1 /* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */
2 /* -----------------------------------------------------------------------
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66 /* #define SSE2 0 Is SSE2 is available? */
67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
68 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
70 /* ---------------------------------------------------------------------- */
71 /* -- Global Includes --------------------------------------------------- */
72 /* ---------------------------------------------------------------------- */
75 #include <sys/types.h>
85 /* ---------------------------------------------------------------------- */
86 /* --- Primitive Data Types --- */
87 /* ---------------------------------------------------------------------- */
89 /* The following assumptions may need change on your system */
90 typedef u_int8_t UINT8
; /* 1 byte */
91 typedef u_int16_t UINT16
; /* 2 byte */
92 typedef u_int32_t UINT32
; /* 4 byte */
93 typedef u_int64_t UINT64
; /* 8 bytes */
94 typedef unsigned int UWORD
; /* Register */
96 /* ---------------------------------------------------------------------- */
97 /* --- Constants -------------------------------------------------------- */
98 /* ---------------------------------------------------------------------- */
100 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
102 /* Message "words" are read from memory in an endian-specific manner. */
103 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
104 /* be set true if the host computer is little-endian. */
106 #if BYTE_ORDER == LITTLE_ENDIAN
107 #define __LITTLE_ENDIAN__ 1
109 #define __LITTLE_ENDIAN__ 0
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Architecture Specific ------------------------------------------ */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ---------------------------------------------------------------------- */
121 /* ----- Primitive Routines --------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123 /* ---------------------------------------------------------------------- */
126 /* ---------------------------------------------------------------------- */
127 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128 /* ---------------------------------------------------------------------- */
130 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
132 /* ---------------------------------------------------------------------- */
133 /* --- Endian Conversion --- Forcing assembly on some platforms */
134 /* ---------------------------------------------------------------------- */
136 #if (__LITTLE_ENDIAN__)
137 #define LOAD_UINT32_REVERSED(p) get_u32(p)
138 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
140 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
141 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
144 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
145 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
147 /* ---------------------------------------------------------------------- */
148 /* ---------------------------------------------------------------------- */
149 /* ----- Begin KDF & PDF Section ---------------------------------------- */
150 /* ---------------------------------------------------------------------- */
151 /* ---------------------------------------------------------------------- */
153 /* UMAC uses AES with 16 byte block and key lengths */
154 #define AES_BLOCK_LEN 16
158 #include "openbsd-compat/openssl-compat.h"
159 #ifndef USE_BUILTIN_RIJNDAEL
160 # include <openssl/aes.h>
162 typedef AES_KEY aes_int_key
[1];
163 #define aes_encryption(in,out,int_key) \
164 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165 #define aes_key_setup(key,int_key) \
166 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
168 #include "rijndael.h"
169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170 typedef UINT8 aes_int_key
[AES_ROUNDS
+1][4][4]; /* AES internal */
171 #define aes_encryption(in,out,int_key) \
172 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173 #define aes_key_setup(key,int_key) \
174 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
178 /* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182 * 'ndx' causes a distinct byte stream.
184 static void kdf(void *bufp
, aes_int_key key
, UINT8 ndx
, int nbytes
)
186 UINT8 in_buf
[AES_BLOCK_LEN
] = {0};
187 UINT8 out_buf
[AES_BLOCK_LEN
];
188 UINT8
*dst_buf
= (UINT8
*)bufp
;
191 /* Setup the initial value */
192 in_buf
[AES_BLOCK_LEN
-9] = ndx
;
193 in_buf
[AES_BLOCK_LEN
-1] = i
= 1;
195 while (nbytes
>= AES_BLOCK_LEN
) {
196 aes_encryption(in_buf
, out_buf
, key
);
197 memcpy(dst_buf
,out_buf
,AES_BLOCK_LEN
);
198 in_buf
[AES_BLOCK_LEN
-1] = ++i
;
199 nbytes
-= AES_BLOCK_LEN
;
200 dst_buf
+= AES_BLOCK_LEN
;
203 aes_encryption(in_buf
, out_buf
, key
);
204 memcpy(dst_buf
,out_buf
,nbytes
);
206 explicit_bzero(in_buf
, sizeof(in_buf
));
207 explicit_bzero(out_buf
, sizeof(out_buf
));
210 /* The final UHASH result is XOR'd with the output of a pseudorandom
211 * function. Here, we use AES to generate random output and
212 * xor the appropriate bytes depending on the last bits of nonce.
213 * This scheme is optimized for sequential, increasing big-endian nonces.
