mld6query(8): Rename mld6.c -> mld6query.c
[dragonfly.git] / crypto / openssh / umac.c
blob9f2187c9af9811958c1c8f2d8fa86e96d2e52d24
1 /* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 #endif
59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62 #endif
64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66 /* #define SSE2 0 Is SSE2 is available? */
67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
68 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
70 /* ---------------------------------------------------------------------- */
71 /* -- Global Includes --------------------------------------------------- */
72 /* ---------------------------------------------------------------------- */
74 #include "includes.h"
75 #include <sys/types.h>
76 #include <string.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <stddef.h>
81 #include "xmalloc.h"
82 #include "umac.h"
83 #include "misc.h"
85 /* ---------------------------------------------------------------------- */
86 /* --- Primitive Data Types --- */
87 /* ---------------------------------------------------------------------- */
89 /* The following assumptions may need change on your system */
90 typedef u_int8_t UINT8; /* 1 byte */
91 typedef u_int16_t UINT16; /* 2 byte */
92 typedef u_int32_t UINT32; /* 4 byte */
93 typedef u_int64_t UINT64; /* 8 bytes */
94 typedef unsigned int UWORD; /* Register */
96 /* ---------------------------------------------------------------------- */
97 /* --- Constants -------------------------------------------------------- */
98 /* ---------------------------------------------------------------------- */
100 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
102 /* Message "words" are read from memory in an endian-specific manner. */
103 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
104 /* be set true if the host computer is little-endian. */
106 #if BYTE_ORDER == LITTLE_ENDIAN
107 #define __LITTLE_ENDIAN__ 1
108 #else
109 #define __LITTLE_ENDIAN__ 0
110 #endif
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Architecture Specific ------------------------------------------ */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ---------------------------------------------------------------------- */
121 /* ----- Primitive Routines --------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123 /* ---------------------------------------------------------------------- */
126 /* ---------------------------------------------------------------------- */
127 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128 /* ---------------------------------------------------------------------- */
130 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
132 /* ---------------------------------------------------------------------- */
133 /* --- Endian Conversion --- Forcing assembly on some platforms */
134 /* ---------------------------------------------------------------------- */
136 #if (__LITTLE_ENDIAN__)
137 #define LOAD_UINT32_REVERSED(p) get_u32(p)
138 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
139 #else
140 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
141 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
142 #endif
144 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
145 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
147 /* ---------------------------------------------------------------------- */
148 /* ---------------------------------------------------------------------- */
149 /* ----- Begin KDF & PDF Section ---------------------------------------- */
150 /* ---------------------------------------------------------------------- */
151 /* ---------------------------------------------------------------------- */
153 /* UMAC uses AES with 16 byte block and key lengths */
154 #define AES_BLOCK_LEN 16
156 /* OpenSSL's AES */
157 #ifdef WITH_OPENSSL
158 #include "openbsd-compat/openssl-compat.h"
159 #ifndef USE_BUILTIN_RIJNDAEL
160 # include <openssl/aes.h>
161 #endif
162 typedef AES_KEY aes_int_key[1];
163 #define aes_encryption(in,out,int_key) \
164 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165 #define aes_key_setup(key,int_key) \
166 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167 #else
168 #include "rijndael.h"
169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
171 #define aes_encryption(in,out,int_key) \
172 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173 #define aes_key_setup(key,int_key) \
174 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175 UMAC_KEY_LEN*8)
176 #endif
178 /* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182 * 'ndx' causes a distinct byte stream.
184 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
186 UINT8 in_buf[AES_BLOCK_LEN] = {0};
187 UINT8 out_buf[AES_BLOCK_LEN];
188 UINT8 *dst_buf = (UINT8 *)bufp;
189 int i;
191 /* Setup the initial value */
192 in_buf[AES_BLOCK_LEN-9] = ndx;
193 in_buf[AES_BLOCK_LEN-1] = i = 1;
195 while (nbytes >= AES_BLOCK_LEN) {
196 aes_encryption(in_buf, out_buf, key);
197 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198 in_buf[AES_BLOCK_LEN-1] = ++i;
199 nbytes -= AES_BLOCK_LEN;
200 dst_buf += AES_BLOCK_LEN;
202 if (nbytes) {
203 aes_encryption(in_buf, out_buf, key);
204 memcpy(dst_buf,out_buf,nbytes);
206 explicit_bzero(in_buf, sizeof(in_buf));
207 explicit_bzero(out_buf, sizeof(out_buf));
210 /* The final UHASH result is XOR'd with the output of a pseudorandom
211 * function. Here, we use AES to generate random output and
212 * xor the appropriate bytes depending on the last bits of nonce.
