vfs/procfs: Add kqueue support
[dragonfly.git] / usr.bin / top / m_dragonfly.c
blob88e33d92c3dcec08a8e23fe300daf3baeaffbe68
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For DragonFly 2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for DragonFly 2.5.1
13 * Should work for:
14 * DragonFly 2.x and above
16 * LIBS: -lkvm
18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19 * This module has been put together from different sources and is based on the
20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
31 #include "os.h"
32 #include <err.h>
33 #include <fcntl.h>
34 #include <kvm.h>
35 #include <stdio.h>
36 #include <unistd.h>
37 #include <math.h>
38 #include <pwd.h>
39 #include <sys/errno.h>
40 #include <sys/sysctl.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
45 /* Swap */
46 #include <stdlib.h>
47 #include <string.h>
48 #include <sys/conf.h>
50 #include <osreldate.h> /* for changes in kernel structures */
52 #include <sys/kinfo.h>
53 #include <kinfo.h>
54 #include "top.h"
55 #include "display.h"
56 #include "machine.h"
57 #include "screen.h"
58 #include "utils.h"
60 int swapmode(int *retavail, int *retfree);
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
65 int n_cpus, enable_ncpus;
67 /* get_process_info passes back a handle. This is what it looks like: */
69 struct handle {
70 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
71 int remaining; /* number of pointers remaining */
72 int show_threads;
75 /* declarations for load_avg */
76 #include "loadavg.h"
78 #define PP(pp, field) ((pp)->kp_ ## field)
79 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
80 #define VP(pp, field) ((pp)->kp_vm_ ## field)
82 /* what we consider to be process size: */
83 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
86 * These definitions control the format of the per-process area
89 static char smp_header[] =
90 " PID %-*.*s NICE SIZE RES STATE C TIME CTIME CPU COMMAND";
92 #define smp_Proc_format \
93 "%6d %-*.*s %3d%7s %6s %8.8s %3d %6s %7s %5.2f%% %.*s"
96 static kvm_t *kd;
98 /* values that we stash away in _init and use in later routines */
100 static long lastpid;
102 /* these are for calculating cpu state percentages */
104 static struct kinfo_cputime *cp_time, *cp_old;
106 /* these are for detailing the process states */
108 enum {
109 PS_STARTING = 0,
110 PS_RUNNING,
111 PS_STOPPED,
112 PS_SLEEPING,
113 PS_ZOMBIE,
114 PS_DUMPING,
115 PS_MAX,
118 int process_states[PS_MAX + 1];
119 char *procstatenames[] = {
120 [PS_STARTING] = " starting, ",
121 [PS_RUNNING] = " running, ",
122 [PS_STOPPED] = " stopped, ",
123 [PS_SLEEPING] = " sleeping, ",
124 [PS_ZOMBIE] = " zombie, ",
125 [PS_DUMPING] = " dumping, ",
126 [PS_MAX] = NULL,
129 /* process state names for the "STATE" column of the display */
130 const char *state_abbrev[] = {
131 [PS_STARTING] = "START",
132 [PS_RUNNING] = "RUN",
133 [PS_STOPPED] = "STOP",
134 [PS_SLEEPING] = "SLEEP",
135 [PS_ZOMBIE] = "ZOMBIE",
136 [PS_DUMPING] = "DUMP",
137 [PS_MAX] = NULL,
140 /* these are for detailing the cpu states */
141 #define CPU_STATES 5
142 int *cpu_states;
143 int* cpu_averages;
144 char *cpustatenames[CPU_STATES + 1] = {
145 "user", "nice", "system", "interrupt", "idle", NULL
148 /* these are for detailing the memory statistics */
150 long memory_stats[7];
151 char *memorynames[] = {
152 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
153 NULL
156 long swap_stats[7];
157 char *swapnames[] = {
158 /* 0 1 2 3 4 5 */
159 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
160 NULL
164 /* these are for keeping track of the proc array */
166 static int nproc;
167 static int onproc = -1;
168 static int pref_len;
169 static struct kinfo_proc *pbase;
170 static struct kinfo_proc **pref;
172 static uint64_t prev_pbase_time; /* unit: us */
173 static struct kinfo_proc *prev_pbase;
174 static int prev_pbase_alloc;
175 static int prev_nproc;
176 static int fscale;
178 /* these are for getting the memory statistics */
