Add lwkt_sleep() to formalize a shortcut numerous bits of code have been
[dragonfly/vkernel-mp.git] / sys / kern / kern_synch.c
blob89783d090d8c556885051abd5ef78fd4e8258bf7
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.85 2007/05/24 20:51:16 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
65 #include <machine/cpu.h>
66 #include <machine/smp.h>
68 TAILQ_HEAD(tslpque, thread);
70 static void sched_setup (void *dummy);
71 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 int hogticks;
74 int lbolt;
75 int lbolt_syncer;
76 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
77 int ncpus;
78 int ncpus2, ncpus2_shift, ncpus2_mask;
79 int ncpus_fit, ncpus_fit_mask;
80 int safepri;
81 int tsleep_now_works;
83 static struct callout loadav_callout;
84 static struct callout schedcpu_callout;
85 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter", 0);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 0, "tsleep exit", 0);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 0, "wakeup enter", 0);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 0, "wakeup exit", 0);
95 #define logtsleep(name) KTR_LOG(tsleep_ ## name)
97 struct loadavg averunnable =
98 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
100 * Constants for averages over 1, 5, and 15 minutes
101 * when sampling at 5 second intervals.
103 static fixpt_t cexp[3] = {
104 0.9200444146293232 * FSCALE, /* exp(-1/12) */
105 0.9834714538216174 * FSCALE, /* exp(-1/60) */
106 0.9944598480048967 * FSCALE, /* exp(-1/180) */
109 static void endtsleep (void *);
110 static void unsleep_and_wakeup_thread(struct thread *td);
111 static void loadav (void *arg);
112 static void schedcpu (void *arg);
115 * Adjust the scheduler quantum. The quantum is specified in microseconds.
116 * Note that 'tick' is in microseconds per tick.
118 static int
119 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
121 int error, new_val;
123 new_val = sched_quantum * tick;
124 error = sysctl_handle_int(oidp, &new_val, 0, req);
125 if (error != 0 || req->newptr == NULL)
126 return (error);
127 if (new_val < tick)
128 return (EINVAL);
129 sched_quantum = new_val / tick;
130 hogticks = 2 * sched_quantum;
131 return (0);
134 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
135 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
138 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
139 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
140 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
142 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
143 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
145 * If you don't want to bother with the faster/more-accurate formula, you
146 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
147 * (more general) method of calculating the %age of CPU used by a process.
149 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
151 #define CCPU_SHIFT 11
153 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
154 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
157 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
159 int fscale __unused = FSCALE; /* exported to systat */
160 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
163 * Recompute process priorities, once a second.
165 * Since the userland schedulers are typically event oriented, if the
166 * estcpu calculation at wakeup() time is not sufficient to make a
167 * process runnable relative to other processes in the system we have
168 * a 1-second recalc to help out.
170 * This code also allows us to store sysclock_t data in the process structure
171 * without fear of an overrun, since sysclock_t are guarenteed to hold
172 * several seconds worth of count.
174 * WARNING! callouts can preempt normal threads. However, they will not
175 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
177 static int schedcpu_stats(struct proc *p, void *data __unused);
178 static int schedcpu_resource(struct proc *p, void *data __unused);
180 static void
181 schedcpu(void *arg)
183 allproc_scan(schedcpu_stats, NULL);
184 allproc_scan(schedcpu_resource, NULL);
185 wakeup((caddr_t)&lbolt);
186 wakeup((caddr_t)&lbolt_syncer);
187 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
191 * General process statistics once a second
193 static int
194 schedcpu_stats(struct proc *p, void *data __unused)
196 struct lwp *lp;
198 crit_enter();
199 p->p_swtime++;
200 FOREACH_LWP_IN_PROC(lp, p) {
201 if (lp->lwp_stat == LSSLEEP)
202 lp->lwp_slptime++;
205 * Only recalculate processes that are active or have slept
206 * less then 2 seconds. The schedulers understand this.