213 * This scheme is optimized for sequential, increasing big-endian nonces.
216 typedef struct {
217 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
218 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
219 aes_int_key prf_key; /* Expanded AES key for PDF */
220 } pdf_ctx;
222 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224 UINT8 buf[UMAC_KEY_LEN];
226 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
227 aes_key_setup(buf, pc->prf_key);
229 /* Initialize pdf and cache */
230 memset(pc->nonce, 0, sizeof(pc->nonce));
231 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
232 explicit_bzero(buf, sizeof(buf));
235 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
237 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
238 * of the AES output. If last time around we returned the ndx-1st
239 * element, then we may have the result in the cache already.
242 #if (UMAC_OUTPUT_LEN == 4)
243 #define LOW_BIT_MASK 3
244 #elif (UMAC_OUTPUT_LEN == 8)
245 #define LOW_BIT_MASK 1
246 #elif (UMAC_OUTPUT_LEN > 8)
247 #define LOW_BIT_MASK 0
248 #endif
249 union {
250 UINT8 tmp_nonce_lo[4];
251 UINT32 align;
252 } t;
253 #if LOW_BIT_MASK != 0
254 int ndx = nonce[7] & LOW_BIT_MASK;
255 #endif
256 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
257 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
259 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
260 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
262 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
263 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
264 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
267 #if (UMAC_OUTPUT_LEN == 4)
268 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
269 #elif (UMAC_OUTPUT_LEN == 8)
270 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
271 #elif (UMAC_OUTPUT_LEN == 12)
272 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
274 #elif (UMAC_OUTPUT_LEN == 16)
275 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
276 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
277 #endif
280 /* ---------------------------------------------------------------------- */
281 /* ---------------------------------------------------------------------- */
282 /* ----- Begin NH Hash Section ------------------------------------------ */
283 /* ---------------------------------------------------------------------- */
284 /* ---------------------------------------------------------------------- */
286 /* The NH-based hash functions used in UMAC are described in the UMAC paper
287 * and specification, both of which can be found at the UMAC website.
288 * The interface to this implementation has two
289 * versions, one expects the entire message being hashed to be passed
290 * in a single buffer and returns the hash result immediately. The second
291 * allows the message to be passed in a sequence of buffers. In the
292 * muliple-buffer interface, the client calls the routine nh_update() as
293 * many times as necessary. When there is no more data to be fed to the
294 * hash, the client calls nh_final() which calculates the hash output.
295 * Before beginning another hash calculation the nh_reset() routine
296 * must be called. The single-buffer routine, nh(), is equivalent to
297 * the sequence of calls nh_update() and nh_final(); however it is
298 * optimized and should be prefered whenever the multiple-buffer interface
299 * is not necessary. When using either interface, it is the client's
300 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
302 * The routine nh_init() initializes the nh_ctx data structure and
303 * must be called once, before any other PDF routine.
306 /* The "nh_aux" routines do the actual NH hashing work. They
307 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
308 * produce output for all STREAMS NH iterations in one call,
309 * allowing the parallel implementation of the streams.
312 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
313 #define L1_KEY_LEN 1024 /* Internal key bytes */
314 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
315 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
316 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
317 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
319 typedef struct {
320 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
321 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
322 int next_data_empty; /* Bookeeping variable for data buffer. */
323 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
324 UINT64 state[STREAMS]; /* on-line state */
325 } nh_ctx;
328 #if (UMAC_OUTPUT_LEN == 4)
330 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
331 /* NH hashing primitive. Previous (partial) hash result is loaded and
332 * then stored via hp pointer. The length of the data pointed at by "dp",
333 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
334 * is expected to be endian compensated in memory at key setup.
337 UINT64 h;
338 UWORD c = dlen / 32;
339 UINT32 *k = (UINT32 *)kp;
340 const UINT32 *d = (const UINT32 *)dp;
341 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
342 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
344 h = *((UINT64 *)hp);
345 do {
346 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
347 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
348 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
349 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
350 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
351 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
352 h += MUL64((k0 + d0), (k4 + d4));
353 h += MUL64((k1 + d1), (k5 + d5));
354 h += MUL64((k2 + d2), (k6 + d6));
355 h += MUL64((k3 + d3), (k7 + d7));
357 d += 8;
358 k += 8;
359 } while (--c);
360 *((UINT64 *)hp) = h;
363 #elif (UMAC_OUTPUT_LEN == 8)
365 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
366 /* Same as previous nh_aux, but two streams are handled in one pass,
367 * reading and writing 16 bytes of hash-state per call.
