More minor IPI work.
[dragonfly/vkernel-mp.git] / sys / kern / kern_synch.c
blob74dd7d998a9f076810d3dcfc8e57b74f06113a32
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.86 2007/06/08 02:02:27 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
65 #include <machine/cpu.h>
66 #include <machine/smp.h>
68 TAILQ_HEAD(tslpque, thread);
70 static void sched_setup (void *dummy);
71 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 int hogticks;
74 int lbolt;
75 int lbolt_syncer;
76 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
77 int ncpus;
78 int ncpus2, ncpus2_shift, ncpus2_mask;
79 int ncpus_fit, ncpus_fit_mask;
80 int safepri;
81 int tsleep_now_works;
83 static struct callout loadav_callout;
84 static struct callout schedcpu_callout;
85 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
96 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
97 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
99 struct loadavg averunnable =
100 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
102 * Constants for averages over 1, 5, and 15 minutes
103 * when sampling at 5 second intervals.
105 static fixpt_t cexp[3] = {
106 0.9200444146293232 * FSCALE, /* exp(-1/12) */
107 0.9834714538216174 * FSCALE, /* exp(-1/60) */
108 0.9944598480048967 * FSCALE, /* exp(-1/180) */
111 static void endtsleep (void *);
112 static void unsleep_and_wakeup_thread(struct thread *td);
113 static void loadav (void *arg);
114 static void schedcpu (void *arg);
117 * Adjust the scheduler quantum. The quantum is specified in microseconds.
118 * Note that 'tick' is in microseconds per tick.
120 static int
121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
123 int error, new_val;
125 new_val = sched_quantum * tick;
126 error = sysctl_handle_int(oidp, &new_val, 0, req);
127 if (error != 0 || req->newptr == NULL)
128 return (error);
129 if (new_val < tick)
130 return (EINVAL);
131 sched_quantum = new_val / tick;
132 hogticks = 2 * sched_quantum;
133 return (0);
136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
137 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
140 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
141 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
142 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
144 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
145 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
147 * If you don't want to bother with the faster/more-accurate formula, you
148 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
149 * (more general) method of calculating the %age of CPU used by a process.
151 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
153 #define CCPU_SHIFT 11
155 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
156 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
159 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
161 int fscale __unused = FSCALE; /* exported to systat */
162 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
165 * Recompute process priorities, once a second.
167 * Since the userland schedulers are typically event oriented, if the
168 * estcpu calculation at wakeup() time is not sufficient to make a
169 * process runnable relative to other processes in the system we have
170 * a 1-second recalc to help out.
172 * This code also allows us to store sysclock_t data in the process structure
173 * without fear of an overrun, since sysclock_t are guarenteed to hold
174 * several seconds worth of count.
176 * WARNING! callouts can preempt normal threads. However, they will not
177 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
179 static int schedcpu_stats(struct proc *p, void *data __unused);
180 static int schedcpu_resource(struct proc *p, void *data __unused);
182 static void
183 schedcpu(void *arg)
185 allproc_scan(schedcpu_stats, NULL);
186 allproc_scan(schedcpu_resource, NULL);
187 wakeup((caddr_t)&lbolt);
188 wakeup((caddr_t)&lbolt_syncer);
189 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
193 * General process statistics once a second
195 static int
196 schedcpu_stats(struct proc *p, void *data __unused)
198 struct lwp *lp;
200 crit_enter();
201 p->p_swtime++;
202 FOREACH_LWP_IN_PROC(lp, p) {
203 if (lp->lwp_stat == LSSLEEP)
204 lp->lwp_slptime++;
207 * Only recalculate processes that are active or have slept
208 * less then 2 seconds. The schedulers understand this.
210 if (lp->lwp_slptime <= 1) {
211 p->p_usched->recalculate(lp);
212 } else {
213 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
216 crit_exit();
217 return(0);
221 * Resource checks. XXX break out since ksignal/killproc can block,
222 * limiting us to one process killed per second. There is probably
223 * a better way.