208 if (lp->lwp_slptime <= 1) {
209 p->p_usched->recalculate(lp);
210 } else {
211 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
214 crit_exit();
215 return(0);
219 * Resource checks. XXX break out since ksignal/killproc can block,
220 * limiting us to one process killed per second. There is probably
221 * a better way.
223 static int
224 schedcpu_resource(struct proc *p, void *data __unused)
226 u_int64_t ttime;
227 struct lwp *lp;
229 crit_enter();
230 if (p->p_stat == SIDL ||
231 p->p_stat == SZOMB ||
232 p->p_limit == NULL
234 crit_exit();
235 return(0);
238 ttime = 0;
239 FOREACH_LWP_IN_PROC(lp, p) {
240 ttime += lp->lwp_thread->td_sticks;
241 ttime += lp->lwp_thread->td_uticks;
244 switch(plimit_testcpulimit(p->p_limit, ttime)) {
245 case PLIMIT_TESTCPU_KILL:
246 killproc(p, "exceeded maximum CPU limit");
247 break;
248 case PLIMIT_TESTCPU_XCPU:
249 if ((p->p_flag & P_XCPU) == 0) {
250 p->p_flag |= P_XCPU;
251 ksignal(p, SIGXCPU);
253 break;
254 default:
255 break;
257 crit_exit();
258 return(0);
262 * This is only used by ps. Generate a cpu percentage use over
263 * a period of one second.
265 * MPSAFE
267 void
268 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
270 fixpt_t acc;
271 int remticks;
273 acc = (cpticks << FSHIFT) / ttlticks;
274 if (ttlticks >= ESTCPUFREQ) {
275 lp->lwp_pctcpu = acc;
276 } else {
277 remticks = ESTCPUFREQ - ttlticks;
278 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
279 ESTCPUFREQ;
284 * We're only looking at 7 bits of the address; everything is
285 * aligned to 4, lots of things are aligned to greater powers
286 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
288 #define TABLESIZE 128
289 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
291 static cpumask_t slpque_cpumasks[TABLESIZE];
294 * General scheduler initialization. We force a reschedule 25 times
295 * a second by default. Note that cpu0 is initialized in early boot and
296 * cannot make any high level calls.
298 * Each cpu has its own sleep queue.
300 void
301 sleep_gdinit(globaldata_t gd)
303 static struct tslpque slpque_cpu0[TABLESIZE];
304 int i;
306 if (gd->gd_cpuid == 0) {
307 sched_quantum = (hz + 24) / 25;
308 hogticks = 2 * sched_quantum;
310 gd->gd_tsleep_hash = slpque_cpu0;
311 } else {
312 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
313 M_TSLEEP, M_WAITOK | M_ZERO);
315 for (i = 0; i < TABLESIZE; ++i)
316 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
320 * General sleep call. Suspends the current process until a wakeup is
321 * performed on the specified identifier. The process will then be made
322 * runnable with the specified priority. Sleeps at most timo/hz seconds
323 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
324 * before and after sleeping, else signals are not checked. Returns 0 if
325 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
326 * signal needs to be delivered, ERESTART is returned if the current system
327 * call should be restarted if possible, and EINTR is returned if the system
328 * call should be interrupted by the signal (return EINTR).
330 * Note that if we are a process, we release_curproc() before messing with
331 * the LWKT scheduler.
333 * During autoconfiguration or after a panic, a sleep will simply
334 * lower the priority briefly to allow interrupts, then return.
337 tsleep(void *ident, int flags, const char *wmesg, int timo)
339 struct thread *td = curthread;
340 struct lwp *lp = td->td_lwp;
341 struct proc *p = td->td_proc; /* may be NULL */
342 globaldata_t gd;
343 int sig;
344 int catch;
345 int id;
346 int error;
347 int oldpri;
348 struct callout thandle;
351 * NOTE: removed KTRPOINT, it could cause races due to blocking
352 * even in stable. Just scrap it for now.
354 if (tsleep_now_works == 0 || panicstr) {
356 * After a panic, or before we actually have an operational
357 * softclock, just give interrupts a chance, then just return;
359 * don't run any other procs or panic below,
360 * in case this is the idle process and already asleep.
