Check if there is enough bytes before reading the buffer in the EA ADPCM
[ffmpeg-lucabe.git] / libavcodec / ppc / mpegvideo_altivec.c
blob74775f05fd70f219c7389acbfaf77e7ebef2e32e
1 /*
2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "dsputil_ppc.h"
30 #include "util_altivec.h"
31 // Swaps two variables (used for altivec registers)
32 #define SWAP(a,b) \
33 do { \
34 __typeof__(a) swap_temp=a; \
35 a=b; \
36 b=swap_temp; \
37 } while (0)
39 // transposes a matrix consisting of four vectors with four elements each
40 #define TRANSPOSE4(a,b,c,d) \
41 do { \
42 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
43 __typeof__(a) _trans_acl = vec_mergel(a, c); \
44 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
45 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
47 a = vec_mergeh(_trans_ach, _trans_bdh); \
48 b = vec_mergel(_trans_ach, _trans_bdh); \
49 c = vec_mergeh(_trans_acl, _trans_bdl); \
50 d = vec_mergel(_trans_acl, _trans_bdl); \
51 } while (0)
54 // Loads a four-byte value (int or float) from the target address
55 // into every element in the target vector. Only works if the
56 // target address is four-byte aligned (which should be always).
57 #define LOAD4(vec, address) \
58 { \
59 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
60 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
61 vec = vec_ld(0, _load_addr); \
62 vec = vec_perm(vec, vec, _perm_vec); \
63 vec = vec_splat(vec, 0); \
67 #define FOUROF(a) {a,a,a,a}
69 int dct_quantize_altivec(MpegEncContext* s,
70 DCTELEM* data, int n,
71 int qscale, int* overflow)
73 int lastNonZero;
74 vector float row0, row1, row2, row3, row4, row5, row6, row7;
75 vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
76 const vector float zero = (const vector float)FOUROF(0.);
77 // used after quantize step
78 int oldBaseValue = 0;
80 // Load the data into the row/alt vectors
82 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
84 data0 = vec_ld(0, data);
85 data1 = vec_ld(16, data);
86 data2 = vec_ld(32, data);
87 data3 = vec_ld(48, data);
88 data4 = vec_ld(64, data);
89 data5 = vec_ld(80, data);
90 data6 = vec_ld(96, data);
91 data7 = vec_ld(112, data);
93 // Transpose the data before we start
94 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
96 // load the data into floating point vectors. We load
97 // the high half of each row into the main row vectors
98 // and the low half into the alt vectors.
99 row0 = vec_ctf(vec_unpackh(data0), 0);
100 alt0 = vec_ctf(vec_unpackl(data0), 0);
101 row1 = vec_ctf(vec_unpackh(data1), 0);
102 alt1 = vec_ctf(vec_unpackl(data1), 0);
103 row2 = vec_ctf(vec_unpackh(data2), 0);
104 alt2 = vec_ctf(vec_unpackl(data2), 0);
105 row3 = vec_ctf(vec_unpackh(data3), 0);
106 alt3 = vec_ctf(vec_unpackl(data3), 0);
107 row4 = vec_ctf(vec_unpackh(data4), 0);
108 alt4 = vec_ctf(vec_unpackl(data4), 0);
109 row5 = vec_ctf(vec_unpackh(data5), 0);
110 alt5 = vec_ctf(vec_unpackl(data5), 0);
111 row6 = vec_ctf(vec_unpackh(data6), 0);
112 alt6 = vec_ctf(vec_unpackl(data6), 0);
113 row7 = vec_ctf(vec_unpackh(data7), 0);
114 alt7 = vec_ctf(vec_unpackl(data7), 0);
117 // The following block could exist as a separate an altivec dct
118 // function. However, if we put it inline, the DCT data can remain
119 // in the vector local variables, as floats, which we'll use during the
120 // quantize step...
