The first commit of a series of 6 commits for the amd64 port.
[dragonfly.git] / sys / netinet6 / ip6_output.c
bloba4fe75f201802f668f2e6da37988683dd6467d86
1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */
2 /* $DragonFly: src/sys/netinet6/ip6_output.c,v 1.32 2006/12/22 23:57:53 swildner Exp $ */
3 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
69 #include "opt_ip6fw.h"
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
74 #include <sys/param.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/errno.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/pfil.h>
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet/ip6.h>
93 #include <netinet/icmp6.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet6/nd6.h>
98 #ifdef IPSEC
99 #include <netinet6/ipsec.h>
100 #ifdef INET6
101 #include <netinet6/ipsec6.h>
102 #endif
103 #include <netproto/key/key.h>
104 #endif /* IPSEC */
106 #ifdef FAST_IPSEC
107 #include <netproto/ipsec/ipsec.h>
108 #include <netproto/ipsec/ipsec6.h>
109 #include <netproto/ipsec/key.h>
110 #endif
112 #include <net/ip6fw/ip6_fw.h>
114 #include <net/net_osdep.h>
116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
118 struct ip6_exthdrs {
119 struct mbuf *ip6e_ip6;
120 struct mbuf *ip6e_hbh;
121 struct mbuf *ip6e_dest1;
122 struct mbuf *ip6e_rthdr;
123 struct mbuf *ip6e_dest2;
126 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *,
127 struct socket *, struct sockopt *sopt);
128 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
129 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
130 static int copyexthdr (void *, struct mbuf **);
131 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int,
132 struct ip6_frag **);
133 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
134 static struct mbuf *ip6_splithdr (struct mbuf *);
137 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
138 * header (with pri, len, nxt, hlim, src, dst).
139 * This function may modify ver and hlim only.
140 * The mbuf chain containing the packet will be freed.
141 * The mbuf opt, if present, will not be freed.
143 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
144 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
145 * which is rt_rmx.rmx_mtu.
148 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
149 int flags, struct ip6_moptions *im6o,
150 struct ifnet **ifpp, /* XXX: just for statistics */
151 struct inpcb *inp)
153 struct ip6_hdr *ip6, *mhip6;
154 struct ifnet *ifp, *origifp;
155 struct mbuf *m = m0;
156 struct mbuf *mprev;
157 u_char *nexthdrp;
158 int hlen, tlen, len, off;
159 struct route_in6 ip6route;
160 struct sockaddr_in6 *dst;
161 int error = 0;
162 struct in6_ifaddr *ia = NULL;
163 u_long mtu;
164 u_int32_t optlen, plen = 0, unfragpartlen;
165 struct ip6_exthdrs exthdrs;
166 struct in6_addr finaldst;
167 struct route_in6 *ro_pmtu = NULL;
168 boolean_t hdrsplit = FALSE;
169 boolean_t needipsec = FALSE;
170 #ifdef IPSEC
171 boolean_t needipsectun = FALSE;
172 struct secpolicy *sp = NULL;
173 struct socket *so = inp ? inp->inp_socket : NULL;
175 ip6 = mtod(m, struct ip6_hdr *);
176 #endif
177 #ifdef FAST_IPSEC
178 boolean_t needipsectun = FALSE;
179 struct secpolicy *sp = NULL;
181 ip6 = mtod(m, struct ip6_hdr *);
182 #endif
184 bzero(&exthdrs, sizeof exthdrs);
186 if (opt) {
187 if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
188 goto freehdrs;
189 if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
190 goto freehdrs;
191 if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
192 goto freehdrs;
193 if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
194 goto freehdrs;
197 #ifdef IPSEC
198 /* get a security policy for this packet */
199 if (so == NULL)
200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
201 else
202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
204 if (sp == NULL) {
205 ipsec6stat.out_inval++;
206 goto freehdrs;
209 error = 0;
211 /* check policy */
212 switch (sp->policy) {
213 case IPSEC_POLICY_DISCARD:
215 * This packet is just discarded.
217 ipsec6stat.out_polvio++;
218 goto freehdrs;
220 case IPSEC_POLICY_BYPASS:
221 case IPSEC_POLICY_NONE:
222 /* no need to do IPsec. */
223 needipsec = FALSE;
224 break;
226 case IPSEC_POLICY_IPSEC:
227 if (sp->req == NULL) {
228 error = key_spdacquire(sp); /* acquire a policy */
229 goto freehdrs;
231 needipsec = TRUE;
232 break;
234 case IPSEC_POLICY_ENTRUST:
235 default:
236 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
238 #endif /* IPSEC */
239 #ifdef FAST_IPSEC
240 /* get a security policy for this packet */
241 if (inp == NULL)
242 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
243 else
244 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error);
246 if (sp == NULL) {
247 newipsecstat.ips_out_inval++;
248 goto freehdrs;
251 error = 0;
253 /* check policy */
254 switch (sp->policy) {
255 case IPSEC_POLICY_DISCARD:
257 * This packet is just discarded.
259 newipsecstat.ips_out_polvio++;
260 goto freehdrs;
262 case IPSEC_POLICY_BYPASS:
263 case IPSEC_POLICY_NONE:
264 /* no need to do IPsec. */
265 needipsec = FALSE;
266 break;
268 case IPSEC_POLICY_IPSEC:
269 if (sp->req == NULL) {
270 error = key_spdacquire(sp); /* acquire a policy */
271 goto freehdrs;
273 needipsec = TRUE;
274 break;
276 case IPSEC_POLICY_ENTRUST:
277 default:
278 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
280 #endif /* FAST_IPSEC */
283 * Calculate the total length of the extension header chain.
284 * Keep the length of the unfragmentable part for fragmentation.
286 optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
287 m_lengthm(exthdrs.ip6e_dest1, NULL) +
288 m_lengthm(exthdrs.ip6e_rthdr, NULL);
290 unfragpartlen = optlen + sizeof(struct ip6_hdr);
292 /* NOTE: we don't add AH/ESP length here. do that later. */
293 optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
296 * If we need IPsec, or there is at least one extension header,
297 * separate IP6 header from the payload.
299 if ((needipsec || optlen) && !hdrsplit) {
300 exthdrs.ip6e_ip6 = ip6_splithdr(m);
301 if (exthdrs.ip6e_ip6 == NULL) {
302 error = ENOBUFS;
303 goto freehdrs;
305 m = exthdrs.ip6e_ip6;
306 hdrsplit = TRUE;
309 /* adjust pointer */
310 ip6 = mtod(m, struct ip6_hdr *);
312 /* adjust mbuf packet header length */
313 m->m_pkthdr.len += optlen;
314 plen = m->m_pkthdr.len - sizeof(*ip6);
316 /* If this is a jumbo payload, insert a jumbo payload option. */
317 if (plen > IPV6_MAXPACKET) {
318 if (!hdrsplit) {
319 exthdrs.ip6e_ip6 = ip6_splithdr(m);
320 if (exthdrs.ip6e_ip6 == NULL) {
321 error = ENOBUFS;
322 goto freehdrs;
324 m = exthdrs.ip6e_ip6;
325 hdrsplit = TRUE;
327 /* adjust pointer */
328 ip6 = mtod(m, struct ip6_hdr *);
329 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
330 goto freehdrs;
331 ip6->ip6_plen = 0;
332 } else
333 ip6->ip6_plen = htons(plen);
336 * Concatenate headers and fill in next header fields.
337 * Here we have, on "m"
338 * IPv6 payload
339 * and we insert headers accordingly. Finally, we should be getting:
340 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
342 * during the header composing process, "m" points to IPv6 header.
343 * "mprev" points to an extension header prior to esp.
346 nexthdrp = &ip6->ip6_nxt;
347 mprev = m;
350 * we treat dest2 specially. this makes IPsec processing
351 * much easier. the goal here is to make mprev point the
352 * mbuf prior to dest2.
354 * result: IPv6 dest2 payload
355 * m and mprev will point to IPv6 header.
357 if (exthdrs.ip6e_dest2) {
358 if (!hdrsplit)
359 panic("assumption failed: hdr not split");
360 exthdrs.ip6e_dest2->m_next = m->m_next;
361 m->m_next = exthdrs.ip6e_dest2;
362 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
363 ip6->ip6_nxt = IPPROTO_DSTOPTS;
367 * Place m1 after mprev.