362 splz();
363 oldpri = td->td_pri & TDPRI_MASK;
364 lwkt_setpri_self(safepri);
365 lwkt_switch();
366 lwkt_setpri_self(oldpri);
367 return (0);
369 logtsleep(tsleep_beg);
370 gd = td->td_gd;
371 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
374 * NOTE: all of this occurs on the current cpu, including any
375 * callout-based wakeups, so a critical section is a sufficient
376 * interlock.
378 * The entire sequence through to where we actually sleep must
379 * run without breaking the critical section.
381 id = LOOKUP(ident);
382 catch = flags & PCATCH;
383 error = 0;
384 sig = 0;
386 crit_enter_quick(td);
388 KASSERT(ident != NULL, ("tsleep: no ident"));
389 KASSERT(lp == NULL ||
390 lp->lwp_stat == LSRUN || /* Obvious */
391 lp->lwp_stat == LSSTOP, /* Set in tstop */
392 ("tsleep %p %s %d",
393 ident, wmesg, lp->lwp_stat));
396 * Setup for the current process (if this is a process).
398 if (lp) {
399 if (catch) {
401 * Early termination if PCATCH was set and a
402 * signal is pending, interlocked with the
403 * critical section.
405 * Early termination only occurs when tsleep() is
406 * entered while in a normal LSRUN state.
408 if ((sig = CURSIG(lp)) != 0)
409 goto resume;
412 * Early termination if PCATCH was set and a
413 * mailbox signal was possibly delivered prior to
414 * the system call even being made, in order to
415 * allow the user to interlock without having to
416 * make additional system calls.
418 if (p->p_flag & P_MAILBOX)
419 goto resume;
422 * Causes ksignal to wake us up when.
424 lp->lwp_flag |= LWP_SINTR;
428 * Make sure the current process has been untangled from
429 * the userland scheduler and initialize slptime to start
430 * counting.
432 if (flags & PNORESCHED)
433 td->td_flags |= TDF_NORESCHED;
434 p->p_usched->release_curproc(lp);
435 lp->lwp_slptime = 0;
439 * Move our thread to the correct queue and setup our wchan, etc.
441 lwkt_deschedule_self(td);
442 td->td_flags |= TDF_TSLEEPQ;
443 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
444 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
446 td->td_wchan = ident;
447 td->td_wmesg = wmesg;
448 td->td_wdomain = flags & PDOMAIN_MASK;
451 * Setup the timeout, if any
453 if (timo) {
454 callout_init(&thandle);
455 callout_reset(&thandle, timo, endtsleep, td);
459 * Beddy bye bye.
461 if (lp) {
463 * Ok, we are sleeping. Place us in the SSLEEP state.
465 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
467 * tstop() sets LSSTOP, so don't fiddle with that.
469 if (lp->lwp_stat != LSSTOP)
470 lp->lwp_stat = LSSLEEP;
471 lp->lwp_ru.ru_nvcsw++;
472 lwkt_switch();
475 * And when we are woken up, put us back in LSRUN. If we
476 * slept for over a second, recalculate our estcpu.
478 lp->lwp_stat = LSRUN;
479 if (lp->lwp_slptime)
480 p->p_usched->recalculate(lp);
481 lp->lwp_slptime = 0;
482 } else {
483 lwkt_switch();
487 * Make sure we haven't switched cpus while we were asleep. It's
488 * not supposed to happen. Cleanup our temporary flags.
490 KKASSERT(gd == td->td_gd);
491 td->td_flags &= ~TDF_NORESCHED;
494 * Cleanup the timeout.
496 if (timo) {
497 if (td->td_flags & TDF_TIMEOUT) {
498 td->td_flags &= ~TDF_TIMEOUT;
499 error = EWOULDBLOCK;
500 } else {
501 callout_stop(&thandle);
506 * Since td_threadq is used both for our run queue AND for the
507 * tsleep hash queue, we can't still be on it at this point because
508 * we've gotten cpu back.