370 UINT64 h1,h2;
371 UWORD c = dlen / 32;
372 UINT32 *k = (UINT32 *)kp;
373 const UINT32 *d = (const UINT32 *)dp;
374 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
375 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
376 k8,k9,k10,k11;
378 h1 = *((UINT64 *)hp);
379 h2 = *((UINT64 *)hp + 1);
380 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
381 do {
382 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
383 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
384 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
385 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
386 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
387 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
389 h1 += MUL64((k0 + d0), (k4 + d4));
390 h2 += MUL64((k4 + d0), (k8 + d4));
392 h1 += MUL64((k1 + d1), (k5 + d5));
393 h2 += MUL64((k5 + d1), (k9 + d5));
395 h1 += MUL64((k2 + d2), (k6 + d6));
396 h2 += MUL64((k6 + d2), (k10 + d6));
398 h1 += MUL64((k3 + d3), (k7 + d7));
399 h2 += MUL64((k7 + d3), (k11 + d7));
401 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
403 d += 8;
404 k += 8;
405 } while (--c);
406 ((UINT64 *)hp)[0] = h1;
407 ((UINT64 *)hp)[1] = h2;
410 #elif (UMAC_OUTPUT_LEN == 12)
412 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
413 /* Same as previous nh_aux, but two streams are handled in one pass,
414 * reading and writing 24 bytes of hash-state per call.
417 UINT64 h1,h2,h3;
418 UWORD c = dlen / 32;
419 UINT32 *k = (UINT32 *)kp;
420 const UINT32 *d = (const UINT32 *)dp;
421 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
422 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
423 k8,k9,k10,k11,k12,k13,k14,k15;
425 h1 = *((UINT64 *)hp);
426 h2 = *((UINT64 *)hp + 1);
427 h3 = *((UINT64 *)hp + 2);
428 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
429 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
430 do {
431 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
432 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
433 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
434 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
435 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
436 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
438 h1 += MUL64((k0 + d0), (k4 + d4));
439 h2 += MUL64((k4 + d0), (k8 + d4));
440 h3 += MUL64((k8 + d0), (k12 + d4));
442 h1 += MUL64((k1 + d1), (k5 + d5));
443 h2 += MUL64((k5 + d1), (k9 + d5));
444 h3 += MUL64((k9 + d1), (k13 + d5));
446 h1 += MUL64((k2 + d2), (k6 + d6));
447 h2 += MUL64((k6 + d2), (k10 + d6));
448 h3 += MUL64((k10 + d2), (k14 + d6));
450 h1 += MUL64((k3 + d3), (k7 + d7));
451 h2 += MUL64((k7 + d3), (k11 + d7));
452 h3 += MUL64((k11 + d3), (k15 + d7));
454 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
455 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
457 d += 8;
458 k += 8;
459 } while (--c);
460 ((UINT64 *)hp)[0] = h1;
461 ((UINT64 *)hp)[1] = h2;
462 ((UINT64 *)hp)[2] = h3;
465 #elif (UMAC_OUTPUT_LEN == 16)
467 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
468 /* Same as previous nh_aux, but two streams are handled in one pass,
469 * reading and writing 24 bytes of hash-state per call.