225 static int
226 schedcpu_resource(struct proc *p, void *data __unused)
228 u_int64_t ttime;
229 struct lwp *lp;
231 crit_enter();
232 if (p->p_stat == SIDL ||
233 p->p_stat == SZOMB ||
234 p->p_limit == NULL
236 crit_exit();
237 return(0);
240 ttime = 0;
241 FOREACH_LWP_IN_PROC(lp, p) {
242 ttime += lp->lwp_thread->td_sticks;
243 ttime += lp->lwp_thread->td_uticks;
246 switch(plimit_testcpulimit(p->p_limit, ttime)) {
247 case PLIMIT_TESTCPU_KILL:
248 killproc(p, "exceeded maximum CPU limit");
249 break;
250 case PLIMIT_TESTCPU_XCPU:
251 if ((p->p_flag & P_XCPU) == 0) {
252 p->p_flag |= P_XCPU;
253 ksignal(p, SIGXCPU);
255 break;
256 default:
257 break;
259 crit_exit();
260 return(0);
264 * This is only used by ps. Generate a cpu percentage use over
265 * a period of one second.
267 * MPSAFE
269 void
270 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
272 fixpt_t acc;
273 int remticks;
275 acc = (cpticks << FSHIFT) / ttlticks;
276 if (ttlticks >= ESTCPUFREQ) {
277 lp->lwp_pctcpu = acc;
278 } else {
279 remticks = ESTCPUFREQ - ttlticks;
280 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
281 ESTCPUFREQ;
286 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
287 * like addresses being slept on.
289 #define TABLESIZE 1024
290 #define LOOKUP(x) (((intptr_t)(x) >> 6) & (TABLESIZE - 1))
292 static cpumask_t slpque_cpumasks[TABLESIZE];
295 * General scheduler initialization. We force a reschedule 25 times
296 * a second by default. Note that cpu0 is initialized in early boot and
297 * cannot make any high level calls.
299 * Each cpu has its own sleep queue.
301 void
302 sleep_gdinit(globaldata_t gd)
304 static struct tslpque slpque_cpu0[TABLESIZE];
305 int i;
307 if (gd->gd_cpuid == 0) {
308 sched_quantum = (hz + 24) / 25;
309 hogticks = 2 * sched_quantum;
311 gd->gd_tsleep_hash = slpque_cpu0;
312 } else {
313 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
314 M_TSLEEP, M_WAITOK | M_ZERO);
316 for (i = 0; i < TABLESIZE; ++i)
317 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
321 * General sleep call. Suspends the current process until a wakeup is
322 * performed on the specified identifier. The process will then be made
323 * runnable with the specified priority. Sleeps at most timo/hz seconds
324 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
325 * before and after sleeping, else signals are not checked. Returns 0 if
326 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
327 * signal needs to be delivered, ERESTART is returned if the current system
328 * call should be restarted if possible, and EINTR is returned if the system
329 * call should be interrupted by the signal (return EINTR).
331 * Note that if we are a process, we release_curproc() before messing with
332 * the LWKT scheduler.
334 * During autoconfiguration or after a panic, a sleep will simply
335 * lower the priority briefly to allow interrupts, then return.
338 tsleep(void *ident, int flags, const char *wmesg, int timo)
340 struct thread *td = curthread;
341 struct lwp *lp = td->td_lwp;
342 struct proc *p = td->td_proc; /* may be NULL */
343 globaldata_t gd;
344 int sig;
345 int catch;
346 int id;
347 int error;
348 int oldpri;
349 struct callout thandle;
352 * NOTE: removed KTRPOINT, it could cause races due to blocking
353 * even in stable. Just scrap it for now.
355 if (tsleep_now_works == 0 || panicstr) {
357 * After a panic, or before we actually have an operational
358 * softclock, just give interrupts a chance, then just return;
360 * don't run any other procs or panic below,
361 * in case this is the idle process and already asleep.
