inet6: only mark autoconf addresses tentative if detached
[dragonfly.git] / crypto / openssh / umac.c
bloba710424ce0fd8fc8ef357c9778c98a7fe9f1c713
1 /* $OpenBSD: umac.c,v 1.22 2022/01/01 05:55:06 jsg Exp $ */
2 /* -----------------------------------------------------------------------
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 #endif
59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62 #endif
64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66 /* #define SSE2 0 Is SSE2 is available? */
67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
68 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */
70 /* ---------------------------------------------------------------------- */
71 /* -- Global Includes --------------------------------------------------- */
72 /* ---------------------------------------------------------------------- */
74 #include "includes.h"
75 #include <sys/types.h>
76 #include <string.h>
77 #include <stdarg.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <stddef.h>
82 #include "xmalloc.h"
83 #include "umac.h"
84 #include "misc.h"
86 /* ---------------------------------------------------------------------- */
87 /* --- Primitive Data Types --- */
88 /* ---------------------------------------------------------------------- */
90 /* The following assumptions may need change on your system */
91 typedef u_int8_t UINT8; /* 1 byte */
92 typedef u_int16_t UINT16; /* 2 byte */
93 typedef u_int32_t UINT32; /* 4 byte */
94 typedef u_int64_t UINT64; /* 8 bytes */
95 typedef unsigned int UWORD; /* Register */
97 /* ---------------------------------------------------------------------- */
98 /* --- Constants -------------------------------------------------------- */
99 /* ---------------------------------------------------------------------- */
101 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
103 /* Message "words" are read from memory in an endian-specific manner. */
104 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
105 /* be set true if the host computer is little-endian. */
107 #if BYTE_ORDER == LITTLE_ENDIAN
108 #define __LITTLE_ENDIAN__ 1
109 #else
110 #define __LITTLE_ENDIAN__ 0
111 #endif
113 /* ---------------------------------------------------------------------- */
114 /* ---------------------------------------------------------------------- */
115 /* ----- Architecture Specific ------------------------------------------ */
116 /* ---------------------------------------------------------------------- */
117 /* ---------------------------------------------------------------------- */
120 /* ---------------------------------------------------------------------- */
121 /* ---------------------------------------------------------------------- */
122 /* ----- Primitive Routines --------------------------------------------- */
123 /* ---------------------------------------------------------------------- */
124 /* ---------------------------------------------------------------------- */
127 /* ---------------------------------------------------------------------- */
128 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
129 /* ---------------------------------------------------------------------- */
131 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
133 /* ---------------------------------------------------------------------- */
134 /* --- Endian Conversion --- Forcing assembly on some platforms */
135 /* ---------------------------------------------------------------------- */
137 #if (__LITTLE_ENDIAN__)
138 #define LOAD_UINT32_REVERSED(p) get_u32(p)
139 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
140 #else
141 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
142 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
143 #endif
145 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
146 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
148 /* ---------------------------------------------------------------------- */
149 /* ---------------------------------------------------------------------- */
150 /* ----- Begin KDF & PDF Section ---------------------------------------- */
151 /* ---------------------------------------------------------------------- */
152 /* ---------------------------------------------------------------------- */
154 /* UMAC uses AES with 16 byte block and key lengths */
155 #define AES_BLOCK_LEN 16
157 /* OpenSSL's AES */
158 #ifdef WITH_OPENSSL
159 #include "openbsd-compat/openssl-compat.h"
160 #ifndef USE_BUILTIN_RIJNDAEL
161 # include <openssl/aes.h>
162 #endif
163 typedef AES_KEY aes_int_key[1];
164 #define aes_encryption(in,out,int_key) \
165 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
166 #define aes_key_setup(key,int_key) \
167 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
168 #else
169 #include "rijndael.h"
170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
172 #define aes_encryption(in,out,int_key) \
173 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
174 #define aes_key_setup(key,int_key) \
175 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
176 UMAC_KEY_LEN*8)
177 #endif
179 /* The user-supplied UMAC key is stretched using AES in a counter
180 * mode to supply all random bits needed by UMAC. The kdf function takes
181 * an AES internal key representation 'key' and writes a stream of
182 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
183 * 'ndx' causes a distinct byte stream.