180 static int pageshift; /* log base 2 of the pagesize */
182 /* define pagetok in terms of pageshift */
184 #define pagetok(size) ((size) << pageshift)
186 /* sorting orders. first is default */
187 char *ordernames[] = {
188 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", "pres", NULL
191 /* compare routines */
192 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
198 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
199 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
200 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
202 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
203 proc_compare,
204 compare_size,
205 compare_res,
206 compare_time,
207 compare_prio,
208 compare_thr,
209 compare_pid,
210 compare_ctime,
211 compare_pres,
212 NULL
215 static void
216 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
217 struct kinfo_cputime *old)
219 struct kinfo_cputime diffs;
220 uint64_t total_change, half_total;
222 /* initialization */
223 total_change = 0;
225 diffs.cp_user = new->cp_user - old->cp_user;
226 diffs.cp_nice = new->cp_nice - old->cp_nice;
227 diffs.cp_sys = new->cp_sys - old->cp_sys;
228 diffs.cp_intr = new->cp_intr - old->cp_intr;
229 diffs.cp_idle = new->cp_idle - old->cp_idle;
230 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
231 diffs.cp_intr + diffs.cp_idle;
232 old->cp_user = new->cp_user;
233 old->cp_nice = new->cp_nice;
234 old->cp_sys = new->cp_sys;
235 old->cp_intr = new->cp_intr;
236 old->cp_idle = new->cp_idle;
238 /* avoid divide by zero potential */
239 if (total_change == 0)
240 total_change = 1;
242 /* calculate percentages based on overall change, rounding up */
243 half_total = total_change >> 1;
245 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
246 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
247 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
248 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
249 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
253 machine_init(struct statics *statics)
255 int pagesize;
256 size_t prmlen;
257 struct passwd *pw;
259 if (n_cpus < 1) {
260 if (kinfo_get_cpus(&n_cpus))
261 err(1, "kinfo_get_cpus failed");
263 /* get boot time */
265 prmlen = sizeof(fscale);
266 if (sysctlbyname("kern.fscale", &fscale, &prmlen, NULL, 0) == -1)
267 err(1, "sysctl kern.fscale failed");
269 while ((pw = getpwent()) != NULL) {
270 if ((int)strlen(pw->pw_name) > namelength)
271 namelength = strlen(pw->pw_name);
273 if (namelength < 8)
274 namelength = 8;
275 if (namelength > 13)
276 namelength = 13;
278 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
279 return -1;
281 pbase = NULL;
282 pref = NULL;
283 nproc = 0;
284 onproc = -1;
285 prev_pbase = NULL;
286 prev_pbase_alloc = 0;
287 prev_pbase_time = 0;
288 prev_nproc = 0;
290 * get the page size with "getpagesize" and calculate pageshift from
291 * it
293 pagesize = getpagesize();
294 pageshift = 0;
295 while (pagesize > 1) {
296 pageshift++;
297 pagesize >>= 1;
300 /* we only need the amount of log(2)1024 for our conversion */
301 pageshift -= LOG1024;
303 /* fill in the statics information */
304 statics->procstate_names = procstatenames;
305 statics->cpustate_names = cpustatenames;
306 statics->memory_names = memorynames;
307 statics->unused01 = 0;
308 statics->swap_names = swapnames;
309 statics->order_names = ordernames;
310 /* we need kvm descriptor in order to show full commands */
311 statics->flags.fullcmds = kd != NULL;
312 statics->flags.threads = 1;
314 /* all done! */
315 return (0);
318 char *
319 format_header(char *uname_field)
321 static char Header[128];
323 snprintf(Header, sizeof(Header), smp_header,
324 namelength, namelength, uname_field);
326 if (screen_width <= 79)
327 cmdlength = 80;
328 else
329 cmdlength = screen_width;
331 cmdlength = cmdlength - strlen(Header) + 6;
333 return Header;
336 static int swappgsin = -1;
337 static int swappgsout = -1;
338 extern struct timeval timeout;
340 void