472 UINT64 h1,h2,h3,h4;
473 UWORD c = dlen / 32;
474 UINT32 *k = (UINT32 *)kp;
475 const UINT32 *d = (const UINT32 *)dp;
476 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
477 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
478 k8,k9,k10,k11,k12,k13,k14,k15,
479 k16,k17,k18,k19;
481 h1 = *((UINT64 *)hp);
482 h2 = *((UINT64 *)hp + 1);
483 h3 = *((UINT64 *)hp + 2);
484 h4 = *((UINT64 *)hp + 3);
485 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
486 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
487 do {
488 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
489 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
490 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
491 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
492 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
493 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
494 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
496 h1 += MUL64((k0 + d0), (k4 + d4));
497 h2 += MUL64((k4 + d0), (k8 + d4));
498 h3 += MUL64((k8 + d0), (k12 + d4));
499 h4 += MUL64((k12 + d0), (k16 + d4));
501 h1 += MUL64((k1 + d1), (k5 + d5));
502 h2 += MUL64((k5 + d1), (k9 + d5));
503 h3 += MUL64((k9 + d1), (k13 + d5));
504 h4 += MUL64((k13 + d1), (k17 + d5));
506 h1 += MUL64((k2 + d2), (k6 + d6));
507 h2 += MUL64((k6 + d2), (k10 + d6));
508 h3 += MUL64((k10 + d2), (k14 + d6));
509 h4 += MUL64((k14 + d2), (k18 + d6));
511 h1 += MUL64((k3 + d3), (k7 + d7));
512 h2 += MUL64((k7 + d3), (k11 + d7));
513 h3 += MUL64((k11 + d3), (k15 + d7));
514 h4 += MUL64((k15 + d3), (k19 + d7));
516 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
517 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
518 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
520 d += 8;
521 k += 8;
522 } while (--c);
523 ((UINT64 *)hp)[0] = h1;
524 ((UINT64 *)hp)[1] = h2;
525 ((UINT64 *)hp)[2] = h3;
526 ((UINT64 *)hp)[3] = h4;
529 /* ---------------------------------------------------------------------- */
530 #endif /* UMAC_OUTPUT_LENGTH */
531 /* ---------------------------------------------------------------------- */
534 /* ---------------------------------------------------------------------- */
536 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
537 /* This function is a wrapper for the primitive NH hash functions. It takes
538 * as argument "hc" the current hash context and a buffer which must be a
539 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
540 * appropriately according to how much message has been hashed already.
543 UINT8 *key;
545 key = hc->nh_key + hc->bytes_hashed;
546 nh_aux(key, buf, hc->state, nbytes);
549 /* ---------------------------------------------------------------------- */
551 #if (__LITTLE_ENDIAN__)
552 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
553 /* We endian convert the keys on little-endian computers to */
554 /* compensate for the lack of big-endian memory reads during hashing. */
556 UWORD iters = num_bytes / bpw;
557 if (bpw == 4) {
558 UINT32 *p = (UINT32 *)buf;
559 do {
560 *p = LOAD_UINT32_REVERSED(p);
561 p++;
562 } while (--iters);
563 } else if (bpw == 8) {
564 UINT32 *p = (UINT32 *)buf;
565 UINT32 t;
566 do {
567 t = LOAD_UINT32_REVERSED(p+1);
568 p[1] = LOAD_UINT32_REVERSED(p);
569 p[0] = t;
570 p += 2;
571 } while (--iters);
574 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
575 #else
576 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
577 #endif
579 /* ---------------------------------------------------------------------- */
581 static void nh_reset(nh_ctx *hc)
582 /* Reset nh_ctx to ready for hashing of new data */
584 hc->bytes_hashed = 0;
585 hc->next_data_empty = 0;
586 hc->state[0] = 0;
587 #if (UMAC_OUTPUT_LEN >= 8)
588 hc->state[1] = 0;
589 #endif
590 #if (UMAC_OUTPUT_LEN >= 12)
591 hc->state[2] = 0;
592 #endif
593 #if (UMAC_OUTPUT_LEN == 16)
594 hc->state[3] = 0;
595 #endif
599 /* ---------------------------------------------------------------------- */
601 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
602 /* Generate nh_key, endian convert and reset to be ready for hashing. */
604 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
605 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
606 nh_reset(hc);
609 /* ---------------------------------------------------------------------- */
611 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
612 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
613 /* even multiple of HASH_BUF_BYTES. */
615 UINT32 i,j;
617 j = hc->next_data_empty;
618 if ((j + nbytes) >= HASH_BUF_BYTES) {
619 if (j) {
620 i = HASH_BUF_BYTES - j;
621 memcpy(hc->data+j, buf, i);
622 nh_transform(hc,hc->data,HASH_BUF_BYTES);
623 nbytes -= i;
624 buf += i;
625 hc->bytes_hashed += HASH_BUF_BYTES;
627 if (nbytes >= HASH_BUF_BYTES) {
628 i = nbytes & ~(HASH_BUF_BYTES - 1);
629 nh_transform(hc, buf, i);
630 nbytes -= i;
631 buf += i;
632 hc->bytes_hashed += i;
634 j = 0;
636 memcpy(hc->data + j, buf, nbytes);
637 hc->next_data_empty = j + nbytes;
640 /* ---------------------------------------------------------------------- */
642 static void zero_pad(UINT8 *p, int nbytes)
644 /* Write "nbytes" of zeroes, beginning at "p" */
645 if (nbytes >= (int)sizeof(UWORD)) {
646 while ((ptrdiff_t)p % sizeof(UWORD)) {
647 *p = 0;
648 nbytes--;
649 p++;
651 while (nbytes >= (int)sizeof(UWORD)) {
652 *(UWORD *)p = 0;
653 nbytes -= sizeof(UWORD);
654 p += sizeof(UWORD);
657 while (nbytes) {
658 *p = 0;
659 nbytes--;
660 p++;
664 /* ---------------------------------------------------------------------- */
666 static void nh_final(nh_ctx *hc, UINT8 *result)
667 /* After passing some number of data buffers to nh_update() for integration
668 * into an NH context, nh_final is called to produce a hash result. If any
669 * bytes are in the buffer hc->data, incorporate them into the
670 * NH context. Finally, add into the NH accumulation "state" the total number
671 * of bits hashed. The resulting numbers are written to the buffer "result".