363 splz();
364 oldpri = td->td_pri & TDPRI_MASK;
365 lwkt_setpri_self(safepri);
366 lwkt_switch();
367 lwkt_setpri_self(oldpri);
368 return (0);
370 logtsleep2(tsleep_beg, ident);
371 gd = td->td_gd;
372 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
375 * NOTE: all of this occurs on the current cpu, including any
376 * callout-based wakeups, so a critical section is a sufficient
377 * interlock.
379 * The entire sequence through to where we actually sleep must
380 * run without breaking the critical section.
382 id = LOOKUP(ident);
383 catch = flags & PCATCH;
384 error = 0;
385 sig = 0;
387 crit_enter_quick(td);
389 KASSERT(ident != NULL, ("tsleep: no ident"));
390 KASSERT(lp == NULL ||
391 lp->lwp_stat == LSRUN || /* Obvious */
392 lp->lwp_stat == LSSTOP, /* Set in tstop */
393 ("tsleep %p %s %d",
394 ident, wmesg, lp->lwp_stat));
397 * Setup for the current process (if this is a process).
399 if (lp) {
400 if (catch) {
402 * Early termination if PCATCH was set and a
403 * signal is pending, interlocked with the
404 * critical section.
406 * Early termination only occurs when tsleep() is
407 * entered while in a normal LSRUN state.
409 if ((sig = CURSIG(lp)) != 0)
410 goto resume;
413 * Early termination if PCATCH was set and a
414 * mailbox signal was possibly delivered prior to
415 * the system call even being made, in order to
416 * allow the user to interlock without having to
417 * make additional system calls.
419 if (p->p_flag & P_MAILBOX)
420 goto resume;
423 * Causes ksignal to wake us up when.
425 lp->lwp_flag |= LWP_SINTR;
429 * Make sure the current process has been untangled from
430 * the userland scheduler and initialize slptime to start
431 * counting.
433 if (flags & PNORESCHED)
434 td->td_flags |= TDF_NORESCHED;
435 p->p_usched->release_curproc(lp);
436 lp->lwp_slptime = 0;
440 * Move our thread to the correct queue and setup our wchan, etc.
442 lwkt_deschedule_self(td);
443 td->td_flags |= TDF_TSLEEPQ;
444 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
445 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
447 td->td_wchan = ident;
448 td->td_wmesg = wmesg;
449 td->td_wdomain = flags & PDOMAIN_MASK;
452 * Setup the timeout, if any
454 if (timo) {
455 callout_init(&thandle);
456 callout_reset(&thandle, timo, endtsleep, td);
460 * Beddy bye bye.
462 if (lp) {
464 * Ok, we are sleeping. Place us in the SSLEEP state.
466 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
468 * tstop() sets LSSTOP, so don't fiddle with that.
470 if (lp->lwp_stat != LSSTOP)
471 lp->lwp_stat = LSSLEEP;
472 lp->lwp_ru.ru_nvcsw++;
473 lwkt_switch();
476 * And when we are woken up, put us back in LSRUN. If we
477 * slept for over a second, recalculate our estcpu.
479 lp->lwp_stat = LSRUN;
480 if (lp->lwp_slptime)
481 p->p_usched->recalculate(lp);
482 lp->lwp_slptime = 0;
483 } else {
484 lwkt_switch();
488 * Make sure we haven't switched cpus while we were asleep. It's
489 * not supposed to happen. Cleanup our temporary flags.
491 KKASSERT(gd == td->td_gd);
492 td->td_flags &= ~TDF_NORESCHED;
495 * Cleanup the timeout.
497 if (timo) {
498 if (td->td_flags & TDF_TIMEOUT) {
499 td->td_flags &= ~TDF_TIMEOUT;
500 error = EWOULDBLOCK;
501 } else {
502 callout_stop(&thandle);
507 * Since td_threadq is used both for our run queue AND for the
508 * tsleep hash queue, we can't still be on it at this point because
509 * we've gotten cpu back.
