1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */
2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
64 #include "opt_ip6fw.h"
66 #include "opt_inet6.h"
68 #include <sys/param.h>
69 #include <sys/malloc.h>
71 #include <sys/errno.h>
72 #include <sys/protosw.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
80 #include <sys/msgport2.h>
83 #include <net/route.h>
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet/in_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
96 #include <net/ip6fw/ip6_fw.h>
98 #include <net/net_osdep.h>
100 static MALLOC_DEFINE(M_IPMOPTS
, "ip6_moptions", "internet multicast options");
103 struct mbuf
*ip6e_ip6
;
104 struct mbuf
*ip6e_hbh
;
105 struct mbuf
*ip6e_dest1
;
106 struct mbuf
*ip6e_rthdr
;
107 struct mbuf
*ip6e_dest2
;
110 static int ip6_pcbopt (int, u_char
*, int, struct ip6_pktopts
**, int);
111 static int ip6_setpktoption (int, u_char
*, int, struct ip6_pktopts
*,
113 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
115 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
116 static int ip6_setmoptions (int, struct ip6_moptions
**, struct mbuf
*);
117 static int ip6_getmoptions (int, struct ip6_moptions
*, struct mbuf
**);
118 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
119 struct ifnet
*, struct in6_addr
*, u_long
*, int *);
120 static int copyexthdr (void *, struct mbuf
**);
121 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
123 static int ip6_insert_jumboopt (struct ip6_exthdrs
*, u_int32_t
);
124 static struct mbuf
*ip6_splithdr (struct mbuf
*);
125 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
128 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
129 * header (with pri, len, nxt, hlim, src, dst).
130 * This function may modify ver and hlim only.
131 * The mbuf chain containing the packet will be freed.
132 * The mbuf opt, if present, will not be freed.
134 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
135 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
136 * which is rt_rmx.rmx_mtu.
139 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
, struct route_in6
*ro
,
140 int flags
, struct ip6_moptions
*im6o
,
141 struct ifnet
**ifpp
, /* XXX: just for statistics */
144 struct ip6_hdr
*ip6
, *mhip6
;
145 struct ifnet
*ifp
, *origifp
;
149 int hlen
, tlen
, len
, off
;
150 struct route_in6 ip6route
;
151 struct sockaddr_in6
*dst
;
153 struct in6_ifaddr
*ia
= NULL
;
155 int alwaysfrag
, dontfrag
;
156 u_int32_t optlen
, plen
= 0, unfragpartlen
;
157 struct ip6_exthdrs exthdrs
;
158 struct in6_addr finaldst
;
159 struct route_in6
*ro_pmtu
= NULL
;
160 boolean_t hdrsplit
= FALSE
;
162 bzero(&exthdrs
, sizeof exthdrs
);
165 if ((error
= copyexthdr(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
)))
167 if ((error
= copyexthdr(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
)))
169 if ((error
= copyexthdr(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
)))
171 if ((error
= copyexthdr(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
)))
176 * Calculate the total length of the extension header chain.
177 * Keep the length of the unfragmentable part for fragmentation.
179 optlen
= m_lengthm(exthdrs
.ip6e_hbh
, NULL
) +
180 m_lengthm(exthdrs
.ip6e_dest1
, NULL
) +
181 m_lengthm(exthdrs
.ip6e_rthdr
, NULL
);
183 unfragpartlen
= optlen
+ sizeof(struct ip6_hdr
);
185 /* NOTE: we don't add AH/ESP length here. do that later. */
186 optlen
+= m_lengthm(exthdrs
.ip6e_dest2
, NULL
);
189 * If there is at least one extension header,
190 * separate IP6 header from the payload.
192 if (optlen
&& !hdrsplit
) {
193 exthdrs
.ip6e_ip6
= ip6_splithdr(m
);
194 if (exthdrs
.ip6e_ip6
== NULL
) {
198 m
= exthdrs
.ip6e_ip6
;
203 ip6
= mtod(m
, struct ip6_hdr
*);
205 /* adjust mbuf packet header length */
206 m
->m_pkthdr
.len
+= optlen
;
207 plen
= m
->m_pkthdr
.len
- sizeof(*ip6
);
209 /* If this is a jumbo payload, insert a jumbo payload option. */
210 if (plen
> IPV6_MAXPACKET
) {
212 exthdrs
.ip6e_ip6
= ip6_splithdr(m
);
213 if (exthdrs
.ip6e_ip6
== NULL
) {
217 m
= exthdrs
.ip6e_ip6
;
221 ip6
= mtod(m
, struct ip6_hdr
*);
222 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0)
226 ip6
->ip6_plen
= htons(plen
);
229 * Concatenate headers and fill in next header fields.
230 * Here we have, on "m"
232 * and we insert headers accordingly. Finally, we should be getting:
233 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
235 * during the header composing process, "m" points to IPv6 header.
236 * "mprev" points to an extension header prior to esp.
239 nexthdrp
= &ip6
->ip6_nxt
;
243 * we treat dest2 specially. the goal here is to make mprev point the
244 * mbuf prior to dest2.
246 * result: IPv6 dest2 payload
247 * m and mprev will point to IPv6 header.
249 if (exthdrs
.ip6e_dest2
) {
251 panic("assumption failed: hdr not split");
252 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
253 m
->m_next
= exthdrs
.ip6e_dest2
;
254 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
255 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
259 * Place m1 after mprev.
261 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
265 panic("assumption failed: hdr not split");\
266 *mtod(m1, u_char *) = *nexthdrp;\
268 nexthdrp = mtod(m1, u_char *);\
269 m1->m_next = mprev->m_next;\
276 * result: IPv6 hbh dest1 rthdr dest2 payload
277 * m will point to IPv6 header. mprev will point to the
278 * extension header prior to dest2 (rthdr in the above case).
280 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
281 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
282 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
285 * If there is a routing header, replace the destination address field
286 * with the first hop of the routing header.
288 if (exthdrs
.ip6e_rthdr
) {
289 struct ip6_rthdr
*rh
;
291 finaldst
= ip6
->ip6_dst
;
292 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
293 switch (rh
->ip6r_type
) {
294 default: /* is it possible? */
300 /* Source address validation */
301 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
302 !(flags
& IPV6_DADOUTPUT
)) {
304 ip6stat
.ip6s_badscope
++;
307 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
309 ip6stat
.ip6s_badscope
++;
313 ip6stat
.ip6s_localout
++;
320 bzero(ro
, sizeof(*ro
));
323 if (opt
&& opt
->ip6po_rthdr
)
324 ro
= &opt
->ip6po_route
;
325 dst
= (struct sockaddr_in6
*)&ro
->ro_dst
;
328 * If there is a cached route,
329 * check that it is to the same destination
330 * and is still up. If not, free it and try again.
332 if (ro
->ro_rt
!= NULL
&&
333 (!(ro
->ro_rt
->rt_flags
& RTF_UP
) || dst
->sin6_family
!= AF_INET6
||
334 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
))) {
338 if (ro
->ro_rt
== NULL
) {
339 bzero(dst
, sizeof(*dst
));
340 dst
->sin6_family
= AF_INET6
;
341 dst
->sin6_len
= sizeof(struct sockaddr_in6
);
342 dst
->sin6_addr
= ip6
->ip6_dst
;
344 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
347 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
348 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
350 * interface selection comes here
351 * if an interface is specified from an upper layer,
354 if (ro
->ro_rt
== NULL
) {
356 * non-bsdi always clone routes, if parent is
359 rtalloc((struct route
*)ro
);
361 if (ro
->ro_rt
== NULL
) {
362 ip6stat
.ip6s_noroute
++;
363 error
= EHOSTUNREACH
;
364 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
367 ia
= ifatoia6(ro
->ro_rt
->rt_ifa
);
368 ifp
= ro
->ro_rt
->rt_ifp
;
370 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
)
371 dst
= (struct sockaddr_in6
*)ro
->ro_rt
->rt_gateway
;
372 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
374 in6_ifstat_inc(ifp
, ifs6_out_request
);
377 * Check if the outgoing interface conflicts with
378 * the interface specified by ifi6_ifindex (if specified).
379 * Note that loopback interface is always okay.
380 * (this may happen when we are sending a packet to one of
381 * our own addresses.)
383 if (opt
&& opt
->ip6po_pktinfo
384 && opt
->ip6po_pktinfo
->ipi6_ifindex
) {
385 if (!(ifp
->if_flags
& IFF_LOOPBACK
)
386 && ifp
->if_index
!= opt
->ip6po_pktinfo
->ipi6_ifindex
) {
387 ip6stat
.ip6s_noroute
++;
388 in6_ifstat_inc(ifp
, ifs6_out_discard
);
389 error
= EHOSTUNREACH
;
394 if (opt
&& opt
->ip6po_hlim
!= -1)
395 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
398 struct in6_multi
*in6m
;
400 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
403 * See if the caller provided any multicast options
407 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
408 if (im6o
->im6o_multicast_ifp
!= NULL
)
409 ifp
= im6o
->im6o_multicast_ifp
;
411 ip6
->ip6_hlim
= ip6_defmcasthlim
;
414 * See if the caller provided the outgoing interface
415 * as an ancillary data.
416 * Boundary check for ifindex is assumed to be already done.
418 if (opt
&& opt
->ip6po_pktinfo
&& opt
->ip6po_pktinfo
->ipi6_ifindex
)
419 ifp
= ifindex2ifnet
[opt
->ip6po_pktinfo
->ipi6_ifindex
];
422 * If the destination is a node-local scope multicast,
423 * the packet should be loop-backed only.
425 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
427 * If the outgoing interface is already specified,
428 * it should be a loopback interface.