369 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
370 do {\
371 if (m1) {\
372 if (!hdrsplit)\
373 panic("assumption failed: hdr not split");\
374 *mtod(m1, u_char *) = *nexthdrp;\
375 *nexthdrp = (i);\
376 nexthdrp = mtod(m1, u_char *);\
377 m1->m_next = mprev->m_next;\
378 mprev->m_next = m1;\
379 mprev = m1;\
381 } while (0)
384 * result: IPv6 hbh dest1 rthdr dest2 payload
385 * m will point to IPv6 header. mprev will point to the
386 * extension header prior to dest2 (rthdr in the above case).
388 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
389 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
390 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
392 #if defined(IPSEC) || defined(FAST_IPSEC)
393 if (needipsec) {
394 struct ipsec_output_state state;
395 int segleft_org = 0;
396 struct ip6_rthdr *rh = NULL;
399 * pointers after IPsec headers are not valid any more.
400 * other pointers need a great care too.
401 * (IPsec routines should not mangle mbufs prior to AH/ESP)
403 exthdrs.ip6e_dest2 = NULL;
405 if (exthdrs.ip6e_rthdr) {
406 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
407 segleft_org = rh->ip6r_segleft;
408 rh->ip6r_segleft = 0;
411 bzero(&state, sizeof state);
412 state.m = m;
413 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
414 &needipsectun);
415 m = state.m;
416 if (error) {
417 /* mbuf is already reclaimed in ipsec6_output_trans. */
418 m = NULL;
419 switch (error) {
420 case EHOSTUNREACH:
421 case ENETUNREACH:
422 case EMSGSIZE:
423 case ENOBUFS:
424 case ENOMEM:
425 break;
426 default:
427 kprintf("ip6_output (ipsec): error code %d\n",
428 error);
429 /* fall through */
430 case ENOENT:
431 /* don't show these error codes to the user */
432 error = 0;
433 break;
435 goto bad;
437 if (exthdrs.ip6e_rthdr) {
438 /* ah6_output doesn't modify mbuf chain */
439 rh->ip6r_segleft = segleft_org;
442 #endif
445 * If there is a routing header, replace destination address field
446 * with the first hop of the routing header.
448 if (exthdrs.ip6e_rthdr) {
449 struct ip6_rthdr *rh;
450 struct ip6_rthdr0 *rh0;
452 finaldst = ip6->ip6_dst;
453 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
454 switch (rh->ip6r_type) {
455 case IPV6_RTHDR_TYPE_0:
456 rh0 = (struct ip6_rthdr0 *)rh;
457 ip6->ip6_dst = rh0->ip6r0_addr[0];
458 bcopy(&rh0->ip6r0_addr[1], &rh0->ip6r0_addr[0],
459 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1));
460 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
461 break;
462 default: /* is it possible? */
463 error = EINVAL;
464 goto bad;
468 /* Source address validation */
469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 !(flags & IPV6_DADOUTPUT)) {
471 error = EOPNOTSUPP;
472 ip6stat.ip6s_badscope++;
473 goto bad;
475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 error = EOPNOTSUPP;
477 ip6stat.ip6s_badscope++;
478 goto bad;
481 ip6stat.ip6s_localout++;
484 * Route packet.
486 if (ro == NULL) {
487 ro = &ip6route;
488 bzero(ro, sizeof(*ro));
490 ro_pmtu = ro;
491 if (opt && opt->ip6po_rthdr)
492 ro = &opt->ip6po_route;
493 dst = (struct sockaddr_in6 *)&ro->ro_dst;
495 * If there is a cached route,
496 * check that it is to the same destination
497 * and is still up. If not, free it and try again.
499 if (ro->ro_rt != NULL &&
500 (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
501 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
502 RTFREE(ro->ro_rt);
503 ro->ro_rt = NULL;
505 if (ro->ro_rt == NULL) {
506 bzero(dst, sizeof(*dst));
507 dst->sin6_family = AF_INET6;
508 dst->sin6_len = sizeof(struct sockaddr_in6);
509 dst->sin6_addr = ip6->ip6_dst;
511 #if defined(IPSEC) || defined(FAST_IPSEC)
512 if (needipsec && needipsectun) {
513 struct ipsec_output_state state;
516 * All the extension headers will become inaccessible
517 * (since they can be encrypted).
518 * Don't panic, we need no more updates to extension headers
519 * on inner IPv6 packet (since they are now encapsulated).
521 * IPv6 [ESP|AH] IPv6 [extension headers] payload
523 bzero(&exthdrs, sizeof(exthdrs));
524 exthdrs.ip6e_ip6 = m;
526 bzero(&state, sizeof(state));
527 state.m = m;
528 state.ro = (struct route *)ro;
529 state.dst = (struct sockaddr *)dst;
531 error = ipsec6_output_tunnel(&state, sp, flags);
533 m = state.m;
534 ro = (struct route_in6 *)state.ro;
535 dst = (struct sockaddr_in6 *)state.dst;
536 if (error) {
537 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
538 m0 = m = NULL;
539 m = NULL;
540 switch (error) {
541 case EHOSTUNREACH:
542 case ENETUNREACH:
543 case EMSGSIZE:
544 case ENOBUFS:
545 case ENOMEM:
546 break;
547 default:
548 kprintf("ip6_output (ipsec): error code %d\n", error);
549 /* fall through */
550 case ENOENT:
551 /* don't show these error codes to the user */
552 error = 0;
553 break;
555 goto bad;
558 exthdrs.ip6e_ip6 = m;
560 #endif
562 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
563 /* Unicast */
565 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
566 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
567 /* xxx
568 * interface selection comes here
569 * if an interface is specified from an upper layer,
570 * ifp must point it.
572 if (ro->ro_rt == NULL) {
574 * non-bsdi always clone routes, if parent is
575 * PRF_CLONING.
577 rtalloc((struct route *)ro);
579 if (ro->ro_rt == NULL) {
580 ip6stat.ip6s_noroute++;
581 error = EHOSTUNREACH;
582 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
583 goto bad;
585 ia = ifatoia6(ro->ro_rt->rt_ifa);
586 ifp = ro->ro_rt->rt_ifp;
587 ro->ro_rt->rt_use++;
588 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
589 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
590 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
592 in6_ifstat_inc(ifp, ifs6_out_request);
595 * Check if the outgoing interface conflicts with
596 * the interface specified by ifi6_ifindex (if specified).
597 * Note that loopback interface is always okay.
598 * (this may happen when we are sending a packet to one of
599 * our own addresses.)
601 if (opt && opt->ip6po_pktinfo
602 && opt->ip6po_pktinfo->ipi6_ifindex) {
603 if (!(ifp->if_flags & IFF_LOOPBACK)
604 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
605 ip6stat.ip6s_noroute++;
606 in6_ifstat_inc(ifp, ifs6_out_discard);
607 error = EHOSTUNREACH;
608 goto bad;
612 if (opt && opt->ip6po_hlim != -1)
613 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
614 } else {
615 /* Multicast */
616 struct in6_multi *in6m;
618 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
621 * See if the caller provided any multicast options
623 ifp = NULL;
624 if (im6o != NULL) {
625 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
626 if (im6o->im6o_multicast_ifp != NULL)
627 ifp = im6o->im6o_multicast_ifp;
628 } else
629 ip6->ip6_hlim = ip6_defmcasthlim;
632 * See if the caller provided the outgoing interface
633 * as an ancillary data.
634 * Boundary check for ifindex is assumed to be already done.
636 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
637 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
640 * If the destination is a node-local scope multicast,
641 * the packet should be loop-backed only.
643 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
645 * If the outgoing interface is already specified,
646 * it should be a loopback interface.
648 if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
649 ip6stat.ip6s_badscope++;
650 error = ENETUNREACH; /* XXX: better error? */
651 /* XXX correct ifp? */
652 in6_ifstat_inc(ifp, ifs6_out_discard);
653 goto bad;
654 } else {
655 ifp = &loif[0];
659 if (opt && opt->ip6po_hlim != -1)
660 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
663 * If caller did not provide an interface lookup a
664 * default in the routing table. This is either a
665 * default for the speicfied group (i.e. a host
666 * route), or a multicast default (a route for the
667 * ``net'' ff00::/8).
669 if (ifp == NULL) {
670 if (ro->ro_rt == NULL) {
671 ro->ro_rt =
672 rtpurelookup((struct sockaddr *)&ro->ro_dst);
674 if (ro->ro_rt == NULL) {
675 ip6stat.ip6s_noroute++;
676 error = EHOSTUNREACH;
677 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
678 goto bad;
680 ia = ifatoia6(ro->ro_rt->rt_ifa);
681 ifp = ro->ro_rt->rt_ifp;
682 ro->ro_rt->rt_use++;
685 if (!(flags & IPV6_FORWARDING))
686 in6_ifstat_inc(ifp, ifs6_out_request);
687 in6_ifstat_inc(ifp, ifs6_out_mcast);
690 * Confirm that the outgoing interface supports multicast.