511 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
512 td->td_wchan = NULL;
513 td->td_wmesg = NULL;
514 td->td_wdomain = 0;
517 * Figure out the correct error return. If interrupted by a
518 * signal we want to return EINTR or ERESTART.
520 * If P_MAILBOX is set no automatic system call restart occurs
521 * and we return EINTR. P_MAILBOX is meant to be used as an
522 * interlock, the user must poll it prior to any system call
523 * that it wishes to interlock a mailbox signal against since
524 * the flag is cleared on *any* system call that sleeps.
526 resume:
527 if (p) {
528 if (catch && error == 0) {
529 if ((p->p_flag & P_MAILBOX) && sig == 0) {
530 error = EINTR;
531 } else if (sig != 0 || (sig = CURSIG(lp))) {
532 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
533 error = EINTR;
534 else
535 error = ERESTART;
538 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
539 p->p_flag &= ~P_MAILBOX;
541 logtsleep1(tsleep_end);
542 crit_exit_quick(td);
543 return (error);
547 * This is a dandy function that allows us to interlock tsleep/wakeup
548 * operations with unspecified upper level locks, such as lockmgr locks,
549 * simply by holding a critical section. The sequence is:
551 * (enter critical section)
552 * (acquire upper level lock)
553 * tsleep_interlock(blah)
554 * (release upper level lock)
555 * tsleep(blah, ...)
556 * (exit critical section)
558 * Basically this function sets our cpumask for the ident which informs
559 * other cpus that our cpu 'might' be waiting (or about to wait on) the
560 * hash index related to the ident. The critical section prevents another
561 * cpu's wakeup() from being processed on our cpu until we are actually
562 * able to enter the tsleep(). Thus, no race occurs between our attempt
563 * to release a resource and sleep, and another cpu's attempt to acquire
564 * a resource and call wakeup.
566 * There isn't much of a point to this function unless you call it while
567 * holding a critical section.
569 static __inline void
570 _tsleep_interlock(globaldata_t gd, void *ident)
572 int id = LOOKUP(ident);
574 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
577 void
578 tsleep_interlock(void *ident)
580 _tsleep_interlock(mycpu, ident);
584 * Interlocked spinlock sleep. An exclusively held spinlock must
585 * be passed to msleep(). The function will atomically release the
586 * spinlock and tsleep on the ident, then reacquire the spinlock and
587 * return.
589 * This routine is fairly important along the critical path, so optimize it
590 * heavily.
593 msleep(void *ident, struct spinlock *spin, int flags,
594 const char *wmesg, int timo)
596 globaldata_t gd = mycpu;
597 int error;
599 crit_enter_gd(gd);
600 _tsleep_interlock(gd, ident);
601 spin_unlock_wr_quick(gd, spin);
602 error = tsleep(ident, flags, wmesg, timo);
603 spin_lock_wr_quick(gd, spin);
604 crit_exit_gd(gd);
606 return (error);
610 * Directly block on the LWKT thread by descheduling it. This
611 * is much faster then tsleep(), but the only legal way to wake
612 * us up is to directly schedule the thread.
614 * Setting TDF_SINTR will cause new signals to directly schedule us.
616 * This routine is typically called while in a critical section.
619 lwkt_sleep(const char *wmesg, int flags)
621 thread_t td = curthread;
622 int sig;
624 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
625 td->td_flags |= TDF_BLOCKED;
626 td->td_wmesg = wmesg;
627 lwkt_deschedule_self(td);
628 lwkt_switch();
629 td->td_wmesg = NULL;
630 td->td_flags &= ~TDF_BLOCKED;
631 return(0);
633 if ((sig = CURSIG(td->td_lwp)) != 0) {
634 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
635 return(EINTR);
636 else
637 return(ERESTART);
640 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
641 td->td_wmesg = wmesg;
642 lwkt_deschedule_self(td);
643 lwkt_switch();
644 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
645 td->td_wmesg = NULL;
646 return(0);
650 * Implement the timeout for tsleep.
652 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
653 * we only call setrunnable if the process is not stopped.