672 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
675 int nh_len, nbits;
677 if (hc->next_data_empty != 0) {
678 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
679 ~(L1_PAD_BOUNDARY - 1));
680 zero_pad(hc->data + hc->next_data_empty,
681 nh_len - hc->next_data_empty);
682 nh_transform(hc, hc->data, nh_len);
683 hc->bytes_hashed += hc->next_data_empty;
684 } else if (hc->bytes_hashed == 0) {
685 nh_len = L1_PAD_BOUNDARY;
686 zero_pad(hc->data, L1_PAD_BOUNDARY);
687 nh_transform(hc, hc->data, nh_len);
690 nbits = (hc->bytes_hashed << 3);
691 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
692 #if (UMAC_OUTPUT_LEN >= 8)
693 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
694 #endif
695 #if (UMAC_OUTPUT_LEN >= 12)
696 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
697 #endif
698 #if (UMAC_OUTPUT_LEN == 16)
699 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
700 #endif
701 nh_reset(hc);
704 /* ---------------------------------------------------------------------- */
706 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
707 UINT32 unpadded_len, UINT8 *result)
708 /* All-in-one nh_update() and nh_final() equivalent.
709 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
710 * well aligned
713 UINT32 nbits;
715 /* Initialize the hash state */
716 nbits = (unpadded_len << 3);
718 ((UINT64 *)result)[0] = nbits;
719 #if (UMAC_OUTPUT_LEN >= 8)
720 ((UINT64 *)result)[1] = nbits;
721 #endif
722 #if (UMAC_OUTPUT_LEN >= 12)
723 ((UINT64 *)result)[2] = nbits;
724 #endif
725 #if (UMAC_OUTPUT_LEN == 16)
726 ((UINT64 *)result)[3] = nbits;
727 #endif
729 nh_aux(hc->nh_key, buf, result, padded_len);
732 /* ---------------------------------------------------------------------- */
733 /* ---------------------------------------------------------------------- */
734 /* ----- Begin UHASH Section -------------------------------------------- */
735 /* ---------------------------------------------------------------------- */
736 /* ---------------------------------------------------------------------- */
738 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
739 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
740 * unless the initial data to be hashed is short. After the polynomial-
741 * layer, an inner-product hash is used to produce the final UHASH output.
743 * UHASH provides two interfaces, one all-at-once and another where data
744 * buffers are presented sequentially. In the sequential interface, the
745 * UHASH client calls the routine uhash_update() as many times as necessary.
746 * When there is no more data to be fed to UHASH, the client calls
747 * uhash_final() which
748 * calculates the UHASH output. Before beginning another UHASH calculation
749 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
750 * uhash(), is equivalent to the sequence of calls uhash_update() and
751 * uhash_final(); however it is optimized and should be
752 * used whenever the sequential interface is not necessary.
754 * The routine uhash_init() initializes the uhash_ctx data structure and
755 * must be called once, before any other UHASH routine.
758 /* ---------------------------------------------------------------------- */
759 /* ----- Constants and uhash_ctx ---------------------------------------- */
760 /* ---------------------------------------------------------------------- */
762 /* ---------------------------------------------------------------------- */
763 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
764 /* ---------------------------------------------------------------------- */
766 /* Primes and masks */
767 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
768 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
769 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
772 /* ---------------------------------------------------------------------- */
774 typedef struct uhash_ctx {
775 nh_ctx hash; /* Hash context for L1 NH hash */
776 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
777 UINT64 poly_accum[STREAMS]; /* poly hash result */
778 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
779 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
780 UINT32 msg_len; /* Total length of data passed */
781 /* to uhash */
782 } uhash_ctx;
783 typedef struct uhash_ctx *uhash_ctx_t;
785 /* ---------------------------------------------------------------------- */
788 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
789 * word at a time. As described in the specification, poly32 and poly64
790 * require keys from special domains. The following implementations exploit
791 * the special domains to avoid overflow. The results are not guaranteed to
792 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
793 * patches any errant values.
