Rename AVPixFmtDescriptor.nb_channels to nb_components, the new name
[ffmpeg-lucabe.git] / libavcodec / ppc / mpegvideo_altivec.c
blob8348e684bd7cd7041bc024f9cdb5bdae0e6c2096
1 /*
2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "dsputil_ppc.h"
30 #include "util_altivec.h"
31 #include "types_altivec.h"
33 // Swaps two variables (used for altivec registers)
34 #define SWAP(a,b) \
35 do { \
36 __typeof__(a) swap_temp=a; \
37 a=b; \
38 b=swap_temp; \
39 } while (0)
41 // transposes a matrix consisting of four vectors with four elements each
42 #define TRANSPOSE4(a,b,c,d) \
43 do { \
44 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
45 __typeof__(a) _trans_acl = vec_mergel(a, c); \
46 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
47 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
49 a = vec_mergeh(_trans_ach, _trans_bdh); \
50 b = vec_mergel(_trans_ach, _trans_bdh); \
51 c = vec_mergeh(_trans_acl, _trans_bdl); \
52 d = vec_mergel(_trans_acl, _trans_bdl); \
53 } while (0)
56 // Loads a four-byte value (int or float) from the target address
57 // into every element in the target vector. Only works if the
58 // target address is four-byte aligned (which should be always).
59 #define LOAD4(vec, address) \
60 { \
61 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
62 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
63 vec = vec_ld(0, _load_addr); \
64 vec = vec_perm(vec, vec, _perm_vec); \
65 vec = vec_splat(vec, 0); \
69 #define FOUROF(a) {a,a,a,a}
71 int dct_quantize_altivec(MpegEncContext* s,
72 DCTELEM* data, int n,
73 int qscale, int* overflow)
75 int lastNonZero;
76 vector float row0, row1, row2, row3, row4, row5, row6, row7;
77 vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
78 const vector float zero = (const vector float)FOUROF(0.);
79 // used after quantize step
80 int oldBaseValue = 0;
82 // Load the data into the row/alt vectors
84 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
86 data0 = vec_ld(0, data);
87 data1 = vec_ld(16, data);
88 data2 = vec_ld(32, data);
89 data3 = vec_ld(48, data);
90 data4 = vec_ld(64, data);
91 data5 = vec_ld(80, data);
92 data6 = vec_ld(96, data);
93 data7 = vec_ld(112, data);
95 // Transpose the data before we start
96 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
98 // load the data into floating point vectors. We load
99 // the high half of each row into the main row vectors
100 // and the low half into the alt vectors.
101 row0 = vec_ctf(vec_unpackh(data0), 0);
102 alt0 = vec_ctf(vec_unpackl(data0), 0);
103 row1 = vec_ctf(vec_unpackh(data1), 0);
104 alt1 = vec_ctf(vec_unpackl(data1), 0);
105 row2 = vec_ctf(vec_unpackh(data2), 0);
106 alt2 = vec_ctf(vec_unpackl(data2), 0);
107 row3 = vec_ctf(vec_unpackh(data3), 0);
108 alt3 = vec_ctf(vec_unpackl(data3), 0);
109 row4 = vec_ctf(vec_unpackh(data4), 0);
110 alt4 = vec_ctf(vec_unpackl(data4), 0);
111 row5 = vec_ctf(vec_unpackh(data5), 0);
112 alt5 = vec_ctf(vec_unpackl(data5), 0);
113 row6 = vec_ctf(vec_unpackh(data6), 0);
114 alt6 = vec_ctf(vec_unpackl(data6), 0);
115 row7 = vec_ctf(vec_unpackh(data7), 0);
116 alt7 = vec_ctf(vec_unpackl(data7), 0);
119 // The following block could exist as a separate an altivec dct
120 // function. However, if we put it inline, the DCT data can remain
121 // in the vector local variables, as floats, which we'll use during the
122 // quantize step...