692 if (!(ifp->if_flags & IFF_MULTICAST)) {
693 ip6stat.ip6s_noroute++;
694 in6_ifstat_inc(ifp, ifs6_out_discard);
695 error = ENETUNREACH;
696 goto bad;
698 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
699 if (in6m != NULL &&
700 (im6o == NULL || im6o->im6o_multicast_loop)) {
702 * If we belong to the destination multicast group
703 * on the outgoing interface, and the caller did not
704 * forbid loopback, loop back a copy.
706 ip6_mloopback(ifp, m, dst);
707 } else {
709 * If we are acting as a multicast router, perform
710 * multicast forwarding as if the packet had just
711 * arrived on the interface to which we are about
712 * to send. The multicast forwarding function
713 * recursively calls this function, using the
714 * IPV6_FORWARDING flag to prevent infinite recursion.
716 * Multicasts that are looped back by ip6_mloopback(),
717 * above, will be forwarded by the ip6_input() routine,
718 * if necessary.
720 if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
721 if (ip6_mforward(ip6, ifp, m) != 0) {
722 m_freem(m);
723 goto done;
728 * Multicasts with a hoplimit of zero may be looped back,
729 * above, but must not be transmitted on a network.
730 * Also, multicasts addressed to the loopback interface
731 * are not sent -- the above call to ip6_mloopback() will
732 * loop back a copy if this host actually belongs to the
733 * destination group on the loopback interface.
735 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
736 m_freem(m);
737 goto done;
742 * Fill the outgoing inteface to tell the upper layer
743 * to increment per-interface statistics.
745 if (ifpp)
746 *ifpp = ifp;
749 * Determine path MTU.
751 if (ro_pmtu != ro) {
752 /* The first hop and the final destination may differ. */
753 struct sockaddr_in6 *sin6_fin =
754 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
756 if (ro_pmtu->ro_rt != NULL &&
757 (!(ro->ro_rt->rt_flags & RTF_UP) ||
758 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, &finaldst))) {
759 RTFREE(ro_pmtu->ro_rt);
760 ro_pmtu->ro_rt = NULL;
762 if (ro_pmtu->ro_rt == NULL) {
763 bzero(sin6_fin, sizeof(*sin6_fin));
764 sin6_fin->sin6_family = AF_INET6;
765 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
766 sin6_fin->sin6_addr = finaldst;
768 rtalloc((struct route *)ro_pmtu);
771 if (ro_pmtu->ro_rt != NULL) {
772 u_int32_t ifmtu = ND_IFINFO(ifp)->linkmtu;
774 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
775 if (mtu > ifmtu || mtu == 0) {
777 * The MTU on the route is larger than the MTU on
778 * the interface! This shouldn't happen, unless the
779 * MTU of the interface has been changed after the
780 * interface was brought up. Change the MTU in the
781 * route to match the interface MTU (as long as the
782 * field isn't locked).
784 * if MTU on the route is 0, we need to fix the MTU.
785 * this case happens with path MTU discovery timeouts.
787 mtu = ifmtu;
788 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
789 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
791 } else {
792 mtu = ND_IFINFO(ifp)->linkmtu;
796 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting
798 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU)
799 mtu = IPV6_MMTU;
801 /* Fake scoped addresses */
802 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
804 * If source or destination address is a scoped address, and
805 * the packet is going to be sent to a loopback interface,
806 * we should keep the original interface.
810 * XXX: this is a very experimental and temporary solution.
811 * We eventually have sockaddr_in6 and use the sin6_scope_id
812 * field of the structure here.
813 * We rely on the consistency between two scope zone ids
814 * of source and destination, which should already be assured.
815 * Larger scopes than link will be supported in the future.
817 origifp = NULL;
818 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
819 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
820 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
821 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
823 * XXX: origifp can be NULL even in those two cases above.
824 * For example, if we remove the (only) link-local address
825 * from the loopback interface, and try to send a link-local
826 * address without link-id information. Then the source
827 * address is ::1, and the destination address is the
828 * link-local address with its s6_addr16[1] being zero.
829 * What is worse, if the packet goes to the loopback interface
830 * by a default rejected route, the null pointer would be
831 * passed to looutput, and the kernel would hang.
832 * The following last resort would prevent such disaster.
834 if (origifp == NULL)
835 origifp = ifp;
837 else
838 origifp = ifp;
840 * clear embedded scope identifiers if necessary.
841 * in6_clearscope will touch the addresses only when necessary.
843 in6_clearscope(&ip6->ip6_src);
844 in6_clearscope(&ip6->ip6_dst);
847 * Check with the firewall...
849 if (ip6_fw_enable && ip6_fw_chk_ptr) {
850 u_short port = 0;
852 m->m_pkthdr.rcvif = NULL; /* XXX */
853 /* If ipfw says divert, we have to just drop packet */
854 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
855 m_freem(m);
856 goto done;
858 if (!m) {
859 error = EACCES;
860 goto done;
865 * If the outgoing packet contains a hop-by-hop options header,
866 * it must be examined and processed even by the source node.
867 * (RFC 2460, section 4.)
869 if (exthdrs.ip6e_hbh) {
870 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
871 u_int32_t dummy1; /* XXX unused */
872 u_int32_t dummy2; /* XXX unused */
874 #ifdef DIAGNOSTIC
875 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
876 panic("ip6e_hbh is not continuous");
877 #endif
879 * XXX: if we have to send an ICMPv6 error to the sender,
880 * we need the M_LOOP flag since icmp6_error() expects
881 * the IPv6 and the hop-by-hop options header are
882 * continuous unless the flag is set.
884 m->m_flags |= M_LOOP;
885 m->m_pkthdr.rcvif = ifp;
886 if (ip6_process_hopopts(m,
887 (u_int8_t *)(hbh + 1),
888 ((hbh->ip6h_len + 1) << 3) -
889 sizeof(struct ip6_hbh),
890 &dummy1, &dummy2) < 0) {
891 /* m was already freed at this point */
892 error = EINVAL;/* better error? */
893 goto done;
895 m->m_flags &= ~M_LOOP; /* XXX */
896 m->m_pkthdr.rcvif = NULL;
900 * Run through list of hooks for output packets.
902 if (pfil_has_hooks(&inet6_pfil_hook)) {
903 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
904 if (error != 0 || m == NULL)
905 goto done;
906 ip6 = mtod(m, struct ip6_hdr *);
910 * Send the packet to the outgoing interface.
911 * If necessary, do IPv6 fragmentation before sending.
913 tlen = m->m_pkthdr.len;
914 if (tlen <= mtu
915 #ifdef notyet
917 * On any link that cannot convey a 1280-octet packet in one piece,
918 * link-specific fragmentation and reassembly must be provided at
919 * a layer below IPv6. [RFC 2460, sec.5]
920 * Thus if the interface has ability of link-level fragmentation,
921 * we can just send the packet even if the packet size is
922 * larger than the link's MTU.
923 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
926 || ifp->if_flags & IFF_FRAGMENTABLE
927 #endif
930 /* Record statistics for this interface address. */
931 if (ia && !(flags & IPV6_FORWARDING)) {
932 ia->ia_ifa.if_opackets++;
933 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
935 #ifdef IPSEC
936 /* clean ipsec history once it goes out of the node */
937 ipsec_delaux(m);
938 #endif
939 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
940 goto done;
941 } else if (mtu < IPV6_MMTU) {
943 * note that path MTU is never less than IPV6_MMTU
944 * (see icmp6_input).
946 error = EMSGSIZE;
947 in6_ifstat_inc(ifp, ifs6_out_fragfail);
948 goto bad;
949 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
950 error = EMSGSIZE;
951 in6_ifstat_inc(ifp, ifs6_out_fragfail);
952 goto bad;
953 } else {
954 struct mbuf **mnext, *m_frgpart;
955 struct ip6_frag *ip6f;
956 u_int32_t id = htonl(ip6_id++);
957 u_char nextproto;
960 * Too large for the destination or interface;
961 * fragment if possible.
962 * Must be able to put at least 8 bytes per fragment.
964 hlen = unfragpartlen;
965 if (mtu > IPV6_MAXPACKET)
966 mtu = IPV6_MAXPACKET;
968 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
969 if (len < 8) {
970 error = EMSGSIZE;
971 in6_ifstat_inc(ifp, ifs6_out_fragfail);
972 goto bad;
975 mnext = &m->m_nextpkt;
978 * Change the next header field of the last header in the
979 * unfragmentable part.