122 const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
123 const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
124 const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
125 const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
126 const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
127 const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
128 const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
129 const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
130 const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
131 const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
132 const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
133 const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
136 int whichPass, whichHalf;
138 for(whichPass = 1; whichPass<=2; whichPass++) {
139 for(whichHalf = 1; whichHalf<=2; whichHalf++) {
140 vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
141 vector float tmp10, tmp11, tmp12, tmp13;
142 vector float z1, z2, z3, z4, z5;
144 tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
145 tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
146 tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
147 tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
148 tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
149 tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
150 tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
151 tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
153 tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
154 tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
155 tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
156 tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
159 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
160 row0 = vec_add(tmp10, tmp11);
162 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
163 row4 = vec_sub(tmp10, tmp11);
166 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
167 z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
169 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
170 // CONST_BITS-PASS1_BITS);
171 row2 = vec_madd(tmp13, vec_0_765366865, z1);
173 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
174 // CONST_BITS-PASS1_BITS);
175 row6 = vec_madd(tmp12, vec_1_847759065, z1);
177 z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
178 z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
179 z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
180 z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
182 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
183 z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
185 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
186 z3 = vec_madd(z3, vec_1_961570560, z5);
188 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
189 z4 = vec_madd(z4, vec_0_390180644, z5);
191 // The following adds are rolled into the multiplies above
192 // z3 = vec_add(z3, z5); // z3 += z5;
193 // z4 = vec_add(z4, z5); // z4 += z5;
195 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
196 // Wow! It's actually more efficient to roll this multiply
197 // into the adds below, even thought the multiply gets done twice!
198 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
200 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
201 // Same with this one...
202 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
204 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
205 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206 row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
208 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
209 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
210 row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
212 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
213 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
214 row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
216 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
217 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
218 row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
220 // Swap the row values with the alts. If this is the first half,
221 // this sets up the low values to be acted on in the second half.
222 // If this is the second half, it puts the high values back in
223 // the row values where they are expected to be when we're done.
224 SWAP(row0, alt0);
225 SWAP(row1, alt1);
226 SWAP(row2, alt2);
227 SWAP(row3, alt3);
228 SWAP(row4, alt4);
229 SWAP(row5, alt5);
230 SWAP(row6, alt6);
231 SWAP(row7, alt7);
234 if (whichPass == 1) {
235 // transpose the data for the second pass
237 // First, block transpose the upper right with lower left.
238 SWAP(row4, alt0);
239 SWAP(row5, alt1);
240 SWAP(row6, alt2);
241 SWAP(row7, alt3);
243 // Now, transpose each block of four
244 TRANSPOSE4(row0, row1, row2, row3);
245 TRANSPOSE4(row4, row5, row6, row7);
246 TRANSPOSE4(alt0, alt1, alt2, alt3);
247 TRANSPOSE4(alt4, alt5, alt6, alt7);
252 // perform the quantize step, using the floating point data
253 // still in the row/alt registers
255 const int* biasAddr;
256 const vector signed int* qmat;
257 vector float bias, negBias;
259 if (s->mb_intra) {
260 vector signed int baseVector;
262 // We must cache element 0 in the intra case
263 // (it needs special handling).
264 baseVector = vec_cts(vec_splat(row0, 0), 0);
265 vec_ste(baseVector, 0, &oldBaseValue);
267 qmat = (vector signed int*)s->q_intra_matrix[qscale];
268 biasAddr = &(s->intra_quant_bias);
269 } else {
270 qmat = (vector signed int*)s->q_inter_matrix[qscale];
271 biasAddr = &(s->inter_quant_bias);
274 // Load the bias vector (We add 0.5 to the bias so that we're
275 // rounding when we convert to int, instead of flooring.)