430 if (ifp
&& !(ifp
->if_flags
& IFF_LOOPBACK
)) {
431 ip6stat
.ip6s_badscope
++;
432 error
= ENETUNREACH
; /* XXX: better error? */
433 /* XXX correct ifp? */
434 in6_ifstat_inc(ifp
, ifs6_out_discard
);
441 if (opt
&& opt
->ip6po_hlim
!= -1)
442 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
445 * If caller did not provide an interface lookup a
446 * default in the routing table. This is either a
447 * default for the speicfied group (i.e. a host
448 * route), or a multicast default (a route for the
452 if (ro
->ro_rt
== NULL
) {
454 rtpurelookup((struct sockaddr
*)&ro
->ro_dst
);
456 if (ro
->ro_rt
== NULL
) {
457 ip6stat
.ip6s_noroute
++;
458 error
= EHOSTUNREACH
;
459 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
462 ia
= ifatoia6(ro
->ro_rt
->rt_ifa
);
463 ifp
= ro
->ro_rt
->rt_ifp
;
467 if (!(flags
& IPV6_FORWARDING
))
468 in6_ifstat_inc(ifp
, ifs6_out_request
);
469 in6_ifstat_inc(ifp
, ifs6_out_mcast
);
472 * Confirm that the outgoing interface supports multicast.
474 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
475 ip6stat
.ip6s_noroute
++;
476 in6_ifstat_inc(ifp
, ifs6_out_discard
);
480 in6m
= IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
);
482 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
484 * If we belong to the destination multicast group
485 * on the outgoing interface, and the caller did not
486 * forbid loopback, loop back a copy.
488 ip6_mloopback(ifp
, m
, dst
);
491 * If we are acting as a multicast router, perform
492 * multicast forwarding as if the packet had just
493 * arrived on the interface to which we are about
494 * to send. The multicast forwarding function
495 * recursively calls this function, using the
496 * IPV6_FORWARDING flag to prevent infinite recursion.
498 * Multicasts that are looped back by ip6_mloopback(),
499 * above, will be forwarded by the ip6_input() routine,
502 if (ip6_mrouter
&& !(flags
& IPV6_FORWARDING
)) {
503 if (ip6_mforward(ip6
, ifp
, m
) != 0) {
510 * Multicasts with a hoplimit of zero may be looped back,
511 * above, but must not be transmitted on a network.
512 * Also, multicasts addressed to the loopback interface
513 * are not sent -- the above call to ip6_mloopback() will
514 * loop back a copy if this host actually belongs to the
515 * destination group on the loopback interface.
517 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
)) {
524 * Fill the outgoing inteface to tell the upper layer
525 * to increment per-interface statistics.
530 /* Determine path MTU. */
531 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
,
536 * The caller of this function may specify to use the minimum MTU
538 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
539 * setting. The logic is a bit complicated; by default, unicast
540 * packets will follow path MTU while multicast packets will be sent at
541 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
542 * including unicast ones will be sent at the minimum MTU. Multicast
543 * packets will always be sent at the minimum MTU unless
544 * IP6PO_MINMTU_DISABLE is explicitly specified.
545 * See RFC 3542 for more details.
547 if (mtu
> IPV6_MMTU
) {
548 if ((flags
& IPV6_MINMTU
))
550 else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
)
552 else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
554 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
559 /* Fake scoped addresses */
560 if ((ifp
->if_flags
& IFF_LOOPBACK
) != 0) {
562 * If source or destination address is a scoped address, and
563 * the packet is going to be sent to a loopback interface,
564 * we should keep the original interface.
568 * XXX: this is a very experimental and temporary solution.
569 * We eventually have sockaddr_in6 and use the sin6_scope_id
570 * field of the structure here.
571 * We rely on the consistency between two scope zone ids
572 * of source and destination, which should already be assured.
573 * Larger scopes than link will be supported in the future.
576 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
))
577 origifp
= ifindex2ifnet
[ntohs(ip6
->ip6_src
.s6_addr16
[1])];
578 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
))
579 origifp
= ifindex2ifnet
[ntohs(ip6
->ip6_dst
.s6_addr16
[1])];
581 * XXX: origifp can be NULL even in those two cases above.
582 * For example, if we remove the (only) link-local address
583 * from the loopback interface, and try to send a link-local
584 * address without link-id information. Then the source
585 * address is ::1, and the destination address is the
586 * link-local address with its s6_addr16[1] being zero.
587 * What is worse, if the packet goes to the loopback interface
588 * by a default rejected route, the null pointer would be
589 * passed to looutput, and the kernel would hang.
590 * The following last resort would prevent such disaster.
598 * clear embedded scope identifiers if necessary.
599 * in6_clearscope will touch the addresses only when necessary.
601 in6_clearscope(&ip6
->ip6_src
);
602 in6_clearscope(&ip6
->ip6_dst
);
605 * Check with the firewall...
607 if (ip6_fw_enable
&& ip6_fw_chk_ptr
) {
610 m
->m_pkthdr
.rcvif
= NULL
; /* XXX */
611 /* If ipfw says divert, we have to just drop packet */
612 if ((*ip6_fw_chk_ptr
)(&ip6
, ifp
, &port
, &m
)) {
623 * If the outgoing packet contains a hop-by-hop options header,
624 * it must be examined and processed even by the source node.
625 * (RFC 2460, section 4.)
627 if (exthdrs
.ip6e_hbh
) {
628 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
629 u_int32_t dummy1
; /* XXX unused */
630 u_int32_t dummy2
; /* XXX unused */
633 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
)
634 panic("ip6e_hbh is not continuous");
637 * XXX: if we have to send an ICMPv6 error to the sender,
638 * we need the M_LOOP flag since icmp6_error() expects
639 * the IPv6 and the hop-by-hop options header are
640 * continuous unless the flag is set.
642 m
->m_flags
|= M_LOOP
;
643 m
->m_pkthdr
.rcvif
= ifp
;
644 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
645 ((hbh
->ip6h_len
+ 1) << 3) - sizeof(struct ip6_hbh
),
646 &dummy1
, &dummy2
) < 0) {
647 /* m was already freed at this point */
648 error
= EINVAL
;/* better error? */
651 m
->m_flags
&= ~M_LOOP
; /* XXX */
652 m
->m_pkthdr
.rcvif
= NULL
;
656 * Run through list of hooks for output packets.
658 if (pfil_has_hooks(&inet6_pfil_hook
)) {
659 error
= pfil_run_hooks(&inet6_pfil_hook
, &m
, ifp
, PFIL_OUT
);
660 if (error
!= 0 || m
== NULL
)
662 ip6
= mtod(m
, struct ip6_hdr
*);
666 * Send the packet to the outgoing interface.
667 * If necessary, do IPv6 fragmentation before sending.
669 * the logic here is rather complex:
670 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
671 * 1-a: send as is if tlen <= path mtu
672 * 1-b: fragment if tlen > path mtu
674 * 2: if user asks us not to fragment (dontfrag == 1)
675 * 2-a: send as is if tlen <= interface mtu
676 * 2-b: error if tlen > interface mtu
678 * 3: if we always need to attach fragment header (alwaysfrag == 1)
681 * 4: if dontfrag == 1 && alwaysfrag == 1
682 * error, as we cannot handle this conflicting request
684 tlen
= m
->m_pkthdr
.len
;
686 if (opt
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
))
690 if (dontfrag
&& alwaysfrag
) { /* case 4 */
691 /* conflicting request - can't transmit */
695 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
697 * Even if the DONTFRAG option is specified, we cannot send the
698 * packet when the data length is larger than the MTU of the
699 * outgoing interface.
700 * Notify the error by sending IPV6_PATHMTU ancillary data as
701 * well as returning an error code (the latter is not described
705 struct ip6ctlparam ip6cp
;
707 mtu32
= (u_int32_t
)mtu
;
708 bzero(&ip6cp
, sizeof(ip6cp
));
709 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
710 kpfctlinput2(PRC_MSGSIZE
, (struct sockaddr
*)&ro_pmtu
->ro_dst
,
718 * transmit packet without fragmentation
720 if (dontfrag
|| (!alwaysfrag
&& tlen
<= mtu
)) { /* case 1-a and 2-a */
721 struct in6_ifaddr
*ia6
;
723 ip6
= mtod(m
, struct ip6_hdr
*);
724 ia6
= in6_ifawithifp(ifp
, &ip6
->ip6_src
);
726 /* Record statistics for this interface address. */
727 IFA_STAT_INC(&ia6
->ia_ifa
, opackets
, 1);
728 IFA_STAT_INC(&ia6
->ia_ifa
, obytes
, m
->m_pkthdr
.len
);
730 error
= nd6_output(ifp
, origifp
, m
, dst
, ro
->ro_rt
);
735 * try to fragment the packet. case 1-b and 3
737 if (mtu
< IPV6_MMTU
) {
739 * note that path MTU is never less than IPV6_MMTU
743 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
745 } else if (ip6
->ip6_plen
== 0) {
746 /* jumbo payload cannot be fragmented */
748 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
751 struct mbuf
**mnext
, *m_frgpart
;
752 struct ip6_frag
*ip6f
;
753 u_int32_t id
= htonl(ip6_id
++);
757 * Too large for the destination or interface;
758 * fragment if possible.
759 * Must be able to put at least 8 bytes per fragment.
761 hlen
= unfragpartlen
;
762 if (mtu
> IPV6_MAXPACKET
)
763 mtu
= IPV6_MAXPACKET
;
765 len
= (mtu
- hlen
- sizeof(struct ip6_frag
)) & ~7;
768 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
772 mnext
= &m
->m_nextpkt
;
775 * Change the next header field of the last header in the
776 * unfragmentable part.