341 get_system_info(struct system_info *si)
343 size_t len;
344 int cpu;
346 if (cpu_states == NULL) {
347 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
348 if (cpu_states == NULL)
349 err(1, "malloc");
350 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
352 if (cp_time == NULL) {
353 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
354 if (cp_time == NULL)
355 err(1, "cp_time");
356 cp_old = cp_time + n_cpus;
357 len = n_cpus * sizeof(cp_old[0]);
358 bzero(cp_time, len);
359 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
360 err(1, "kern.cputime");
362 len = n_cpus * sizeof(cp_time[0]);
363 bzero(cp_time, len);
364 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
365 err(1, "kern.cputime");
367 getloadavg(si->load_avg, 3);
369 lastpid = 0;
371 /* convert cp_time counts to percentages */
372 int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
373 for (cpu = 0; cpu < n_cpus; ++cpu) {
374 cputime_percentages(cpu_states + cpu * CPU_STATES,
375 &cp_time[cpu], &cp_old[cpu]);
377 if (combine_cpus) {
378 if (cpu_averages == NULL) {
379 cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
380 if (cpu_averages == NULL)
381 err(1, "cpu_averages");
383 bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
384 for (cpu = 0; cpu < n_cpus; ++cpu) {
385 int j = 0;
386 cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
387 cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
388 cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
389 cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
390 cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
392 for (int i = 0; i < CPU_STATES; ++i)
393 cpu_averages[i] /= n_cpus;
396 /* sum memory & swap statistics */
398 struct vmmeter vmm;
399 struct vmstats vms;
400 size_t vms_size = sizeof(vms);
401 size_t vmm_size = sizeof(vmm);
402 static unsigned int swap_delay = 0;
403 static int swapavail = 0;
404 static int swapfree = 0;
405 static long bufspace = 0;
407 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
408 err(1, "sysctlbyname: vm.vmstats");
410 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
411 err(1, "sysctlbyname: vm.vmmeter");
413 if (kinfo_get_vfs_bufspace(&bufspace))
414 err(1, "kinfo_get_vfs_bufspace");
416 /* convert memory stats to Kbytes */
417 memory_stats[0] = pagetok(vms.v_active_count);
418 memory_stats[1] = pagetok(vms.v_inactive_count);
419 memory_stats[2] = pagetok(vms.v_wire_count);
420 memory_stats[3] = pagetok(vms.v_cache_count);
421 memory_stats[4] = bufspace / 1024;
422 memory_stats[5] = pagetok(vms.v_free_count);
423 memory_stats[6] = -1;
425 /* first interval */
426 if (swappgsin < 0) {
427 swap_stats[4] = 0;
428 swap_stats[5] = 0;
430 /* compute differences between old and new swap statistic */
431 else {
432 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
433 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
436 swappgsin = vmm.v_swappgsin;
437 swappgsout = vmm.v_swappgsout;
439 /* call CPU heavy swapmode() only for changes */
440 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
441 swap_stats[3] = swapmode(&swapavail, &swapfree);
442 swap_stats[0] = swapavail;
443 swap_stats[1] = swapavail - swapfree;
444 swap_stats[2] = swapfree;
446 swap_delay = 1;
447 swap_stats[6] = -1;
450 /* set arrays and strings */
451 si->cpustates = combine_cpus == 1 ?
452 cpu_averages : cpu_states;
453 si->memory = memory_stats;
454 si->swap = swap_stats;
457 if (lastpid > 0) {
458 si->last_pid = lastpid;
459 } else {
460 si->last_pid = -1;
465 static struct handle handle;
467 static void
468 fixup_pctcpu(struct kinfo_proc *fixit, uint64_t d)
470 struct kinfo_proc *pp;
471 uint64_t ticks;
472 int i;
474 if (prev_nproc == 0 || d == 0)
475 return;
477 if (LP(fixit, pid) == -1) {
478 /* Skip kernel "idle" threads */
479 if (PP(fixit, stat) == SIDL)
480 return;
481 for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
482 if (LP(pp, pid) == -1 &&
483 PP(pp, ktaddr) == PP(fixit, ktaddr))