796 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
798 UINT32 key_hi = (UINT32)(key >> 32),
799 key_lo = (UINT32)key,
800 cur_hi = (UINT32)(cur >> 32),
801 cur_lo = (UINT32)cur,
802 x_lo,
803 x_hi;
804 UINT64 X,T,res;
806 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
807 x_lo = (UINT32)X;
808 x_hi = (UINT32)(X >> 32);
810 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
812 T = ((UINT64)x_lo << 32);
813 res += T;
814 if (res < T)
815 res += 59;
817 res += data;
818 if (res < data)
819 res += 59;
821 return res;
825 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
826 * implementation does not handle all ramp levels. Because we don't handle
827 * the ramp up to p128 modulus in this implementation, we are limited to
828 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
829 * bytes input to UMAC per tag, ie. 16MB).
831 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
833 int i;
834 UINT64 *data=(UINT64*)data_in;
836 for (i = 0; i < STREAMS; i++) {
837 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
838 hc->poly_accum[i] = poly64(hc->poly_accum[i],
839 hc->poly_key_8[i], p64 - 1);
840 hc->poly_accum[i] = poly64(hc->poly_accum[i],
841 hc->poly_key_8[i], (data[i] - 59));
842 } else {
843 hc->poly_accum[i] = poly64(hc->poly_accum[i],
844 hc->poly_key_8[i], data[i]);
850 /* ---------------------------------------------------------------------- */
853 /* The final step in UHASH is an inner-product hash. The poly hash
854 * produces a result not neccesarily WORD_LEN bytes long. The inner-
855 * product hash breaks the polyhash output into 16-bit chunks and
856 * multiplies each with a 36 bit key.
859 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
861 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
862 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
863 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
864 t = t + ipkp[3] * (UINT64)(UINT16)(data);
866 return t;
869 static UINT32 ip_reduce_p36(UINT64 t)
871 /* Divisionless modular reduction */
872 UINT64 ret;
874 ret = (t & m36) + 5 * (t >> 36);
875 if (ret >= p36)
876 ret -= p36;
878 /* return least significant 32 bits */
879 return (UINT32)(ret);
883 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
884 * the polyhash stage is skipped and ip_short is applied directly to the
885 * NH output.
887 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
889 UINT64 t;
890 UINT64 *nhp = (UINT64 *)nh_res;
892 t = ip_aux(0,ahc->ip_keys, nhp[0]);
893 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
894 #if (UMAC_OUTPUT_LEN >= 8)
895 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
896 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
897 #endif
898 #if (UMAC_OUTPUT_LEN >= 12)
899 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
900 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
901 #endif
902 #if (UMAC_OUTPUT_LEN == 16)
903 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
904 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
905 #endif
908 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
909 * the polyhash stage is not skipped and ip_long is applied to the
910 * polyhash output.
912 static void ip_long(uhash_ctx_t ahc, u_char *res)
914 int i;
915 UINT64 t;
917 for (i = 0; i < STREAMS; i++) {
918 /* fix polyhash output not in Z_p64 */
919 if (ahc->poly_accum[i] >= p64)
920 ahc->poly_accum[i] -= p64;
921 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
922 STORE_UINT32_BIG((UINT32 *)res+i,
923 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
928 /* ---------------------------------------------------------------------- */
930 /* ---------------------------------------------------------------------- */
932 /* Reset uhash context for next hash session */
933 static int uhash_reset(uhash_ctx_t pc)
935 nh_reset(&pc->hash);
936 pc->msg_len = 0;
937 pc->poly_accum[0] = 1;
938 #if (UMAC_OUTPUT_LEN >= 8)
939 pc->poly_accum[1] = 1;
940 #endif
941 #if (UMAC_OUTPUT_LEN >= 12)
942 pc->poly_accum[2] = 1;
943 #endif
944 #if (UMAC_OUTPUT_LEN == 16)
945 pc->poly_accum[3] = 1;
946 #endif
947 return 1;
950 /* ---------------------------------------------------------------------- */
952 /* Given a pointer to the internal key needed by kdf() and a uhash context,
953 * initialize the NH context and generate keys needed for poly and inner-
954 * product hashing. All keys are endian adjusted in memory so that native
955 * loads cause correct keys to be in registers during calculation.