778 if (exthdrs
.ip6e_rthdr
) {
779 nextproto
= *mtod(exthdrs
.ip6e_rthdr
, u_char
*);
780 *mtod(exthdrs
.ip6e_rthdr
, u_char
*) = IPPROTO_FRAGMENT
;
781 } else if (exthdrs
.ip6e_dest1
) {
782 nextproto
= *mtod(exthdrs
.ip6e_dest1
, u_char
*);
783 *mtod(exthdrs
.ip6e_dest1
, u_char
*) = IPPROTO_FRAGMENT
;
784 } else if (exthdrs
.ip6e_hbh
) {
785 nextproto
= *mtod(exthdrs
.ip6e_hbh
, u_char
*);
786 *mtod(exthdrs
.ip6e_hbh
, u_char
*) = IPPROTO_FRAGMENT
;
788 nextproto
= ip6
->ip6_nxt
;
789 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
793 * Loop through length of segment after first fragment,
794 * make new header and copy data of each part and link onto
798 for (off
= hlen
; off
< tlen
; off
+= len
) {
799 MGETHDR(m
, M_NOWAIT
, MT_HEADER
);
802 ip6stat
.ip6s_odropped
++;
805 m
->m_pkthdr
.rcvif
= NULL
;
806 m
->m_flags
= m0
->m_flags
& M_COPYFLAGS
;
808 mnext
= &m
->m_nextpkt
;
809 m
->m_data
+= max_linkhdr
;
810 mhip6
= mtod(m
, struct ip6_hdr
*);
812 m
->m_len
= sizeof(*mhip6
);
813 error
= ip6_insertfraghdr(m0
, m
, hlen
, &ip6f
);
815 ip6stat
.ip6s_odropped
++;
818 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
819 if (off
+ len
>= tlen
)
822 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
823 mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
824 sizeof(*ip6f
) - sizeof(struct ip6_hdr
)));
825 m_frgpart
= m_copym(m0
, off
, len
, M_NOWAIT
);
826 if (m_frgpart
== NULL
) {
828 ip6stat
.ip6s_odropped
++;
832 m
->m_pkthdr
.len
= len
+ hlen
+ sizeof(*ip6f
);
833 m
->m_pkthdr
.rcvif
= NULL
;
834 ip6f
->ip6f_reserved
= 0;
835 ip6f
->ip6f_ident
= id
;
836 ip6f
->ip6f_nxt
= nextproto
;
837 ip6stat
.ip6s_ofragments
++;
838 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
841 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
845 * Remove leading garbages.
849 m0
->m_nextpkt
= NULL
;
851 for (m0
= m
; m
; m
= m0
) {
855 /* Record statistics for this interface address. */
857 IFA_STAT_INC(&ia
->ia_ifa
, opackets
, 1);
858 IFA_STAT_INC(&ia
->ia_ifa
, obytes
,
861 error
= nd6_output(ifp
, origifp
, m
, dst
, ro
->ro_rt
);
867 ip6stat
.ip6s_fragmented
++;
870 if (ro
== &ip6route
&& ro
->ro_rt
) { /* brace necessary for RTFREE */
872 } else if (ro_pmtu
== &ip6route
&& ro_pmtu
->ro_rt
) {
873 RTFREE(ro_pmtu
->ro_rt
);
879 m_freem(exthdrs
.ip6e_hbh
); /* m_freem will check if mbuf is 0 */
880 m_freem(exthdrs
.ip6e_dest1
);
881 m_freem(exthdrs
.ip6e_rthdr
);
882 m_freem(exthdrs
.ip6e_dest2
);
890 copyexthdr(void *h
, struct mbuf
**mp
)
892 struct ip6_ext
*hdr
= h
;
899 hlen
= (hdr
->ip6e_len
+ 1) * 8;
901 return ENOBUFS
; /* XXX */
903 m
= m_getb(hlen
, M_NOWAIT
, MT_DATA
, 0);
908 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
915 * Insert jumbo payload option.
918 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
924 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
927 * If there is no hop-by-hop options header, allocate new one.
928 * If there is one but it doesn't have enough space to store the
929 * jumbo payload option, allocate a cluster to store the whole options.
930 * Otherwise, use it to store the options.
932 if (exthdrs
->ip6e_hbh
== NULL
) {
933 MGET(mopt
, M_NOWAIT
, MT_DATA
);
936 mopt
->m_len
= JUMBOOPTLEN
;
937 optbuf
= mtod(mopt
, u_char
*);
938 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
939 exthdrs
->ip6e_hbh
= mopt
;
943 mopt
= exthdrs
->ip6e_hbh
;
944 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
947 * - exthdrs->ip6e_hbh is not referenced from places
948 * other than exthdrs.
949 * - exthdrs->ip6e_hbh is not an mbuf chain.
951 int oldoptlen
= mopt
->m_len
;
955 * XXX: give up if the whole (new) hbh header does
956 * not fit even in an mbuf cluster.
958 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
)
962 * As a consequence, we must always prepare a cluster
965 n
= m_getcl(M_NOWAIT
, MT_DATA
, 0);
968 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
969 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
), oldoptlen
);
970 optbuf
= mtod(n
, caddr_t
) + oldoptlen
;
972 mopt
= exthdrs
->ip6e_hbh
= n
;
974 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
975 mopt
->m_len
+= JUMBOOPTLEN
;
977 optbuf
[0] = IP6OPT_PADN
;
981 * Adjust the header length according to the pad and
982 * the jumbo payload option.
984 hbh
= mtod(mopt
, struct ip6_hbh
*);
985 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
988 /* fill in the option. */
989 optbuf
[2] = IP6OPT_JUMBO
;
991 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
992 bcopy(&v
, &optbuf
[4], sizeof(u_int32_t
));
994 /* finally, adjust the packet header length */
995 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
1002 * Insert fragment header and copy unfragmentable header portions.
1005 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
1006 struct ip6_frag
**frghdrp
)
1008 struct mbuf
*n
, *mlast
;
1010 if (hlen
> sizeof(struct ip6_hdr
)) {
1011 n
= m_copym(m0
, sizeof(struct ip6_hdr
),
1012 hlen
- sizeof(struct ip6_hdr
), M_NOWAIT
);
1019 /* Search for the last mbuf of unfragmentable part. */
1020 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
)
1023 if (!(mlast
->m_flags
& M_EXT
) &&
1024 M_TRAILINGSPACE(mlast
) >= sizeof(struct ip6_frag
)) {
1025 /* use the trailing space of the last mbuf for the fragment hdr */
1026 *frghdrp
= (struct ip6_frag
*)
1027 (mtod(mlast
, caddr_t
) + mlast
->m_len
);
1028 mlast
->m_len
+= sizeof(struct ip6_frag
);
1029 m
->m_pkthdr
.len
+= sizeof(struct ip6_frag
);
1031 /* allocate a new mbuf for the fragment header */
1034 MGET(mfrg
, M_NOWAIT
, MT_DATA
);
1037 mfrg
->m_len
= sizeof(struct ip6_frag
);
1038 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
1039 mlast
->m_next
= mfrg
;
1046 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
1047 struct ifnet
*ifp
, struct in6_addr
*dst
, u_long
*mtup
,
1054 if (ro_pmtu
!= ro
) {
1055 /* The first hop and the final destination may differ. */
1056 struct sockaddr_in6
*sa6_dst
=
1057 (struct sockaddr_in6
*)&ro_pmtu
->ro_dst
;
1058 if (ro_pmtu
->ro_rt
&&
1059 ((ro_pmtu
->ro_rt
->rt_flags
& RTF_UP
) == 0 ||
1060 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
))) {
1061 RTFREE(ro_pmtu
->ro_rt
);
1062 ro_pmtu
->ro_rt
= NULL
;
1064 if (ro_pmtu
->ro_rt
== NULL
) {
1065 bzero(sa6_dst
, sizeof(*sa6_dst
));
1066 sa6_dst
->sin6_family
= AF_INET6
;
1067 sa6_dst
->sin6_len
= sizeof(struct sockaddr_in6
);
1068 sa6_dst
->sin6_addr
= *dst
;
1070 rtalloc((struct route
*)ro_pmtu
);
1073 if (ro_pmtu
->ro_rt
) {
1077 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
1078 ifmtu
= IN6_LINKMTU(ifp
);
1079 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
1082 } else if (mtu
< IPV6_MMTU
) {
1084 * RFC2460 section 5, last paragraph:
1085 * if we record ICMPv6 too big message with
1086 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1087 * or smaller, with framgent header attached.
1088 * (fragment header is needed regardless from the
1089 * packet size, for translators to identify packets)
1093 } else if (mtu
> ifmtu
) {
1095 * The MTU on the route is larger than the MTU on
1096 * the interface! This shouldn't happen, unless the
1097 * MTU of the interface has been changed after the
1098 * interface was brought up. Change the MTU in the
1099 * route to match the interface MTU (as long as the
1100 * field isn't locked).
1103 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
;
1106 mtu
= IN6_LINKMTU(ifp
);
1108 error
= EHOSTUNREACH
; /* XXX */
1113 *alwaysfragp
= alwaysfrag
;
1118 * IP6 socket option processing.
1121 ip6_ctloutput_dispatch(netmsg_t msg
)
1125 error
= ip6_ctloutput(msg
->ctloutput
.base
.nm_so
,
1126 msg
->ctloutput
.nm_sopt
);
1127 lwkt_replymsg(&msg
->ctloutput
.base
.lmsg
, error
);
1131 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
1133 int optdatalen
,uproto
;
1135 struct inpcb
*in6p
= so
->so_pcb
;
1138 int level
, op
, optname
;
1143 level
= sopt
->sopt_level
;
1144 op
= sopt
->sopt_dir
;
1145 optname
= sopt
->sopt_name
;
1146 optlen
= sopt
->sopt_valsize
;
1149 panic("ip6_ctloutput: arg soopt is NULL");
1155 uproto
= (int)so
->so_proto
->pr_protocol
;
1156 privileged
= (td
== NULL
||
1157 caps_priv_check_td(td
, SYSCAP_RESTRICTEDROOT
)) ?
1160 if (level
== IPPROTO_IPV6
) {
1165 case IPV6_2292PKTOPTIONS
:
1166 #ifdef IPV6_PKTOPTIONS
1167 case IPV6_PKTOPTIONS
:
1172 error
= soopt_getm(sopt
, &m
); /* XXX */
1175 soopt_to_mbuf(sopt
, m
); /* XXX */
1176 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
1178 m_freem(m
); /* XXX */
1183 * Use of some Hop-by-Hop options or some
1184 * Destination options, might require special
1185 * privilege. That is, normal applications
1186 * (without special privilege) might be forbidden
1187 * from setting certain options in outgoing packets,
1188 * and might never see certain options in received
1189 * packets. [RFC 2292 Section 6]
1190 * KAME specific note:
1191 * KAME prevents non-privileged users from sending or
1192 * receiving ANY hbh/dst options in order to avoid
1193 * overhead of parsing options in the kernel.