484 break;
486 } else {
487 for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
488 if (LP(pp, pid) == LP(fixit, pid) &&
489 LP(pp, tid) == LP(fixit, tid)) {
490 if (PP(pp, paddr) != PP(fixit, paddr)) {
491 /* pid/tid are reused */
492 pp = NULL;
494 break;
498 if (i == prev_nproc || pp == NULL)
499 return;
501 ticks = LP(fixit, iticks) - LP(pp, iticks);
502 ticks += LP(fixit, sticks) - LP(pp, sticks);
503 ticks += LP(fixit, uticks) - LP(pp, uticks);
504 if (ticks > d * 1000)
505 ticks = d * 1000;
506 LP(fixit, pctcpu) = (ticks * (uint64_t)fscale) / d;
509 caddr_t
510 get_process_info(struct system_info *si, struct process_select *sel,
511 int compare_index)
513 struct timespec tv;
514 uint64_t t, d = 0;
516 int i;
517 int total_procs;
518 int active_procs;
519 struct kinfo_proc **prefp;
520 struct kinfo_proc *pp;
522 /* these are copied out of sel for speed */
523 int show_idle;
524 int show_system;
525 int show_uid;
526 int show_threads;
527 int kvmflags;
528 char *match_command;
530 show_threads = sel->threads;
531 show_system = sel->system;
533 kvmflags = 0;
534 if (show_threads)
535 kvmflags |= KERN_PROC_FLAG_LWP;
536 #ifdef KERN_PROC_FLAG_LWKT
537 if (show_system)
538 kvmflags |= KERN_PROC_FLAG_LWKT;
539 #endif
540 pbase = kvm_getprocs(kd, KERN_PROC_ALL | kvmflags, 0, &nproc);
541 if (nproc > onproc)
542 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
543 * (onproc = nproc));
544 if (pref == NULL || pbase == NULL) {
545 (void)fprintf(stderr, "top: Out of memory.\n");
546 quit(23);
549 clock_gettime(CLOCK_MONOTONIC_PRECISE, &tv);
550 t = (tv.tv_sec * 1000000ULL) + (tv.tv_nsec / 1000ULL);
551 if (prev_pbase_time > 0 && t > prev_pbase_time)
552 d = t - prev_pbase_time;
554 /* get a pointer to the states summary array */
555 si->procstates = process_states;
557 /* set up flags which define what we are going to select */
558 show_idle = sel->idle;
559 show_uid = sel->uid != -1;
560 show_fullcmd = sel->fullcmd;
561 match_command = sel->command;
563 /* count up process states and get pointers to interesting procs */
564 total_procs = 0;
565 active_procs = 0;
566 memset((char *)process_states, 0, sizeof(process_states));
567 prefp = pref;
568 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
570 * Place pointers to each valid proc structure in pref[].
571 * Process slots that are actually in use have a non-zero
572 * status field. Processes with P_SYSTEM set are system
573 * processes---these get ignored unless show_sysprocs is set.
575 if ((show_system && (LP(pp, pid) == -1)) ||
576 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
577 int lpstate = LP(pp, stat);
578 int pstate = PP(pp, stat);
579 int state;
581 total_procs++;
583 switch (pstate) {
584 case SIDL:
585 state = PS_STARTING;
586 break;
587 case SACTIVE:
588 switch (lpstate) {
589 case LSRUN:
590 state = PS_RUNNING;
591 break;
592 case LSSTOP:
593 state = PS_STOPPED;
594 break;
595 case LSSLEEP:
596 state = PS_SLEEPING;
597 break;
598 default:
599 fprintf(stderr, "top: unknown LWP "
600 "state: %d\n", lpstate);
601 break;
603 break;
604 case SSTOP:
605 state = PS_STOPPED;
606 break;
607 case SZOMB:
608 state = PS_ZOMBIE;
609 break;
610 case SCORE:
611 state = PS_DUMPING;
612 break;
613 default:
614 fprintf(stderr, "top: unknown process "
615 "state: %d\n", pstate);
616 break;
618 if (state < PS_MAX)
619 process_states[state]++;
621 if (match_command != NULL &&
622 strstr(PP(pp, comm), match_command) == NULL) {
623 /* Command does not match */
624 continue;
627 if (show_uid && PP(pp, ruid) != (uid_t)sel->uid) {
628 /* UID does not match */
629 continue;
632 if (!show_system && LP(pp, pid) == -1) {
633 /* Don't show system processes */
634 continue;
637 /* Fix up pctcpu before show_idle test */
638 fixup_pctcpu(pp, d);
640 if (!show_idle && LP(pp, pctcpu) == 0 &&
641 lpstate != LSRUN) {
642 /* Don't show idle processes */
643 continue;
646 *prefp++ = pp;
647 active_procs++;
652 * Save kinfo_procs for later pctcpu fixup.