185 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
187 UINT8 in_buf[AES_BLOCK_LEN] = {0};
188 UINT8 out_buf[AES_BLOCK_LEN];
189 UINT8 *dst_buf = (UINT8 *)bufp;
190 int i;
192 /* Setup the initial value */
193 in_buf[AES_BLOCK_LEN-9] = ndx;
194 in_buf[AES_BLOCK_LEN-1] = i = 1;
196 while (nbytes >= AES_BLOCK_LEN) {
197 aes_encryption(in_buf, out_buf, key);
198 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
199 in_buf[AES_BLOCK_LEN-1] = ++i;
200 nbytes -= AES_BLOCK_LEN;
201 dst_buf += AES_BLOCK_LEN;
203 if (nbytes) {
204 aes_encryption(in_buf, out_buf, key);
205 memcpy(dst_buf,out_buf,nbytes);
207 explicit_bzero(in_buf, sizeof(in_buf));
208 explicit_bzero(out_buf, sizeof(out_buf));
211 /* The final UHASH result is XOR'd with the output of a pseudorandom
212 * function. Here, we use AES to generate random output and
213 * xor the appropriate bytes depending on the last bits of nonce.
214 * This scheme is optimized for sequential, increasing big-endian nonces.
217 typedef struct {
218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
220 aes_int_key prf_key; /* Expanded AES key for PDF */
221 } pdf_ctx;
223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
225 UINT8 buf[UMAC_KEY_LEN];
227 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228 aes_key_setup(buf, pc->prf_key);
230 /* Initialize pdf and cache */
231 memset(pc->nonce, 0, sizeof(pc->nonce));
232 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233 explicit_bzero(buf, sizeof(buf));
236 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
238 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
239 * of the AES output. If last time around we returned the ndx-1st
240 * element, then we may have the result in the cache already.
243 #if (UMAC_OUTPUT_LEN == 4)
244 #define LOW_BIT_MASK 3
245 #elif (UMAC_OUTPUT_LEN == 8)
246 #define LOW_BIT_MASK 1
247 #elif (UMAC_OUTPUT_LEN > 8)
248 #define LOW_BIT_MASK 0
249 #endif
250 union {
251 UINT8 tmp_nonce_lo[4];
252 UINT32 align;
253 } t;
254 #if LOW_BIT_MASK != 0
255 int ndx = nonce[7] & LOW_BIT_MASK;
256 #endif
257 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
258 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
260 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
261 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
263 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
264 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
265 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
268 #if (UMAC_OUTPUT_LEN == 4)
269 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
270 #elif (UMAC_OUTPUT_LEN == 8)
271 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
272 #elif (UMAC_OUTPUT_LEN == 12)
273 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
274 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
275 #elif (UMAC_OUTPUT_LEN == 16)
276 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
277 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
278 #endif
281 /* ---------------------------------------------------------------------- */
282 /* ---------------------------------------------------------------------- */
283 /* ----- Begin NH Hash Section ------------------------------------------ */
284 /* ---------------------------------------------------------------------- */
285 /* ---------------------------------------------------------------------- */
287 /* The NH-based hash functions used in UMAC are described in the UMAC paper
288 * and specification, both of which can be found at the UMAC website.
289 * The interface to this implementation has two
290 * versions, one expects the entire message being hashed to be passed
291 * in a single buffer and returns the hash result immediately. The second
292 * allows the message to be passed in a sequence of buffers. In the
293 * multiple-buffer interface, the client calls the routine nh_update() as
294 * many times as necessary. When there is no more data to be fed to the
295 * hash, the client calls nh_final() which calculates the hash output.
296 * Before beginning another hash calculation the nh_reset() routine
297 * must be called. The single-buffer routine, nh(), is equivalent to
298 * the sequence of calls nh_update() and nh_final(); however it is
299 * optimized and should be preferred whenever the multiple-buffer interface
300 * is not necessary. When using either interface, it is the client's
301 * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
303 * The routine nh_init() initializes the nh_ctx data structure and
304 * must be called once, before any other PDF routine.
307 /* The "nh_aux" routines do the actual NH hashing work. They
308 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
309 * produce output for all STREAMS NH iterations in one call,
310 * allowing the parallel implementation of the streams.
313 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
314 #define L1_KEY_LEN 1024 /* Internal key bytes */
315 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
316 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
317 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
318 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
320 typedef struct {
321 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
322 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
323 int next_data_empty; /* Bookkeeping variable for data buffer. */
324 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */
325 UINT64 state[STREAMS]; /* on-line state */
326 } nh_ctx;
329 #if (UMAC_OUTPUT_LEN == 4)
331 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
332 /* NH hashing primitive. Previous (partial) hash result is loaded and
333 * then stored via hp pointer. The length of the data pointed at by "dp",
334 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
335 * is expected to be endian compensated in memory at key setup.