217 UINT8 cache
[AES_BLOCK_LEN
]; /* Previous AES output is saved */
218 UINT8 nonce
[AES_BLOCK_LEN
]; /* The AES input making above cache */
219 aes_int_key prf_key
; /* Expanded AES key for PDF */
222 static void pdf_init(pdf_ctx
*pc
, aes_int_key prf_key
)
224 UINT8 buf
[UMAC_KEY_LEN
];
226 kdf(buf
, prf_key
, 0, UMAC_KEY_LEN
);
227 aes_key_setup(buf
, pc
->prf_key
);
229 /* Initialize pdf and cache */
230 memset(pc
->nonce
, 0, sizeof(pc
->nonce
));
231 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
232 explicit_bzero(buf
, sizeof(buf
));
235 static void pdf_gen_xor(pdf_ctx
*pc
, const UINT8 nonce
[8], UINT8 buf
[8])
237 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
238 * of the AES output. If last time around we returned the ndx-1st
239 * element, then we may have the result in the cache already.
242 #if (UMAC_OUTPUT_LEN == 4)
243 #define LOW_BIT_MASK 3
244 #elif (UMAC_OUTPUT_LEN == 8)
245 #define LOW_BIT_MASK 1
246 #elif (UMAC_OUTPUT_LEN > 8)
247 #define LOW_BIT_MASK 0
250 UINT8 tmp_nonce_lo
[4];
253 #if LOW_BIT_MASK != 0
254 int ndx
= nonce
[7] & LOW_BIT_MASK
;
256 *(UINT32
*)t
.tmp_nonce_lo
= ((const UINT32
*)nonce
)[1];
257 t
.tmp_nonce_lo
[3] &= ~LOW_BIT_MASK
; /* zero last bit */
259 if ( (((UINT32
*)t
.tmp_nonce_lo
)[0] != ((UINT32
*)pc
->nonce
)[1]) ||
260 (((const UINT32
*)nonce
)[0] != ((UINT32
*)pc
->nonce
)[0]) )
262 ((UINT32
*)pc
->nonce
)[0] = ((const UINT32
*)nonce
)[0];
263 ((UINT32
*)pc
->nonce
)[1] = ((UINT32
*)t
.tmp_nonce_lo
)[0];
264 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
267 #if (UMAC_OUTPUT_LEN == 4)
268 *((UINT32
*)buf
) ^= ((UINT32
*)pc
->cache
)[ndx
];
269 #elif (UMAC_OUTPUT_LEN == 8)
270 *((UINT64
*)buf
) ^= ((UINT64
*)pc
->cache
)[ndx
];
271 #elif (UMAC_OUTPUT_LEN == 12)
272 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
273 ((UINT32
*)buf
)[2] ^= ((UINT32
*)pc
->cache
)[2];
274 #elif (UMAC_OUTPUT_LEN == 16)
275 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
276 ((UINT64
*)buf
)[1] ^= ((UINT64
*)pc
->cache
)[1];
280 /* ---------------------------------------------------------------------- */
281 /* ---------------------------------------------------------------------- */
282 /* ----- Begin NH Hash Section ------------------------------------------ */
283 /* ---------------------------------------------------------------------- */
284 /* ---------------------------------------------------------------------- */
286 /* The NH-based hash functions used in UMAC are described in the UMAC paper
287 * and specification, both of which can be found at the UMAC website.
288 * The interface to this implementation has two
289 * versions, one expects the entire message being hashed to be passed
290 * in a single buffer and returns the hash result immediately. The second
291 * allows the message to be passed in a sequence of buffers. In the
292 * muliple-buffer interface, the client calls the routine nh_update() as
293 * many times as necessary. When there is no more data to be fed to the
294 * hash, the client calls nh_final() which calculates the hash output.
295 * Before beginning another hash calculation the nh_reset() routine
296 * must be called. The single-buffer routine, nh(), is equivalent to
297 * the sequence of calls nh_update() and nh_final(); however it is
298 * optimized and should be prefered whenever the multiple-buffer interface
299 * is not necessary. When using either interface, it is the client's
300 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
302 * The routine nh_init() initializes the nh_ctx data structure and
303 * must be called once, before any other PDF routine.
306 /* The "nh_aux" routines do the actual NH hashing work. They
307 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
308 * produce output for all STREAMS NH iterations in one call,
309 * allowing the parallel implementation of the streams.
312 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
313 #define L1_KEY_LEN 1024 /* Internal key bytes */
314 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
315 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
316 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
317 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
320 UINT8 nh_key
[L1_KEY_LEN
+ L1_KEY_SHIFT
* (STREAMS
- 1)]; /* NH Key */
321 UINT8 data
[HASH_BUF_BYTES
]; /* Incoming data buffer */
322 int next_data_empty
; /* Bookeeping variable for data buffer. */
323 int bytes_hashed
; /* Bytes (out of L1_KEY_LEN) incorperated. */
324 UINT64 state
[STREAMS
]; /* on-line state */
328 #if (UMAC_OUTPUT_LEN == 4)
330 static void nh_aux(void *kp
, const void *dp
, void *hp
, UINT32 dlen
)
331 /* NH hashing primitive. Previous (partial) hash result is loaded and
332 * then stored via hp pointer. The length of the data pointed at by "dp",
333 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
334 * is expected to be endian compensated in memory at key setup.