124 const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
125 const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
126 const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
127 const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
128 const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
129 const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
130 const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
131 const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
132 const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
133 const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
134 const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
135 const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
138 int whichPass, whichHalf;
140 for(whichPass = 1; whichPass<=2; whichPass++) {
141 for(whichHalf = 1; whichHalf<=2; whichHalf++) {
142 vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143 vector float tmp10, tmp11, tmp12, tmp13;
144 vector float z1, z2, z3, z4, z5;
146 tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
147 tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
148 tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
149 tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
150 tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
151 tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
152 tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
153 tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
155 tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
156 tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
157 tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
158 tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
161 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
162 row0 = vec_add(tmp10, tmp11);
164 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
165 row4 = vec_sub(tmp10, tmp11);
168 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
169 z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
171 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
172 // CONST_BITS-PASS1_BITS);
173 row2 = vec_madd(tmp13, vec_0_765366865, z1);
175 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
176 // CONST_BITS-PASS1_BITS);
177 row6 = vec_madd(tmp12, vec_1_847759065, z1);
179 z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
180 z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
181 z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
182 z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
184 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
185 z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
187 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
188 z3 = vec_madd(z3, vec_1_961570560, z5);
190 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
191 z4 = vec_madd(z4, vec_0_390180644, z5);
193 // The following adds are rolled into the multiplies above
194 // z3 = vec_add(z3, z5); // z3 += z5;
195 // z4 = vec_add(z4, z5); // z4 += z5;
197 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
198 // Wow! It's actually more efficient to roll this multiply
199 // into the adds below, even thought the multiply gets done twice!
200 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
202 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
203 // Same with this one...
204 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
206 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
207 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
208 row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
210 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
211 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
212 row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
214 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
215 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
216 row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
218 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
219 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
220 row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
222 // Swap the row values with the alts. If this is the first half,
223 // this sets up the low values to be acted on in the second half.
224 // If this is the second half, it puts the high values back in
225 // the row values where they are expected to be when we're done.
226 SWAP(row0, alt0);
227 SWAP(row1, alt1);
228 SWAP(row2, alt2);
229 SWAP(row3, alt3);
230 SWAP(row4, alt4);
231 SWAP(row5, alt5);
232 SWAP(row6, alt6);
233 SWAP(row7, alt7);
236 if (whichPass == 1) {
237 // transpose the data for the second pass
239 // First, block transpose the upper right with lower left.
240 SWAP(row4, alt0);
241 SWAP(row5, alt1);
242 SWAP(row6, alt2);
243 SWAP(row7, alt3);
245 // Now, transpose each block of four
246 TRANSPOSE4(row0, row1, row2, row3);
247 TRANSPOSE4(row4, row5, row6, row7);
248 TRANSPOSE4(alt0, alt1, alt2, alt3);
249 TRANSPOSE4(alt4, alt5, alt6, alt7);
254 // perform the quantize step, using the floating point data
255 // still in the row/alt registers
257 const int* biasAddr;
258 const vector signed int* qmat;
259 vector float bias, negBias;
261 if (s->mb_intra) {
262 vector signed int baseVector;
264 // We must cache element 0 in the intra case
265 // (it needs special handling).
266 baseVector = vec_cts(vec_splat(row0, 0), 0);
267 vec_ste(baseVector, 0, &oldBaseValue);
269 qmat = (vector signed int*)s->q_intra_matrix[qscale];
270 biasAddr = &(s->intra_quant_bias);
271 } else {
272 qmat = (vector signed int*)s->q_inter_matrix[qscale];
273 biasAddr = &(s->inter_quant_bias);
276 // Load the bias vector (We add 0.5 to the bias so that we're
277 // rounding when we convert to int, instead of flooring.)