338 UINT64 h;
339 UWORD c = dlen / 32;
340 UINT32 *k = (UINT32 *)kp;
341 const UINT32 *d = (const UINT32 *)dp;
342 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
343 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
345 h = *((UINT64 *)hp);
346 do {
347 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
348 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
349 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
350 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
351 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
352 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
353 h += MUL64((k0 + d0), (k4 + d4));
354 h += MUL64((k1 + d1), (k5 + d5));
355 h += MUL64((k2 + d2), (k6 + d6));
356 h += MUL64((k3 + d3), (k7 + d7));
358 d += 8;
359 k += 8;
360 } while (--c);
361 *((UINT64 *)hp) = h;
364 #elif (UMAC_OUTPUT_LEN == 8)
366 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
367 /* Same as previous nh_aux, but two streams are handled in one pass,
368 * reading and writing 16 bytes of hash-state per call.
371 UINT64 h1,h2;
372 UWORD c = dlen / 32;
373 UINT32 *k = (UINT32 *)kp;
374 const UINT32 *d = (const UINT32 *)dp;
375 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
376 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
377 k8,k9,k10,k11;
379 h1 = *((UINT64 *)hp);
380 h2 = *((UINT64 *)hp + 1);
381 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
382 do {
383 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
384 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
385 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
386 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
387 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
388 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
390 h1 += MUL64((k0 + d0), (k4 + d4));
391 h2 += MUL64((k4 + d0), (k8 + d4));
393 h1 += MUL64((k1 + d1), (k5 + d5));
394 h2 += MUL64((k5 + d1), (k9 + d5));
396 h1 += MUL64((k2 + d2), (k6 + d6));
397 h2 += MUL64((k6 + d2), (k10 + d6));
399 h1 += MUL64((k3 + d3), (k7 + d7));
400 h2 += MUL64((k7 + d3), (k11 + d7));
402 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
404 d += 8;
405 k += 8;
406 } while (--c);
407 ((UINT64 *)hp)[0] = h1;
408 ((UINT64 *)hp)[1] = h2;
411 #elif (UMAC_OUTPUT_LEN == 12)
413 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
414 /* Same as previous nh_aux, but two streams are handled in one pass,
415 * reading and writing 24 bytes of hash-state per call.
418 UINT64 h1,h2,h3;
419 UWORD c = dlen / 32;
420 UINT32 *k = (UINT32 *)kp;
421 const UINT32 *d = (const UINT32 *)dp;
422 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
423 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
424 k8,k9,k10,k11,k12,k13,k14,k15;
426 h1 = *((UINT64 *)hp);
427 h2 = *((UINT64 *)hp + 1);
428 h3 = *((UINT64 *)hp + 2);
429 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
430 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
431 do {
432 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
433 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
434 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
435 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
436 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
437 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
439 h1 += MUL64((k0 + d0), (k4 + d4));
440 h2 += MUL64((k4 + d0), (k8 + d4));
441 h3 += MUL64((k8 + d0), (k12 + d4));
443 h1 += MUL64((k1 + d1), (k5 + d5));
444 h2 += MUL64((k5 + d1), (k9 + d5));
445 h3 += MUL64((k9 + d1), (k13 + d5));
447 h1 += MUL64((k2 + d2), (k6 + d6));
448 h2 += MUL64((k6 + d2), (k10 + d6));
449 h3 += MUL64((k10 + d2), (k14 + d6));
451 h1 += MUL64((k3 + d3), (k7 + d7));
452 h2 += MUL64((k7 + d3), (k11 + d7));
453 h3 += MUL64((k11 + d3), (k15 + d7));
455 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
456 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
458 d += 8;
459 k += 8;
460 } while (--c);
461 ((UINT64 *)hp)[0] = h1;
462 ((UINT64 *)hp)[1] = h2;
463 ((UINT64 *)hp)[2] = h3;
466 #elif (UMAC_OUTPUT_LEN == 16)
468 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
469 /* Same as previous nh_aux, but two streams are handled in one pass,
470 * reading and writing 24 bytes of hash-state per call.