1195 case IPV6_RECVHOPOPTS
:
1196 case IPV6_RECVDSTOPTS
:
1197 case IPV6_RECVRTHDRDSTOPTS
:
1200 case IPV6_RECVPKTINFO
:
1201 case IPV6_RECVHOPLIMIT
:
1202 case IPV6_RECVRTHDR
:
1203 case IPV6_RECVPATHMTU
:
1204 case IPV6_RECVTCLASS
:
1205 case IPV6_AUTOFLOWLABEL
:
1208 case IPV6_UNICAST_HOPS
:
1211 if (optlen
!= sizeof(int)) {
1215 error
= soopt_to_kbuf(sopt
, &optval
,
1216 sizeof optval
, sizeof optval
);
1221 case IPV6_UNICAST_HOPS
:
1222 if (optval
< -1 || optval
>= 256)
1225 /* -1 = kernel default */
1226 in6p
->in6p_hops
= optval
;
1229 #define OPTSET(bit) \
1232 in6p->in6p_flags |= (bit); \
1234 in6p->in6p_flags &= ~(bit); \
1236 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1238 * Although changed to RFC3542, It's better to also support RFC2292 API
1240 #define OPTSET2292(bit) \
1242 in6p->in6p_flags |= IN6P_RFC2292; \
1244 in6p->in6p_flags |= (bit); \
1246 in6p->in6p_flags &= ~(bit); \
1247 } while (/*CONSTCOND*/ 0)
1249 case IPV6_RECVPKTINFO
:
1250 /* cannot mix with RFC2292 */
1251 if (OPTBIT(IN6P_RFC2292
)) {
1255 OPTSET(IN6P_PKTINFO
);
1260 struct ip6_pktopts
**optp
;
1262 /* cannot mix with RFC2292 */
1263 if (OPTBIT(IN6P_RFC2292
)) {
1267 optp
= &in6p
->in6p_outputopts
;
1268 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
1269 (u_char
*)&optval
, sizeof(optval
),
1274 case IPV6_RECVHOPLIMIT
:
1275 /* cannot mix with RFC2292 */
1276 if (OPTBIT(IN6P_RFC2292
)) {
1280 OPTSET(IN6P_HOPLIMIT
);
1283 case IPV6_RECVHOPOPTS
:
1284 /* cannot mix with RFC2292 */
1285 if (OPTBIT(IN6P_RFC2292
)) {
1289 OPTSET(IN6P_HOPOPTS
);
1292 case IPV6_RECVDSTOPTS
:
1293 /* cannot mix with RFC2292 */
1294 if (OPTBIT(IN6P_RFC2292
)) {
1298 OPTSET(IN6P_DSTOPTS
);
1301 case IPV6_RECVRTHDRDSTOPTS
:
1302 /* cannot mix with RFC2292 */
1303 if (OPTBIT(IN6P_RFC2292
)) {
1307 OPTSET(IN6P_RTHDRDSTOPTS
);
1310 case IPV6_RECVRTHDR
:
1311 /* cannot mix with RFC2292 */
1312 if (OPTBIT(IN6P_RFC2292
)) {
1319 case IPV6_RECVPATHMTU
:
1321 * We ignore this option for TCP
1323 * (RFC3542 leaves this case
1326 if (uproto
!= IPPROTO_TCP
)
1330 case IPV6_RECVTCLASS
:
1331 /* cannot mix with RFC2292 XXX */
1332 if (OPTBIT(IN6P_RFC2292
)) {
1336 OPTSET(IN6P_TCLASS
);
1339 case IPV6_AUTOFLOWLABEL
:
1340 OPTSET(IN6P_AUTOFLOWLABEL
);
1345 * make setsockopt(IPV6_V6ONLY)
1346 * available only prior to bind(2).
1348 if (in6p
->in6p_lport
||
1349 !IN6_IS_ADDR_UNSPECIFIED(&in6p
->in6p_laddr
))
1356 * Since we don't support v6->v4
1357 * mapping any more this option does
1358 * nothing. But apparently some
1359 * ports and libraries (e.g. libuv)
1360 * actually try to set the value to
1361 * 0 so just silently ignore the value
1364 * (also fixes named which uses libuv,
1365 * and a few other apps)
1369 /* Don't allow v4-mapped */
1379 case IPV6_USE_MIN_MTU
:
1380 case IPV6_PREFER_TEMPADDR
:
1381 if (optlen
!= sizeof(optval
)) {
1385 error
= soopt_to_kbuf(sopt
, &optval
,
1386 sizeof optval
, sizeof optval
);
1390 struct ip6_pktopts
**optp
;
1391 optp
= &in6p
->in6p_outputopts
;
1392 error
= ip6_pcbopt(optname
,
1393 (u_char
*)&optval
, sizeof(optval
),
1398 case IPV6_2292PKTINFO
:
1399 case IPV6_2292HOPLIMIT
:
1400 case IPV6_2292HOPOPTS
:
1401 case IPV6_2292DSTOPTS
:
1402 case IPV6_2292RTHDR
:
1404 if (optlen
!= sizeof(int)) {
1408 error
= soopt_to_kbuf(sopt
, &optval
,
1409 sizeof optval
, sizeof optval
);
1413 case IPV6_2292PKTINFO
:
1414 OPTSET2292(IN6P_PKTINFO
);
1416 case IPV6_2292HOPLIMIT
:
1417 OPTSET2292(IN6P_HOPLIMIT
);
1419 case IPV6_2292HOPOPTS
:
1421 * Check super-user privilege.
1422 * See comments for IPV6_RECVHOPOPTS.
1426 OPTSET2292(IN6P_HOPOPTS
);
1428 case IPV6_2292DSTOPTS
:
1431 OPTSET2292(IN6P_DSTOPTS
|IN6P_RTHDRDSTOPTS
); /* XXX */
1433 case IPV6_2292RTHDR
:
1434 OPTSET2292(IN6P_RTHDR
);
1443 case IPV6_RTHDRDSTOPTS
:
1447 * New advanced API (RFC3542)
1450 u_char optbuf_storage
[MCLBYTES
];
1452 struct ip6_pktopts
**optp
;
1454 /* cannot mix with RFC2292 */
1455 if (OPTBIT(IN6P_RFC2292
)) {
1461 * We only ensure valsize is not too large
1462 * here. Further validation will be done
1465 error
= soopt_to_kbuf(sopt
, optbuf_storage
,
1466 sizeof(optbuf_storage
), 0);
1469 optlen
= sopt
->sopt_valsize
;
1470 optbuf
= optbuf_storage
;
1471 optp
= &in6p
->in6p_outputopts
;
1472 error
= ip6_pcbopt(optname
, optbuf
, optlen
,
1478 case IPV6_MULTICAST_IF
:
1479 case IPV6_MULTICAST_HOPS
:
1480 case IPV6_MULTICAST_LOOP
:
1481 case IPV6_JOIN_GROUP
:
1482 case IPV6_LEAVE_GROUP
:
1486 if (sopt
->sopt_valsize
> MLEN
) {
1491 MGET(m
, sopt
->sopt_td
? M_WAITOK
: M_NOWAIT
, MT_HEADER
);
1496 m
->m_len
= sopt
->sopt_valsize
;
1497 error
= soopt_to_kbuf(sopt
, mtod(m
, char *),
1498 m
->m_len
, m
->m_len
);
1499 error
= ip6_setmoptions(sopt
->sopt_name
,
1500 &in6p
->in6p_moptions
,
1506 case IPV6_PORTRANGE
:
1507 error
= soopt_to_kbuf(sopt
, &optval
,
1508 sizeof optval
, sizeof optval
);
1513 case IPV6_PORTRANGE_DEFAULT
:
1514 in6p
->in6p_flags
&= ~(IN6P_LOWPORT
);
1515 in6p
->in6p_flags
&= ~(IN6P_HIGHPORT
);
1518 case IPV6_PORTRANGE_HIGH
:
1519 in6p
->in6p_flags
&= ~(IN6P_LOWPORT
);
1520 in6p
->in6p_flags
|= IN6P_HIGHPORT
;
1523 case IPV6_PORTRANGE_LOW
:
1524 in6p
->in6p_flags
&= ~(IN6P_HIGHPORT
);
1525 in6p
->in6p_flags
|= IN6P_LOWPORT
;
1540 struct mbuf
**mp
= &m
;
1542 if (ip6_fw_ctl_ptr
== NULL
)
1545 if ((error
= soopt_getm(sopt
, &m
)) != 0)
1548 soopt_to_mbuf(sopt
, m
);
1549 error
= (*ip6_fw_ctl_ptr
)(optname
, mp
);
1555 error
= ENOPROTOOPT
;
1562 case IPV6_2292PKTOPTIONS
:
1563 #ifdef IPV6_PKTOPTIONS
1564 case IPV6_PKTOPTIONS
:
1567 * RFC3542 (effectively) deprecated the
1568 * semantics of the 2292-style pktoptions.