981 if (exthdrs.ip6e_rthdr) {
982 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
983 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
984 } else if (exthdrs.ip6e_dest1) {
985 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
986 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
987 } else if (exthdrs.ip6e_hbh) {
988 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
989 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
990 } else {
991 nextproto = ip6->ip6_nxt;
992 ip6->ip6_nxt = IPPROTO_FRAGMENT;
996 * Loop through length of segment after first fragment,
997 * make new header and copy data of each part and link onto
998 * chain.
1000 m0 = m;
1001 for (off = hlen; off < tlen; off += len) {
1002 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1003 if (!m) {
1004 error = ENOBUFS;
1005 ip6stat.ip6s_odropped++;
1006 goto sendorfree;
1008 m->m_pkthdr.rcvif = NULL;
1009 m->m_flags = m0->m_flags & M_COPYFLAGS;
1010 *mnext = m;
1011 mnext = &m->m_nextpkt;
1012 m->m_data += max_linkhdr;
1013 mhip6 = mtod(m, struct ip6_hdr *);
1014 *mhip6 = *ip6;
1015 m->m_len = sizeof(*mhip6);
1016 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1017 if (error) {
1018 ip6stat.ip6s_odropped++;
1019 goto sendorfree;
1021 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1022 if (off + len >= tlen)
1023 len = tlen - off;
1024 else
1025 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1026 mhip6->ip6_plen = htons((u_short)(len + hlen +
1027 sizeof(*ip6f) -
1028 sizeof(struct ip6_hdr)));
1029 if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
1030 error = ENOBUFS;
1031 ip6stat.ip6s_odropped++;
1032 goto sendorfree;
1034 m_cat(m, m_frgpart);
1035 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1036 m->m_pkthdr.rcvif = (struct ifnet *)0;
1037 ip6f->ip6f_reserved = 0;
1038 ip6f->ip6f_ident = id;
1039 ip6f->ip6f_nxt = nextproto;
1040 ip6stat.ip6s_ofragments++;
1041 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1044 in6_ifstat_inc(ifp, ifs6_out_fragok);
1048 * Remove leading garbages.
1050 sendorfree:
1051 m = m0->m_nextpkt;
1052 m0->m_nextpkt = NULL;
1053 m_freem(m0);
1054 for (m0 = m; m; m = m0) {
1055 m0 = m->m_nextpkt;
1056 m->m_nextpkt = NULL;
1057 if (error == 0) {
1058 /* Record statistics for this interface address. */
1059 if (ia) {
1060 ia->ia_ifa.if_opackets++;
1061 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1063 #ifdef IPSEC
1064 /* clean ipsec history once it goes out of the node */
1065 ipsec_delaux(m);
1066 #endif
1067 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1068 } else
1069 m_freem(m);
1072 if (error == 0)
1073 ip6stat.ip6s_fragmented++;
1075 done:
1076 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1077 RTFREE(ro->ro_rt);
1078 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1079 RTFREE(ro_pmtu->ro_rt);
1082 #ifdef IPSEC
1083 if (sp != NULL)
1084 key_freesp(sp);
1085 #endif
1086 #ifdef FAST_IPSEC
1087 if (sp != NULL)
1088 KEY_FREESP(&sp);
1089 #endif
1091 return (error);
1093 freehdrs:
1094 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1095 m_freem(exthdrs.ip6e_dest1);
1096 m_freem(exthdrs.ip6e_rthdr);
1097 m_freem(exthdrs.ip6e_dest2);
1098 /* fall through */
1099 bad:
1100 m_freem(m);
1101 goto done;
1104 static int
1105 copyexthdr(void *h, struct mbuf **mp)
1107 struct ip6_ext *hdr = h;
1108 int hlen;
1109 struct mbuf *m;
1111 if (hdr == NULL)
1112 return 0;
1114 hlen = (hdr->ip6e_len + 1) * 8;
1115 if (hlen > MCLBYTES)
1116 return ENOBUFS; /* XXX */
1118 m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0);
1119 if (!m)
1120 return ENOBUFS;
1121 m->m_len = hlen;
1123 bcopy(hdr, mtod(m, caddr_t), hlen);
1125 *mp = m;
1126 return 0;
1130 * Insert jumbo payload option.
1132 static int
1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1135 struct mbuf *mopt;
1136 u_char *optbuf;
1137 u_int32_t v;
1139 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1142 * If there is no hop-by-hop options header, allocate new one.
1143 * If there is one but it doesn't have enough space to store the
1144 * jumbo payload option, allocate a cluster to store the whole options.
1145 * Otherwise, use it to store the options.
1147 if (exthdrs->ip6e_hbh == NULL) {
1148 MGET(mopt, MB_DONTWAIT, MT_DATA);
1149 if (mopt == NULL)
1150 return (ENOBUFS);
1151 mopt->m_len = JUMBOOPTLEN;
1152 optbuf = mtod(mopt, u_char *);
1153 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1154 exthdrs->ip6e_hbh = mopt;
1155 } else {
1156 struct ip6_hbh *hbh;
1158 mopt = exthdrs->ip6e_hbh;
1159 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1161 * XXX assumption:
1162 * - exthdrs->ip6e_hbh is not referenced from places
1163 * other than exthdrs.
1164 * - exthdrs->ip6e_hbh is not an mbuf chain.
1166 int oldoptlen = mopt->m_len;
1167 struct mbuf *n;
1170 * XXX: give up if the whole (new) hbh header does
1171 * not fit even in an mbuf cluster.
1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1174 return (ENOBUFS);
1177 * As a consequence, we must always prepare a cluster
1178 * at this point.
1180 n = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1181 if (!n)
1182 return (ENOBUFS);
1183 n->m_len = oldoptlen + JUMBOOPTLEN;
1184 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
1185 optbuf = mtod(n, caddr_t) + oldoptlen;
1186 m_freem(mopt);
1187 mopt = exthdrs->ip6e_hbh = n;
1188 } else {
1189 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1190 mopt->m_len += JUMBOOPTLEN;
1192 optbuf[0] = IP6OPT_PADN;
1193 optbuf[1] = 1;
1196 * Adjust the header length according to the pad and
1197 * the jumbo payload option.
1199 hbh = mtod(mopt, struct ip6_hbh *);
1200 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1203 /* fill in the option. */
1204 optbuf[2] = IP6OPT_JUMBO;
1205 optbuf[3] = 4;
1206 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1207 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1209 /* finally, adjust the packet header length */
1210 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1212 return (0);
1213 #undef JUMBOOPTLEN
1217 * Insert fragment header and copy unfragmentable header portions.
1219 static int
1220 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1221 struct ip6_frag **frghdrp)
1223 struct mbuf *n, *mlast;
1225 if (hlen > sizeof(struct ip6_hdr)) {
1226 n = m_copym(m0, sizeof(struct ip6_hdr),
1227 hlen - sizeof(struct ip6_hdr), MB_DONTWAIT);
1228 if (n == NULL)
1229 return (ENOBUFS);
1230 m->m_next = n;
1231 } else
1232 n = m;
1234 /* Search for the last mbuf of unfragmentable part. */
1235 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1238 if (!(mlast->m_flags & M_EXT) &&
1239 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1240 /* use the trailing space of the last mbuf for the fragment hdr */
1241 *frghdrp =
1242 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1243 mlast->m_len += sizeof(struct ip6_frag);
1244 m->m_pkthdr.len += sizeof(struct ip6_frag);
1245 } else {
1246 /* allocate a new mbuf for the fragment header */
1247 struct mbuf *mfrg;
1249 MGET(mfrg, MB_DONTWAIT, MT_DATA);
1250 if (mfrg == NULL)
1251 return (ENOBUFS);
1252 mfrg->m_len = sizeof(struct ip6_frag);
1253 *frghdrp = mtod(mfrg, struct ip6_frag *);
1254 mlast->m_next = mfrg;
1257 return (0);
1261 * IP6 socket option processing.