473 UINT64 h1,h2,h3,h4;
474 UWORD c = dlen / 32;
475 UINT32 *k = (UINT32 *)kp;
476 const UINT32 *d = (const UINT32 *)dp;
477 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
478 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
479 k8,k9,k10,k11,k12,k13,k14,k15,
480 k16,k17,k18,k19;
482 h1 = *((UINT64 *)hp);
483 h2 = *((UINT64 *)hp + 1);
484 h3 = *((UINT64 *)hp + 2);
485 h4 = *((UINT64 *)hp + 3);
486 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
487 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
488 do {
489 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
490 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
491 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
492 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
493 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
494 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
495 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
497 h1 += MUL64((k0 + d0), (k4 + d4));
498 h2 += MUL64((k4 + d0), (k8 + d4));
499 h3 += MUL64((k8 + d0), (k12 + d4));
500 h4 += MUL64((k12 + d0), (k16 + d4));
502 h1 += MUL64((k1 + d1), (k5 + d5));
503 h2 += MUL64((k5 + d1), (k9 + d5));
504 h3 += MUL64((k9 + d1), (k13 + d5));
505 h4 += MUL64((k13 + d1), (k17 + d5));
507 h1 += MUL64((k2 + d2), (k6 + d6));
508 h2 += MUL64((k6 + d2), (k10 + d6));
509 h3 += MUL64((k10 + d2), (k14 + d6));
510 h4 += MUL64((k14 + d2), (k18 + d6));
512 h1 += MUL64((k3 + d3), (k7 + d7));
513 h2 += MUL64((k7 + d3), (k11 + d7));
514 h3 += MUL64((k11 + d3), (k15 + d7));
515 h4 += MUL64((k15 + d3), (k19 + d7));
517 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
518 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
519 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
521 d += 8;
522 k += 8;
523 } while (--c);
524 ((UINT64 *)hp)[0] = h1;
525 ((UINT64 *)hp)[1] = h2;
526 ((UINT64 *)hp)[2] = h3;
527 ((UINT64 *)hp)[3] = h4;
530 /* ---------------------------------------------------------------------- */
531 #endif /* UMAC_OUTPUT_LENGTH */
532 /* ---------------------------------------------------------------------- */
535 /* ---------------------------------------------------------------------- */
537 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
538 /* This function is a wrapper for the primitive NH hash functions. It takes
539 * as argument "hc" the current hash context and a buffer which must be a
540 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
541 * appropriately according to how much message has been hashed already.
544 UINT8 *key;
546 key = hc->nh_key + hc->bytes_hashed;
547 nh_aux(key, buf, hc->state, nbytes);
550 /* ---------------------------------------------------------------------- */
552 #if (__LITTLE_ENDIAN__)
553 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
554 /* We endian convert the keys on little-endian computers to */
555 /* compensate for the lack of big-endian memory reads during hashing. */
557 UWORD iters = num_bytes / bpw;
558 if (bpw == 4) {
559 UINT32 *p = (UINT32 *)buf;
560 do {
561 *p = LOAD_UINT32_REVERSED(p);
562 p++;
563 } while (--iters);
564 } else if (bpw == 8) {
565 UINT32 *p = (UINT32 *)buf;
566 UINT32 t;
567 do {
568 t = LOAD_UINT32_REVERSED(p+1);
569 p[1] = LOAD_UINT32_REVERSED(p);
570 p[0] = t;
571 p += 2;
572 } while (--iters);
575 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
576 #else
577 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
578 #endif
580 /* ---------------------------------------------------------------------- */
582 static void nh_reset(nh_ctx *hc)
583 /* Reset nh_ctx to ready for hashing of new data */
585 hc->bytes_hashed = 0;
586 hc->next_data_empty = 0;
587 hc->state[0] = 0;
588 #if (UMAC_OUTPUT_LEN >= 8)
589 hc->state[1] = 0;
590 #endif
591 #if (UMAC_OUTPUT_LEN >= 12)
592 hc->state[2] = 0;
593 #endif
594 #if (UMAC_OUTPUT_LEN == 16)
595 hc->state[3] = 0;
596 #endif
600 /* ---------------------------------------------------------------------- */
602 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
603 /* Generate nh_key, endian convert and reset to be ready for hashing. */
605 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
606 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
607 nh_reset(hc);
610 /* ---------------------------------------------------------------------- */
612 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
613 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
614 /* even multiple of HASH_BUF_BYTES. */
616 UINT32 i,j;
618 j = hc->next_data_empty;
619 if ((j + nbytes) >= HASH_BUF_BYTES) {
620 if (j) {
621 i = HASH_BUF_BYTES - j;
622 memcpy(hc->data+j, buf, i);
623 nh_transform(hc,hc->data,HASH_BUF_BYTES);
624 nbytes -= i;
625 buf += i;
626 hc->bytes_hashed += HASH_BUF_BYTES;
628 if (nbytes >= HASH_BUF_BYTES) {
629 i = nbytes & ~(HASH_BUF_BYTES - 1);
630 nh_transform(hc, buf, i);
631 nbytes -= i;
632 buf += i;
633 hc->bytes_hashed += i;
635 j = 0;
637 memcpy(hc->data + j, buf, nbytes);
638 hc->next_data_empty = j + nbytes;
641 /* ---------------------------------------------------------------------- */
643 static void zero_pad(UINT8 *p, int nbytes)
645 /* Write "nbytes" of zeroes, beginning at "p" */
646 if (nbytes >= (int)sizeof(UWORD)) {
647 while ((ptrdiff_t)p % sizeof(UWORD)) {
648 *p = 0;
649 nbytes--;
650 p++;
652 while (nbytes >= (int)sizeof(UWORD)) {
653 *(UWORD *)p = 0;
654 nbytes -= sizeof(UWORD);
655 p += sizeof(UWORD);
658 while (nbytes) {
659 *p = 0;
660 nbytes--;
661 p++;
665 /* ---------------------------------------------------------------------- */
667 static void nh_final(nh_ctx *hc, UINT8 *result)
668 /* After passing some number of data buffers to nh_update() for integration
669 * into an NH context, nh_final is called to produce a hash result. If any
670 * bytes are in the buffer hc->data, incorporate them into the
671 * NH context. Finally, add into the NH accumulation "state" the total number
672 * of bits hashed. The resulting numbers are written to the buffer "result".