1569 * Since it was not reliable in nature (i.e.,
1570 * applications had to expect the lack of some
1571 * information after all), it would make sense
1572 * to simplify this part by always returning
1575 if (in6p
->in6p_options
) {
1577 m
= m_copym(in6p
->in6p_options
,
1578 0, M_COPYALL
, M_WAITOK
);
1579 error
= soopt_from_mbuf(sopt
, m
);
1583 sopt
->sopt_valsize
= 0;
1586 case IPV6_RECVHOPOPTS
:
1587 case IPV6_RECVDSTOPTS
:
1588 case IPV6_RECVRTHDRDSTOPTS
:
1589 case IPV6_UNICAST_HOPS
:
1590 case IPV6_RECVPKTINFO
:
1591 case IPV6_RECVHOPLIMIT
:
1592 case IPV6_RECVRTHDR
:
1593 case IPV6_RECVPATHMTU
:
1594 case IPV6_RECVTCLASS
:
1595 case IPV6_AUTOFLOWLABEL
:
1597 case IPV6_PORTRANGE
:
1600 case IPV6_RECVHOPOPTS
:
1601 optval
= OPTBIT(IN6P_HOPOPTS
);
1604 case IPV6_RECVDSTOPTS
:
1605 optval
= OPTBIT(IN6P_DSTOPTS
);
1608 case IPV6_RECVRTHDRDSTOPTS
:
1609 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
1612 case IPV6_RECVPKTINFO
:
1613 optval
= OPTBIT(IN6P_PKTINFO
);
1616 case IPV6_RECVHOPLIMIT
:
1617 optval
= OPTBIT(IN6P_HOPLIMIT
);
1620 case IPV6_RECVRTHDR
:
1621 optval
= OPTBIT(IN6P_RTHDR
);
1624 case IPV6_RECVPATHMTU
:
1625 optval
= OPTBIT(IN6P_MTU
);
1628 case IPV6_RECVTCLASS
:
1629 optval
= OPTBIT(IN6P_TCLASS
);
1632 case IPV6_AUTOFLOWLABEL
:
1633 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
1637 case IPV6_UNICAST_HOPS
:
1638 optval
= in6p
->in6p_hops
;
1645 case IPV6_PORTRANGE
:
1648 flags
= in6p
->in6p_flags
;
1649 if (flags
& IN6P_HIGHPORT
)
1650 optval
= IPV6_PORTRANGE_HIGH
;
1651 else if (flags
& IN6P_LOWPORT
)
1652 optval
= IPV6_PORTRANGE_LOW
;
1658 soopt_from_kbuf(sopt
, &optval
,
1665 struct ip6_mtuinfo mtuinfo
;
1666 struct route_in6 sro
;
1668 bzero(&sro
, sizeof(sro
));
1670 if (!(so
->so_state
& SS_ISCONNECTED
))
1673 * XXX: we dot not consider the case of source
1674 * routing, or optional information to specify
1675 * the outgoing interface.
1677 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
1678 &in6p
->in6p_faddr
, &pmtu
, NULL
);
1683 if (pmtu
> IPV6_MAXPACKET
)
1684 pmtu
= IPV6_MAXPACKET
;
1686 bzero(&mtuinfo
, sizeof(mtuinfo
));
1687 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
1688 optdata
= (void *)&mtuinfo
;
1689 optdatalen
= sizeof(mtuinfo
);
1690 soopt_from_kbuf(sopt
, optdata
,
1695 case IPV6_2292PKTINFO
:
1696 case IPV6_2292HOPLIMIT
:
1697 case IPV6_2292HOPOPTS
:
1698 case IPV6_2292RTHDR
:
1699 case IPV6_2292DSTOPTS
:
1700 if (optname
== IPV6_2292HOPOPTS
||
1701 optname
== IPV6_2292DSTOPTS
||
1705 case IPV6_2292PKTINFO
:
1706 optval
= OPTBIT(IN6P_PKTINFO
);
1708 case IPV6_2292HOPLIMIT
:
1709 optval
= OPTBIT(IN6P_HOPLIMIT
);
1711 case IPV6_2292HOPOPTS
:
1714 optval
= OPTBIT(IN6P_HOPOPTS
);
1716 case IPV6_2292RTHDR
:
1717 optval
= OPTBIT(IN6P_RTHDR
);
1719 case IPV6_2292DSTOPTS
:
1722 optval
= OPTBIT(IN6P_DSTOPTS
|IN6P_RTHDRDSTOPTS
);
1725 soopt_from_kbuf(sopt
, &optval
,
1733 case IPV6_RTHDRDSTOPTS
:
1737 case IPV6_USE_MIN_MTU
:
1738 case IPV6_PREFER_TEMPADDR
:
1739 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
1743 case IPV6_MULTICAST_IF
:
1744 case IPV6_MULTICAST_HOPS
:
1745 case IPV6_MULTICAST_LOOP
:
1746 case IPV6_JOIN_GROUP
:
1747 case IPV6_LEAVE_GROUP
:
1750 error
= ip6_getmoptions(sopt
->sopt_name
,
1751 in6p
->in6p_moptions
, &m
);
1753 soopt_from_kbuf(sopt
,
1754 mtod(m
, char *), m
->m_len
);
1763 struct mbuf
**mp
= &m
;
1765 if (ip6_fw_ctl_ptr
== NULL
)
1769 error
= (*ip6_fw_ctl_ptr
)(optname
, mp
);
1771 error
= soopt_from_mbuf(sopt
, m
); /* XXX */
1772 if (error
== 0 && m
!= NULL
)
1778 error
= ENOPROTOOPT
;
1790 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
1792 int error
= 0, optval
, optlen
;
1793 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
1794 struct in6pcb
*in6p
= sotoin6pcb(so
);
1795 int level
, op
, optname
;
1798 level
= sopt
->sopt_level
;
1799 op
= sopt
->sopt_dir
;
1800 optname
= sopt
->sopt_name
;
1801 optlen
= sopt
->sopt_valsize
;
1803 panic("ip6_raw_ctloutput: arg soopt is NULL");
1805 if (level
!= IPPROTO_IPV6
) {
1812 * For ICMPv6 sockets, no modification allowed for checksum
1813 * offset, permit "no change" values to help existing apps.
1815 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1816 * for an ICMPv6 socket will fail."
1817 * The current behavior does not meet RFC3542.
1821 if (optlen
!= sizeof(int)) {
1825 error
= soopt_to_kbuf(sopt
, &optval
,
1826 sizeof optval
, sizeof optval
);
1829 if ((optval
% 2) != 0) {
1830 /* the API assumes even offset values */
1832 } else if (so
->so_proto
->pr_protocol
==
1834 if (optval
!= icmp6off
)
1837 in6p
->in6p_cksum
= optval
;
1841 if (so
->so_proto
->pr_protocol
== IPPROTO_ICMPV6
)
1844 optval
= in6p
->in6p_cksum
;
1846 soopt_from_kbuf(sopt
, &optval
, sizeof(optval
));
1856 error
= ENOPROTOOPT
;
1864 * Set up IP6 options in pcb for insertion in output packets or
1865 * specifying behavior of outgoing packets.
1868 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
,
1869 struct socket
*so
, struct sockopt
*sopt
)
1872 struct ip6_pktopts
*opt
= *pktopt
;
1875 /* turn off any old options. */
1878 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
1879 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
1880 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
1881 kprintf("ip6_pcbopts: all specified options are cleared.\n");
1883 ip6_clearpktopts(opt
, -1);
1885 opt
= kmalloc(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
1888 if (!m
|| m
->m_len
== 0) {
1890 * Only turning off any previous options, regardless of
1891 * whether the opt is just created or given.
1893 kfree(opt
, M_IP6OPT
);
1897 /* set options specified by user. */
1898 if ((error
= ip6_setpktoptions(m
, opt
, NULL
, so
->so_proto
->pr_protocol
, priv
)) != 0) {
1899 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
1900 kfree(opt
, M_IP6OPT
);
1909 * Below three functions are introduced by merge to RFC3542
1913 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
1915 void *optdata
= NULL
;
1917 struct ip6_ext
*ip6e
;
1919 struct in6_pktinfo null_pktinfo
;
1920 int deftclass
= 0, on
;
1921 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
1922 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
1926 if (pktopt
&& pktopt
->ip6po_pktinfo
)
1927 optdata
= (void *)pktopt
->ip6po_pktinfo
;
1929 /* XXX: we don't have to do this every time... */
1930 bzero(&null_pktinfo
, sizeof(null_pktinfo
));
1931 optdata
= (void *)&null_pktinfo
;
1933 optdatalen
= sizeof(struct in6_pktinfo
);
1936 if (pktopt
&& pktopt
->ip6po_tclass
>= 0)
1937 optdata
= (void *)&pktopt
->ip6po_tclass
;
1939 optdata
= (void *)&deftclass
;
1940 optdatalen
= sizeof(int);
1943 if (pktopt
&& pktopt
->ip6po_hbh
) {
1944 optdata
= (void *)pktopt
->ip6po_hbh
;
1945 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
1946 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
1950 if (pktopt
&& pktopt
->ip6po_rthdr
) {
1951 optdata
= (void *)pktopt
->ip6po_rthdr
;
1952 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
1953 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
1956 case IPV6_RTHDRDSTOPTS
:
1957 if (pktopt
&& pktopt
->ip6po_dest1
) {
1958 optdata
= (void *)pktopt
->ip6po_dest1
;
1959 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
1960 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
1964 if (pktopt
&& pktopt
->ip6po_dest2
) {
1965 optdata
= (void *)pktopt
->ip6po_dest2
;
1966 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
1967 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
1971 if (pktopt
&& pktopt
->ip6po_nexthop
) {
1972 optdata
= (void *)pktopt
->ip6po_nexthop
;
1973 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
1976 case IPV6_USE_MIN_MTU
:
1978 optdata
= (void *)&pktopt
->ip6po_minmtu
;
1980 optdata
= (void *)&defminmtu
;
1981 optdatalen
= sizeof(int);
1984 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
))
1988 optdata
= (void *)&on
;
1989 optdatalen
= sizeof(on
);
1991 case IPV6_PREFER_TEMPADDR
:
1993 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
1995 optdata
= (void *)&defpreftemp
;
1996 optdatalen
= sizeof(int);
1998 default: /* should not happen */
2000 panic("ip6_getpcbopt: unexpected option");
2002 return (ENOPROTOOPT
);
2005 soopt_from_kbuf(sopt
, optdata
, optdatalen
);
2011 * initialize ip6_pktopts. beware that there are non-zero default values in
2016 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
, int uproto
)
2018 struct ip6_pktopts
*opt
;
2020 if (*pktopt
== NULL
) {
2021 *pktopt