277 vector signed int biasInt;
278 const vector float negOneFloat = (vector float)FOUROF(-1.0f);
279 LOAD4(biasInt, biasAddr);
280 bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
281 negBias = vec_madd(bias, negOneFloat, zero);
285 vector float q0, q1, q2, q3, q4, q5, q6, q7;
287 q0 = vec_ctf(qmat[0], QMAT_SHIFT);
288 q1 = vec_ctf(qmat[2], QMAT_SHIFT);
289 q2 = vec_ctf(qmat[4], QMAT_SHIFT);
290 q3 = vec_ctf(qmat[6], QMAT_SHIFT);
291 q4 = vec_ctf(qmat[8], QMAT_SHIFT);
292 q5 = vec_ctf(qmat[10], QMAT_SHIFT);
293 q6 = vec_ctf(qmat[12], QMAT_SHIFT);
294 q7 = vec_ctf(qmat[14], QMAT_SHIFT);
296 row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
297 vec_cmpgt(row0, zero));
298 row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
299 vec_cmpgt(row1, zero));
300 row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
301 vec_cmpgt(row2, zero));
302 row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
303 vec_cmpgt(row3, zero));
304 row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
305 vec_cmpgt(row4, zero));
306 row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
307 vec_cmpgt(row5, zero));
308 row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
309 vec_cmpgt(row6, zero));
310 row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
311 vec_cmpgt(row7, zero));
313 q0 = vec_ctf(qmat[1], QMAT_SHIFT);
314 q1 = vec_ctf(qmat[3], QMAT_SHIFT);
315 q2 = vec_ctf(qmat[5], QMAT_SHIFT);
316 q3 = vec_ctf(qmat[7], QMAT_SHIFT);
317 q4 = vec_ctf(qmat[9], QMAT_SHIFT);
318 q5 = vec_ctf(qmat[11], QMAT_SHIFT);
319 q6 = vec_ctf(qmat[13], QMAT_SHIFT);
320 q7 = vec_ctf(qmat[15], QMAT_SHIFT);
322 alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
323 vec_cmpgt(alt0, zero));
324 alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
325 vec_cmpgt(alt1, zero));
326 alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
327 vec_cmpgt(alt2, zero));
328 alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
329 vec_cmpgt(alt3, zero));
330 alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
331 vec_cmpgt(alt4, zero));
332 alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
333 vec_cmpgt(alt5, zero));
334 alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
335 vec_cmpgt(alt6, zero));
336 alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
337 vec_cmpgt(alt7, zero));
343 // Store the data back into the original block
345 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
347 data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
348 data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
349 data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
350 data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
351 data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
352 data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
353 data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
354 data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
357 // Clamp for overflow
358 vector signed int max_q_int, min_q_int;
359 vector signed short max_q, min_q;
361 LOAD4(max_q_int, &(s->max_qcoeff));
362 LOAD4(min_q_int, &(s->min_qcoeff));
364 max_q = vec_pack(max_q_int, max_q_int);
365 min_q = vec_pack(min_q_int, min_q_int);
367 data0 = vec_max(vec_min(data0, max_q), min_q);
368 data1 = vec_max(vec_min(data1, max_q), min_q);
369 data2 = vec_max(vec_min(data2, max_q), min_q);
370 data4 = vec_max(vec_min(data4, max_q), min_q);
371 data5 = vec_max(vec_min(data5, max_q), min_q);
372 data6 = vec_max(vec_min(data6, max_q), min_q);
373 data7 = vec_max(vec_min(data7, max_q), min_q);
377 vector bool char zero_01, zero_23, zero_45, zero_67;
378 vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
379 vector signed char negOne = vec_splat_s8(-1);
380 vector signed char* scanPtr =
381 (vector signed char*)(s->intra_scantable.inverse);
382 signed char lastNonZeroChar;
384 // Determine the largest non-zero index.
385 zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
386 vec_cmpeq(data1, (vector signed short)zero));
387 zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
388 vec_cmpeq(data3, (vector signed short)zero));
389 zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
390 vec_cmpeq(data5, (vector signed short)zero));
391 zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
392 vec_cmpeq(data7, (vector signed short)zero));
394 // 64 biggest values
395 scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
396 scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
397 scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
398 scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
400 // 32 largest values
401 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
402 scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
404 // 16 largest values
405 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
407 // 8 largest values
408 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
409 vec_mergel(scanIndexes_01, negOne));
411 // 4 largest values
412 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
413 vec_mergel(scanIndexes_01, negOne));
415 // 2 largest values
416 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
417 vec_mergel(scanIndexes_01, negOne));
419 // largest value
420 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
421 vec_mergel(scanIndexes_01, negOne));
423 scanIndexes_01 = vec_splat(scanIndexes_01, 0);
426 vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
428 lastNonZero = lastNonZeroChar;
430 // While the data is still in vectors we check for the transpose IDCT permute
431 // and handle it using the vector unit if we can. This is the permute used
432 // by the altivec idct, so it is common when using the altivec dct.
434 if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
435 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
438 vec_st(data0, 0, data);
439 vec_st(data1, 16, data);
440 vec_st(data2, 32, data);
441 vec_st(data3, 48, data);
442 vec_st(data4, 64, data);
443 vec_st(data5, 80, data);
444 vec_st(data6, 96, data);
445 vec_st(data7, 112, data);
449 // special handling of block[0]
450 if (s->mb_intra) {
451 if (!s->h263_aic) {
452 if (n < 4)
453 oldBaseValue /= s->y_dc_scale;
454 else
455 oldBaseValue /= s->c_dc_scale;
458 // Divide by 8, rounding the result
459 data[0] = (oldBaseValue + 4) >> 3;
462 // We handled the transpose permutation above and we don't
463 // need to permute the "no" permutation case.