279 vector signed int biasInt;
280 const vector float negOneFloat = (vector float)FOUROF(-1.0f);
281 LOAD4(biasInt, biasAddr);
282 bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
283 negBias = vec_madd(bias, negOneFloat, zero);
287 vector float q0, q1, q2, q3, q4, q5, q6, q7;
289 q0 = vec_ctf(qmat[0], QMAT_SHIFT);
290 q1 = vec_ctf(qmat[2], QMAT_SHIFT);
291 q2 = vec_ctf(qmat[4], QMAT_SHIFT);
292 q3 = vec_ctf(qmat[6], QMAT_SHIFT);
293 q4 = vec_ctf(qmat[8], QMAT_SHIFT);
294 q5 = vec_ctf(qmat[10], QMAT_SHIFT);
295 q6 = vec_ctf(qmat[12], QMAT_SHIFT);
296 q7 = vec_ctf(qmat[14], QMAT_SHIFT);
298 row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
299 vec_cmpgt(row0, zero));
300 row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
301 vec_cmpgt(row1, zero));
302 row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
303 vec_cmpgt(row2, zero));
304 row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
305 vec_cmpgt(row3, zero));
306 row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
307 vec_cmpgt(row4, zero));
308 row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
309 vec_cmpgt(row5, zero));
310 row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
311 vec_cmpgt(row6, zero));
312 row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
313 vec_cmpgt(row7, zero));
315 q0 = vec_ctf(qmat[1], QMAT_SHIFT);
316 q1 = vec_ctf(qmat[3], QMAT_SHIFT);
317 q2 = vec_ctf(qmat[5], QMAT_SHIFT);
318 q3 = vec_ctf(qmat[7], QMAT_SHIFT);
319 q4 = vec_ctf(qmat[9], QMAT_SHIFT);
320 q5 = vec_ctf(qmat[11], QMAT_SHIFT);
321 q6 = vec_ctf(qmat[13], QMAT_SHIFT);
322 q7 = vec_ctf(qmat[15], QMAT_SHIFT);
324 alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
325 vec_cmpgt(alt0, zero));
326 alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
327 vec_cmpgt(alt1, zero));
328 alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
329 vec_cmpgt(alt2, zero));
330 alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
331 vec_cmpgt(alt3, zero));
332 alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
333 vec_cmpgt(alt4, zero));
334 alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
335 vec_cmpgt(alt5, zero));
336 alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
337 vec_cmpgt(alt6, zero));
338 alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
339 vec_cmpgt(alt7, zero));
345 // Store the data back into the original block
347 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
349 data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
350 data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
351 data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
352 data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
353 data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
354 data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
355 data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
356 data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
359 // Clamp for overflow
360 vector signed int max_q_int, min_q_int;
361 vector signed short max_q, min_q;
363 LOAD4(max_q_int, &(s->max_qcoeff));
364 LOAD4(min_q_int, &(s->min_qcoeff));
366 max_q = vec_pack(max_q_int, max_q_int);
367 min_q = vec_pack(min_q_int, min_q_int);
369 data0 = vec_max(vec_min(data0, max_q), min_q);
370 data1 = vec_max(vec_min(data1, max_q), min_q);
371 data2 = vec_max(vec_min(data2, max_q), min_q);
372 data4 = vec_max(vec_min(data4, max_q), min_q);
373 data5 = vec_max(vec_min(data5, max_q), min_q);
374 data6 = vec_max(vec_min(data6, max_q), min_q);
375 data7 = vec_max(vec_min(data7, max_q), min_q);
379 vector bool char zero_01, zero_23, zero_45, zero_67;
380 vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
381 vector signed char negOne = vec_splat_s8(-1);
382 vector signed char* scanPtr =
383 (vector signed char*)(s->intra_scantable.inverse);
384 signed char lastNonZeroChar;
386 // Determine the largest non-zero index.
387 zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
388 vec_cmpeq(data1, (vector signed short)zero));
389 zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
390 vec_cmpeq(data3, (vector signed short)zero));
391 zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
392 vec_cmpeq(data5, (vector signed short)zero));
393 zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
394 vec_cmpeq(data7, (vector signed short)zero));
396 // 64 biggest values
397 scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
398 scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
399 scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
400 scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
402 // 32 largest values
403 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
404 scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
406 // 16 largest values
407 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
409 // 8 largest values
410 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
411 vec_mergel(scanIndexes_01, negOne));
413 // 4 largest values
414 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
415 vec_mergel(scanIndexes_01, negOne));
417 // 2 largest values
418 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
419 vec_mergel(scanIndexes_01, negOne));
421 // largest value
422 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
423 vec_mergel(scanIndexes_01, negOne));
425 scanIndexes_01 = vec_splat(scanIndexes_01, 0);
428 vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
430 lastNonZero = lastNonZeroChar;
432 // While the data is still in vectors we check for the transpose IDCT permute
433 // and handle it using the vector unit if we can. This is the permute used
434 // by the altivec idct, so it is common when using the altivec dct.