1264 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1266 int privileged;
1267 struct inpcb *in6p = so->so_pcb;
1268 int error, optval;
1269 int level, op, optname;
1270 int optlen;
1271 struct thread *td;
1273 if (sopt) {
1274 level = sopt->sopt_level;
1275 op = sopt->sopt_dir;
1276 optname = sopt->sopt_name;
1277 optlen = sopt->sopt_valsize;
1278 td = sopt->sopt_td;
1279 } else {
1280 panic("ip6_ctloutput: arg soopt is NULL");
1281 /* NOT REACHED */
1282 td = NULL;
1284 error = optval = 0;
1286 privileged = (td == NULL || suser(td)) ? 0 : 1;
1288 if (level == IPPROTO_IPV6) {
1289 switch (op) {
1291 case SOPT_SET:
1292 switch (optname) {
1293 case IPV6_PKTOPTIONS:
1295 struct mbuf *m;
1297 error = soopt_getm(sopt, &m); /* XXX */
1298 if (error != NULL)
1299 break;
1300 error = soopt_mcopyin(sopt, m); /* XXX */
1301 if (error != NULL)
1302 break;
1303 error = ip6_pcbopts(&in6p->in6p_outputopts,
1304 m, so, sopt);
1305 m_freem(m); /* XXX */
1306 break;
1310 * Use of some Hop-by-Hop options or some
1311 * Destination options, might require special
1312 * privilege. That is, normal applications
1313 * (without special privilege) might be forbidden
1314 * from setting certain options in outgoing packets,
1315 * and might never see certain options in received
1316 * packets. [RFC 2292 Section 6]
1317 * KAME specific note:
1318 * KAME prevents non-privileged users from sending or
1319 * receiving ANY hbh/dst options in order to avoid
1320 * overhead of parsing options in the kernel.
1322 case IPV6_UNICAST_HOPS:
1323 case IPV6_CHECKSUM:
1324 case IPV6_FAITH:
1326 case IPV6_V6ONLY:
1327 if (optlen != sizeof(int)) {
1328 error = EINVAL;
1329 break;
1331 error = sooptcopyin(sopt, &optval,
1332 sizeof optval, sizeof optval);
1333 if (error)
1334 break;
1335 switch (optname) {
1337 case IPV6_UNICAST_HOPS:
1338 if (optval < -1 || optval >= 256)
1339 error = EINVAL;
1340 else {
1341 /* -1 = kernel default */
1342 in6p->in6p_hops = optval;
1344 if ((in6p->in6p_vflag &
1345 INP_IPV4) != 0)
1346 in6p->inp_ip_ttl = optval;
1348 break;
1349 #define OPTSET(bit) \
1350 do { \
1351 if (optval) \
1352 in6p->in6p_flags |= (bit); \
1353 else \
1354 in6p->in6p_flags &= ~(bit); \
1355 } while (0)
1356 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1358 case IPV6_CHECKSUM:
1359 in6p->in6p_cksum = optval;
1360 break;
1362 case IPV6_FAITH:
1363 OPTSET(IN6P_FAITH);
1364 break;
1366 case IPV6_V6ONLY:
1368 * make setsockopt(IPV6_V6ONLY)
1369 * available only prior to bind(2).
1370 * see ipng mailing list, Jun 22 2001.
1372 if (in6p->in6p_lport ||
1373 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1375 error = EINVAL;
1376 break;
1378 OPTSET(IN6P_IPV6_V6ONLY);
1379 if (optval)
1380 in6p->in6p_vflag &= ~INP_IPV4;
1381 else
1382 in6p->in6p_vflag |= INP_IPV4;
1383 break;
1385 break;
1387 case IPV6_PKTINFO:
1388 case IPV6_HOPLIMIT:
1389 case IPV6_HOPOPTS:
1390 case IPV6_DSTOPTS:
1391 case IPV6_RTHDR:
1392 /* RFC 2292 */
1393 if (optlen != sizeof(int)) {
1394 error = EINVAL;
1395 break;
1397 error = sooptcopyin(sopt, &optval,
1398 sizeof optval, sizeof optval);
1399 if (error)
1400 break;
1401 switch (optname) {
1402 case IPV6_PKTINFO:
1403 OPTSET(IN6P_PKTINFO);
1404 break;
1405 case IPV6_HOPLIMIT:
1406 OPTSET(IN6P_HOPLIMIT);
1407 break;
1408 case IPV6_HOPOPTS:
1410 * Check super-user privilege.
1411 * See comments for IPV6_RECVHOPOPTS.
1413 if (!privileged)
1414 return (EPERM);
1415 OPTSET(IN6P_HOPOPTS);
1416 break;
1417 case IPV6_DSTOPTS:
1418 if (!privileged)
1419 return (EPERM);
1420 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1421 break;
1422 case IPV6_RTHDR:
1423 OPTSET(IN6P_RTHDR);
1424 break;
1426 break;
1427 #undef OPTSET
1429 case IPV6_MULTICAST_IF:
1430 case IPV6_MULTICAST_HOPS:
1431 case IPV6_MULTICAST_LOOP:
1432 case IPV6_JOIN_GROUP:
1433 case IPV6_LEAVE_GROUP:
1435 struct mbuf *m;
1436 if (sopt->sopt_valsize > MLEN) {
1437 error = EMSGSIZE;
1438 break;
1440 /* XXX */
1441 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1442 if (m == NULL) {
1443 error = ENOBUFS;
1444 break;
1446 m->m_len = sopt->sopt_valsize;
1447 error = sooptcopyin(sopt, mtod(m, char *),
1448 m->m_len, m->m_len);
1449 error = ip6_setmoptions(sopt->sopt_name,
1450 &in6p->in6p_moptions,
1452 m_free(m);
1454 break;
1456 case IPV6_PORTRANGE:
1457 error = sooptcopyin(sopt, &optval,
1458 sizeof optval, sizeof optval);
1459 if (error)
1460 break;
1462 switch (optval) {
1463 case IPV6_PORTRANGE_DEFAULT:
1464 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1465 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1466 break;
1468 case IPV6_PORTRANGE_HIGH:
1469 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1470 in6p->in6p_flags |= IN6P_HIGHPORT;
1471 break;
1473 case IPV6_PORTRANGE_LOW:
1474 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1475 in6p->in6p_flags |= IN6P_LOWPORT;
1476 break;
1478 default:
1479 error = EINVAL;
1480 break;
1482 break;
1484 #if defined(IPSEC) || defined(FAST_IPSEC)
1485 case IPV6_IPSEC_POLICY:
1487 caddr_t req = NULL;
1488 size_t len = 0;
1489 struct mbuf *m;
1491 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1492 break;
1493 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1494 break;
1495 if (m) {
1496 req = mtod(m, caddr_t);
1497 len = m->m_len;
1499 error = ipsec6_set_policy(in6p, optname, req,
1500 len, privileged);
1501 m_freem(m);
1503 break;
1504 #endif /* KAME IPSEC */
1506 case IPV6_FW_ADD:
1507 case IPV6_FW_DEL:
1508 case IPV6_FW_FLUSH:
1509 case IPV6_FW_ZERO:
1511 struct mbuf *m;
1512 struct mbuf **mp = &m;
1514 if (ip6_fw_ctl_ptr == NULL)
1515 return EINVAL;
1516 /* XXX */
1517 if ((error = soopt_getm(sopt, &m)) != 0)
1518 break;
1519 /* XXX */
1520 if ((error = soopt_mcopyin(sopt, m)) != 0)
1521 break;
1522 error = (*ip6_fw_ctl_ptr)(optname, mp);
1523 m = *mp;
1525 break;
1527 default:
1528 error = ENOPROTOOPT;
1529 break;
1531 break;
1533 case SOPT_GET:
1534 switch (optname) {
1536 case IPV6_PKTOPTIONS:
1537 if (in6p->in6p_options) {
1538 struct mbuf *m;
1539 m = m_copym(in6p->in6p_options,
1540 0, M_COPYALL, MB_WAIT);
1541 error = soopt_mcopyout(sopt, m);
1542 if (error == 0)
1543 m_freem(m);
1544 } else
1545 sopt->sopt_valsize = 0;
1546 break;
1548 case IPV6_UNICAST_HOPS:
1549 case IPV6_CHECKSUM:
1551 case IPV6_FAITH:
1552 case IPV6_V6ONLY:
1553 case IPV6_PORTRANGE:
1554 switch (optname) {
1556 case IPV6_UNICAST_HOPS:
1557 optval = in6p->in6p_hops;
1558 break;
1560 case IPV6_CHECKSUM:
1561 optval = in6p->in6p_cksum;
1562 break;
1564 case IPV6_FAITH:
1565 optval = OPTBIT(IN6P_FAITH);
1566 break;
1568 case IPV6_V6ONLY:
1569 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1570 break;
1572 case IPV6_PORTRANGE:
1574 int flags;
1575 flags = in6p->in6p_flags;
1576 if (flags & IN6P_HIGHPORT)
1577 optval = IPV6_PORTRANGE_HIGH;
1578 else if (flags & IN6P_LOWPORT)
1579 optval = IPV6_PORTRANGE_LOW;
1580 else
1581 optval = 0;
1582 break;
1585 error = sooptcopyout(sopt, &optval,
1586 sizeof optval);
1587 break;
1589 case IPV6_PKTINFO:
1590 case IPV6_HOPLIMIT:
1591 case IPV6_HOPOPTS:
1592 case IPV6_RTHDR:
1593 case IPV6_DSTOPTS:
1594 if (optname == IPV6_HOPOPTS ||
1595 optname == IPV6_DSTOPTS ||
1596 !privileged)
1597 return (EPERM);
1598 switch (optname) {