673 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
676 int nh_len, nbits;
678 if (hc->next_data_empty != 0) {
679 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
680 ~(L1_PAD_BOUNDARY - 1));
681 zero_pad(hc->data + hc->next_data_empty,
682 nh_len - hc->next_data_empty);
683 nh_transform(hc, hc->data, nh_len);
684 hc->bytes_hashed += hc->next_data_empty;
685 } else if (hc->bytes_hashed == 0) {
686 nh_len = L1_PAD_BOUNDARY;
687 zero_pad(hc->data, L1_PAD_BOUNDARY);
688 nh_transform(hc, hc->data, nh_len);
691 nbits = (hc->bytes_hashed << 3);
692 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
693 #if (UMAC_OUTPUT_LEN >= 8)
694 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
695 #endif
696 #if (UMAC_OUTPUT_LEN >= 12)
697 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
698 #endif
699 #if (UMAC_OUTPUT_LEN == 16)
700 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
701 #endif
702 nh_reset(hc);
705 /* ---------------------------------------------------------------------- */
707 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
708 UINT32 unpadded_len, UINT8 *result)
709 /* All-in-one nh_update() and nh_final() equivalent.
710 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
711 * well aligned
714 UINT32 nbits;
716 /* Initialize the hash state */
717 nbits = (unpadded_len << 3);
719 ((UINT64 *)result)[0] = nbits;
720 #if (UMAC_OUTPUT_LEN >= 8)
721 ((UINT64 *)result)[1] = nbits;
722 #endif
723 #if (UMAC_OUTPUT_LEN >= 12)
724 ((UINT64 *)result)[2] = nbits;
725 #endif
726 #if (UMAC_OUTPUT_LEN == 16)
727 ((UINT64 *)result)[3] = nbits;
728 #endif
730 nh_aux(hc->nh_key, buf, result, padded_len);
733 /* ---------------------------------------------------------------------- */
734 /* ---------------------------------------------------------------------- */
735 /* ----- Begin UHASH Section -------------------------------------------- */
736 /* ---------------------------------------------------------------------- */
737 /* ---------------------------------------------------------------------- */
739 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
740 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
741 * unless the initial data to be hashed is short. After the polynomial-
742 * layer, an inner-product hash is used to produce the final UHASH output.
744 * UHASH provides two interfaces, one all-at-once and another where data
745 * buffers are presented sequentially. In the sequential interface, the
746 * UHASH client calls the routine uhash_update() as many times as necessary.
747 * When there is no more data to be fed to UHASH, the client calls
748 * uhash_final() which
749 * calculates the UHASH output. Before beginning another UHASH calculation
750 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
751 * uhash(), is equivalent to the sequence of calls uhash_update() and
752 * uhash_final(); however it is optimized and should be
753 * used whenever the sequential interface is not necessary.
755 * The routine uhash_init() initializes the uhash_ctx data structure and
756 * must be called once, before any other UHASH routine.
759 /* ---------------------------------------------------------------------- */
760 /* ----- Constants and uhash_ctx ---------------------------------------- */
761 /* ---------------------------------------------------------------------- */
763 /* ---------------------------------------------------------------------- */
764 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
765 /* ---------------------------------------------------------------------- */
767 /* Primes and masks */
768 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
769 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
770 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
773 /* ---------------------------------------------------------------------- */
775 typedef struct uhash_ctx {
776 nh_ctx hash; /* Hash context for L1 NH hash */
777 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
778 UINT64 poly_accum[STREAMS]; /* poly hash result */
779 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
780 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
781 UINT32 msg_len; /* Total length of data passed */
782 /* to uhash */
783 } uhash_ctx;
784 typedef struct uhash_ctx *uhash_ctx_t;
786 /* ---------------------------------------------------------------------- */
789 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
790 * word at a time. As described in the specification, poly32 and poly64
791 * require keys from special domains. The following implementations exploit
792 * the special domains to avoid overflow. The results are not guaranteed to
793 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
794 * patches any errant values.