654 if (prev_pbase_alloc < nproc) {
655 prev_pbase_alloc = nproc;
656 prev_pbase = realloc(prev_pbase,
657 prev_pbase_alloc * sizeof(struct kinfo_proc));
658 if (prev_pbase == NULL) {
659 fprintf(stderr, "top: Out of memory.\n");
660 quit(23);
663 prev_nproc = nproc;
664 prev_pbase_time = t;
665 memcpy(prev_pbase, pbase, nproc * sizeof(struct kinfo_proc));
667 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
668 (int (*)(const void *, const void *))proc_compares[compare_index]);
670 /* remember active and total counts */
671 si->p_total = total_procs;
672 si->p_active = pref_len = active_procs;
674 /* pass back a handle */
675 handle.next_proc = pref;
676 handle.remaining = active_procs;
677 handle.show_threads = show_threads;
678 return ((caddr_t) & handle);
681 char fmt[MAX_COLS]; /* static area where result is built */
683 char *
684 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
686 struct kinfo_proc *pp;
687 long cputime;
688 long ccputime;
689 double pct;
690 struct handle *hp;
691 char status[16];
692 int state;
693 int xnice;
694 char *wmesg, *comm;
695 char cputime_fmt[10], ccputime_fmt[10];
697 /* find and remember the next proc structure */
698 hp = (struct handle *)xhandle;
699 pp = *(hp->next_proc++);
700 hp->remaining--;
702 /* get the process's command name */
703 if (show_fullcmd) {
704 char **comm_full = kvm_getargv(kd, pp, 0);
705 if (comm_full != NULL)
706 comm = *comm_full;
707 else
708 comm = PP(pp, comm);
710 else {
711 comm = PP(pp, comm);
714 /* the actual field to display */
715 char cmdfield[MAX_COLS];
717 if (PP(pp, flags) & P_SYSTEM) {
718 /* system process */
719 snprintf(cmdfield, sizeof cmdfield, "[%s]", comm);
720 } else if (hp->show_threads && PP(pp, nthreads) > 1) {
721 /* display it as a thread */
722 if (strcmp(PP(pp, comm), LP(pp, comm)) == 0) {
723 snprintf(cmdfield, sizeof cmdfield, "%s{%d}", comm,
724 LP(pp, tid));
725 } else {
726 /* show thread name in addition to tid */
727 snprintf(cmdfield, sizeof cmdfield, "%s{%d/%s}", comm,
728 LP(pp, tid), LP(pp, comm));
730 } else {
731 snprintf(cmdfield, sizeof cmdfield, "%s", comm);
735 * Convert the process's runtime from microseconds to seconds. This
736 * time includes the interrupt time to be in compliance with ps output.
738 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
739 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
740 format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
741 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
743 /* calculate the base for cpu percentages */
744 pct = pctdouble(LP(pp, pctcpu));
746 /* generate "STATE" field */
747 state = PS_MAX;
748 switch (PP(pp, stat)) {
749 case SIDL:
750 state = PS_STARTING;
751 break;
752 case SACTIVE:
753 switch (LP(pp, stat)) {
754 case LSRUN:
755 if (LP(pp, tdflags) & TDF_RUNNING)
756 sprintf(status, "CPU%d", LP(pp, cpuid));
757 else
758 state = PS_RUNNING;
759 break;
760 case LSSTOP:
761 state = PS_STOPPED;
762 break;
763 case LSSLEEP:
764 wmesg = LP(pp, wmesg);
765 if (wmesg[0] != '\0')
766 sprintf(status, "%.8s", wmesg); /* WMESGLEN */
767 else
768 state = PS_SLEEPING;
769 break;
770 default:
771 sprintf(status, "?LP/%d", LP(pp, stat));
772 break;
774 break;
775 case SSTOP:
776 state = PS_STOPPED;
777 break;
778 case SZOMB:
779 state = PS_ZOMBIE;
780 break;
781 case SCORE:
782 state = PS_DUMPING;
783 break;
784 default:
785 sprintf(status, "?P/%d", PP(pp, stat));
786 break;
788 if (state < PS_MAX)
789 sprintf(status, "%.8s", state_abbrev[state]);
792 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
793 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
794 * 0 - 31 -> nice value -53 -
796 switch (LP(pp, rtprio.type)) {
797 case RTP_PRIO_REALTIME:
798 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
799 break;
800 case RTP_PRIO_IDLE:
801 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
802 break;
803 case RTP_PRIO_THREAD:
804 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
805 break;
806 default:
807 xnice = PP(pp, nice);
808 break;
811 /* format this entry */
812 snprintf(fmt, sizeof(fmt),
813 smp_Proc_format,
814 (int)PP(pp, pid),
815 namelength, namelength,
816 get_userid(PP(pp, ruid)),
817 (int)xnice,
818 format_k(PROCSIZE(pp)),
819 format_k(pagetok(VP(pp, rssize))),
820 status,
821 LP(pp, cpuid),
822 cputime_fmt,
823 ccputime_fmt,
824 100.0 * pct,
825 cmdlength,
826 cmdfield);
828 /* return the result */
829 return (fmt);
832 /* comparison routines for qsort */
835 * proc_compare - comparison function for "qsort"
836 * Compares the resource consumption of two processes using five
837 * distinct keys. The keys (in descending order of importance) are:
838 * percent cpu, cpu ticks, state, resident set size, total virtual
839 * memory usage. The process states are ordered as follows (from least
840 * to most important): WAIT, zombie, sleep, stop, start, run. The
841 * array declaration below maps a process state index into a number
842 * that reflects this ordering.