464 if ((lastNonZero > 0) &&
465 (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
466 (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
467 ff_block_permute(data, s->dsp.idct_permutation,
468 s->intra_scantable.scantable, lastNonZero);
471 return lastNonZero;
474 /* AltiVec version of dct_unquantize_h263
475 this code assumes `block' is 16 bytes-aligned */
476 void dct_unquantize_h263_altivec(MpegEncContext *s,
477 DCTELEM *block, int n, int qscale)
479 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
480 int i, level, qmul, qadd;
481 int nCoeffs;
483 assert(s->block_last_index[n]>=0);
485 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
487 qadd = (qscale - 1) | 1;
488 qmul = qscale << 1;
490 if (s->mb_intra) {
491 if (!s->h263_aic) {
492 if (n < 4)
493 block[0] = block[0] * s->y_dc_scale;
494 else
495 block[0] = block[0] * s->c_dc_scale;
496 }else
497 qadd = 0;
498 i = 1;
499 nCoeffs= 63; //does not always use zigzag table
500 } else {
501 i = 0;
502 nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
506 register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
507 DECLARE_ALIGNED_16(short, qmul8[]) =
509 qmul, qmul, qmul, qmul,
510 qmul, qmul, qmul, qmul
512 DECLARE_ALIGNED_16(short, qadd8[]) =
514 qadd, qadd, qadd, qadd,
515 qadd, qadd, qadd, qadd
517 DECLARE_ALIGNED_16(short, nqadd8[]) =
519 -qadd, -qadd, -qadd, -qadd,
520 -qadd, -qadd, -qadd, -qadd
522 register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
523 register vector bool short blockv_null, blockv_neg;
524 register short backup_0 = block[0];
525 register int j = 0;
527 qmulv = vec_ld(0, qmul8);
528 qaddv = vec_ld(0, qadd8);
529 nqaddv = vec_ld(0, nqadd8);
531 #if 0 // block *is* 16 bytes-aligned, it seems.
532 // first make sure block[j] is 16 bytes-aligned
533 for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
534 level = block[j];
535 if (level) {
536 if (level < 0) {
537 level = level * qmul - qadd;
538 } else {
539 level = level * qmul + qadd;
541 block[j] = level;
544 #endif
546 // vectorize all the 16 bytes-aligned blocks
547 // of 8 elements
548 for(; (j + 7) <= nCoeffs ; j+=8) {
549 blockv = vec_ld(j << 1, block);
550 blockv_neg = vec_cmplt(blockv, vczero);
551 blockv_null = vec_cmpeq(blockv, vczero);
552 // choose between +qadd or -qadd as the third operand
553 temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
554 // multiply & add (block{i,i+7} * qmul [+-] qadd)
555 temp1 = vec_mladd(blockv, qmulv, temp1);
556 // put 0 where block[{i,i+7} used to have 0
557 blockv = vec_sel(temp1, blockv, blockv_null);
558 vec_st(blockv, j << 1, block);
561 // if nCoeffs isn't a multiple of 8, finish the job
562 // using good old scalar units.
563 // (we could do it using a truncated vector,
564 // but I'm not sure it's worth the hassle)
565 for(; j <= nCoeffs ; j++) {
566 level = block[j];
567 if (level) {
568 if (level < 0) {
569 level = level * qmul - qadd;
570 } else {
571 level = level * qmul + qadd;
573 block[j] = level;
577 if (i == 1) {
578 // cheat. this avoid special-casing the first iteration
579 block[0] = backup_0;
582 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
586 void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
587 void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
589 void MPV_common_init_altivec(MpegEncContext *s)
591 if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
593 if (s->avctx->lowres==0) {
594 if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
595 (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
596 s->dsp.idct_put = idct_put_altivec;
597 s->dsp.idct_add = idct_add_altivec;
598 s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
602 // Test to make sure that the dct required alignments are met.
603 if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
604 (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
605 av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
606 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
607 return;
610 if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
611 av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
612 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
613 return;
617 if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
618 (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
619 #if 0 /* seems to cause trouble under some circumstances */
620 s->dct_quantize = dct_quantize_altivec;
621 #endif
622 s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
623 s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;