utilities - TMPFS - Pass tmpfs_args to mount()
[dragonfly.git] / usr.bin / top / m_dragonfly.c
bloba1b4f8fff91e51d29584dcf8ee34ccbad13bfef8
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For DragonFly 2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for DragonFly 2.5.1
13 * Should work for:
14 * DragonFly 2.x and above
16 * LIBS: -lkvm
18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19 * This module has been put together from different sources and is based on the
20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23 * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/user.h>
43 #include <sys/vmmeter.h>
44 #include <sys/resource.h>
45 #include <sys/rtprio.h>
47 /* Swap */
48 #include <stdlib.h>
49 #include <stdio.h>
50 #include <sys/conf.h>
52 #include <osreldate.h> /* for changes in kernel structures */
54 #include <sys/kinfo.h>
55 #include <kinfo.h>
56 #include "top.h"
57 #include "display.h"
58 #include "machine.h"
59 #include "screen.h"
60 #include "utils.h"
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 static int namelength;
65 static int cmdlength;
66 static int show_fullcmd;
68 int n_cpus = 0;
71 * needs to be a global symbol, so wrapper can be modified accordingly.
73 static int show_threads = 0;
75 /* get_process_info passes back a handle. This is what it looks like: */
77 struct handle {
78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
79 int remaining; /* number of pointers remaining */
82 /* declarations for load_avg */
83 #include "loadavg.h"
85 #define PP(pp, field) ((pp)->kp_ ## field)
86 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
87 #define VP(pp, field) ((pp)->kp_vm_ ## field)
89 /* define what weighted cpu is. */
90 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
91 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
93 /* what we consider to be process size: */
94 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
97 * These definitions control the format of the per-process area
100 static char smp_header[] =
101 " PID %-*.*s PRI NICE SIZE RES STATE C TIME CTIME CPU COMMAND";
103 #define smp_Proc_format \
104 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %7s %5.2f%% %.*s"
106 static char up_header[] =
107 " PID %-*.*s PRI NICE SIZE RES STATE TIME CTIME CPU COMMAND";
109 #define up_Proc_format \
110 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %7s %5.2f%% %.*s"
114 /* process state names for the "STATE" column of the display */
116 * the extra nulls in the string "run" are for adding a slash and the
117 * processor number when needed
120 const char *state_abbrev[] = {
121 "", "RUN\0\0\0", "STOP", "SLEEP",
125 static kvm_t *kd;
127 /* values that we stash away in _init and use in later routines */
129 static double logcpu;
131 static long lastpid;
132 static int ccpu;
134 /* these are for calculating cpu state percentages */
136 static struct kinfo_cputime *cp_time, *cp_old;
138 /* these are for detailing the process states */
140 int process_states[6];
141 char *procstatenames[] = {
142 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
143 " zombie, ",
144 NULL
147 /* these are for detailing the cpu states */
148 #define CPU_STATES 5
149 int *cpu_states;
150 char *cpustatenames[CPU_STATES + 1] = {
151 "user", "nice", "system", "interrupt", "idle", NULL
154 /* these are for detailing the memory statistics */
156 long memory_stats[7];
157 char *memorynames[] = {
158 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
159 NULL
162 long swap_stats[7];
163 char *swapnames[] = {
164 /* 0 1 2 3 4 5 */
165 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
166 NULL
170 /* these are for keeping track of the proc array */
172 static int nproc;
173 static int onproc = -1;
174 static int pref_len;
175 static struct kinfo_proc *pbase;
176 static struct kinfo_proc **pref;
178 /* these are for getting the memory statistics */
180 static int pageshift; /* log base 2 of the pagesize */
182 /* define pagetok in terms of pageshift */
184 #define pagetok(size) ((size) << pageshift)
186 /* sorting orders. first is default */
187 char *ordernames[] = {
188 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", NULL
191 /* compare routines */
192 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
198 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
199 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
201 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
202 proc_compare,
203 compare_size,
204 compare_res,
205 compare_time,
206 compare_prio,
207 compare_thr,
208 compare_pid,
209 compare_ctime,
210 NULL
213 static void
214 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