339 UINT32
*k
= (UINT32
*)kp
;
340 const UINT32
*d
= (const UINT32
*)dp
;
341 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
342 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
;
346 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
347 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
348 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
349 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
350 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
351 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
352 h
+= MUL64((k0
+ d0
), (k4
+ d4
));
353 h
+= MUL64((k1
+ d1
), (k5
+ d5
));
354 h
+= MUL64((k2
+ d2
), (k6
+ d6
));
355 h
+= MUL64((k3
+ d3
), (k7
+ d7
));
363 #elif (UMAC_OUTPUT_LEN == 8)
365 static void nh_aux(void *kp
, const void *dp
, void *hp
, UINT32 dlen
)
366 /* Same as previous nh_aux, but two streams are handled in one pass,
367 * reading and writing 16 bytes of hash-state per call.
372 UINT32
*k
= (UINT32
*)kp
;
373 const UINT32
*d
= (const UINT32
*)dp
;
374 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
375 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
378 h1
= *((UINT64
*)hp
);
379 h2
= *((UINT64
*)hp
+ 1);
380 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
382 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
383 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
384 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
385 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
386 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
387 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
389 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
390 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
392 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
393 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
395 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
396 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
398 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
399 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
401 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
406 ((UINT64
*)hp
)[0] = h1
;
407 ((UINT64
*)hp
)[1] = h2
;
410 #elif (UMAC_OUTPUT_LEN == 12)
412 static void nh_aux(void *kp
, const void *dp
, void *hp
, UINT32 dlen
)
413 /* Same as previous nh_aux, but two streams are handled in one pass,
414 * reading and writing 24 bytes of hash-state per call.
419 UINT32
*k
= (UINT32
*)kp
;
420 const UINT32
*d
= (const UINT32
*)dp
;
421 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
422 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
423 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
;
425 h1
= *((UINT64
*)hp
);
426 h2
= *((UINT64
*)hp
+ 1);
427 h3
= *((UINT64
*)hp
+ 2);
428 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
429 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
431 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
432 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
433 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
434 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
435 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
436 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
438 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
439 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
440 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
442 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
443 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
444 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
446 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
447 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
448 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
450 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
451 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
452 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
454 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
455 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
460 ((UINT64
*)hp
)[0] = h1
;
461 ((UINT64
*)hp
)[1] = h2
;
462 ((UINT64
*)hp
)[2] = h3
;
465 #elif (UMAC_OUTPUT_LEN == 16)
467 static void nh_aux(void *kp
, const void *dp
, void *hp
, UINT32 dlen
)
468 /* Same as previous nh_aux, but two streams are handled in one pass,
469 * reading and writing 24 bytes of hash-state per call.
474 UINT32
*k
= (UINT32
*)kp
;
475 const UINT32
*d
= (const UINT32
*)dp
;
476 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
477 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
478 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
,
481 h1
= *((UINT64
*)hp
);
482 h2
= *((UINT64
*)hp
+ 1);
483 h3
= *((UINT64
*)hp
+ 2);
484 h4
= *((UINT64
*)hp
+ 3);
485 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
486 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
488 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
489 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
490 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
491 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
492 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
493 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
494 k16
= *(k
+16); k17
= *(k
+17); k18
= *(k
+18); k19
= *(k
+19);
496 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
497 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
498 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
499 h4
+= MUL64((k12
+ d0
), (k16
+ d4
));
501 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
502 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
503 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
504 h4
+= MUL64((k13
+ d1
), (k17
+ d5
));
506 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
507 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
508 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
509 h4
+= MUL64((k14
+ d2
), (k18
+ d6
));
511 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
512 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
513 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
514 h4
+= MUL64((k15
+ d3
), (k19
+ d7
));
516 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
517 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
518 k8
= k16
; k9
= k17
; k10
= k18
; k11
= k19
;
523 ((UINT64
*)hp
)[0] = h1
;
524 ((UINT64
*)hp
)[1] = h2
;
525 ((UINT64
*)hp
)[2] = h3
;
526 ((UINT64
*)hp
)[3] = h4
;
529 /* ---------------------------------------------------------------------- */
530 #endif /* UMAC_OUTPUT_LENGTH */
531 /* ---------------------------------------------------------------------- */
534 /* ---------------------------------------------------------------------- */
536 static void nh_transform(nh_ctx
*hc
, const UINT8
*buf
, UINT32 nbytes
)
537 /* This function is a wrapper for the primitive NH hash functions. It takes
538 * as argument "hc" the current hash context and a buffer which must be a
539 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
540 * appropriately according to how much message has been hashed already.