1599 case IPV6_PKTINFO:
1600 optval = OPTBIT(IN6P_PKTINFO);
1601 break;
1602 case IPV6_HOPLIMIT:
1603 optval = OPTBIT(IN6P_HOPLIMIT);
1604 break;
1605 case IPV6_HOPOPTS:
1606 if (!privileged)
1607 return (EPERM);
1608 optval = OPTBIT(IN6P_HOPOPTS);
1609 break;
1610 case IPV6_RTHDR:
1611 optval = OPTBIT(IN6P_RTHDR);
1612 break;
1613 case IPV6_DSTOPTS:
1614 if (!privileged)
1615 return (EPERM);
1616 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1617 break;
1619 error = sooptcopyout(sopt, &optval,
1620 sizeof optval);
1621 break;
1623 case IPV6_MULTICAST_IF:
1624 case IPV6_MULTICAST_HOPS:
1625 case IPV6_MULTICAST_LOOP:
1626 case IPV6_JOIN_GROUP:
1627 case IPV6_LEAVE_GROUP:
1629 struct mbuf *m;
1630 error = ip6_getmoptions(sopt->sopt_name,
1631 in6p->in6p_moptions, &m);
1632 if (error == 0)
1633 error = sooptcopyout(sopt,
1634 mtod(m, char *), m->m_len);
1635 m_freem(m);
1637 break;
1639 #if defined(IPSEC) || defined(FAST_IPSEC)
1640 case IPV6_IPSEC_POLICY:
1642 caddr_t req = NULL;
1643 size_t len = 0;
1644 struct mbuf *m = NULL;
1645 struct mbuf **mp = &m;
1647 error = soopt_getm(sopt, &m); /* XXX */
1648 if (error != NULL)
1649 break;
1650 error = soopt_mcopyin(sopt, m); /* XXX */
1651 if (error != NULL)
1652 break;
1653 if (m) {
1654 req = mtod(m, caddr_t);
1655 len = m->m_len;
1657 error = ipsec6_get_policy(in6p, req, len, mp);
1658 if (error == 0)
1659 error = soopt_mcopyout(sopt, m); /*XXX*/
1660 if (error == 0 && m != NULL)
1661 m_freem(m);
1662 break;
1664 #endif /* KAME IPSEC */
1666 case IPV6_FW_GET:
1668 struct mbuf *m;
1669 struct mbuf **mp = &m;
1671 if (ip6_fw_ctl_ptr == NULL)
1673 return EINVAL;
1675 error = (*ip6_fw_ctl_ptr)(optname, mp);
1676 if (error == 0)
1677 error = soopt_mcopyout(sopt, m); /* XXX */
1678 if (error == 0 && m != NULL)
1679 m_freem(m);
1681 break;
1683 default:
1684 error = ENOPROTOOPT;
1685 break;
1687 break;
1689 } else {
1690 error = EINVAL;
1692 return (error);
1696 * Set up IP6 options in pcb for insertion in output packets or
1697 * specifying behavior of outgoing packets.
1699 static int
1700 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so,
1701 struct sockopt *sopt)
1703 struct ip6_pktopts *opt = *pktopt;
1704 int error = 0;
1705 struct thread *td = sopt->sopt_td;
1706 int priv = 0;
1708 /* turn off any old options. */
1709 if (opt) {
1710 #ifdef DIAGNOSTIC
1711 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1712 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1713 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1714 kprintf("ip6_pcbopts: all specified options are cleared.\n");
1715 #endif
1716 ip6_clearpktopts(opt, 1, -1);
1717 } else
1718 opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1719 *pktopt = NULL;
1721 if (m == NULL || m->m_len == 0) {
1723 * Only turning off any previous options, regardless of
1724 * whether the opt is just created or given.
1726 kfree(opt, M_IP6OPT);
1727 return (0);
1730 /* set options specified by user. */
1731 if (suser(td) == 0)
1732 priv = 1;
1733 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) {
1734 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */
1735 kfree(opt, M_IP6OPT);
1736 return (error);
1738 *pktopt = opt;
1739 return (0);
1743 * initialize ip6_pktopts. beware that there are non-zero default values in
1744 * the struct.
1746 void
1747 init_ip6pktopts(struct ip6_pktopts *opt)
1750 bzero(opt, sizeof(*opt));
1751 opt->ip6po_hlim = -1; /* -1 means default hop limit */
1754 void
1755 ip6_clearpktopts(struct ip6_pktopts *pktopt, int needfree, int optname)
1757 if (pktopt == NULL)
1758 return;
1760 if (optname == -1) {
1761 if (needfree && pktopt->ip6po_pktinfo)
1762 kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
1763 pktopt->ip6po_pktinfo = NULL;
1765 if (optname == -1)
1766 pktopt->ip6po_hlim = -1;
1767 if (optname == -1) {
1768 if (needfree && pktopt->ip6po_nexthop)
1769 kfree(pktopt->ip6po_nexthop, M_IP6OPT);
1770 pktopt->ip6po_nexthop = NULL;
1772 if (optname == -1) {
1773 if (needfree && pktopt->ip6po_hbh)
1774 kfree(pktopt->ip6po_hbh, M_IP6OPT);
1775 pktopt->ip6po_hbh = NULL;
1777 if (optname == -1) {
1778 if (needfree && pktopt->ip6po_dest1)
1779 kfree(pktopt->ip6po_dest1, M_IP6OPT);
1780 pktopt->ip6po_dest1 = NULL;
1782 if (optname == -1) {
1783 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
1784 kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
1785 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
1786 if (pktopt->ip6po_route.ro_rt) {
1787 RTFREE(pktopt->ip6po_route.ro_rt);
1788 pktopt->ip6po_route.ro_rt = NULL;
1791 if (optname == -1) {
1792 if (needfree && pktopt->ip6po_dest2)
1793 kfree(pktopt->ip6po_dest2, M_IP6OPT);
1794 pktopt->ip6po_dest2 = NULL;
1798 #define PKTOPT_EXTHDRCPY(type) \
1799 do {\
1800 if (src->type) {\
1801 int hlen =\
1802 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
1803 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
1804 if (dst->type == NULL)\
1805 goto bad;\
1806 bcopy(src->type, dst->type, hlen);\
1808 } while (0)
1810 struct ip6_pktopts *
1811 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
1813 struct ip6_pktopts *dst;
1815 if (src == NULL) {
1816 kprintf("ip6_clearpktopts: invalid argument\n");
1817 return (NULL);
1820 dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
1821 if (dst == NULL)
1822 return (NULL);
1824 dst->ip6po_hlim = src->ip6po_hlim;
1825 if (src->ip6po_pktinfo) {
1826 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
1827 M_IP6OPT, canwait);
1828 if (dst->ip6po_pktinfo == NULL)
1829 goto bad;
1830 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
1832 if (src->ip6po_nexthop) {
1833 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
1834 M_IP6OPT, canwait);
1835 if (dst->ip6po_nexthop == NULL)
1836 goto bad;
1837 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
1838 src->ip6po_nexthop->sa_len);
1840 PKTOPT_EXTHDRCPY(ip6po_hbh);
1841 PKTOPT_EXTHDRCPY(ip6po_dest1);
1842 PKTOPT_EXTHDRCPY(ip6po_dest2);
1843 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
1844 return (dst);
1846 bad:
1847 if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
1848 if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
1849 if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
1850 if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
1851 if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
1852 if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
1853 kfree(dst, M_IP6OPT);
1854 return (NULL);
1856 #undef PKTOPT_EXTHDRCPY
1858 void
1859 ip6_freepcbopts(struct ip6_pktopts *pktopt)
1861 if (pktopt == NULL)
1862 return;
1864 ip6_clearpktopts(pktopt, 1, -1);
1866 kfree(pktopt, M_IP6OPT);
1870 * Set the IP6 multicast options in response to user setsockopt().
1872 static int
1873 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
1875 int error = 0;
1876 u_int loop, ifindex;
1877 struct ipv6_mreq *mreq;
1878 struct ifnet *ifp;
1879 struct ip6_moptions *im6o = *im6op;
1880 struct route_in6 ro;
1881 struct sockaddr_in6 *dst;
1882 struct in6_multi_mship *imm;
1883 struct thread *td = curthread; /* XXX */
1885 if (im6o == NULL) {
1887 * No multicast option buffer attached to the pcb;
1888 * allocate one and initialize to default values.