215 struct kinfo_cputime *old)
217 struct kinfo_cputime diffs;
218 uint64_t total_change, half_total;
220 /* initialization */
221 total_change = 0;
223 diffs.cp_user = new->cp_user - old->cp_user;
224 diffs.cp_nice = new->cp_nice - old->cp_nice;
225 diffs.cp_sys = new->cp_sys - old->cp_sys;
226 diffs.cp_intr = new->cp_intr - old->cp_intr;
227 diffs.cp_idle = new->cp_idle - old->cp_idle;
228 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
229 diffs.cp_intr + diffs.cp_idle;
230 old->cp_user = new->cp_user;
231 old->cp_nice = new->cp_nice;
232 old->cp_sys = new->cp_sys;
233 old->cp_intr = new->cp_intr;
234 old->cp_idle = new->cp_idle;
236 /* avoid divide by zero potential */
237 if (total_change == 0)
238 total_change = 1;
240 /* calculate percentages based on overall change, rounding up */
241 half_total = total_change >> 1;
243 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
244 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
245 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
246 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
247 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
251 machine_init(struct statics *statics)
253 int pagesize;
254 size_t modelen;
255 struct passwd *pw;
256 struct timeval boottime;
258 if (n_cpus < 1) {
259 if (kinfo_get_cpus(&n_cpus))
260 err(1, "kinfo_get_cpus failed");
262 /* get boot time */
263 modelen = sizeof(boottime);
264 if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
265 /* we have no boottime to report */
266 boottime.tv_sec = -1;
268 modelen = sizeof(smpmode);
269 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
270 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
271 modelen != sizeof(smpmode))
272 smpmode = 0;
274 while ((pw = getpwent()) != NULL) {
275 if ((int)strlen(pw->pw_name) > namelength)
276 namelength = strlen(pw->pw_name);
278 if (namelength < 8)
279 namelength = 8;
280 if (smpmode && namelength > 13)
281 namelength = 13;
282 else if (namelength > 15)
283 namelength = 15;
285 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
286 return -1;
288 if (kinfo_get_sched_ccpu(&ccpu)) {
289 fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
290 return (-1);
292 /* this is used in calculating WCPU -- calculate it ahead of time */
293 logcpu = log(loaddouble(ccpu));
295 pbase = NULL;
296 pref = NULL;
297 nproc = 0;
298 onproc = -1;
300 * get the page size with "getpagesize" and calculate pageshift from
301 * it
303 pagesize = getpagesize();
304 pageshift = 0;
305 while (pagesize > 1) {
306 pageshift++;
307 pagesize >>= 1;
310 /* we only need the amount of log(2)1024 for our conversion */
311 pageshift -= LOG1024;
313 /* fill in the statics information */
314 statics->procstate_names = procstatenames;
315 statics->cpustate_names = cpustatenames;
316 statics->memory_names = memorynames;
317 statics->boottime = boottime.tv_sec;
318 statics->swap_names = swapnames;
319 statics->order_names = ordernames;
320 /* we need kvm descriptor in order to show full commands */
321 statics->flags.fullcmds = kd != NULL;
323 /* all done! */
324 return (0);
327 char *
328 format_header(char *uname_field)
330 static char Header[128];
332 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
333 namelength, namelength, uname_field);
335 if (screen_width <= 79)
336 cmdlength = 80;
337 else
338 cmdlength = screen_width;
340 cmdlength = cmdlength - strlen(Header) + 6;
342 return Header;
345 static int swappgsin = -1;
346 static int swappgsout = -1;
347 extern struct timeval timeout;
349 void
350 get_system_info(struct system_info *si)
352 size_t len;
353 int cpu;
355 if (cpu_states == NULL) {
356 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
357 if (cpu_states == NULL)
358 err(1, "malloc");
359 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
361 if (cp_time == NULL) {
362 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
363 if (cp_time == NULL)
364 err(1, "cp_time");
365 cp_old = cp_time + n_cpus;
367 len = n_cpus * sizeof(cp_old[0]);
368 bzero(cp_time, len);
369 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
370 err(1, "kern.cputime");
372 len = n_cpus * sizeof(cp_time[0]);
373 bzero(cp_time, len);
374 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
375 err(1, "kern.cputime");
377 getloadavg(si->load_avg, 3);
379 lastpid = 0;
381 /* convert cp_time counts to percentages */
382 for (cpu = 0; cpu < n_cpus; ++cpu) {
383 cputime_percentages(cpu_states + cpu * CPU_STATES,
384 &cp_time[cpu], &cp_old[cpu]);
387 /* sum memory & swap statistics */
389 struct vmmeter vmm;
390 struct vmstats vms;
391 size_t vms_size = sizeof(vms);
392 size_t vmm_size = sizeof(vmm);