655 * This type of callout timeout is scheduled on the same cpu the process
656 * is sleeping on. Also, at the moment, the MP lock is held.
658 static void
659 endtsleep(void *arg)
661 thread_t td = arg;
662 struct lwp *lp;
664 ASSERT_MP_LOCK_HELD(curthread);
665 crit_enter();
668 * cpu interlock. Thread flags are only manipulated on
669 * the cpu owning the thread. proc flags are only manipulated
670 * by the older of the MP lock. We have both.
672 if (td->td_flags & TDF_TSLEEPQ) {
673 td->td_flags |= TDF_TIMEOUT;
675 if ((lp = td->td_lwp) != NULL) {
676 lp->lwp_flag |= LWP_BREAKTSLEEP;
677 if (lp->lwp_proc->p_stat != SSTOP)
678 setrunnable(lp);
679 } else {
680 unsleep_and_wakeup_thread(td);
683 crit_exit();
687 * Unsleep and wakeup a thread. This function runs without the MP lock
688 * which means that it can only manipulate thread state on the owning cpu,
689 * and cannot touch the process state at all.
691 static
692 void
693 unsleep_and_wakeup_thread(struct thread *td)
695 globaldata_t gd = mycpu;
696 int id;
698 #ifdef SMP
699 if (td->td_gd != gd) {
700 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
701 return;
703 #endif
704 crit_enter();
705 if (td->td_flags & TDF_TSLEEPQ) {
706 td->td_flags &= ~TDF_TSLEEPQ;
707 id = LOOKUP(td->td_wchan);
708 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
709 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
710 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
711 lwkt_schedule(td);
713 crit_exit();
717 * Make all processes sleeping on the specified identifier runnable.
718 * count may be zero or one only.
720 * The domain encodes the sleep/wakeup domain AND the first cpu to check
721 * (which is always the current cpu). As we iterate across cpus
723 * This call may run without the MP lock held. We can only manipulate thread
724 * state on the cpu owning the thread. We CANNOT manipulate process state
725 * at all.
727 static void
728 _wakeup(void *ident, int domain)
730 struct tslpque *qp;
731 struct thread *td;
732 struct thread *ntd;
733 globaldata_t gd;
734 #ifdef SMP
735 cpumask_t mask;
736 cpumask_t tmask;
737 int startcpu;
738 int nextcpu;
739 #endif
740 int id;
742 crit_enter();
743 logtsleep2(wakeup_beg, ident);
744 gd = mycpu;
745 id = LOOKUP(ident);
746 qp = &gd->gd_tsleep_hash[id];
747 restart:
748 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
749 ntd = TAILQ_NEXT(td, td_threadq);
750 if (td->td_wchan == ident &&
751 td->td_wdomain == (domain & PDOMAIN_MASK)
753 KKASSERT(td->td_flags & TDF_TSLEEPQ);
754 td->td_flags &= ~TDF_TSLEEPQ;
755 TAILQ_REMOVE(qp, td, td_threadq);
756 if (TAILQ_FIRST(qp) == NULL) {
757 atomic_clear_int(&slpque_cpumasks[id],
758 gd->gd_cpumask);
760 lwkt_schedule(td);
761 if (domain & PWAKEUP_ONE)
762 goto done;
763 goto restart;
767 #ifdef SMP
769 * We finished checking the current cpu but there still may be
770 * more work to do. Either wakeup_one was requested and no matching
771 * thread was found, or a normal wakeup was requested and we have
772 * to continue checking cpus.
774 * The cpu that started the wakeup sequence is encoded in the domain.
775 * We use this information to determine which cpus still need to be
776 * checked, locate a candidate cpu, and chain the wakeup
777 * asynchronously with an IPI message.
779 * It should be noted that this scheme is actually less expensive then
780 * the old scheme when waking up multiple threads, since we send
781 * only one IPI message per target candidate which may then schedule
782 * multiple threads. Before we could have wound up sending an IPI
783 * message for each thread on the target cpu (!= current cpu) that
784 * needed to be woken up.