957 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
959 int i;
960 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
962 /* Zero the entire uhash context */
963 memset(ahc, 0, sizeof(uhash_ctx));
965 /* Initialize the L1 hash */
966 nh_init(&ahc->hash, prf_key);
968 /* Setup L2 hash variables */
969 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
970 for (i = 0; i < STREAMS; i++) {
971 /* Fill keys from the buffer, skipping bytes in the buffer not
972 * used by this implementation. Endian reverse the keys if on a
973 * little-endian computer.
975 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
976 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
977 /* Mask the 64-bit keys to their special domain */
978 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
979 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
982 /* Setup L3-1 hash variables */
983 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
984 for (i = 0; i < STREAMS; i++)
985 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
986 4*sizeof(UINT64));
987 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
988 sizeof(ahc->ip_keys));
989 for (i = 0; i < STREAMS*4; i++)
990 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
992 /* Setup L3-2 hash variables */
993 /* Fill buffer with index 4 key */
994 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
995 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
996 STREAMS * sizeof(UINT32));
997 explicit_bzero(buf, sizeof(buf));
1000 /* ---------------------------------------------------------------------- */
1002 #if 0
1003 static uhash_ctx_t uhash_alloc(u_char key[])
1005 /* Allocate memory and force to a 16-byte boundary. */
1006 uhash_ctx_t ctx;
1007 u_char bytes_to_add;
1008 aes_int_key prf_key;
1010 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1011 if (ctx) {
1012 if (ALLOC_BOUNDARY) {
1013 bytes_to_add = ALLOC_BOUNDARY -
1014 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1015 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1016 *((u_char *)ctx - 1) = bytes_to_add;
1018 aes_key_setup(key,prf_key);
1019 uhash_init(ctx, prf_key);
1021 return (ctx);
1023 #endif
1025 /* ---------------------------------------------------------------------- */
1027 #if 0
1028 static int uhash_free(uhash_ctx_t ctx)
1030 /* Free memory allocated by uhash_alloc */
1031 u_char bytes_to_sub;
1033 if (ctx) {
1034 if (ALLOC_BOUNDARY) {
1035 bytes_to_sub = *((u_char *)ctx - 1);
1036 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1038 free(ctx);
1040 return (1);
1042 #endif
1043 /* ---------------------------------------------------------------------- */
1045 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1046 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1047 * hash each one with NH, calling the polyhash on each NH output.
1050 UWORD bytes_hashed, bytes_remaining;
1051 UINT64 result_buf[STREAMS];
1052 UINT8 *nh_result = (UINT8 *)&result_buf;
1054 if (ctx->msg_len + len <= L1_KEY_LEN) {
1055 nh_update(&ctx->hash, (const UINT8 *)input, len);
1056 ctx->msg_len += len;
1057 } else {
1059 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1060 if (ctx->msg_len == L1_KEY_LEN)
1061 bytes_hashed = L1_KEY_LEN;
1063 if (bytes_hashed + len >= L1_KEY_LEN) {
1065 /* If some bytes have been passed to the hash function */
1066 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1067 /* bytes to complete the current nh_block. */
1068 if (bytes_hashed) {
1069 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1070 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1071 nh_final(&ctx->hash, nh_result);
1072 ctx->msg_len += bytes_remaining;
1073 poly_hash(ctx,(UINT32 *)nh_result);
1074 len -= bytes_remaining;
1075 input += bytes_remaining;
1078 /* Hash directly from input stream if enough bytes */
1079 while (len >= L1_KEY_LEN) {
1080 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1081 L1_KEY_LEN, nh_result);
1082 ctx->msg_len += L1_KEY_LEN;
1083 len -= L1_KEY_LEN;
1084 input += L1_KEY_LEN;
1085 poly_hash(ctx,(UINT32 *)nh_result);
1089 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1090 if (len) {
1091 nh_update(&ctx->hash, (const UINT8 *)input, len);
1092 ctx->msg_len += len;
1096 return (1);
1099 /* ---------------------------------------------------------------------- */
1101 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1102 /* Incorporate any pending data, pad, and generate tag */
1104 UINT64 result_buf[STREAMS];
1105 UINT8 *nh_result = (UINT8 *)&result_buf;
1107 if (ctx->msg_len > L1_KEY_LEN) {
1108 if (ctx->msg_len % L1_KEY_LEN) {
1109 nh_final(&ctx->hash, nh_result);
1110 poly_hash(ctx,(UINT32 *)nh_result);
1112 ip_long(ctx, res);
1113 } else {
1114 nh_final(&ctx->hash, nh_result);
1115 ip_short(ctx,nh_result, res);
1117 uhash_reset(ctx);
1118 return (1);
1121 /* ---------------------------------------------------------------------- */
1123 #if 0
1124 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1125 /* assumes that msg is in a writable buffer of length divisible by */
1126 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1128 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1129 UINT32 nh_len;
1130 int extra_zeroes_needed;
1132 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1133 * the polyhash.
