
5525 if (!re_comp_buf.buffer)
5527 re_comp_buf.buffer = (unsigned char *) malloc (200);
5528 if (re_comp_buf.buffer == NULL)
5529 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5530 re_comp_buf.allocated = 200;
5532 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5533 if (re_comp_buf.fastmap == NULL)
5534 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5537 /* Since `re_exec' always passes NULL for the `regs' argument, we
5538 don't need to initialize the pattern buffer fields which affect it. */
5540 /* Match anchors at newlines. */
5541 re_comp_buf.newline_anchor = 1;
5543 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5545 if (!ret)
5546 return NULL;
5548 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5549 return (char *) gettext (re_error_msgid[(int) ret]);
5554 #ifdef _LIBC
5555 weak_function
5556 #endif
5557 re_exec (s)
5558 const char *s;
5560 const int len = strlen (s);
5561 return
5562 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5565 #endif /* _REGEX_RE_COMP */
5567 /* POSIX.2 functions. Don't define these for Emacs. */
5569 #ifndef emacs
5571 /* regcomp takes a regular expression as a string and compiles it.
5573 PREG is a regex_t *. We do not expect any fields to be initialized,
5574 since POSIX says we shouldn't. Thus, we set
5576 `buffer' to the compiled pattern;
5577 `used' to the length of the compiled pattern;
5578 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5579 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5580 RE_SYNTAX_POSIX_BASIC;
5581 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5582 `fastmap' to an allocated space for the fastmap;
5583 `fastmap_accurate' to zero;
5584 `re_nsub' to the number of subexpressions in PATTERN.
5586 PATTERN is the address of the pattern string.
5588 CFLAGS is a series of bits which affect compilation.
5590 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5591 use POSIX basic syntax.
5593 If REG_NEWLINE is set, then . and [^...] don't match newline.
5594 Also, regexec will try a match beginning after every newline.
5596 If REG_ICASE is set, then we considers upper- and lowercase
5597 versions of letters to be equivalent when matching.
5599 If REG_NOSUB is set, then when PREG is passed to regexec, that
5600 routine will report only success or failure, and nothing about the
5601 registers.
5603 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5604 the return codes and their meanings.) */
5607 regcomp (preg, pattern, cflags)
5608 regex_t *preg;
5609 const char *pattern;
5610 int cflags;
5612 reg_errcode_t ret;
5613 reg_syntax_t syntax
5614 = (cflags & REG_EXTENDED) ?
5615 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5617 /* regex_compile will allocate the space for the compiled pattern. */
5618 preg->buffer = 0;
5619 preg->allocated = 0;
5620 preg->used = 0;
5622 /* Try to allocate space for the fastmap. */
5623 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5625 if (cflags & REG_ICASE)
5627 unsigned i;
5629 preg->translate
5630 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5631 * sizeof (*(RE_TRANSLATE_TYPE)0));
5632 if (preg->translate == NULL)
5633 return (int) REG_ESPACE;
5635 /* Map uppercase characters to corresponding lowercase ones. */
5636 for (i = 0; i < CHAR_SET_SIZE; i++)
5637 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5639 else
5640 preg->translate = NULL;
5642 /* If REG_NEWLINE is set, newlines are treated differently. */
5643 if (cflags & REG_NEWLINE)
5644 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5645 syntax &= ~RE_DOT_NEWLINE;
5646 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5647 /* It also changes the matching behavior. */
5648 preg->newline_anchor = 1;
5650 else
5651 preg->newline_anchor = 0;
5653 preg->no_sub = !!(cflags & REG_NOSUB);
5655 /* POSIX says a null character in the pattern terminates it, so we
5656 can use strlen here in compiling the pattern. */
5657 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5659 /* POSIX doesn't distinguish between an unmatched open-group and an
5660 unmatched close-group: both are REG_EPAREN. */
5661 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5663 if (ret == REG_NOERROR && preg->fastmap)
5665 /* Compute the fastmap now, since regexec cannot modify the pattern
5666 buffer. */
5667 if (re_compile_fastmap (preg) == -2)
5669 /* Some error occured while computing the fastmap, just forget
5670 about it. */
5671 free (preg->fastmap);
5672 preg->fastmap = NULL;
5676 return (int) ret;
5678 #ifdef _LIBC
5679 weak_alias (__regcomp, regcomp)
5680 #endif
5683 /* regexec searches for a given pattern, specified by PREG, in the
5684 string STRING.