545 key
= hc
->nh_key
+ hc
->bytes_hashed
;
546 nh_aux(key
, buf
, hc
->state
, nbytes
);
549 /* ---------------------------------------------------------------------- */
551 #if (__LITTLE_ENDIAN__)
552 static void endian_convert(void *buf
, UWORD bpw
, UINT32 num_bytes
)
553 /* We endian convert the keys on little-endian computers to */
554 /* compensate for the lack of big-endian memory reads during hashing. */
556 UWORD iters
= num_bytes
/ bpw
;
558 UINT32
*p
= (UINT32
*)buf
;
560 *p
= LOAD_UINT32_REVERSED(p
);
563 } else if (bpw
== 8) {
564 UINT32
*p
= (UINT32
*)buf
;
567 t
= LOAD_UINT32_REVERSED(p
+1);
568 p
[1] = LOAD_UINT32_REVERSED(p
);
574 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
576 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
579 /* ---------------------------------------------------------------------- */
581 static void nh_reset(nh_ctx
*hc
)
582 /* Reset nh_ctx to ready for hashing of new data */
584 hc
->bytes_hashed
= 0;
585 hc
->next_data_empty
= 0;
587 #if (UMAC_OUTPUT_LEN >= 8)
590 #if (UMAC_OUTPUT_LEN >= 12)
593 #if (UMAC_OUTPUT_LEN == 16)
599 /* ---------------------------------------------------------------------- */
601 static void nh_init(nh_ctx
*hc
, aes_int_key prf_key
)
602 /* Generate nh_key, endian convert and reset to be ready for hashing. */
604 kdf(hc
->nh_key
, prf_key
, 1, sizeof(hc
->nh_key
));
605 endian_convert_if_le(hc
->nh_key
, 4, sizeof(hc
->nh_key
));
609 /* ---------------------------------------------------------------------- */
611 static void nh_update(nh_ctx
*hc
, const UINT8
*buf
, UINT32 nbytes
)
612 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
613 /* even multiple of HASH_BUF_BYTES. */
617 j
= hc
->next_data_empty
;
618 if ((j
+ nbytes
) >= HASH_BUF_BYTES
) {
620 i
= HASH_BUF_BYTES
- j
;
621 memcpy(hc
->data
+j
, buf
, i
);
622 nh_transform(hc
,hc
->data
,HASH_BUF_BYTES
);
625 hc
->bytes_hashed
+= HASH_BUF_BYTES
;
627 if (nbytes
>= HASH_BUF_BYTES
) {
628 i
= nbytes
& ~(HASH_BUF_BYTES
- 1);
629 nh_transform(hc
, buf
, i
);
632 hc
->bytes_hashed
+= i
;
636 memcpy(hc
->data
+ j
, buf
, nbytes
);
637 hc
->next_data_empty
= j
+ nbytes
;
640 /* ---------------------------------------------------------------------- */
642 static void zero_pad(UINT8
*p
, int nbytes
)
644 /* Write "nbytes" of zeroes, beginning at "p" */
645 if (nbytes
>= (int)sizeof(UWORD
)) {
646 while ((ptrdiff_t)p
% sizeof(UWORD
)) {
651 while (nbytes
>= (int)sizeof(UWORD
)) {
653 nbytes
-= sizeof(UWORD
);
664 /* ---------------------------------------------------------------------- */
666 static void nh_final(nh_ctx
*hc
, UINT8
*result
)
667 /* After passing some number of data buffers to nh_update() for integration
668 * into an NH context, nh_final is called to produce a hash result. If any
669 * bytes are in the buffer hc->data, incorporate them into the
670 * NH context. Finally, add into the NH accumulation "state" the total number
671 * of bits hashed. The resulting numbers are written to the buffer "result".
672 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
677 if (hc
->next_data_empty
!= 0) {
678 nh_len
= ((hc
->next_data_empty
+ (L1_PAD_BOUNDARY
- 1)) &
679 ~(L1_PAD_BOUNDARY
- 1));
680 zero_pad(hc
->data
+ hc
->next_data_empty
,
681 nh_len
- hc
->next_data_empty
);
682 nh_transform(hc
, hc
->data
, nh_len
);
683 hc
->bytes_hashed
+= hc
->next_data_empty
;
684 } else if (hc
->bytes_hashed
== 0) {
685 nh_len
= L1_PAD_BOUNDARY
;
686 zero_pad(hc
->data
, L1_PAD_BOUNDARY
);
687 nh_transform(hc
, hc
->data
, nh_len
);
690 nbits
= (hc
->bytes_hashed
<< 3);
691 ((UINT64
*)result
)[0] = ((UINT64
*)hc
->state
)[0] + nbits
;
692 #if (UMAC_OUTPUT_LEN >= 8)
693 ((UINT64
*)result
)[1] = ((UINT64
*)hc
->state
)[1] + nbits
;
695 #if (UMAC_OUTPUT_LEN >= 12)
696 ((UINT64
*)result
)[2] = ((UINT64
*)hc
->state
)[2] + nbits
;
698 #if (UMAC_OUTPUT_LEN == 16)
699 ((UINT64
*)result
)[3] = ((UINT64
*)hc
->state
)[3] + nbits
;
704 /* ---------------------------------------------------------------------- */
706 static void nh(nh_ctx
*hc
, const UINT8
*buf
, UINT32 padded_len
,
707 UINT32 unpadded_len
, UINT8
*result
)
708 /* All-in-one nh_update() and nh_final() equivalent.