436 if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
437 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
440 vec_st(data0, 0, data);
441 vec_st(data1, 16, data);
442 vec_st(data2, 32, data);
443 vec_st(data3, 48, data);
444 vec_st(data4, 64, data);
445 vec_st(data5, 80, data);
446 vec_st(data6, 96, data);
447 vec_st(data7, 112, data);
451 // special handling of block[0]
452 if (s->mb_intra) {
453 if (!s->h263_aic) {
454 if (n < 4)
455 oldBaseValue /= s->y_dc_scale;
456 else
457 oldBaseValue /= s->c_dc_scale;
460 // Divide by 8, rounding the result
461 data[0] = (oldBaseValue + 4) >> 3;
464 // We handled the transpose permutation above and we don't
465 // need to permute the "no" permutation case.
466 if ((lastNonZero > 0) &&
467 (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
468 (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
469 ff_block_permute(data, s->dsp.idct_permutation,
470 s->intra_scantable.scantable, lastNonZero);
473 return lastNonZero;
476 /* AltiVec version of dct_unquantize_h263
477 this code assumes `block' is 16 bytes-aligned */
478 void dct_unquantize_h263_altivec(MpegEncContext *s,
479 DCTELEM *block, int n, int qscale)
481 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
482 int i, level, qmul, qadd;
483 int nCoeffs;
485 assert(s->block_last_index[n]>=0);
487 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
489 qadd = (qscale - 1) | 1;
490 qmul = qscale << 1;
492 if (s->mb_intra) {
493 if (!s->h263_aic) {
494 if (n < 4)
495 block[0] = block[0] * s->y_dc_scale;
496 else
497 block[0] = block[0] * s->c_dc_scale;
498 }else
499 qadd = 0;
500 i = 1;
501 nCoeffs= 63; //does not always use zigzag table
502 } else {
503 i = 0;
504 nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
508 register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
509 DECLARE_ALIGNED_16(short, qmul8) = qmul;
510 DECLARE_ALIGNED_16(short, qadd8) = qadd;
511 register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
512 register vector bool short blockv_null, blockv_neg;
513 register short backup_0 = block[0];
514 register int j = 0;
516 qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
517 qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
518 nqaddv = vec_sub(vczero, qaddv);
520 #if 0 // block *is* 16 bytes-aligned, it seems.
521 // first make sure block[j] is 16 bytes-aligned
522 for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
523 level = block[j];
524 if (level) {
525 if (level < 0) {
526 level = level * qmul - qadd;
527 } else {
528 level = level * qmul + qadd;
530 block[j] = level;
533 #endif
535 // vectorize all the 16 bytes-aligned blocks
536 // of 8 elements
537 for(; (j + 7) <= nCoeffs ; j+=8) {
538 blockv = vec_ld(j << 1, block);
539 blockv_neg = vec_cmplt(blockv, vczero);
540 blockv_null = vec_cmpeq(blockv, vczero);
541 // choose between +qadd or -qadd as the third operand
542 temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
543 // multiply & add (block{i,i+7} * qmul [+-] qadd)
544 temp1 = vec_mladd(blockv, qmulv, temp1);
545 // put 0 where block[{i,i+7} used to have 0
546 blockv = vec_sel(temp1, blockv, blockv_null);
547 vec_st(blockv, j << 1, block);
550 // if nCoeffs isn't a multiple of 8, finish the job
551 // using good old scalar units.
552 // (we could do it using a truncated vector,
553 // but I'm not sure it's worth the hassle)
554 for(; j <= nCoeffs ; j++) {
555 level = block[j];
556 if (level) {
557 if (level < 0) {
558 level = level * qmul - qadd;
559 } else {
560 level = level * qmul + qadd;
562 block[j] = level;
566 if (i == 1) {
567 // cheat. this avoid special-casing the first iteration
568 block[0] = backup_0;
571 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
575 void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
576 void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
578 void MPV_common_init_altivec(MpegEncContext *s)
580 if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
582 if (s->avctx->lowres==0) {
583 if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
584 (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
585 s->dsp.idct_put = idct_put_altivec;
586 s->dsp.idct_add = idct_add_altivec;
587 s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
591 // Test to make sure that the dct required alignments are met.
592 if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
593 (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
594 av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
595 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
596 return;
599 if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
600 av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
601 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
602 return;
606 if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
607 (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
608 #if 0 /* seems to cause trouble under some circumstances */
609 s->dct_quantize = dct_quantize_altivec;
610 #endif
611 s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
612 s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;