786 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
787 * should be ok since we are passing idents in the IPI rather then
788 * thread pointers.
790 if ((domain & PWAKEUP_MYCPU) == 0 &&
791 (mask = slpque_cpumasks[id]) != 0
794 * Look for a cpu that might have work to do. Mask out cpus
795 * which have already been processed.
797 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
798 * ^ ^ ^
799 * start currentcpu start
800 * case2 case1
801 * * * *
802 * 11111111111111110000000000000111 case1
803 * 00000000111111110000000000000000 case2
805 * case1: We started at start_case1 and processed through
806 * to the current cpu. We have to check any bits
807 * after the current cpu, then check bits before
808 * the starting cpu.
810 * case2: We have already checked all the bits from
811 * start_case2 to the end, and from 0 to the current
812 * cpu. We just have the bits from the current cpu
813 * to start_case2 left to check.
815 startcpu = PWAKEUP_DECODE(domain);
816 if (gd->gd_cpuid >= startcpu) {
818 * CASE1
820 tmask = mask & ~((gd->gd_cpumask << 1) - 1);
821 if (mask & tmask) {
822 nextcpu = bsfl(mask & tmask);
823 lwkt_send_ipiq2(globaldata_find(nextcpu),
824 _wakeup, ident, domain);
825 } else {
826 tmask = (1 << startcpu) - 1;
827 if (mask & tmask) {
828 nextcpu = bsfl(mask & tmask);
829 lwkt_send_ipiq2(
830 globaldata_find(nextcpu),
831 _wakeup, ident, domain);
834 } else {
836 * CASE2
838 tmask = ~((gd->gd_cpumask << 1) - 1) &
839 ((1 << startcpu) - 1);
840 if (mask & tmask) {
841 nextcpu = bsfl(mask & tmask);
842 lwkt_send_ipiq2(globaldata_find(nextcpu),
843 _wakeup, ident, domain);
847 #endif
848 done:
849 logtsleep1(wakeup_end);
850 crit_exit();
854 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
856 void
857 wakeup(void *ident)
859 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
863 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
865 void
866 wakeup_one(void *ident)
868 /* XXX potentially round-robin the first responding cpu */
869 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
873 * Wakeup threads tsleep()ing on the specified ident on the current cpu
874 * only.
876 void
877 wakeup_mycpu(void *ident)
879 _wakeup(ident, PWAKEUP_MYCPU);
883 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
884 * only.
886 void
887 wakeup_mycpu_one(void *ident)
889 /* XXX potentially round-robin the first responding cpu */
890 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
894 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
895 * only.
897 void
898 wakeup_oncpu(globaldata_t gd, void *ident)
900 #ifdef SMP
901 if (gd == mycpu) {
902 _wakeup(ident, PWAKEUP_MYCPU);
903 } else {
904 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
906 #else
907 _wakeup(ident, PWAKEUP_MYCPU);
908 #endif
912 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
913 * only.
915 void
916 wakeup_oncpu_one(globaldata_t gd, void *ident)
918 #ifdef SMP
919 if (gd == mycpu) {
920 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
921 } else {
922 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
924 #else
925 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
926 #endif
930 * Wakeup all threads waiting on the specified ident that slept using
931 * the specified domain, on all cpus.
933 void
934 wakeup_domain(void *ident, int domain)
936 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
940 * Wakeup one thread waiting on the specified ident that slept using
941 * the specified domain, on any cpu.
943 void
944 wakeup_domain_one(void *ident, int domain)
946 /* XXX potentially round-robin the first responding cpu */
947 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
951 * setrunnable()
953 * Make a process runnable. The MP lock must be held on call. This only
954 * has an effect if we are in SSLEEP. We only break out of the
955 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
957 * NOTE: With the MP lock held we can only safely manipulate the process
958 * structure. We cannot safely manipulate the thread structure.