= kmalloc(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
2022 init_ip6pktopts(*pktopt
);
2026 return (ip6_setpktoption(optname
, buf
, len
, opt
, 1, 0, uproto
, priv
));
2030 * initialize ip6_pktopts. beware that there are non-zero default values in
2034 init_ip6pktopts(struct ip6_pktopts
*opt
)
2037 bzero(opt
, sizeof(*opt
));
2038 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
2039 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
2040 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
2041 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
2045 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
2050 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
2051 if (pktopt
->ip6po_pktinfo
)
2052 kfree(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
2053 pktopt
->ip6po_pktinfo
= NULL
;
2055 if (optname
== -1 || optname
== IPV6_HOPLIMIT
)
2056 pktopt
->ip6po_hlim
= -1;
2057 if (optname
== -1 || optname
== IPV6_TCLASS
)
2058 pktopt
->ip6po_tclass
= -1;
2059 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
2060 if (pktopt
->ip6po_nextroute
.ro_rt
) {
2061 RTFREE(pktopt
->ip6po_nextroute
.ro_rt
);
2062 pktopt
->ip6po_nextroute
.ro_rt
= NULL
;
2064 if (pktopt
->ip6po_nexthop
)
2065 kfree(pktopt
->ip6po_nexthop
, M_IP6OPT
);
2066 pktopt
->ip6po_nexthop
= NULL
;
2068 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
2069 if (pktopt
->ip6po_hbh
)
2070 kfree(pktopt
->ip6po_hbh
, M_IP6OPT
);
2071 pktopt
->ip6po_hbh
= NULL
;
2073 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
2074 if (pktopt
->ip6po_dest1
)
2075 kfree(pktopt
->ip6po_dest1
, M_IP6OPT
);
2076 pktopt
->ip6po_dest1
= NULL
;
2078 if (optname
== -1 || optname
== IPV6_RTHDR
) {
2079 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
2080 kfree(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
2081 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
2082 if (pktopt
->ip6po_route
.ro_rt
) {
2083 RTFREE(pktopt
->ip6po_route
.ro_rt
);
2084 pktopt
->ip6po_route
.ro_rt
= NULL
;
2087 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
2088 if (pktopt
->ip6po_dest2
)
2089 kfree(pktopt
->ip6po_dest2
, M_IP6OPT
);
2090 pktopt
->ip6po_dest2
= NULL
;
2094 #define PKTOPT_EXTHDRCPY(type) \
2097 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2098 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2099 if (dst->type == NULL)\
2101 bcopy(src->type, dst->type, hlen);\
2105 struct ip6_pktopts
*
2106 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
2108 struct ip6_pktopts
*dst
;
2111 kprintf("ip6_clearpktopts: invalid argument\n");
2115 dst
= kmalloc(sizeof(*dst
), M_IP6OPT
, canwait
| M_ZERO
);
2119 dst
->ip6po_hlim
= src
->ip6po_hlim
;
2120 if (src
->ip6po_pktinfo
) {
2121 dst
->ip6po_pktinfo
= kmalloc(sizeof(*dst
->ip6po_pktinfo
),
2123 if (dst
->ip6po_pktinfo
== NULL
)
2125 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
2127 if (src
->ip6po_nexthop
) {
2128 dst
->ip6po_nexthop
= kmalloc(src
->ip6po_nexthop
->sa_len
,
2130 if (dst
->ip6po_nexthop
== NULL
)
2132 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
2133 src
->ip6po_nexthop
->sa_len
);
2135 PKTOPT_EXTHDRCPY(ip6po_hbh
);
2136 PKTOPT_EXTHDRCPY(ip6po_dest1
);
2137 PKTOPT_EXTHDRCPY(ip6po_dest2
);
2138 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
2142 if (dst
->ip6po_pktinfo
) kfree(dst
->ip6po_pktinfo
, M_IP6OPT
);
2143 if (dst
->ip6po_nexthop
) kfree(dst
->ip6po_nexthop
, M_IP6OPT
);
2144 if (dst
->ip6po_hbh
) kfree(dst
->ip6po_hbh
, M_IP6OPT
);
2145 if (dst
->ip6po_dest1
) kfree(dst
->ip6po_dest1
, M_IP6OPT
);
2146 if (dst
->ip6po_dest2
) kfree(dst
->ip6po_dest2
, M_IP6OPT
);
2147 if (dst
->ip6po_rthdr
) kfree(dst
->ip6po_rthdr
, M_IP6OPT
);
2148 kfree(dst
, M_IP6OPT
);
2153 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
2155 if (dst
== NULL
|| src
== NULL
) {
2157 kprintf("ip6_clearpktopts: invalid argument\n");
2162 dst
->ip6po_hlim
= src
->ip6po_hlim
;
2163 dst
->ip6po_tclass
= src
->ip6po_tclass
;
2164 dst
->ip6po_flags
= src
->ip6po_flags
;
2165 if (src
->ip6po_pktinfo
) {
2166 dst
->ip6po_pktinfo
= kmalloc(sizeof(*dst
->ip6po_pktinfo
),
2168 if (dst
->ip6po_pktinfo
== NULL
)
2170 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
2172 if (src
->ip6po_nexthop
) {
2173 dst
->ip6po_nexthop
= kmalloc(src
->ip6po_nexthop
->sa_len
,
2175 if (dst
->ip6po_nexthop
== NULL
)
2177 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
2178 src
->ip6po_nexthop
->sa_len
);
2180 PKTOPT_EXTHDRCPY(ip6po_hbh
);
2181 PKTOPT_EXTHDRCPY(ip6po_dest1
);
2182 PKTOPT_EXTHDRCPY(ip6po_dest2
);
2183 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
2187 ip6_clearpktopts(dst
, -1);
2190 #undef PKTOPT_EXTHDRCPY
2193 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
2198 ip6_clearpktopts(pktopt
, -1);
2200 kfree(pktopt
, M_IP6OPT
);
2204 * Set the IP6 multicast options in response to user setsockopt().
2207 ip6_setmoptions(int optname
, struct ip6_moptions
**im6op
, struct mbuf
*m
)
2210 u_int loop
, ifindex
;
2211 struct ipv6_mreq
*mreq
;
2213 struct ip6_moptions
*im6o
= *im6op
;
2214 struct route_in6 ro
;
2215 struct sockaddr_in6
*dst
;
2216 struct in6_multi_mship
*imm
;
2220 * No multicast option buffer attached to the pcb;
2221 * allocate one and initialize to default values.
2223 im6o
= (struct ip6_moptions
*)
2224 kmalloc(sizeof(*im6o
), M_IPMOPTS
, M_WAITOK
);
2227 im6o
->im6o_multicast_ifp
= NULL
;
2228 im6o
->im6o_multicast_hlim
= ip6_defmcasthlim
;
2229 im6o
->im6o_multicast_loop
= IPV6_DEFAULT_MULTICAST_LOOP
;
2230 LIST_INIT(&im6o
->im6o_memberships
);
2235 case IPV6_MULTICAST_IF
:
2237 * Select the interface for outgoing multicast packets.
2239 if (m
== NULL
|| m
->m_len
!= sizeof(u_int
)) {
2243 bcopy(mtod(m
, u_int
*), &ifindex
, sizeof(ifindex
));
2244 if (ifindex
< 0 || if_index
< ifindex
) {
2245 error
= ENXIO
; /* XXX EINVAL? */
2248 ifp
= ifindex2ifnet
[ifindex
];
2249 if (ifp
== NULL
|| !(ifp
->if_flags
& IFF_MULTICAST
)) {
2250 error
= EADDRNOTAVAIL
;
2253 im6o
->im6o_multicast_ifp
= ifp
;
2256 case IPV6_MULTICAST_HOPS
:
2259 * Set the IP6 hoplimit for outgoing multicast packets.
2262 if (m
== NULL
|| m
->m_len
!= sizeof(int)) {
2266 bcopy(mtod(m
, u_int
*), &optval
, sizeof(optval
));
2267 if (optval
< -1 || optval
>= 256)
2269 else if (optval
== -1)
2270 im6o
->im6o_multicast_hlim
= ip6_defmcasthlim
;
2272 im6o
->im6o_multicast_hlim
= optval
;
2276 case IPV6_MULTICAST_LOOP
:
2278 * Set the loopback flag for outgoing multicast packets.
2279 * Must be zero or one.
2281 if (m
== NULL
|| m
->m_len
!= sizeof(u_int
)) {
2285 bcopy(mtod(m
, u_int
*), &loop
, sizeof(loop
));
2290 im6o
->im6o_multicast_loop
= loop
;
2293 case IPV6_JOIN_GROUP
:
2295 * Add a multicast group membership.
2296 * Group must be a valid IP6 multicast address.
2298 if (m
== NULL
|| m
->m_len
!= sizeof(struct ipv6_mreq
)) {
2302 mreq
= mtod(m
, struct ipv6_mreq
*);
2303 if (IN6_IS_ADDR_UNSPECIFIED(&mreq
->ipv6mr_multiaddr
)) {
2305 * We use the unspecified address to specify to accept
2306 * all multicast addresses. Only super user is allowed
2309 if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT
)) {
2313 } else if (!IN6_IS_ADDR_MULTICAST(&mreq
->ipv6mr_multiaddr
)) {
2319 * If the interface is specified, validate it.
2321 if (mreq
->ipv6mr_interface
< 0
2322 || if_index
< mreq
->ipv6mr_interface
) {
2323 error
= ENXIO
; /* XXX EINVAL? */
2327 * If no interface was explicitly specified, choose an
2328 * appropriate one according to the given multicast address.
2330 if (mreq
->ipv6mr_interface
== 0) {
2332 * If the multicast address is in node-local scope,
2333 * the interface should be a loopback interface.
2334 * Otherwise, look up the routing table for the
2335 * address, and choose the outgoing interface.
2336 * XXX: is it a good approach?
2338 if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq
->ipv6mr_multiaddr
)) {
2342 dst
= (struct sockaddr_in6
*)&ro
.ro_dst
;
2343 bzero(dst
, sizeof(*dst
));
2344 dst
->sin6_len
= sizeof(struct sockaddr_in6
);
2345 dst
->sin6_family
= AF_INET6
;
2346 dst
->sin6_addr
= mreq
->ipv6mr_multiaddr
;
2347 rtalloc((struct route
*)&ro
);
2348 if (ro
.ro_rt
== NULL
) {
2349 error
= EADDRNOTAVAIL
;
2352 ifp
= ro
.ro_rt
->rt_ifp
;
2356 ifp
= ifindex2ifnet
[mreq
->ipv6mr_interface
];
2359 * See if we found an interface, and confirm that it
2360 * supports multicast
2362 if (ifp
== NULL
|| !(ifp
->if_flags
& IFF_MULTICAST
)) {
2363 error
= EADDRNOTAVAIL
;
2367 * Put interface index into the multicast address,
2368 * if the address has link-local scope.