510 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
511 td->td_wchan = NULL;
512 td->td_wmesg = NULL;
513 td->td_wdomain = 0;
516 * Figure out the correct error return. If interrupted by a
517 * signal we want to return EINTR or ERESTART.
519 * If P_MAILBOX is set no automatic system call restart occurs
520 * and we return EINTR. P_MAILBOX is meant to be used as an
521 * interlock, the user must poll it prior to any system call
522 * that it wishes to interlock a mailbox signal against since
523 * the flag is cleared on *any* system call that sleeps.
525 resume:
526 if (p) {
527 if (catch && error == 0) {
528 if ((p->p_flag & P_MAILBOX) && sig == 0) {
529 error = EINTR;
530 } else if (sig != 0 || (sig = CURSIG(lp))) {
531 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
532 error = EINTR;
533 else
534 error = ERESTART;
537 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
538 p->p_flag &= ~P_MAILBOX;
540 logtsleep(tsleep_end);
541 crit_exit_quick(td);
542 return (error);
546 * This is a dandy function that allows us to interlock tsleep/wakeup
547 * operations with unspecified upper level locks, such as lockmgr locks,
548 * simply by holding a critical section. The sequence is:
550 * (enter critical section)
551 * (acquire upper level lock)
552 * tsleep_interlock(blah)
553 * (release upper level lock)
554 * tsleep(blah, ...)
555 * (exit critical section)
557 * Basically this function sets our cpumask for the ident which informs
558 * other cpus that our cpu 'might' be waiting (or about to wait on) the
559 * hash index related to the ident. The critical section prevents another
560 * cpu's wakeup() from being processed on our cpu until we are actually
561 * able to enter the tsleep(). Thus, no race occurs between our attempt
562 * to release a resource and sleep, and another cpu's attempt to acquire
563 * a resource and call wakeup.
565 * There isn't much of a point to this function unless you call it while
566 * holding a critical section.
568 static __inline void
569 _tsleep_interlock(globaldata_t gd, void *ident)
571 int id = LOOKUP(ident);
573 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
576 void
577 tsleep_interlock(void *ident)
579 _tsleep_interlock(mycpu, ident);
583 * Interlocked spinlock sleep. An exclusively held spinlock must
584 * be passed to msleep(). The function will atomically release the
585 * spinlock and tsleep on the ident, then reacquire the spinlock and
586 * return.
588 * This routine is fairly important along the critical path, so optimize it
589 * heavily.
592 msleep(void *ident, struct spinlock *spin, int flags,
593 const char *wmesg, int timo)
595 globaldata_t gd = mycpu;
596 int error;
598 crit_enter_gd(gd);
599 _tsleep_interlock(gd, ident);
600 spin_unlock_wr_quick(gd, spin);
601 error = tsleep(ident, flags, wmesg, timo);
602 spin_lock_wr_quick(gd, spin);
603 crit_exit_gd(gd);
605 return (error);
609 * Directly block on the LWKT thread by descheduling it. This
610 * is much faster then tsleep(), but the only legal way to wake
611 * us up is to directly schedule the thread.
613 * Setting TDF_SINTR will cause new signals to directly schedule us.
615 * This routine is typically called while in a critical section.
618 lwkt_sleep(const char *wmesg, int flags)
620 thread_t td = curthread;
621 int sig;
623 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
624 td->td_flags |= TDF_BLOCKED;
625 td->td_wmesg = wmesg;
626 lwkt_deschedule_self(td);
627 lwkt_switch();
628 td->td_wmesg = NULL;
629 td->td_flags &= ~TDF_BLOCKED;
630 return(0);
632 if ((sig = CURSIG(td->td_lwp)) != 0) {
633 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
634 return(EINTR);
635 else
636 return(ERESTART);
639 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
640 td->td_wmesg = wmesg;
641 lwkt_deschedule_self(td);
642 lwkt_switch();
643 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
644 td->td_wmesg = NULL;
645 return(0);
649 * Implement the timeout for tsleep.