709 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
715 /* Initialize the hash state */
716 nbits
= (unpadded_len
<< 3);
718 ((UINT64
*)result
)[0] = nbits
;
719 #if (UMAC_OUTPUT_LEN >= 8)
720 ((UINT64
*)result
)[1] = nbits
;
722 #if (UMAC_OUTPUT_LEN >= 12)
723 ((UINT64
*)result
)[2] = nbits
;
725 #if (UMAC_OUTPUT_LEN == 16)
726 ((UINT64
*)result
)[3] = nbits
;
729 nh_aux(hc
->nh_key
, buf
, result
, padded_len
);
732 /* ---------------------------------------------------------------------- */
733 /* ---------------------------------------------------------------------- */
734 /* ----- Begin UHASH Section -------------------------------------------- */
735 /* ---------------------------------------------------------------------- */
736 /* ---------------------------------------------------------------------- */
738 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
739 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
740 * unless the initial data to be hashed is short. After the polynomial-
741 * layer, an inner-product hash is used to produce the final UHASH output.
743 * UHASH provides two interfaces, one all-at-once and another where data
744 * buffers are presented sequentially. In the sequential interface, the
745 * UHASH client calls the routine uhash_update() as many times as necessary.
746 * When there is no more data to be fed to UHASH, the client calls
747 * uhash_final() which
748 * calculates the UHASH output. Before beginning another UHASH calculation
749 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
750 * uhash(), is equivalent to the sequence of calls uhash_update() and
751 * uhash_final(); however it is optimized and should be
752 * used whenever the sequential interface is not necessary.
754 * The routine uhash_init() initializes the uhash_ctx data structure and
755 * must be called once, before any other UHASH routine.
758 /* ---------------------------------------------------------------------- */
759 /* ----- Constants and uhash_ctx ---------------------------------------- */
760 /* ---------------------------------------------------------------------- */
762 /* ---------------------------------------------------------------------- */
763 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
764 /* ---------------------------------------------------------------------- */
766 /* Primes and masks */
767 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
768 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
769 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
772 /* ---------------------------------------------------------------------- */
774 typedef struct uhash_ctx
{
775 nh_ctx hash
; /* Hash context for L1 NH hash */
776 UINT64 poly_key_8
[STREAMS
]; /* p64 poly keys */
777 UINT64 poly_accum
[STREAMS
]; /* poly hash result */
778 UINT64 ip_keys
[STREAMS
*4]; /* Inner-product keys */
779 UINT32 ip_trans
[STREAMS
]; /* Inner-product translation */
780 UINT32 msg_len
; /* Total length of data passed */
783 typedef struct uhash_ctx
*uhash_ctx_t
;
785 /* ---------------------------------------------------------------------- */
788 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
789 * word at a time. As described in the specification, poly32 and poly64
790 * require keys from special domains. The following implementations exploit
791 * the special domains to avoid overflow. The results are not guaranteed to
792 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
793 * patches any errant values.
796 static UINT64
poly64(UINT64 cur
, UINT64 key
, UINT64 data
)
798 UINT32 key_hi
= (UINT32
)(key
>> 32),
799 key_lo
= (UINT32
)key
,
800 cur_hi
= (UINT32
)(cur
>> 32),
801 cur_lo
= (UINT32
)cur
,
806 X
= MUL64(key_hi
, cur_lo
) + MUL64(cur_hi
, key_lo
);
808 x_hi
= (UINT32
)(X
>> 32);
810 res
= (MUL64(key_hi
, cur_hi
) + x_hi
) * 59 + MUL64(key_lo
, cur_lo
);
812 T
= ((UINT64
)x_lo
<< 32);
825 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
826 * implementation does not handle all ramp levels. Because we don't handle
827 * the ramp up to p128 modulus in this implementation, we are limited to
828 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
829 * bytes input to UMAC per tag, ie. 16MB).
831 static void poly_hash(uhash_ctx_t hc
, UINT32 data_in
[])
834 UINT64
*data
=(UINT64
*)data_in
;
836 for (i
= 0; i
< STREAMS
; i
++) {
837 if ((UINT32
)(data
[i
] >> 32) == 0xfffffffful
) {
838 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
839 hc
->poly_key_8
[i
], p64
- 1);
840 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
841 hc
->poly_key_8
[i
], (data
[i
] - 59));
843 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
844 hc
->poly_key_8
[i
], data
[i
]);
850 /* ---------------------------------------------------------------------- */
853 /* The final step in UHASH is an inner-product hash. The poly hash
854 * produces a result not neccesarily WORD_LEN bytes long. The inner-
855 * product hash breaks the polyhash output into 16-bit chunks and
856 * multiplies each with a 36 bit key.