393 static unsigned int swap_delay = 0;
394 static int swapavail = 0;
395 static int swapfree = 0;
396 static int bufspace = 0;
398 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
399 err(1, "sysctlbyname: vm.vmstats");
401 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
402 err(1, "sysctlbyname: vm.vmmeter");
404 if (kinfo_get_vfs_bufspace(&bufspace))
405 err(1, "kinfo_get_vfs_bufspace");
407 /* convert memory stats to Kbytes */
408 memory_stats[0] = pagetok(vms.v_active_count);
409 memory_stats[1] = pagetok(vms.v_inactive_count);
410 memory_stats[2] = pagetok(vms.v_wire_count);
411 memory_stats[3] = pagetok(vms.v_cache_count);
412 memory_stats[4] = bufspace / 1024;
413 memory_stats[5] = pagetok(vms.v_free_count);
414 memory_stats[6] = -1;
416 /* first interval */
417 if (swappgsin < 0) {
418 swap_stats[4] = 0;
419 swap_stats[5] = 0;
421 /* compute differences between old and new swap statistic */
422 else {
423 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
424 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
427 swappgsin = vmm.v_swappgsin;
428 swappgsout = vmm.v_swappgsout;
430 /* call CPU heavy swapmode() only for changes */
431 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
432 swap_stats[3] = swapmode(&swapavail, &swapfree);
433 swap_stats[0] = swapavail;
434 swap_stats[1] = swapavail - swapfree;
435 swap_stats[2] = swapfree;
437 swap_delay = 1;
438 swap_stats[6] = -1;
441 /* set arrays and strings */
442 si->cpustates = cpu_states;
443 si->memory = memory_stats;
444 si->swap = swap_stats;
447 if (lastpid > 0) {
448 si->last_pid = lastpid;
449 } else {
450 si->last_pid = -1;
455 static struct handle handle;
457 caddr_t
458 get_process_info(struct system_info *si, struct process_select *sel,
459 int compare_index)
461 int i;
462 int total_procs;
463 int active_procs;
464 struct kinfo_proc **prefp;
465 struct kinfo_proc *pp;
467 /* these are copied out of sel for speed */
468 int show_idle;
469 int show_system;
470 int show_uid;
473 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
474 if (nproc > onproc)
475 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
476 * (onproc = nproc));
477 if (pref == NULL || pbase == NULL) {
478 (void)fprintf(stderr, "top: Out of memory.\n");
479 quit(23);
481 /* get a pointer to the states summary array */
482 si->procstates = process_states;
484 /* set up flags which define what we are going to select */
485 show_idle = sel->idle;
486 show_system = sel->system;
487 show_uid = sel->uid != -1;
488 show_fullcmd = sel->fullcmd;
490 /* count up process states and get pointers to interesting procs */
491 total_procs = 0;
492 active_procs = 0;
493 memset((char *)process_states, 0, sizeof(process_states));
494 prefp = pref;
495 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
497 * Place pointers to each valid proc structure in pref[].
498 * Process slots that are actually in use have a non-zero
499 * status field. Processes with P_SYSTEM set are system
500 * processes---these get ignored unless show_sysprocs is set.
502 if ((show_threads && (LP(pp, pid) == -1)) ||
503 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
504 total_procs++;
505 process_states[(unsigned char)PP(pp, stat)]++;
506 if ((show_threads && (LP(pp, pid) == -1)) ||
507 (show_idle || (LP(pp, pctcpu) != 0) ||
508 (LP(pp, stat) == LSRUN)) &&
509 (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
510 *prefp++ = pp;
511 active_procs++;
516 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
517 (int (*)(const void *, const void *))proc_compares[compare_index]);
519 /* remember active and total counts */
520 si->p_total = total_procs;
521 si->p_active = pref_len = active_procs;
523 /* pass back a handle */
524 handle.next_proc = pref;
525 handle.remaining = active_procs;
526 return ((caddr_t) & handle);
529 char fmt[128]; /* static area where result is built */
531 char *
532 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
534 struct kinfo_proc *pp;
535 long cputime;
536 long ccputime;
537 double pct;
538 struct handle *hp;
539 char status[16];
540 int state;
541 int xnice;
542 char **comm_full;
543 char *comm;
544 char cputime_fmt[10], ccputime_fmt[10];
546 /* find and remember the next proc structure */
547 hp = (struct handle *)xhandle;
548 pp = *(hp->next_proc++);
549 hp->remaining--;
551 /* get the process's command name */
552 if (show_fullcmd) {
553 if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
554 return (fmt);
557 else {
558 comm = PP(pp, comm);
562 * Convert the process's runtime from microseconds to seconds. This
563 * time includes the interrupt time to be in compliance with ps output.