651 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
652 * we only call setrunnable if the process is not stopped.
654 * This type of callout timeout is scheduled on the same cpu the process
655 * is sleeping on. Also, at the moment, the MP lock is held.
657 static void
658 endtsleep(void *arg)
660 thread_t td = arg;
661 struct lwp *lp;
663 ASSERT_MP_LOCK_HELD(curthread);
664 crit_enter();
667 * cpu interlock. Thread flags are only manipulated on
668 * the cpu owning the thread. proc flags are only manipulated
669 * by the older of the MP lock. We have both.
671 if (td->td_flags & TDF_TSLEEPQ) {
672 td->td_flags |= TDF_TIMEOUT;
674 if ((lp = td->td_lwp) != NULL) {
675 lp->lwp_flag |= LWP_BREAKTSLEEP;
676 if (lp->lwp_proc->p_stat != SSTOP)
677 setrunnable(lp);
678 } else {
679 unsleep_and_wakeup_thread(td);
682 crit_exit();
686 * Unsleep and wakeup a thread. This function runs without the MP lock
687 * which means that it can only manipulate thread state on the owning cpu,
688 * and cannot touch the process state at all.
690 static
691 void
692 unsleep_and_wakeup_thread(struct thread *td)
694 globaldata_t gd = mycpu;
695 int id;
697 #ifdef SMP
698 if (td->td_gd != gd) {
699 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
700 return;
702 #endif
703 crit_enter();
704 if (td->td_flags & TDF_TSLEEPQ) {
705 td->td_flags &= ~TDF_TSLEEPQ;
706 id = LOOKUP(td->td_wchan);
707 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
708 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
709 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
710 lwkt_schedule(td);
712 crit_exit();
716 * Make all processes sleeping on the specified identifier runnable.
717 * count may be zero or one only.
719 * The domain encodes the sleep/wakeup domain AND the first cpu to check
720 * (which is always the current cpu). As we iterate across cpus
722 * This call may run without the MP lock held. We can only manipulate thread
723 * state on the cpu owning the thread. We CANNOT manipulate process state
724 * at all.
726 static void
727 _wakeup(void *ident, int domain)
729 struct tslpque *qp;
730 struct thread *td;
731 struct thread *ntd;
732 globaldata_t gd;
733 #ifdef SMP
734 cpumask_t mask;
735 cpumask_t tmask;
736 int startcpu;
737 int nextcpu;
738 #endif
739 int id;
741 crit_enter();
742 logtsleep(wakeup_beg);
743 gd = mycpu;
744 id = LOOKUP(ident);
745 qp = &gd->gd_tsleep_hash[id];
746 restart:
747 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
748 ntd = TAILQ_NEXT(td, td_threadq);
749 if (td->td_wchan == ident &&
750 td->td_wdomain == (domain & PDOMAIN_MASK)
752 KKASSERT(td->td_flags & TDF_TSLEEPQ);
753 td->td_flags &= ~TDF_TSLEEPQ;
754 TAILQ_REMOVE(qp, td, td_threadq);
755 if (TAILQ_FIRST(qp) == NULL) {
756 atomic_clear_int(&slpque_cpumasks[id],
757 gd->gd_cpumask);
759 lwkt_schedule(td);
760 if (domain & PWAKEUP_ONE)
761 goto done;
762 goto restart;
766 #ifdef SMP
768 * We finished checking the current cpu but there still may be
769 * more work to do. Either wakeup_one was requested and no matching
770 * thread was found, or a normal wakeup was requested and we have
771 * to continue checking cpus.
773 * The cpu that started the wakeup sequence is encoded in the domain.
774 * We use this information to determine which cpus still need to be
775 * checked, locate a candidate cpu, and chain the wakeup
776 * asynchronously with an IPI message.
778 * It should be noted that this scheme is actually less expensive then
779 * the old scheme when waking up multiple threads, since we send
780 * only one IPI message per target candidate which may then schedule
781 * multiple threads. Before we could have wound up sending an IPI
782 * message for each thread on the target cpu (!= current cpu) that
783 * needed to be woken up.