960 void
961 setrunnable(struct lwp *lp)
963 crit_enter();
964 ASSERT_MP_LOCK_HELD(curthread);
965 if (lp->lwp_stat == LSSTOP)
966 lp->lwp_stat = LSSLEEP;
967 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
968 unsleep_and_wakeup_thread(lp->lwp_thread);
969 crit_exit();
973 * The process is stopped due to some condition, usually because p_stat is
974 * set to SSTOP, but also possibly due to being traced.
976 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
977 * because the parent may check the child's status before the child actually
978 * gets to this routine.
980 * This routine is called with the current lwp only, typically just
981 * before returning to userland.
983 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
984 * SIGCONT to break out of the tsleep.
986 void
987 tstop(void)
989 struct lwp *lp = curthread->td_lwp;
990 struct proc *p = lp->lwp_proc;
992 lp->lwp_flag |= LWP_BREAKTSLEEP;
993 lp->lwp_stat = LSSTOP;
994 crit_enter();
996 * If LWP_WSTOP is set, we were sleeping
997 * while our process was stopped. At this point
998 * we were already counted as stopped.
1000 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1002 * If we're the last thread to stop, signal
1003 * our parent.
1005 p->p_nstopped++;
1006 lp->lwp_flag |= LWP_WSTOP;
1007 if (p->p_nstopped == p->p_nthreads) {
1008 p->p_flag &= ~P_WAITED;
1009 wakeup(p->p_pptr);
1010 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1011 ksignal(p->p_pptr, SIGCHLD);
1014 tsleep(lp->lwp_proc, 0, "stop", 0);
1015 p->p_nstopped--;
1016 crit_exit();
1020 * Yield / synchronous reschedule. This is a bit tricky because the trap
1021 * code might have set a lazy release on the switch function. Setting
1022 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1023 * switch, and that we are given a greater chance of affinity with our
1024 * current cpu.
1026 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1027 * run queue. lwkt_switch() will also execute any assigned passive release
1028 * (which usually calls release_curproc()), allowing a same/higher priority
1029 * process to be designated as the current process.
1031 * While it is possible for a lower priority process to be designated,
1032 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1033 * round-robin back to us and we will be able to re-acquire the current
1034 * process designation.
1036 void
1037 uio_yield(void)
1039 struct thread *td = curthread;
1040 struct proc *p = td->td_proc;
1042 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1043 if (p) {
1044 p->p_flag |= P_PASSIVE_ACQ;
1045 lwkt_switch();
1046 p->p_flag &= ~P_PASSIVE_ACQ;
1047 } else {
1048 lwkt_switch();
1053 * Compute a tenex style load average of a quantity on
1054 * 1, 5 and 15 minute intervals.
1056 static int loadav_count_runnable(struct lwp *p, void *data);
1058 static void
1059 loadav(void *arg)
1061 struct loadavg *avg;
1062 int i, nrun;
1064 nrun = 0;
1065 alllwp_scan(loadav_count_runnable, &nrun);
1066 avg = &averunnable;
1067 for (i = 0; i < 3; i++) {
1068 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1069 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1073 * Schedule the next update to occur after 5 seconds, but add a
1074 * random variation to avoid synchronisation with processes that
1075 * run at regular intervals.
1077 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1078 loadav, NULL);
1081 static int
1082 loadav_count_runnable(struct lwp *lp, void *data)
1084 int *nrunp = data;
1085 thread_t td;
1087 switch (lp->lwp_stat) {
1088 case LSRUN:
1089 if ((td = lp->lwp_thread) == NULL)
1090 break;
1091 if (td->td_flags & TDF_BLOCKED)
1092 break;
1093 ++*nrunp;
1094 break;
1095 default:
1096 break;
1098 return(0);
1101 /* ARGSUSED */
1102 static void
1103 sched_setup(void *dummy)
1105 callout_init(&loadav_callout);
1106 callout_init(&schedcpu_callout);
1108 /* Kick off timeout driven events by calling first time. */
1109 schedcpu(NULL);
1110 loadav(NULL);