797 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
799 UINT32 key_hi = (UINT32)(key >> 32),
800 key_lo = (UINT32)key,
801 cur_hi = (UINT32)(cur >> 32),
802 cur_lo = (UINT32)cur,
803 x_lo,
804 x_hi;
805 UINT64 X,T,res;
807 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
808 x_lo = (UINT32)X;
809 x_hi = (UINT32)(X >> 32);
811 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
813 T = ((UINT64)x_lo << 32);
814 res += T;
815 if (res < T)
816 res += 59;
818 res += data;
819 if (res < data)
820 res += 59;
822 return res;
826 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
827 * implementation does not handle all ramp levels. Because we don't handle
828 * the ramp up to p128 modulus in this implementation, we are limited to
829 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
830 * bytes input to UMAC per tag, ie. 16MB).
832 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
834 int i;
835 UINT64 *data=(UINT64*)data_in;
837 for (i = 0; i < STREAMS; i++) {
838 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
839 hc->poly_accum[i] = poly64(hc->poly_accum[i],
840 hc->poly_key_8[i], p64 - 1);
841 hc->poly_accum[i] = poly64(hc->poly_accum[i],
842 hc->poly_key_8[i], (data[i] - 59));
843 } else {
844 hc->poly_accum[i] = poly64(hc->poly_accum[i],
845 hc->poly_key_8[i], data[i]);
851 /* ---------------------------------------------------------------------- */
854 /* The final step in UHASH is an inner-product hash. The poly hash
855 * produces a result not necessarily WORD_LEN bytes long. The inner-
856 * product hash breaks the polyhash output into 16-bit chunks and
857 * multiplies each with a 36 bit key.
860 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
862 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
863 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
864 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
865 t = t + ipkp[3] * (UINT64)(UINT16)(data);
867 return t;
870 static UINT32 ip_reduce_p36(UINT64 t)
872 /* Divisionless modular reduction */
873 UINT64 ret;
875 ret = (t & m36) + 5 * (t >> 36);
876 if (ret >= p36)
877 ret -= p36;
879 /* return least significant 32 bits */
880 return (UINT32)(ret);
884 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
885 * the polyhash stage is skipped and ip_short is applied directly to the
886 * NH output.
888 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
890 UINT64 t;
891 UINT64 *nhp = (UINT64 *)nh_res;
893 t = ip_aux(0,ahc->ip_keys, nhp[0]);
894 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
895 #if (UMAC_OUTPUT_LEN >= 8)
896 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
897 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
898 #endif
899 #if (UMAC_OUTPUT_LEN >= 12)
900 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
901 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
902 #endif
903 #if (UMAC_OUTPUT_LEN == 16)
904 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
905 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
906 #endif
909 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
910 * the polyhash stage is not skipped and ip_long is applied to the
911 * polyhash output.
913 static void ip_long(uhash_ctx_t ahc, u_char *res)
915 int i;
916 UINT64 t;
918 for (i = 0; i < STREAMS; i++) {
919 /* fix polyhash output not in Z_p64 */
920 if (ahc->poly_accum[i] >= p64)
921 ahc->poly_accum[i] -= p64;
922 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
923 STORE_UINT32_BIG((UINT32 *)res+i,
924 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
929 /* ---------------------------------------------------------------------- */
931 /* ---------------------------------------------------------------------- */
933 /* Reset uhash context for next hash session */
934 static int uhash_reset(uhash_ctx_t pc)
936 nh_reset(&pc->hash);
937 pc->msg_len = 0;
938 pc->poly_accum[0] = 1;
939 #if (UMAC_OUTPUT_LEN >= 8)
940 pc->poly_accum[1] = 1;
941 #endif
942 #if (UMAC_OUTPUT_LEN >= 12)
943 pc->poly_accum[2] = 1;
944 #endif
945 #if (UMAC_OUTPUT_LEN == 16)
946 pc->poly_accum[3] = 1;
947 #endif
948 return 1;
951 /* ---------------------------------------------------------------------- */
953 /* Given a pointer to the internal key needed by kdf() and a uhash context,
954 * initialize the NH context and generate keys needed for poly and inner-
955 * product hashing. All keys are endian adjusted in memory so that native
956 * loads cause correct keys to be in registers during calculation.