1890 im6o = (struct ip6_moptions *)
1891 kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1893 if (im6o == NULL)
1894 return (ENOBUFS);
1895 *im6op = im6o;
1896 im6o->im6o_multicast_ifp = NULL;
1897 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1898 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1899 LIST_INIT(&im6o->im6o_memberships);
1902 switch (optname) {
1904 case IPV6_MULTICAST_IF:
1906 * Select the interface for outgoing multicast packets.
1908 if (m == NULL || m->m_len != sizeof(u_int)) {
1909 error = EINVAL;
1910 break;
1912 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1913 if (ifindex < 0 || if_index < ifindex) {
1914 error = ENXIO; /* XXX EINVAL? */
1915 break;
1917 ifp = ifindex2ifnet[ifindex];
1918 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1919 error = EADDRNOTAVAIL;
1920 break;
1922 im6o->im6o_multicast_ifp = ifp;
1923 break;
1925 case IPV6_MULTICAST_HOPS:
1928 * Set the IP6 hoplimit for outgoing multicast packets.
1930 int optval;
1931 if (m == NULL || m->m_len != sizeof(int)) {
1932 error = EINVAL;
1933 break;
1935 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1936 if (optval < -1 || optval >= 256)
1937 error = EINVAL;
1938 else if (optval == -1)
1939 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1940 else
1941 im6o->im6o_multicast_hlim = optval;
1942 break;
1945 case IPV6_MULTICAST_LOOP:
1947 * Set the loopback flag for outgoing multicast packets.
1948 * Must be zero or one.
1950 if (m == NULL || m->m_len != sizeof(u_int)) {
1951 error = EINVAL;
1952 break;
1954 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1955 if (loop > 1) {
1956 error = EINVAL;
1957 break;
1959 im6o->im6o_multicast_loop = loop;
1960 break;
1962 case IPV6_JOIN_GROUP:
1964 * Add a multicast group membership.
1965 * Group must be a valid IP6 multicast address.
1967 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1968 error = EINVAL;
1969 break;
1971 mreq = mtod(m, struct ipv6_mreq *);
1972 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1974 * We use the unspecified address to specify to accept
1975 * all multicast addresses. Only super user is allowed
1976 * to do this.
1978 if (suser(td))
1980 error = EACCES;
1981 break;
1983 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1984 error = EINVAL;
1985 break;
1989 * If the interface is specified, validate it.
1991 if (mreq->ipv6mr_interface < 0
1992 || if_index < mreq->ipv6mr_interface) {
1993 error = ENXIO; /* XXX EINVAL? */
1994 break;
1997 * If no interface was explicitly specified, choose an
1998 * appropriate one according to the given multicast address.
2000 if (mreq->ipv6mr_interface == 0) {
2002 * If the multicast address is in node-local scope,
2003 * the interface should be a loopback interface.
2004 * Otherwise, look up the routing table for the
2005 * address, and choose the outgoing interface.
2006 * XXX: is it a good approach?
2008 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
2009 ifp = &loif[0];
2010 } else {
2011 ro.ro_rt = NULL;
2012 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2013 bzero(dst, sizeof(*dst));
2014 dst->sin6_len = sizeof(struct sockaddr_in6);
2015 dst->sin6_family = AF_INET6;
2016 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2017 rtalloc((struct route *)&ro);
2018 if (ro.ro_rt == NULL) {
2019 error = EADDRNOTAVAIL;
2020 break;
2022 ifp = ro.ro_rt->rt_ifp;
2023 rtfree(ro.ro_rt);
2025 } else
2026 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2029 * See if we found an interface, and confirm that it
2030 * supports multicast
2032 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2033 error = EADDRNOTAVAIL;
2034 break;
2037 * Put interface index into the multicast address,
2038 * if the address has link-local scope.
2040 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2041 mreq->ipv6mr_multiaddr.s6_addr16[1]
2042 = htons(mreq->ipv6mr_interface);
2045 * See if the membership already exists.
2047 for (imm = im6o->im6o_memberships.lh_first;
2048 imm != NULL; imm = imm->i6mm_chain.le_next)
2049 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2050 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2051 &mreq->ipv6mr_multiaddr))
2052 break;
2053 if (imm != NULL) {
2054 error = EADDRINUSE;
2055 break;
2058 * Everything looks good; add a new record to the multicast
2059 * address list for the given interface.
2061 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2062 if (imm == NULL) {
2063 error = ENOBUFS;
2064 break;
2066 if ((imm->i6mm_maddr =
2067 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2068 kfree(imm, M_IPMADDR);
2069 break;
2071 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2072 break;
2074 case IPV6_LEAVE_GROUP:
2076 * Drop a multicast group membership.
2077 * Group must be a valid IP6 multicast address.
2079 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2080 error = EINVAL;
2081 break;
2083 mreq = mtod(m, struct ipv6_mreq *);
2084 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2085 if (suser(td)) {
2086 error = EACCES;
2087 break;
2089 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2090 error = EINVAL;
2091 break;
2094 * If an interface address was specified, get a pointer
2095 * to its ifnet structure.
2097 if (mreq->ipv6mr_interface < 0
2098 || if_index < mreq->ipv6mr_interface) {
2099 error = ENXIO; /* XXX EINVAL? */
2100 break;
2102 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2104 * Put interface index into the multicast address,
2105 * if the address has link-local scope.
2107 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2108 mreq->ipv6mr_multiaddr.s6_addr16[1]
2109 = htons(mreq->ipv6mr_interface);
2112 * Find the membership in the membership list.
2114 for (imm = im6o->im6o_memberships.lh_first;
2115 imm != NULL; imm = imm->i6mm_chain.le_next) {
2116 if ((ifp == NULL ||
2117 imm->i6mm_maddr->in6m_ifp == ifp) &&
2118 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2119 &mreq->ipv6mr_multiaddr))
2120 break;
2122 if (imm == NULL) {
2123 /* Unable to resolve interface */
2124 error = EADDRNOTAVAIL;
2125 break;
2128 * Give up the multicast address record to which the
2129 * membership points.
2131 LIST_REMOVE(imm, i6mm_chain);
2132 in6_delmulti(imm->i6mm_maddr);
2133 kfree(imm, M_IPMADDR);
2134 break;
2136 default:
2137 error = EOPNOTSUPP;
2138 break;
2142 * If all options have default values, no need to keep the mbuf.
2144 if (im6o->im6o_multicast_ifp == NULL &&
2145 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2146 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2147 im6o->im6o_memberships.lh_first == NULL) {
2148 kfree(*im6op, M_IPMOPTS);
2149 *im6op = NULL;
2152 return (error);
2156 * Return the IP6 multicast options in response to user getsockopt().
2158 static int
2159 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2161 u_int *hlim, *loop, *ifindex;
2163 *mp = m_get(MB_WAIT, MT_HEADER); /* XXX */
2165 switch (optname) {
2167 case IPV6_MULTICAST_IF:
2168 ifindex = mtod(*mp, u_int *);
2169 (*mp)->m_len = sizeof(u_int);
2170 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2171 *ifindex = 0;
2172 else
2173 *ifindex = im6o->im6o_multicast_ifp->if_index;
2174 return (0);
2176 case IPV6_MULTICAST_HOPS:
2177 hlim = mtod(*mp, u_int *);
2178 (*mp)->m_len = sizeof(u_int);
2179 if (im6o == NULL)
2180 *hlim = ip6_defmcasthlim;
2181 else
2182 *hlim = im6o->im6o_multicast_hlim;
2183 return (0);
2185 case IPV6_MULTICAST_LOOP:
2186 loop = mtod(*mp, u_int *);
2187 (*mp)->m_len = sizeof(u_int);
2188 if (im6o == NULL)
2189 *loop = ip6_defmcasthlim;
2190 else
2191 *loop = im6o->im6o_multicast_loop;
2192 return (0);
2194 default:
2195 return (EOPNOTSUPP);
2200 * Discard the IP6 multicast options.
2202 void
2203 ip6_freemoptions(struct ip6_moptions *im6o)
2205 struct in6_multi_mship *imm;
2207 if (im6o == NULL)
2208 return;
2210 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2211 LIST_REMOVE(imm, i6mm_chain);
2212 if (imm->i6mm_maddr)
2213 in6_delmulti(imm->i6mm_maddr);
2214 kfree(imm, M_IPMADDR);
2216 kfree(im6o, M_IPMOPTS);
2220 * Set IPv6 outgoing packet options based on advanced API.