859 static UINT64
ip_aux(UINT64 t
, UINT64
*ipkp
, UINT64 data
)
861 t
= t
+ ipkp
[0] * (UINT64
)(UINT16
)(data
>> 48);
862 t
= t
+ ipkp
[1] * (UINT64
)(UINT16
)(data
>> 32);
863 t
= t
+ ipkp
[2] * (UINT64
)(UINT16
)(data
>> 16);
864 t
= t
+ ipkp
[3] * (UINT64
)(UINT16
)(data
);
869 static UINT32
ip_reduce_p36(UINT64 t
)
871 /* Divisionless modular reduction */
874 ret
= (t
& m36
) + 5 * (t
>> 36);
878 /* return least significant 32 bits */
879 return (UINT32
)(ret
);
883 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
884 * the polyhash stage is skipped and ip_short is applied directly to the
887 static void ip_short(uhash_ctx_t ahc
, UINT8
*nh_res
, u_char
*res
)
890 UINT64
*nhp
= (UINT64
*)nh_res
;
892 t
= ip_aux(0,ahc
->ip_keys
, nhp
[0]);
893 STORE_UINT32_BIG((UINT32
*)res
+0, ip_reduce_p36(t
) ^ ahc
->ip_trans
[0]);
894 #if (UMAC_OUTPUT_LEN >= 8)
895 t
= ip_aux(0,ahc
->ip_keys
+4, nhp
[1]);
896 STORE_UINT32_BIG((UINT32
*)res
+1, ip_reduce_p36(t
) ^ ahc
->ip_trans
[1]);
898 #if (UMAC_OUTPUT_LEN >= 12)
899 t
= ip_aux(0,ahc
->ip_keys
+8, nhp
[2]);
900 STORE_UINT32_BIG((UINT32
*)res
+2, ip_reduce_p36(t
) ^ ahc
->ip_trans
[2]);
902 #if (UMAC_OUTPUT_LEN == 16)
903 t
= ip_aux(0,ahc
->ip_keys
+12, nhp
[3]);
904 STORE_UINT32_BIG((UINT32
*)res
+3, ip_reduce_p36(t
) ^ ahc
->ip_trans
[3]);
908 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
909 * the polyhash stage is not skipped and ip_long is applied to the
912 static void ip_long(uhash_ctx_t ahc
, u_char
*res
)
917 for (i
= 0; i
< STREAMS
; i
++) {
918 /* fix polyhash output not in Z_p64 */
919 if (ahc
->poly_accum
[i
] >= p64
)
920 ahc
->poly_accum
[i
] -= p64
;
921 t
= ip_aux(0,ahc
->ip_keys
+(i
*4), ahc
->poly_accum
[i
]);
922 STORE_UINT32_BIG((UINT32
*)res
+i
,
923 ip_reduce_p36(t
) ^ ahc
->ip_trans
[i
]);
928 /* ---------------------------------------------------------------------- */
930 /* ---------------------------------------------------------------------- */
932 /* Reset uhash context for next hash session */
933 static int uhash_reset(uhash_ctx_t pc
)
937 pc
->poly_accum
[0] = 1;
938 #if (UMAC_OUTPUT_LEN >= 8)
939 pc
->poly_accum
[1] = 1;
941 #if (UMAC_OUTPUT_LEN >= 12)
942 pc
->poly_accum
[2] = 1;
944 #if (UMAC_OUTPUT_LEN == 16)
945 pc
->poly_accum
[3] = 1;
950 /* ---------------------------------------------------------------------- */
952 /* Given a pointer to the internal key needed by kdf() and a uhash context,
953 * initialize the NH context and generate keys needed for poly and inner-
954 * product hashing. All keys are endian adjusted in memory so that native
955 * loads cause correct keys to be in registers during calculation.
957 static void uhash_init(uhash_ctx_t ahc
, aes_int_key prf_key
)
960 UINT8 buf
[(8*STREAMS
+4)*sizeof(UINT64
)];
962 /* Zero the entire uhash context */
963 memset(ahc
, 0, sizeof(uhash_ctx
));
965 /* Initialize the L1 hash */
966 nh_init(&ahc
->hash
, prf_key
);
968 /* Setup L2 hash variables */
969 kdf(buf
, prf_key
, 2, sizeof(buf
)); /* Fill buffer with index 1 key */
970 for (i
= 0; i
< STREAMS
; i
++) {
971 /* Fill keys from the buffer, skipping bytes in the buffer not
972 * used by this implementation. Endian reverse the keys if on a
973 * little-endian computer.