5686 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5687 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5688 least NMATCH elements, and we set them to the offsets of the
5689 corresponding matched substrings.
5691 EFLAGS specifies `execution flags' which affect matching: if
5692 REG_NOTBOL is set, then ^ does not match at the beginning of the
5693 string; if REG_NOTEOL is set, then $ does not match at the end.
5695 We return 0 if we find a match and REG_NOMATCH if not. */
5698 regexec (preg, string, nmatch, pmatch, eflags)
5699 const regex_t *preg;
5700 const char *string;
5701 size_t nmatch;
5702 regmatch_t pmatch[];
5703 int eflags;
5705 int ret;
5706 struct re_registers regs;
5707 regex_t private_preg;
5708 int len = strlen (string);
5709 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5711 private_preg = *preg;
5713 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5714 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5716 /* The user has told us exactly how many registers to return
5717 information about, via `nmatch'. We have to pass that on to the
5718 matching routines. */
5719 private_preg.regs_allocated = REGS_FIXED;
5721 if (want_reg_info)
5723 regs.num_regs = nmatch;
5724 regs.start = TALLOC (nmatch * 2, regoff_t);
5725 if (regs.start == NULL)
5726 return (int) REG_NOMATCH;
5727 regs.end = regs.start + nmatch;
5730 /* Perform the searching operation. */
5731 ret = re_search (&private_preg, string, len,
5732 /* start: */ 0, /* range: */ len,
5733 want_reg_info ? &regs : (struct re_registers *) 0);
5735 /* Copy the register information to the POSIX structure. */
5736 if (want_reg_info)
5738 if (ret >= 0)
5740 unsigned r;
5742 for (r = 0; r < nmatch; r++)
5744 pmatch[r].rm_so = regs.start[r];
5745 pmatch[r].rm_eo = regs.end[r];
5749 /* If we needed the temporary register info, free the space now. */
5750 free (regs.start);
5753 /* We want zero return to mean success, unlike `re_search'. */
5754 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5756 #ifdef _LIBC
5757 weak_alias (__regexec, regexec)
5758 #endif
5761 /* Returns a message corresponding to an error code, ERRCODE, returned
5762 from either regcomp or regexec. We don't use PREG here. */
5764 size_t
5765 regerror (errcode, preg, errbuf, errbuf_size)
5766 int errcode;
5767 const regex_t *preg;
5768 char *errbuf;
5769 size_t errbuf_size;
5771 const char *msg;
5772 size_t msg_size;
5774 if (errcode < 0
5775 || errcode >= (int) (sizeof (re_error_msgid)
5776 / sizeof (re_error_msgid[0])))
5777 /* Only error codes returned by the rest of the code should be passed
5778 to this routine. If we are given anything else, or if other regex
5779 code generates an invalid error code, then the program has a bug.
5780 Dump core so we can fix it. */
5781 abort ();
5783 msg = gettext (re_error_msgid[errcode]);
5785 msg_size = strlen (msg) + 1; /* Includes the null. */
5787 if (errbuf_size != 0)
5789 if (msg_size > errbuf_size)
5791 #if defined HAVE_MEMPCPY || defined _LIBC
5792 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5793 #else
5794 memcpy (errbuf, msg, errbuf_size - 1);
5795 errbuf[errbuf_size - 1] = 0;
5796 #endif
5798 else
5799 memcpy (errbuf, msg, msg_size);
5802 return msg_size;
5804 #ifdef _LIBC
5805 weak_alias (__regerror, regerror)
5806 #endif
5809 /* Free dynamically allocated space used by PREG. */
5811 void
5812 regfree (preg)
5813 regex_t *preg;
5815 if (preg->buffer != NULL)
5816 free (preg->buffer);
5817 preg->buffer = NULL;
5819 preg->allocated = 0;
5820 preg->used = 0;
5822 if (preg->fastmap != NULL)
5823 free (preg->fastmap);
5824 preg->fastmap = NULL;
5825 preg->fastmap_accurate = 0;
5827 if (preg->translate != NULL)
5828 free (preg->translate);
5829 preg->translate = NULL;
5831 #ifdef _LIBC
5832 weak_alias (__regfree, regfree)
5833 #endif
5835 #endif /* not emacs */