785 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
786 * should be ok since we are passing idents in the IPI rather then
787 * thread pointers.
789 if ((domain & PWAKEUP_MYCPU) == 0 &&
790 (mask = slpque_cpumasks[id]) != 0
793 * Look for a cpu that might have work to do. Mask out cpus
794 * which have already been processed.
796 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
797 * ^ ^ ^
798 * start currentcpu start
799 * case2 case1
800 * * * *
801 * 11111111111111110000000000000111 case1
802 * 00000000111111110000000000000000 case2
804 * case1: We started at start_case1 and processed through
805 * to the current cpu. We have to check any bits
806 * after the current cpu, then check bits before
807 * the starting cpu.
809 * case2: We have already checked all the bits from
810 * start_case2 to the end, and from 0 to the current
811 * cpu. We just have the bits from the current cpu
812 * to start_case2 left to check.
814 startcpu = PWAKEUP_DECODE(domain);
815 if (gd->gd_cpuid >= startcpu) {
817 * CASE1
819 tmask = mask & ~((gd->gd_cpumask << 1) - 1);
820 if (mask & tmask) {
821 nextcpu = bsfl(mask & tmask);
822 lwkt_send_ipiq2(globaldata_find(nextcpu),
823 _wakeup, ident, domain);
824 } else {
825 tmask = (1 << startcpu) - 1;
826 if (mask & tmask) {
827 nextcpu = bsfl(mask & tmask);
828 lwkt_send_ipiq2(
829 globaldata_find(nextcpu),
830 _wakeup, ident, domain);
833 } else {
835 * CASE2
837 tmask = ~((gd->gd_cpumask << 1) - 1) &
838 ((1 << startcpu) - 1);
839 if (mask & tmask) {
840 nextcpu = bsfl(mask & tmask);
841 lwkt_send_ipiq2(globaldata_find(nextcpu),
842 _wakeup, ident, domain);
846 #endif
847 done:
848 logtsleep(wakeup_end);
849 crit_exit();
853 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
855 void
856 wakeup(void *ident)
858 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
862 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
864 void
865 wakeup_one(void *ident)
867 /* XXX potentially round-robin the first responding cpu */
868 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
872 * Wakeup threads tsleep()ing on the specified ident on the current cpu
873 * only.
875 void
876 wakeup_mycpu(void *ident)
878 _wakeup(ident, PWAKEUP_MYCPU);
882 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
883 * only.
885 void
886 wakeup_mycpu_one(void *ident)
888 /* XXX potentially round-robin the first responding cpu */
889 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
893 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
894 * only.
896 void
897 wakeup_oncpu(globaldata_t gd, void *ident)
899 #ifdef SMP
900 if (gd == mycpu) {
901 _wakeup(ident, PWAKEUP_MYCPU);
902 } else {
903 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
905 #else
906 _wakeup(ident, PWAKEUP_MYCPU);
907 #endif
911 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
912 * only.
914 void
915 wakeup_oncpu_one(globaldata_t gd, void *ident)
917 #ifdef SMP
918 if (gd == mycpu) {
919 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
920 } else {
921 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
923 #else
924 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
925 #endif
929 * Wakeup all threads waiting on the specified ident that slept using
930 * the specified domain, on all cpus.
932 void
933 wakeup_domain(void *ident, int domain)
935 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
939 * Wakeup one thread waiting on the specified ident that slept using
940 * the specified domain, on any cpu.
942 void
943 wakeup_domain_one(void *ident, int domain)
945 /* XXX potentially round-robin the first responding cpu */
946 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
950 * setrunnable()
952 * Make a process runnable. The MP lock must be held on call. This only
953 * has an effect if we are in SSLEEP. We only break out of the
954 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
956 * NOTE: With the MP lock held we can only safely manipulate the process
957 * structure. We cannot safely manipulate the thread structure.