958 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
960 int i;
961 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
963 /* Zero the entire uhash context */
964 memset(ahc, 0, sizeof(uhash_ctx));
966 /* Initialize the L1 hash */
967 nh_init(&ahc->hash, prf_key);
969 /* Setup L2 hash variables */
970 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
971 for (i = 0; i < STREAMS; i++) {
972 /* Fill keys from the buffer, skipping bytes in the buffer not
973 * used by this implementation. Endian reverse the keys if on a
974 * little-endian computer.
976 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
977 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
978 /* Mask the 64-bit keys to their special domain */
979 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
980 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
983 /* Setup L3-1 hash variables */
984 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
985 for (i = 0; i < STREAMS; i++)
986 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
987 4*sizeof(UINT64));
988 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
989 sizeof(ahc->ip_keys));
990 for (i = 0; i < STREAMS*4; i++)
991 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
993 /* Setup L3-2 hash variables */
994 /* Fill buffer with index 4 key */
995 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
996 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
997 STREAMS * sizeof(UINT32));
998 explicit_bzero(buf, sizeof(buf));
1001 /* ---------------------------------------------------------------------- */
1003 #if 0
1004 static uhash_ctx_t uhash_alloc(u_char key[])
1006 /* Allocate memory and force to a 16-byte boundary. */
1007 uhash_ctx_t ctx;
1008 u_char bytes_to_add;
1009 aes_int_key prf_key;
1011 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1012 if (ctx) {
1013 if (ALLOC_BOUNDARY) {
1014 bytes_to_add = ALLOC_BOUNDARY -
1015 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1016 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1017 *((u_char *)ctx - 1) = bytes_to_add;
1019 aes_key_setup(key,prf_key);
1020 uhash_init(ctx, prf_key);
1022 return (ctx);
1024 #endif
1026 /* ---------------------------------------------------------------------- */
1028 #if 0
1029 static int uhash_free(uhash_ctx_t ctx)
1031 /* Free memory allocated by uhash_alloc */
1032 u_char bytes_to_sub;
1034 if (ctx) {
1035 if (ALLOC_BOUNDARY) {
1036 bytes_to_sub = *((u_char *)ctx - 1);
1037 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1039 free(ctx);
1041 return (1);
1043 #endif
1044 /* ---------------------------------------------------------------------- */
1046 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1047 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1048 * hash each one with NH, calling the polyhash on each NH output.
1051 UWORD bytes_hashed, bytes_remaining;
1052 UINT64 result_buf[STREAMS];
1053 UINT8 *nh_result = (UINT8 *)&result_buf;
1055 if (ctx->msg_len + len <= L1_KEY_LEN) {
1056 nh_update(&ctx->hash, (const UINT8 *)input, len);
1057 ctx->msg_len += len;
1058 } else {
1060 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1061 if (ctx->msg_len == L1_KEY_LEN)
1062 bytes_hashed = L1_KEY_LEN;
1064 if (bytes_hashed + len >= L1_KEY_LEN) {
1066 /* If some bytes have been passed to the hash function */
1067 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1068 /* bytes to complete the current nh_block. */
1069 if (bytes_hashed) {
1070 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1071 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1072 nh_final(&ctx->hash, nh_result);
1073 ctx->msg_len += bytes_remaining;
1074 poly_hash(ctx,(UINT32 *)nh_result);
1075 len -= bytes_remaining;
1076 input += bytes_remaining;
1079 /* Hash directly from input stream if enough bytes */
1080 while (len >= L1_KEY_LEN) {
1081 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1082 L1_KEY_LEN, nh_result);
1083 ctx->msg_len += L1_KEY_LEN;
1084 len -= L1_KEY_LEN;
1085 input += L1_KEY_LEN;
1086 poly_hash(ctx,(UINT32 *)nh_result);
1090 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1091 if (len) {
1092 nh_update(&ctx->hash, (const UINT8 *)input, len);
1093 ctx->msg_len += len;
1097 return (1);
1100 /* ---------------------------------------------------------------------- */
1102 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1103 /* Incorporate any pending data, pad, and generate tag */
1105 UINT64 result_buf[STREAMS];
1106 UINT8 *nh_result = (UINT8 *)&result_buf;
1108 if (ctx->msg_len > L1_KEY_LEN) {
1109 if (ctx->msg_len % L1_KEY_LEN) {
1110 nh_final(&ctx->hash, nh_result);
1111 poly_hash(ctx,(UINT32 *)nh_result);
1113 ip_long(ctx, res);
1114 } else {
1115 nh_final(&ctx->hash, nh_result);
1116 ip_short(ctx,nh_result, res);
1118 uhash_reset(ctx);
1119 return (1);
1122 /* ---------------------------------------------------------------------- */
1124 #if 0
1125 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1126 /* assumes that msg is in a writable buffer of length divisible by */
1127 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1129 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1130 UINT32 nh_len;
1131 int extra_zeroes_needed;
1133 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1134 * the polyhash.