2370 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq
->ipv6mr_multiaddr
)) {
2371 mreq
->ipv6mr_multiaddr
.s6_addr16
[1]
2372 = htons(mreq
->ipv6mr_interface
);
2375 * See if the membership already exists.
2377 for (imm
= im6o
->im6o_memberships
.lh_first
;
2378 imm
!= NULL
; imm
= imm
->i6mm_chain
.le_next
)
2379 if (imm
->i6mm_maddr
->in6m_ifp
== ifp
&&
2380 IN6_ARE_ADDR_EQUAL(&imm
->i6mm_maddr
->in6m_addr
,
2381 &mreq
->ipv6mr_multiaddr
))
2388 * Everything looks good; add a new record to the multicast
2389 * address list for the given interface.
2391 imm
= kmalloc(sizeof(*imm
), M_IPMADDR
, M_WAITOK
);
2392 if ((imm
->i6mm_maddr
=
2393 in6_addmulti(&mreq
->ipv6mr_multiaddr
, ifp
, &error
)) == NULL
) {
2394 kfree(imm
, M_IPMADDR
);
2397 LIST_INSERT_HEAD(&im6o
->im6o_memberships
, imm
, i6mm_chain
);
2400 case IPV6_LEAVE_GROUP
:
2402 * Drop a multicast group membership.
2403 * Group must be a valid IP6 multicast address.
2405 if (m
== NULL
|| m
->m_len
!= sizeof(struct ipv6_mreq
)) {
2409 mreq
= mtod(m
, struct ipv6_mreq
*);
2410 if (IN6_IS_ADDR_UNSPECIFIED(&mreq
->ipv6mr_multiaddr
)) {
2411 if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT
)) {
2415 } else if (!IN6_IS_ADDR_MULTICAST(&mreq
->ipv6mr_multiaddr
)) {
2420 * If an interface address was specified, get a pointer
2421 * to its ifnet structure.
2423 if (mreq
->ipv6mr_interface
< 0
2424 || if_index
< mreq
->ipv6mr_interface
) {
2425 error
= ENXIO
; /* XXX EINVAL? */
2428 ifp
= ifindex2ifnet
[mreq
->ipv6mr_interface
];
2430 * Put interface index into the multicast address,
2431 * if the address has link-local scope.
2433 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq
->ipv6mr_multiaddr
)) {
2434 mreq
->ipv6mr_multiaddr
.s6_addr16
[1]
2435 = htons(mreq
->ipv6mr_interface
);
2439 * Find the membership in the membership list.
2441 for (imm
= im6o
->im6o_memberships
.lh_first
;
2442 imm
!= NULL
; imm
= imm
->i6mm_chain
.le_next
) {
2443 if ((ifp
== NULL
|| imm
->i6mm_maddr
->in6m_ifp
== ifp
) &&
2444 IN6_ARE_ADDR_EQUAL(&imm
->i6mm_maddr
->in6m_addr
,
2445 &mreq
->ipv6mr_multiaddr
))
2449 /* Unable to resolve interface */
2450 error
= EADDRNOTAVAIL
;
2454 * Give up the multicast address record to which the
2455 * membership points.
2457 LIST_REMOVE(imm
, i6mm_chain
);
2458 in6_delmulti(imm
->i6mm_maddr
);
2459 kfree(imm
, M_IPMADDR
);
2468 * If all options have default values, no need to keep the mbuf.
2470 if (im6o
->im6o_multicast_ifp
== NULL
&&
2471 im6o
->im6o_multicast_hlim
== ip6_defmcasthlim
&&
2472 im6o
->im6o_multicast_loop
== IPV6_DEFAULT_MULTICAST_LOOP
&&
2473 im6o
->im6o_memberships
.lh_first
== NULL
) {
2474 kfree(*im6op
, M_IPMOPTS
);
2482 * Return the IP6 multicast options in response to user getsockopt().
2485 ip6_getmoptions(int optname
, struct ip6_moptions
*im6o
, struct mbuf
**mp
)
2487 u_int
*hlim
, *loop
, *ifindex
;
2489 *mp
= m_get(M_WAITOK
, MT_HEADER
); /* XXX */
2493 case IPV6_MULTICAST_IF
:
2494 ifindex
= mtod(*mp
, u_int
*);
2495 (*mp
)->m_len
= sizeof(u_int
);
2496 if (im6o
== NULL
|| im6o
->im6o_multicast_ifp
== NULL
)
2499 *ifindex
= im6o
->im6o_multicast_ifp
->if_index
;
2502 case IPV6_MULTICAST_HOPS
:
2503 hlim
= mtod(*mp
, u_int
*);
2504 (*mp
)->m_len
= sizeof(u_int
);
2506 *hlim
= ip6_defmcasthlim
;
2508 *hlim
= im6o
->im6o_multicast_hlim
;
2511 case IPV6_MULTICAST_LOOP
:
2512 loop
= mtod(*mp
, u_int
*);
2513 (*mp
)->m_len
= sizeof(u_int
);
2515 *loop
= ip6_defmcasthlim
;
2517 *loop
= im6o
->im6o_multicast_loop
;
2521 return (EOPNOTSUPP
);
2526 * Discard the IP6 multicast options.
2529 ip6_freemoptions(struct ip6_moptions
*im6o
)
2531 struct in6_multi_mship
*imm
;
2536 while ((imm
= im6o
->im6o_memberships
.lh_first
) != NULL
) {
2537 LIST_REMOVE(imm
, i6mm_chain
);
2538 if (imm
->i6mm_maddr
)
2539 in6_delmulti(imm
->i6mm_maddr
);
2540 kfree(imm
, M_IPMADDR
);
2542 kfree(im6o
, M_IPMOPTS
);
2546 * Set a particular packet option, as a sticky option or an ancillary data
2547 * item. "len" can be 0 only when it's a sticky option.
2548 * We have 4 cases of combination of "sticky" and "cmsg":
2549 * "sticky=0, cmsg=0": impossible
2550 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2551 * "sticky=1, cmsg=0": RFC3542 socket option
2552 * "sticky=1, cmsg=1": RFC2292 socket option
2555 ip6_setpktoption(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
2556 int sticky
, int cmsg
, int uproto
, int priv
)
2558 int minmtupolicy
, preftemp
;
2561 if (!sticky
&& !cmsg
) {
2562 kprintf("ip6_setpktoption: impossible case\n");
2567 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2568 * not be specified in the context of RFC3542. Conversely,
2569 * RFC3542 types should not be specified in the context of RFC2292.
2573 case IPV6_2292PKTINFO
:
2574 case IPV6_2292HOPLIMIT
:
2575 case IPV6_2292NEXTHOP
:
2576 case IPV6_2292HOPOPTS
:
2577 case IPV6_2292DSTOPTS
:
2578 case IPV6_2292RTHDR
:
2579 case IPV6_2292PKTOPTIONS
:
2580 return (ENOPROTOOPT
);
2583 if (sticky
&& cmsg
) {
2590 case IPV6_RTHDRDSTOPTS
:
2592 case IPV6_USE_MIN_MTU
:
2595 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
2596 return (ENOPROTOOPT
);
2601 case IPV6_2292PKTINFO
:
2604 struct in6_pktinfo
*pktinfo
;
2605 if (len
!= sizeof(struct in6_pktinfo
))
2607 pktinfo
= (struct in6_pktinfo
*)buf
;
2610 * An application can clear any sticky IPV6_PKTINFO option by
2611 * doing a "regular" setsockopt with ipi6_addr being
2612 * in6addr_any and ipi6_ifindex being zero.
2613 * [RFC 3542, Section 6]
2615 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
2616 pktinfo
->ipi6_ifindex
== 0 &&
2617 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
2618 ip6_clearpktopts(opt
, optname
);
2622 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
2623 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
2627 /* validate the interface index if specified. */
2628 if (pktinfo
->ipi6_ifindex
> if_index
||
2629 pktinfo
->ipi6_ifindex
< 0) {
2633 * Check if the requested source address is indeed a
2634 * unicast address assigned to the node, and can be
2635 * used as the packet's source address.
2637 if (opt
->ip6po_pktinfo
!= NULL
&&
2638 !IN6_IS_ADDR_UNSPECIFIED(&opt
->ip6po_pktinfo
->ipi6_addr
)) {
2639 struct in6_ifaddr
*ia6
;
2640 struct sockaddr_in6 sin6
;
2642 bzero(&sin6
, sizeof(sin6
));
2643 sin6
.sin6_len
= sizeof(sin6
);
2644 sin6
.sin6_family
= AF_INET6
;
2646 opt
->ip6po_pktinfo
->ipi6_addr
;
2647 ia6
= (struct in6_ifaddr
*)ifa_ifwithaddr(sin6tosa(&sin6
));
2649 (ia6
->ia6_flags
& (IN6_IFF_ANYCAST
|
2650 IN6_IFF_NOTREADY
)) != 0)
2651 return (EADDRNOTAVAIL
);
2655 * We store the address anyway, and let in6_selectsrc()
2656 * validate the specified address. This is because ipi6_addr
2657 * may not have enough information about its scope zone, and
2658 * we may need additional information (such as outgoing
2659 * interface or the scope zone of a destination address) to
2660 * disambiguate the scope.
2661 * XXX: the delay of the validation may confuse the
2662 * application when it is used as a sticky option.
2664 if (opt
->ip6po_pktinfo
== NULL
) {
2665 opt
->ip6po_pktinfo
= kmalloc(sizeof(*pktinfo
),
2666 M_IP6OPT
, M_NOWAIT
);
2667 if (opt
->ip6po_pktinfo
== NULL
)
2670 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof(*pktinfo
));
2674 case IPV6_2292HOPLIMIT
:
2680 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2681 * to simplify the ordering among hoplimit options.