959 void
960 setrunnable(struct lwp *lp)
962 crit_enter();
963 ASSERT_MP_LOCK_HELD(curthread);
964 if (lp->lwp_stat == LSSTOP)
965 lp->lwp_stat = LSSLEEP;
966 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
967 unsleep_and_wakeup_thread(lp->lwp_thread);
968 crit_exit();
972 * The process is stopped due to some condition, usually because p_stat is
973 * set to SSTOP, but also possibly due to being traced.
975 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
976 * because the parent may check the child's status before the child actually
977 * gets to this routine.
979 * This routine is called with the current lwp only, typically just
980 * before returning to userland.
982 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
983 * SIGCONT to break out of the tsleep.
985 void
986 tstop(void)
988 struct lwp *lp = curthread->td_lwp;
989 struct proc *p = lp->lwp_proc;
991 lp->lwp_flag |= LWP_BREAKTSLEEP;
992 lp->lwp_stat = LSSTOP;
993 crit_enter();
995 * If LWP_WSTOP is set, we were sleeping
996 * while our process was stopped. At this point
997 * we were already counted as stopped.
999 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1001 * If we're the last thread to stop, signal
1002 * our parent.
1004 p->p_nstopped++;
1005 lp->lwp_flag |= LWP_WSTOP;
1006 if (p->p_nstopped == p->p_nthreads) {
1007 p->p_flag &= ~P_WAITED;
1008 wakeup(p->p_pptr);
1009 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1010 ksignal(p->p_pptr, SIGCHLD);
1013 tsleep(lp->lwp_proc, 0, "stop", 0);
1014 p->p_nstopped--;
1015 crit_exit();
1019 * Yield / synchronous reschedule. This is a bit tricky because the trap
1020 * code might have set a lazy release on the switch function. Setting
1021 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1022 * switch, and that we are given a greater chance of affinity with our
1023 * current cpu.
1025 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1026 * run queue. lwkt_switch() will also execute any assigned passive release
1027 * (which usually calls release_curproc()), allowing a same/higher priority
1028 * process to be designated as the current process.
1030 * While it is possible for a lower priority process to be designated,
1031 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1032 * round-robin back to us and we will be able to re-acquire the current
1033 * process designation.
1035 void
1036 uio_yield(void)
1038 struct thread *td = curthread;
1039 struct proc *p = td->td_proc;
1041 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1042 if (p) {
1043 p->p_flag |= P_PASSIVE_ACQ;
1044 lwkt_switch();
1045 p->p_flag &= ~P_PASSIVE_ACQ;
1046 } else {
1047 lwkt_switch();
1052 * Compute a tenex style load average of a quantity on
1053 * 1, 5 and 15 minute intervals.
1055 static int loadav_count_runnable(struct lwp *p, void *data);
1057 static void
1058 loadav(void *arg)
1060 struct loadavg *avg;
1061 int i, nrun;
1063 nrun = 0;
1064 alllwp_scan(loadav_count_runnable, &nrun);
1065 avg = &averunnable;
1066 for (i = 0; i < 3; i++) {
1067 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1068 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1072 * Schedule the next update to occur after 5 seconds, but add a
1073 * random variation to avoid synchronisation with processes that
1074 * run at regular intervals.
1076 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1077 loadav, NULL);
1080 static int
1081 loadav_count_runnable(struct lwp *lp, void *data)
1083 int *nrunp = data;
1084 thread_t td;
1086 switch (lp->lwp_stat) {
1087 case LSRUN:
1088 if ((td = lp->lwp_thread) == NULL)
1089 break;
1090 if (td->td_flags & TDF_BLOCKED)
1091 break;
1092 ++*nrunp;
1093 break;
1094 default:
1095 break;
1097 return(0);
1100 /* ARGSUSED */
1101 static void
1102 sched_setup(void *dummy)
1104 callout_init(&loadav_callout);
1105 callout_init(&schedcpu_callout);
1107 /* Kick off timeout driven events by calling first time. */
1108 schedcpu(NULL);
1109 loadav(NULL);