975 memcpy(ahc
->poly_key_8
+i
, buf
+24*i
, 8);
976 endian_convert_if_le(ahc
->poly_key_8
+i
, 8, 8);
977 /* Mask the 64-bit keys to their special domain */
978 ahc
->poly_key_8
[i
] &= ((UINT64
)0x01ffffffu
<< 32) + 0x01ffffffu
;
979 ahc
->poly_accum
[i
] = 1; /* Our polyhash prepends a non-zero word */
982 /* Setup L3-1 hash variables */
983 kdf(buf
, prf_key
, 3, sizeof(buf
)); /* Fill buffer with index 2 key */
984 for (i
= 0; i
< STREAMS
; i
++)
985 memcpy(ahc
->ip_keys
+4*i
, buf
+(8*i
+4)*sizeof(UINT64
),
987 endian_convert_if_le(ahc
->ip_keys
, sizeof(UINT64
),
988 sizeof(ahc
->ip_keys
));
989 for (i
= 0; i
< STREAMS
*4; i
++)
990 ahc
->ip_keys
[i
] %= p36
; /* Bring into Z_p36 */
992 /* Setup L3-2 hash variables */
993 /* Fill buffer with index 4 key */
994 kdf(ahc
->ip_trans
, prf_key
, 4, STREAMS
* sizeof(UINT32
));
995 endian_convert_if_le(ahc
->ip_trans
, sizeof(UINT32
),
996 STREAMS
* sizeof(UINT32
));
997 explicit_bzero(buf
, sizeof(buf
));
1000 /* ---------------------------------------------------------------------- */
1003 static uhash_ctx_t
uhash_alloc(u_char key
[])
1005 /* Allocate memory and force to a 16-byte boundary. */
1007 u_char bytes_to_add
;
1008 aes_int_key prf_key
;
1010 ctx
= (uhash_ctx_t
)malloc(sizeof(uhash_ctx
)+ALLOC_BOUNDARY
);
1012 if (ALLOC_BOUNDARY
) {
1013 bytes_to_add
= ALLOC_BOUNDARY
-
1014 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
-1));
1015 ctx
= (uhash_ctx_t
)((u_char
*)ctx
+ bytes_to_add
);
1016 *((u_char
*)ctx
- 1) = bytes_to_add
;
1018 aes_key_setup(key
,prf_key
);
1019 uhash_init(ctx
, prf_key
);
1025 /* ---------------------------------------------------------------------- */
1028 static int uhash_free(uhash_ctx_t ctx
)
1030 /* Free memory allocated by uhash_alloc */
1031 u_char bytes_to_sub
;
1034 if (ALLOC_BOUNDARY
) {
1035 bytes_to_sub
= *((u_char
*)ctx
- 1);
1036 ctx
= (uhash_ctx_t
)((u_char
*)ctx
- bytes_to_sub
);
1043 /* ---------------------------------------------------------------------- */
1045 static int uhash_update(uhash_ctx_t ctx
, const u_char
*input
, long len
)
1046 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1047 * hash each one with NH, calling the polyhash on each NH output.
1050 UWORD bytes_hashed
, bytes_remaining
;
1051 UINT64 result_buf
[STREAMS
];
1052 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1054 if (ctx
->msg_len
+ len
<= L1_KEY_LEN
) {
1055 nh_update(&ctx
->hash
, (const UINT8
*)input
, len
);
1056 ctx
->msg_len
+= len
;
1059 bytes_hashed
= ctx
->msg_len
% L1_KEY_LEN
;
1060 if (ctx
->msg_len
== L1_KEY_LEN
)
1061 bytes_hashed
= L1_KEY_LEN
;
1063 if (bytes_hashed
+ len
>= L1_KEY_LEN
) {
1065 /* If some bytes have been passed to the hash function */
1066 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1067 /* bytes to complete the current nh_block. */
1069 bytes_remaining
= (L1_KEY_LEN
- bytes_hashed
);
1070 nh_update(&ctx
->hash
, (const UINT8
*)input
, bytes_remaining
);
1071 nh_final(&ctx
->hash
, nh_result
);
1072 ctx
->msg_len
+= bytes_remaining
;
1073 poly_hash(ctx
,(UINT32
*)nh_result
);
1074 len
-= bytes_remaining
;
1075 input
+= bytes_remaining
;
1078 /* Hash directly from input stream if enough bytes */
1079 while (len
>= L1_KEY_LEN
) {
1080 nh(&ctx
->hash
, (const UINT8
*)input
, L1_KEY_LEN
,
1081 L1_KEY_LEN
, nh_result
);
1082 ctx
->msg_len
+= L1_KEY_LEN
;
1084 input
+= L1_KEY_LEN
;
1085 poly_hash(ctx
,(UINT32
*)nh_result
);
1089 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1091 nh_update(&ctx
->hash
, (const UINT8
*)input
, len
);
1092 ctx
->msg_len
+= len
;
1099 /* ---------------------------------------------------------------------- */
1101 static int uhash_final(uhash_ctx_t ctx
, u_char
*res
)
1102 /* Incorporate any pending data, pad, and generate tag */
1104 UINT64 result_buf
[STREAMS
];
1105 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1107 if (ctx
->msg_len
> L1_KEY_LEN
) {
1108 if (ctx
->msg_len
% L1_KEY_LEN
) {
1109 nh_final(&ctx
->hash
, nh_result
);
1110 poly_hash(ctx
,(UINT32
*)nh_result
);
1114 nh_final(&ctx
->hash
, nh_result
);
1115 ip_short(ctx
,nh_result
, res
);
1121 /* ---------------------------------------------------------------------- */
1124 static int uhash(uhash_ctx_t ahc
, u_char
*msg
, long len
, u_char
*res
)
1125 /* assumes that msg is in a writable buffer of length divisible by */
1126 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1128 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1130 int extra_zeroes_needed
;
1132 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1135 if (len
<= L1_KEY_LEN
) {
1136 if (len
== 0) /* If zero length messages will not */
1137 nh_len
= L1_PAD_BOUNDARY
; /* be seen, comment out this case */
1139 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1140 extra_zeroes_needed
= nh_len
- len
;
1141 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1142 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1143 ip_short(ahc
,nh_result
, res
);
1145 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1146 * output to poly_hash().