2683 if (optname
== IPV6_HOPLIMIT
&& sticky
)
2684 return (ENOPROTOOPT
);
2686 if (len
!= sizeof(int))
2689 if (*hlimp
< -1 || *hlimp
> 255)
2692 opt
->ip6po_hlim
= *hlimp
;
2700 if (len
!= sizeof(int))
2702 tclass
= *(int *)buf
;
2703 if (tclass
< -1 || tclass
> 255)
2706 opt
->ip6po_tclass
= tclass
;
2710 case IPV6_2292NEXTHOP
:
2715 if (len
== 0) { /* just remove the option */
2716 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
2720 /* check if cmsg_len is large enough for sa_len */
2721 if (len
< sizeof(struct sockaddr
) || len
< *buf
)
2724 switch (((struct sockaddr
*)buf
)->sa_family
) {
2727 struct sockaddr_in6
*sa6
= (struct sockaddr_in6
*)buf
;
2730 if (sa6
->sin6_len
!= sizeof(struct sockaddr_in6
))
2733 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
2734 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
2739 case AF_LINK
: /* should eventually be supported */
2741 return (EAFNOSUPPORT
);
2744 /* turn off the previous option, then set the new option. */
2745 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
2746 opt
->ip6po_nexthop
= kmalloc(*buf
, M_IP6OPT
, M_NOWAIT
);
2747 if (opt
->ip6po_nexthop
== NULL
)
2749 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
2752 case IPV6_2292HOPOPTS
:
2755 struct ip6_hbh
*hbh
;
2759 * XXX: We don't allow a non-privileged user to set ANY HbH
2760 * options, since per-option restriction has too much
2766 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
2767 break; /* just remove the option */
2770 /* message length validation */
2771 if (len
< sizeof(struct ip6_hbh
))
2773 hbh
= (struct ip6_hbh
*)buf
;
2774 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
2778 /* turn off the previous option, then set the new option. */
2779 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
2780 opt
->ip6po_hbh
= kmalloc(hbhlen
, M_IP6OPT
, M_NOWAIT
);
2781 if (opt
->ip6po_hbh
== NULL
)
2783 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
2788 case IPV6_2292DSTOPTS
:
2790 case IPV6_RTHDRDSTOPTS
:
2792 struct ip6_dest
*dest
, **newdest
= NULL
;
2798 ip6_clearpktopts(opt
, optname
);
2799 break; /* just remove the option */
2802 /* message length validation */
2803 if (len
< sizeof(struct ip6_dest
))
2805 dest
= (struct ip6_dest
*)buf
;
2806 destlen
= (dest
->ip6d_len
+ 1) << 3;
2811 * Determine the position that the destination options header
2812 * should be inserted; before or after the routing header.
2815 case IPV6_2292DSTOPTS
:
2817 * The old advacned API is ambiguous on this point.
2818 * Our approach is to determine the position based
2819 * according to the existence of a routing header.
2820 * Note, however, that this depends on the order of the
2821 * extension headers in the ancillary data; the 1st
2822 * part of the destination options header must appear
2823 * before the routing header in the ancillary data,
2825 * RFC3542 solved the ambiguity by introducing
2826 * separate ancillary data or option types.
2828 if (opt
->ip6po_rthdr
== NULL
)
2829 newdest
= &opt
->ip6po_dest1
;
2831 newdest
= &opt
->ip6po_dest2
;
2833 case IPV6_RTHDRDSTOPTS
:
2834 newdest
= &opt
->ip6po_dest1
;
2837 newdest
= &opt
->ip6po_dest2
;
2841 /* turn off the previous option, then set the new option. */
2842 ip6_clearpktopts(opt
, optname
);
2843 *newdest
= kmalloc(destlen
, M_IP6OPT
, M_NOWAIT
);
2844 if (*newdest
== NULL
)
2846 bcopy(dest
, *newdest
, destlen
);
2851 case IPV6_2292RTHDR
:
2854 struct ip6_rthdr
*rth
;
2858 ip6_clearpktopts(opt
, IPV6_RTHDR
);
2859 break; /* just remove the option */
2862 /* message length validation */
2863 if (len
< sizeof(struct ip6_rthdr
))
2865 rth
= (struct ip6_rthdr
*)buf
;
2866 rthlen
= (rth
->ip6r_len
+ 1) << 3;
2870 switch (rth
->ip6r_type
) {
2872 return (EINVAL
); /* not supported */
2875 /* turn off the previous option */
2876 ip6_clearpktopts(opt
, IPV6_RTHDR
);
2877 opt
->ip6po_rthdr
= kmalloc(rthlen
, M_IP6OPT
, M_NOWAIT
);
2878 if (opt
->ip6po_rthdr
== NULL
)
2880 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
2885 case IPV6_USE_MIN_MTU
:
2886 if (len
!= sizeof(int))
2888 minmtupolicy
= *(int *)buf
;
2889 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
2890 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
2891 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
2894 opt
->ip6po_minmtu
= minmtupolicy
;
2898 if (len
!= sizeof(int))
2901 if (uproto
== IPPROTO_TCP
|| *(int *)buf
== 0) {
2903 * we ignore this option for TCP sockets.
2904 * (RFC3542 leaves this case unspecified.)
2906 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
2908 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
2911 case IPV6_PREFER_TEMPADDR
:
2912 if (len
!= sizeof(int))
2914 preftemp
= *(int *)buf
;
2915 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
2916 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
2917 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
2920 opt
->ip6po_prefer_tempaddr
= preftemp
;
2924 return (ENOPROTOOPT
);
2925 } /* end of switch */
2932 * Set IPv6 outgoing packet options based on advanced API.
2935 ip6_setpktoptions(struct mbuf
*control
, struct ip6_pktopts
*opt
,
2936 struct ip6_pktopts
*stickyopt
, int uproto
, int priv
)
2938 struct cmsghdr
*cm
= NULL
;
2940 if (control
== NULL
|| opt
== NULL
)
2943 init_ip6pktopts(opt
);
2946 * XXX: Currently, we assume all the optional information is stored
2953 * If stickyopt is provided, make a local copy of the options
2954 * for this particular packet, then override them by ancillary
2956 * XXX: copypktopts() does not copy the cached route to a next
2957 * hop (if any). This is not very good in terms of efficiency,
2958 * but we can allow this since this option should be rarely
2961 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0)
2966 * XXX: Currently, we assume all the optional information is stored
2969 if (control
->m_next
)
2975 if (control
->m_len
== 0)
2977 if (control
->m_len
< sizeof(*cm
))
2980 cm
= mtod(control
, struct cmsghdr
*);
2981 if (cm
->cmsg_len
== 0 || cm
->cmsg_len
> control
->m_len
)
2983 if (cm
->cmsg_level
== IPPROTO_IPV6
) {
2984 error
= ip6_setpktoption(cm
->cmsg_type
, CMSG_DATA(cm
),
2985 cm
->cmsg_len
- CMSG_LEN(0),
2986 opt
, 0, 1, uproto
, priv
);
2992 * The cmsg fit, but the aligned step for the next one might
2993 * not. Check the case and terminate normally (allows the
2994 * cmsg_len to not be aligned).
2996 if (CMSG_ALIGN(cm
->cmsg_len
) >= control
->m_len
) {
2997 control
->m_data
+= control
->m_len
;
3001 control
->m_data
+= CMSG_ALIGN(cm
->cmsg_len
);
3002 control
->m_len
-= CMSG_ALIGN(cm
->cmsg_len
);
3009 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3010 * packet to the input queue of a specified interface. Note that this
3011 * calls the output routine of the loopback "driver", but with an interface
3012 * pointer that might NOT be loif -- easier than replicating that code here.
3015 ip6_mloopback(struct ifnet
*ifp
, struct mbuf
*m
, struct sockaddr_in6
*dst
)
3018 struct ip6_hdr
*ip6
;
3020 copym
= m_copym(m
, 0, M_COPYALL
, M_NOWAIT
);
3025 * Make sure to deep-copy IPv6 header portion in case the data
3026 * is in an mbuf cluster, so that we can safely override the IPv6
3027 * header portion later.
3029 if ((copym
->m_flags
& M_EXT
) != 0 ||
3030 copym
->m_len
< sizeof(struct ip6_hdr
)) {
3031 copym
= m_pullup(copym
, sizeof(struct ip6_hdr
));
3037 if (copym
->m_len
< sizeof(*ip6
)) {
3043 ip6
= mtod(copym
, struct ip6_hdr
*);
3045 * clear embedded scope identifiers if necessary.
3046 * in6_clearscope will touch the addresses only when necessary.
3048 in6_clearscope(&ip6
->ip6_src
);
3049 in6_clearscope(&ip6
->ip6_dst
);
3051 if_simloop(ifp
, copym
, dst
->sin6_family
, 0);
3055 * Separate the IPv6 header from the payload into its own mbuf.
3057 * Returns the new mbuf chain or the original mbuf if no payload.
3058 * Returns NULL if can't allocate new mbuf for header.
3060 static struct mbuf
*
3061 ip6_splithdr(struct mbuf
*m
)
3065 if (m
->m_len
<= sizeof(struct ip6_hdr
)) /* no payload */
3068 MGETHDR(mh
, M_NOWAIT
, MT_HEADER
);
3071 mh
->m_len
= sizeof(struct ip6_hdr
);
3072 M_MOVE_PKTHDR(mh
, m
);
3073 MH_ALIGN(mh
, sizeof(struct ip6_hdr
));
3074 bcopy(mtod(m
, caddr_t
), mtod(mh
, caddr_t
), sizeof(struct ip6_hdr
));
3075 m
->m_data
+= sizeof(struct ip6_hdr
);
3076 m
->m_len
-= sizeof(struct ip6_hdr
);
3082 * Compute IPv6 extension header length.
3085 ip6_optlen(struct in6pcb
*in6p
)
3089 if (!in6p
->in6p_outputopts
)
3094 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3096 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
3097 if (in6p
->in6p_outputopts
->ip6po_rthdr
)
3098 /* dest1 is valid with rthdr only */
3099 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
3100 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
3101 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);