2223 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, int priv,
2224 int needcopy)
2226 struct cmsghdr *cm = NULL;
2228 if (control == NULL || opt == NULL)
2229 return (EINVAL);
2231 init_ip6pktopts(opt);
2234 * XXX: Currently, we assume all the optional information is stored
2235 * in a single mbuf.
2237 if (control->m_next)
2238 return (EINVAL);
2240 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2241 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2242 cm = mtod(control, struct cmsghdr *);
2243 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2244 return (EINVAL);
2245 if (cm->cmsg_level != IPPROTO_IPV6)
2246 continue;
2249 * XXX should check if RFC2292 API is mixed with 2292bis API
2251 switch (cm->cmsg_type) {
2252 case IPV6_PKTINFO:
2253 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2254 return (EINVAL);
2255 if (needcopy) {
2256 /* XXX: Is it really WAITOK? */
2257 opt->ip6po_pktinfo =
2258 kmalloc(sizeof(struct in6_pktinfo),
2259 M_IP6OPT, M_WAITOK);
2260 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo,
2261 sizeof(struct in6_pktinfo));
2262 } else
2263 opt->ip6po_pktinfo =
2264 (struct in6_pktinfo *)CMSG_DATA(cm);
2265 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2266 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2267 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2268 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2270 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2271 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2272 return (ENXIO);
2276 * Check if the requested source address is indeed a
2277 * unicast address assigned to the node, and can be
2278 * used as the packet's source address.
2280 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2281 struct in6_ifaddr *ia6;
2282 struct sockaddr_in6 sin6;
2284 bzero(&sin6, sizeof(sin6));
2285 sin6.sin6_len = sizeof(sin6);
2286 sin6.sin6_family = AF_INET6;
2287 sin6.sin6_addr =
2288 opt->ip6po_pktinfo->ipi6_addr;
2289 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2290 if (ia6 == NULL ||
2291 (ia6->ia6_flags & (IN6_IFF_ANYCAST |
2292 IN6_IFF_NOTREADY)) != 0)
2293 return (EADDRNOTAVAIL);
2295 break;
2297 case IPV6_HOPLIMIT:
2298 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2299 return (EINVAL);
2301 opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
2302 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2303 return (EINVAL);
2304 break;
2306 case IPV6_NEXTHOP:
2307 if (!priv)
2308 return (EPERM);
2310 if (cm->cmsg_len < sizeof(u_char) ||
2311 /* check if cmsg_len is large enough for sa_len */
2312 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2313 return (EINVAL);
2315 if (needcopy) {
2316 opt->ip6po_nexthop =
2317 kmalloc(*CMSG_DATA(cm),
2318 M_IP6OPT, M_WAITOK);
2319 bcopy(CMSG_DATA(cm),
2320 opt->ip6po_nexthop,
2321 *CMSG_DATA(cm));
2322 } else
2323 opt->ip6po_nexthop =
2324 (struct sockaddr *)CMSG_DATA(cm);
2325 break;
2327 case IPV6_HOPOPTS:
2329 struct ip6_hbh *hbh;
2330 int hbhlen;
2332 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2333 return (EINVAL);
2334 hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2335 hbhlen = (hbh->ip6h_len + 1) << 3;
2336 if (cm->cmsg_len != CMSG_LEN(hbhlen))
2337 return (EINVAL);
2339 if (needcopy) {
2340 opt->ip6po_hbh =
2341 kmalloc(hbhlen, M_IP6OPT, M_WAITOK);
2342 bcopy(hbh, opt->ip6po_hbh, hbhlen);
2343 } else
2344 opt->ip6po_hbh = hbh;
2345 break;
2348 case IPV6_DSTOPTS:
2350 struct ip6_dest *dest, **newdest;
2351 int destlen;
2353 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2354 return (EINVAL);
2355 dest = (struct ip6_dest *)CMSG_DATA(cm);
2356 destlen = (dest->ip6d_len + 1) << 3;
2357 if (cm->cmsg_len != CMSG_LEN(destlen))
2358 return (EINVAL);
2361 * The old advacned API is ambiguous on this
2362 * point. Our approach is to determine the
2363 * position based according to the existence
2364 * of a routing header. Note, however, that
2365 * this depends on the order of the extension
2366 * headers in the ancillary data; the 1st part
2367 * of the destination options header must
2368 * appear before the routing header in the
2369 * ancillary data, too.
2370 * RFC2292bis solved the ambiguity by
2371 * introducing separate cmsg types.
2373 if (opt->ip6po_rthdr == NULL)
2374 newdest = &opt->ip6po_dest1;
2375 else
2376 newdest = &opt->ip6po_dest2;
2378 if (needcopy) {
2379 *newdest = kmalloc(destlen, M_IP6OPT, M_WAITOK);
2380 bcopy(dest, *newdest, destlen);
2381 } else
2382 *newdest = dest;
2384 break;
2387 case IPV6_RTHDR:
2389 struct ip6_rthdr *rth;
2390 int rthlen;
2392 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2393 return (EINVAL);
2394 rth = (struct ip6_rthdr *)CMSG_DATA(cm);
2395 rthlen = (rth->ip6r_len + 1) << 3;
2396 if (cm->cmsg_len != CMSG_LEN(rthlen))
2397 return (EINVAL);
2399 switch (rth->ip6r_type) {
2400 case IPV6_RTHDR_TYPE_0:
2401 /* must contain one addr */
2402 if (rth->ip6r_len == 0)
2403 return (EINVAL);
2404 /* length must be even */
2405 if (rth->ip6r_len % 2)
2406 return (EINVAL);
2407 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2408 return (EINVAL);
2409 break;
2410 default:
2411 return (EINVAL); /* not supported */
2414 if (needcopy) {
2415 opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT,
2416 M_WAITOK);
2417 bcopy(rth, opt->ip6po_rthdr, rthlen);
2418 } else
2419 opt->ip6po_rthdr = rth;
2421 break;
2424 default:
2425 return (ENOPROTOOPT);
2429 return (0);
2433 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2434 * packet to the input queue of a specified interface. Note that this
2435 * calls the output routine of the loopback "driver", but with an interface
2436 * pointer that might NOT be &loif -- easier than replicating that code here.
2438 void
2439 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2441 struct mbuf *copym;
2442 struct ip6_hdr *ip6;
2444 copym = m_copy(m, 0, M_COPYALL);
2445 if (copym == NULL)
2446 return;
2449 * Make sure to deep-copy IPv6 header portion in case the data
2450 * is in an mbuf cluster, so that we can safely override the IPv6
2451 * header portion later.
2453 if ((copym->m_flags & M_EXT) != 0 ||
2454 copym->m_len < sizeof(struct ip6_hdr)) {
2455 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2456 if (copym == NULL)
2457 return;
2460 #ifdef DIAGNOSTIC
2461 if (copym->m_len < sizeof(*ip6)) {
2462 m_freem(copym);
2463 return;
2465 #endif
2467 ip6 = mtod(copym, struct ip6_hdr *);
2469 * clear embedded scope identifiers if necessary.
2470 * in6_clearscope will touch the addresses only when necessary.
2472 in6_clearscope(&ip6->ip6_src);
2473 in6_clearscope(&ip6->ip6_dst);
2475 if_simloop(ifp, copym, dst->sin6_family, NULL);
2479 * Separate the IPv6 header from the payload into its own mbuf.
2481 * Returns the new mbuf chain or the original mbuf if no payload.
2482 * Returns NULL if can't allocate new mbuf for header.
2484 static struct mbuf *
2485 ip6_splithdr(struct mbuf *m)
2487 struct mbuf *mh;
2489 if (m->m_len <= sizeof(struct ip6_hdr)) /* no payload */
2490 return (m);
2492 MGETHDR(mh, MB_DONTWAIT, MT_HEADER);
2493 if (mh == NULL)
2494 return (NULL);
2495 mh->m_len = sizeof(struct ip6_hdr);
2496 M_MOVE_PKTHDR(mh, m);
2497 MH_ALIGN(mh, sizeof(struct ip6_hdr));
2498 bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
2499 m->m_data += sizeof(struct ip6_hdr);
2500 m->m_len -= sizeof(struct ip6_hdr);
2501 mh->m_next = m;
2502 return (mh);
2506 * Compute IPv6 extension header length.
2509 ip6_optlen(struct in6pcb *in6p)
2511 int len;
2513 if (!in6p->in6p_outputopts)
2514 return 0;
2516 len = 0;
2517 #define elen(x) \
2518 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2520 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2521 if (in6p->in6p_outputopts->ip6po_rthdr)
2522 /* dest1 is valid with rthdr only */
2523 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2524 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2525 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2526 return len;
2527 #undef elen