1149 nh(&ahc
->hash
, (UINT8
*)msg
, L1_KEY_LEN
, L1_KEY_LEN
, nh_result
);
1150 poly_hash(ahc
,(UINT32
*)nh_result
);
1153 } while (len
>= L1_KEY_LEN
);
1155 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1156 extra_zeroes_needed
= nh_len
- len
;
1157 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1158 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1159 poly_hash(ahc
,(UINT32
*)nh_result
);
1170 /* ---------------------------------------------------------------------- */
1171 /* ---------------------------------------------------------------------- */
1172 /* ----- Begin UMAC Section --------------------------------------------- */
1173 /* ---------------------------------------------------------------------- */
1174 /* ---------------------------------------------------------------------- */
1176 /* The UMAC interface has two interfaces, an all-at-once interface where
1177 * the entire message to be authenticated is passed to UMAC in one buffer,
1178 * and a sequential interface where the message is presented a little at a
1179 * time. The all-at-once is more optimaized than the sequential version and
1180 * should be preferred when the sequential interface is not required.
1183 uhash_ctx hash
; /* Hash function for message compression */
1184 pdf_ctx pdf
; /* PDF for hashed output */
1185 void *free_ptr
; /* Address to free this struct via */
1188 /* ---------------------------------------------------------------------- */
1191 int umac_reset(struct umac_ctx
*ctx
)
1192 /* Reset the hash function to begin a new authentication. */
1194 uhash_reset(&ctx
->hash
);
1199 /* ---------------------------------------------------------------------- */
1201 int umac_delete(struct umac_ctx
*ctx
)
1202 /* Deallocate the ctx structure */
1206 ctx
= (struct umac_ctx
*)ctx
->free_ptr
;
1207 explicit_bzero(ctx
, sizeof(*ctx
) + ALLOC_BOUNDARY
);
1213 /* ---------------------------------------------------------------------- */
1215 struct umac_ctx
*umac_new(const u_char key
[])
1216 /* Dynamically allocate a umac_ctx struct, initialize variables,
1217 * generate subkeys from key. Align to 16-byte boundary.
1220 struct umac_ctx
*ctx
, *octx
;
1221 size_t bytes_to_add
;
1222 aes_int_key prf_key
;
1224 octx
= ctx
= xcalloc(1, sizeof(*ctx
) + ALLOC_BOUNDARY
);
1226 if (ALLOC_BOUNDARY
) {
1227 bytes_to_add
= ALLOC_BOUNDARY
-
1228 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
- 1));
1229 ctx
= (struct umac_ctx
*)((u_char
*)ctx
+ bytes_to_add
);
1231 ctx
->free_ptr
= octx
;
1232 aes_key_setup(key
, prf_key
);
1233 pdf_init(&ctx
->pdf
, prf_key
);
1234 uhash_init(&ctx
->hash
, prf_key
);
1235 explicit_bzero(prf_key
, sizeof(prf_key
));
1241 /* ---------------------------------------------------------------------- */
1243 int umac_final(struct umac_ctx
*ctx
, u_char tag
[], const u_char nonce
[8])
1244 /* Incorporate any pending data, pad, and generate tag */
1246 uhash_final(&ctx
->hash
, (u_char
*)tag
);
1247 pdf_gen_xor(&ctx
->pdf
, (const UINT8
*)nonce
, (UINT8
*)tag
);
1252 /* ---------------------------------------------------------------------- */
1254 int umac_update(struct umac_ctx
*ctx
, const u_char
*input
, long len
)
1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1257 /* output buffer is full. */
1259 uhash_update(&ctx
->hash
, input
, len
);
1263 /* ---------------------------------------------------------------------- */
1266 int umac(struct umac_ctx
*ctx
, u_char
*input
,
1267 long len
, u_char tag
[],
1269 /* All-in-one version simply calls umac_update() and umac_final(). */
1271 uhash(&ctx
->hash
, input
, len
, (u_char
*)tag
);
1272 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1278 /* ---------------------------------------------------------------------- */
1279 /* ---------------------------------------------------------------------- */
1280 /* ----- End UMAC Section ----------------------------------------------- */
1281 /* ---------------------------------------------------------------------- */
1282 /* ---------------------------------------------------------------------- */