565 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
566 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
567 format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
568 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
570 /* calculate the base for cpu percentages */
571 pct = pctdouble(LP(pp, pctcpu));
573 /* generate "STATE" field */
574 switch (state = LP(pp, stat)) {
575 case LSRUN:
576 if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
577 sprintf(status, "CPU%d", LP(pp, cpuid));
578 else
579 strcpy(status, "RUN");
580 break;
581 case LSSLEEP:
582 if (LP(pp, wmesg) != NULL) {
583 sprintf(status, "%.6s", LP(pp, wmesg));
584 break;
586 /* fall through */
587 default:
589 if (state >= 0 &&
590 (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
591 sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
592 else
593 sprintf(status, "?%5d", state);
594 break;
597 if (PP(pp, stat) == SZOMB)
598 strcpy(status, "ZOMB");
601 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
602 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
603 * 0 - 31 -> nice value -53 -
605 switch (LP(pp, rtprio.type)) {
606 case RTP_PRIO_REALTIME:
607 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
608 break;
609 case RTP_PRIO_IDLE:
610 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
611 break;
612 case RTP_PRIO_THREAD:
613 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
614 break;
615 default:
616 xnice = PP(pp, nice);
617 break;
620 /* format this entry */
621 snprintf(fmt, sizeof(fmt),
622 smpmode ? smp_Proc_format : up_Proc_format,
623 (int)PP(pp, pid),
624 namelength, namelength,
625 get_userid(PP(pp, ruid)),
626 (int)((show_threads && (LP(pp, pid) == -1)) ?
627 LP(pp, tdprio) : LP(pp, prio)),
628 (int)xnice,
629 format_k(PROCSIZE(pp)),
630 format_k(pagetok(VP(pp, rssize))),
631 status,
632 (int)(smpmode ? LP(pp, cpuid) : 0),
633 cputime_fmt,
634 ccputime_fmt,
635 100.0 * pct,
636 cmdlength,
637 show_fullcmd ? *comm_full : comm);
639 /* return the result */
640 return (fmt);
643 /* comparison routines for qsort */
646 * proc_compare - comparison function for "qsort"
647 * Compares the resource consumption of two processes using five
648 * distinct keys. The keys (in descending order of importance) are:
649 * percent cpu, cpu ticks, state, resident set size, total virtual
650 * memory usage. The process states are ordered as follows (from least
651 * to most important): WAIT, zombie, sleep, stop, start, run. The
652 * array declaration below maps a process state index into a number
653 * that reflects this ordering.
656 static unsigned char sorted_state[] =
658 0, /* not used */
659 3, /* sleep */
660 1, /* ABANDONED (WAIT) */
661 6, /* run */
662 5, /* start */
663 2, /* zombie */
664 4 /* stop */
668 #define ORDERKEY_PCTCPU \
669 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
670 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
672 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
674 #define ORDERKEY_CPTICKS \
675 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
676 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
678 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
679 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
681 #define ORDERKEY_CTIME \
682 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
683 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
685 #define ORDERKEY_STATE \
686 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
687 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
689 #define ORDERKEY_PRIO \
690 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
692 #define ORDERKEY_KTHREADS \
693 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
695 #define ORDERKEY_KTHREADS_PRIO \
696 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
698 #define ORDERKEY_RSSIZE \
699 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
701 #define ORDERKEY_MEM \
702 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
704 #define ORDERKEY_PID \
705 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
707 /* compare_cpu - the comparison function for sorting by cpu percentage */
710 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
712 struct kinfo_proc *p1;
713 struct kinfo_proc *p2;
714 int result;
715 pctcpu lresult;
717 /* remove one level of indirection */
718 p1 = *(struct kinfo_proc **) pp1;
719 p2 = *(struct kinfo_proc **) pp2;
721 ORDERKEY_PCTCPU
722 ORDERKEY_CPTICKS
723 ORDERKEY_STATE
724 ORDERKEY_PRIO
725 ORDERKEY_RSSIZE
726 ORDERKEY_MEM
729 return (result);