1135 if (len <= L1_KEY_LEN) {
1136 if (len == 0) /* If zero length messages will not */
1137 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1138 else
1139 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1140 extra_zeroes_needed = nh_len - len;
1141 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1142 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1143 ip_short(ahc,nh_result, res);
1144 } else {
1145 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1146 * output to poly_hash().
1148 do {
1149 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1150 poly_hash(ahc,(UINT32 *)nh_result);
1151 len -= L1_KEY_LEN;
1152 msg += L1_KEY_LEN;
1153 } while (len >= L1_KEY_LEN);
1154 if (len) {
1155 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1156 extra_zeroes_needed = nh_len - len;
1157 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1158 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1159 poly_hash(ahc,(UINT32 *)nh_result);
1162 ip_long(ahc, res);
1165 uhash_reset(ahc);
1166 return 1;
1168 #endif
1170 /* ---------------------------------------------------------------------- */
1171 /* ---------------------------------------------------------------------- */
1172 /* ----- Begin UMAC Section --------------------------------------------- */
1173 /* ---------------------------------------------------------------------- */
1174 /* ---------------------------------------------------------------------- */
1176 /* The UMAC interface has two interfaces, an all-at-once interface where
1177 * the entire message to be authenticated is passed to UMAC in one buffer,
1178 * and a sequential interface where the message is presented a little at a
1179 * time. The all-at-once is more optimaized than the sequential version and
1180 * should be preferred when the sequential interface is not required.
1182 struct umac_ctx {
1183 uhash_ctx hash; /* Hash function for message compression */
1184 pdf_ctx pdf; /* PDF for hashed output */
1185 void *free_ptr; /* Address to free this struct via */
1186 } umac_ctx;
1188 /* ---------------------------------------------------------------------- */
1190 #if 0
1191 int umac_reset(struct umac_ctx *ctx)
1192 /* Reset the hash function to begin a new authentication. */
1194 uhash_reset(&ctx->hash);
1195 return (1);
1197 #endif
1199 /* ---------------------------------------------------------------------- */
1201 int umac_delete(struct umac_ctx *ctx)
1202 /* Deallocate the ctx structure */
1204 if (ctx) {
1205 if (ALLOC_BOUNDARY)
1206 ctx = (struct umac_ctx *)ctx->free_ptr;
1207 explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1208 free(ctx);
1210 return (1);
1213 /* ---------------------------------------------------------------------- */
1215 struct umac_ctx *umac_new(const u_char key[])
1216 /* Dynamically allocate a umac_ctx struct, initialize variables,
1217 * generate subkeys from key. Align to 16-byte boundary.
1220 struct umac_ctx *ctx, *octx;
1221 size_t bytes_to_add;
1222 aes_int_key prf_key;
1224 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1225 if (ctx) {
1226 if (ALLOC_BOUNDARY) {
1227 bytes_to_add = ALLOC_BOUNDARY -
1228 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1229 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1231 ctx->free_ptr = octx;
1232 aes_key_setup(key, prf_key);
1233 pdf_init(&ctx->pdf, prf_key);
1234 uhash_init(&ctx->hash, prf_key);
1235 explicit_bzero(prf_key, sizeof(prf_key));
1238 return (ctx);
1241 /* ---------------------------------------------------------------------- */
1243 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1244 /* Incorporate any pending data, pad, and generate tag */
1246 uhash_final(&ctx->hash, (u_char *)tag);
1247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1249 return (1);
1252 /* ---------------------------------------------------------------------- */
1254 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1257 /* output buffer is full. */
1259 uhash_update(&ctx->hash, input, len);
1260 return (1);
1263 /* ---------------------------------------------------------------------- */
1265 #if 0
1266 int umac(struct umac_ctx *ctx, u_char *input,
1267 long len, u_char tag[],
1268 u_char nonce[8])
1269 /* All-in-one version simply calls umac_update() and umac_final(). */
1271 uhash(&ctx->hash, input, len, (u_char *)tag);
1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1274 return (1);
1276 #endif
1278 /* ---------------------------------------------------------------------- */
1279 /* ---------------------------------------------------------------------- */
1280 /* ----- End UMAC Section ----------------------------------------------- */
1281 /* ---------------------------------------------------------------------- */
1282 /* ---------------------------------------------------------------------- */