1136 if (len <= L1_KEY_LEN) {
1137 if (len == 0) /* If zero length messages will not */
1138 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1139 else
1140 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1141 extra_zeroes_needed = nh_len - len;
1142 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1143 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1144 ip_short(ahc,nh_result, res);
1145 } else {
1146 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1147 * output to poly_hash().
1149 do {
1150 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1151 poly_hash(ahc,(UINT32 *)nh_result);
1152 len -= L1_KEY_LEN;
1153 msg += L1_KEY_LEN;
1154 } while (len >= L1_KEY_LEN);
1155 if (len) {
1156 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1157 extra_zeroes_needed = nh_len - len;
1158 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1159 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1160 poly_hash(ahc,(UINT32 *)nh_result);
1163 ip_long(ahc, res);
1166 uhash_reset(ahc);
1167 return 1;
1169 #endif
1171 /* ---------------------------------------------------------------------- */
1172 /* ---------------------------------------------------------------------- */
1173 /* ----- Begin UMAC Section --------------------------------------------- */
1174 /* ---------------------------------------------------------------------- */
1175 /* ---------------------------------------------------------------------- */
1177 /* The UMAC interface has two interfaces, an all-at-once interface where
1178 * the entire message to be authenticated is passed to UMAC in one buffer,
1179 * and a sequential interface where the message is presented a little at a
1180 * time. The all-at-once is more optimized than the sequential version and
1181 * should be preferred when the sequential interface is not required.
1183 struct umac_ctx {
1184 uhash_ctx hash; /* Hash function for message compression */
1185 pdf_ctx pdf; /* PDF for hashed output */
1186 void *free_ptr; /* Address to free this struct via */
1187 } umac_ctx;
1189 /* ---------------------------------------------------------------------- */
1191 #if 0
1192 int umac_reset(struct umac_ctx *ctx)
1193 /* Reset the hash function to begin a new authentication. */
1195 uhash_reset(&ctx->hash);
1196 return (1);
1198 #endif
1200 /* ---------------------------------------------------------------------- */
1202 int umac_delete(struct umac_ctx *ctx)
1203 /* Deallocate the ctx structure */
1205 if (ctx) {
1206 if (ALLOC_BOUNDARY)
1207 ctx = (struct umac_ctx *)ctx->free_ptr;
1208 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1210 return (1);
1213 /* ---------------------------------------------------------------------- */
1215 struct umac_ctx *umac_new(const u_char key[])
1216 /* Dynamically allocate a umac_ctx struct, initialize variables,
1217 * generate subkeys from key. Align to 16-byte boundary.
1220 struct umac_ctx *ctx, *octx;
1221 size_t bytes_to_add;
1222 aes_int_key prf_key;
1224 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1225 if (ctx) {
1226 if (ALLOC_BOUNDARY) {
1227 bytes_to_add = ALLOC_BOUNDARY -
1228 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1229 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1231 ctx->free_ptr = octx;
1232 aes_key_setup(key, prf_key);
1233 pdf_init(&ctx->pdf, prf_key);
1234 uhash_init(&ctx->hash, prf_key);
1235 explicit_bzero(prf_key, sizeof(prf_key));
1238 return (ctx);
1241 /* ---------------------------------------------------------------------- */
1243 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1244 /* Incorporate any pending data, pad, and generate tag */
1246 uhash_final(&ctx->hash, (u_char *)tag);
1247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1249 return (1);
1252 /* ---------------------------------------------------------------------- */
1254 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1257 /* output buffer is full. */
1259 uhash_update(&ctx->hash, input, len);
1260 return (1);
1263 /* ---------------------------------------------------------------------- */
1265 #if 0
1266 int umac(struct umac_ctx *ctx, u_char *input,
1267 long len, u_char tag[],
1268 u_char nonce[8])
1269 /* All-in-one version simply calls umac_update() and umac_final(). */
1271 uhash(&ctx->hash, input, len, (u_char *)tag);
1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1274 return (1);
1276 #endif
1278 /* ---------------------------------------------------------------------- */
1279 /* ---------------------------------------------------------------------- */
1280 /* ----- End UMAC Section ----------------------------------------------- */
1281 /* ---------------------------------------------------------------------- */
1282 /* ---------------------------------------------------------------------- */