732 /* compare_size - the comparison function for sorting by total memory usage */
735 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
737 struct kinfo_proc *p1;
738 struct kinfo_proc *p2;
739 int result;
740 pctcpu lresult;
742 /* remove one level of indirection */
743 p1 = *(struct kinfo_proc **) pp1;
744 p2 = *(struct kinfo_proc **) pp2;
746 ORDERKEY_MEM
747 ORDERKEY_RSSIZE
748 ORDERKEY_PCTCPU
749 ORDERKEY_CPTICKS
750 ORDERKEY_STATE
751 ORDERKEY_PRIO
754 return (result);
757 /* compare_res - the comparison function for sorting by resident set size */
760 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
762 struct kinfo_proc *p1;
763 struct kinfo_proc *p2;
764 int result;
765 pctcpu lresult;
767 /* remove one level of indirection */
768 p1 = *(struct kinfo_proc **) pp1;
769 p2 = *(struct kinfo_proc **) pp2;
771 ORDERKEY_RSSIZE
772 ORDERKEY_MEM
773 ORDERKEY_PCTCPU
774 ORDERKEY_CPTICKS
775 ORDERKEY_STATE
776 ORDERKEY_PRIO
779 return (result);
782 /* compare_time - the comparison function for sorting by total cpu time */
785 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
787 struct kinfo_proc *p1;
788 struct kinfo_proc *p2;
789 int result;
790 pctcpu lresult;
792 /* remove one level of indirection */
793 p1 = *(struct kinfo_proc **) pp1;
794 p2 = *(struct kinfo_proc **) pp2;
796 ORDERKEY_CPTICKS
797 ORDERKEY_PCTCPU
798 ORDERKEY_KTHREADS
799 ORDERKEY_KTHREADS_PRIO
800 ORDERKEY_STATE
801 ORDERKEY_PRIO
802 ORDERKEY_RSSIZE
803 ORDERKEY_MEM
806 return (result);
810 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
812 struct kinfo_proc *p1;
813 struct kinfo_proc *p2;
814 int result;
815 pctcpu lresult;
817 /* remove one level of indirection */
818 p1 = *(struct kinfo_proc **) pp1;
819 p2 = *(struct kinfo_proc **) pp2;
821 ORDERKEY_CTIME
822 ORDERKEY_PCTCPU
823 ORDERKEY_KTHREADS
824 ORDERKEY_KTHREADS_PRIO
825 ORDERKEY_STATE
826 ORDERKEY_PRIO
827 ORDERKEY_RSSIZE
828 ORDERKEY_MEM
831 return (result);
834 /* compare_prio - the comparison function for sorting by cpu percentage */
837 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
839 struct kinfo_proc *p1;
840 struct kinfo_proc *p2;
841 int result;
842 pctcpu lresult;
844 /* remove one level of indirection */
845 p1 = *(struct kinfo_proc **) pp1;
846 p2 = *(struct kinfo_proc **) pp2;
848 ORDERKEY_KTHREADS
849 ORDERKEY_KTHREADS_PRIO
850 ORDERKEY_PRIO
851 ORDERKEY_CPTICKS
852 ORDERKEY_PCTCPU
853 ORDERKEY_STATE
854 ORDERKEY_RSSIZE
855 ORDERKEY_MEM
858 return (result);
862 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
864 struct kinfo_proc *p1;
865 struct kinfo_proc *p2;
866 int result;
867 pctcpu lresult;
869 /* remove one level of indirection */
870 p1 = *(struct kinfo_proc **)pp1;
871 p2 = *(struct kinfo_proc **)pp2;
873 ORDERKEY_KTHREADS
874 ORDERKEY_KTHREADS_PRIO
875 ORDERKEY_CPTICKS
876 ORDERKEY_PCTCPU
877 ORDERKEY_STATE
878 ORDERKEY_RSSIZE
879 ORDERKEY_MEM
882 return (result);
885 /* compare_pid - the comparison function for sorting by process id */
888 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
890 struct kinfo_proc *p1;
891 struct kinfo_proc *p2;
892 int result;
894 /* remove one level of indirection */
895 p1 = *(struct kinfo_proc **) pp1;
896 p2 = *(struct kinfo_proc **) pp2;
898 ORDERKEY_PID
901 return(result);
905 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
906 * the process does not exist.
907 * It is EXTREMLY IMPORTANT that this function work correctly.
908 * If top runs setuid root (as in SVR4), then this function
909 * is the only thing that stands in the way of a serious
910 * security problem. It validates requests for the "kill"
911 * and "renice" commands.
915 proc_owner(int pid)
917 int xcnt;
918 struct kinfo_proc **prefp;
919 struct kinfo_proc *pp;
921 prefp = pref;
922 xcnt = pref_len;
923 while (--xcnt >= 0) {
924 pp = *prefp++;
925 if (PP(pp, pid) == (pid_t) pid) {
926 return ((int)PP(pp, ruid));
929 return (-1);
934 * swapmode is based on a program called swapinfo written
935 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
938 swapmode(int *retavail, int *retfree)
940 int n;
941 int pagesize = getpagesize();
942 struct kvm_swap swapary[1];
944 *retavail = 0;
945 *retfree = 0;
947 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
949 n = kvm_getswapinfo(kd, swapary, 1, 0);
950 if (n < 0 || swapary[0].ksw_total == 0)
951 return (0);
953 *retavail = CONVERT(swapary[0].ksw_total);
954 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
956 n = (int)((double)swapary[0].ksw_used * 100.0 /
957 (double)swapary[0].ksw_total);
958 return (n);