845 static unsigned char sorted_state[] =
847 0, /* not used */
848 3, /* sleep */
849 1, /* ABANDONED (WAIT) */
850 6, /* run */
851 5, /* start */
852 2, /* zombie */
853 4 /* stop */
857 #define ORDERKEY_PCTCPU \
858 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
859 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
861 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
863 #define ORDERKEY_CPTICKS \
864 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
865 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
867 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
868 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
870 #define ORDERKEY_CTIME \
871 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
872 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
874 #define ORDERKEY_STATE \
875 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
876 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
878 #define ORDERKEY_PRIO \
879 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
881 #define ORDERKEY_KTHREADS \
882 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
884 #define ORDERKEY_KTHREADS_PRIO \
885 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
887 #define ORDERKEY_RSSIZE \
888 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
890 #define ORDERKEY_MEM \
891 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
893 #define ORDERKEY_PID \
894 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
896 #define ORDERKEY_PRSSIZE \
897 if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
899 static __inline int
900 orderkey_kernidle(const struct kinfo_proc *p1, const struct kinfo_proc *p2)
902 int p1_kidle = 0, p2_kidle = 0;
904 if (LP(p1, pid) == -1 && PP(p1, stat) == SIDL)
905 p1_kidle = 1;
906 if (LP(p2, pid) == -1 && PP(p2, stat) == SIDL)
907 p2_kidle = 1;
909 if (!p2_kidle && p1_kidle)
910 return 1;
911 if (p2_kidle && !p1_kidle)
912 return -1;
913 return 0;
916 #define ORDERKEY_KIDLE if ((result = orderkey_kernidle(p1, p2)) == 0)
918 /* compare_cpu - the comparison function for sorting by cpu percentage */
921 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
923 struct kinfo_proc *p1;
924 struct kinfo_proc *p2;
925 int result;
926 pctcpu lresult;
928 /* remove one level of indirection */
929 p1 = *(struct kinfo_proc **) pp1;
930 p2 = *(struct kinfo_proc **) pp2;
932 ORDERKEY_KIDLE
933 ORDERKEY_PCTCPU
934 ORDERKEY_CPTICKS
935 ORDERKEY_STATE
936 ORDERKEY_PRIO
937 ORDERKEY_RSSIZE
938 ORDERKEY_MEM
941 return (result);
944 /* compare_size - the comparison function for sorting by total memory usage */
947 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
949 struct kinfo_proc *p1;
950 struct kinfo_proc *p2;
951 int result;
952 pctcpu lresult;
954 /* remove one level of indirection */
955 p1 = *(struct kinfo_proc **) pp1;
956 p2 = *(struct kinfo_proc **) pp2;
958 ORDERKEY_MEM
959 ORDERKEY_RSSIZE
960 ORDERKEY_KIDLE
961 ORDERKEY_PCTCPU
962 ORDERKEY_CPTICKS
963 ORDERKEY_STATE
964 ORDERKEY_PRIO
967 return (result);
970 /* compare_res - the comparison function for sorting by resident set size */
973 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
975 struct kinfo_proc *p1;
976 struct kinfo_proc *p2;
977 int result;
978 pctcpu lresult;
980 /* remove one level of indirection */
981 p1 = *(struct kinfo_proc **) pp1;
982 p2 = *(struct kinfo_proc **) pp2;
984 ORDERKEY_RSSIZE
985 ORDERKEY_MEM
986 ORDERKEY_KIDLE
987 ORDERKEY_PCTCPU
988 ORDERKEY_CPTICKS
989 ORDERKEY_STATE
990 ORDERKEY_PRIO
993 return (result);
996 /* compare_pres - the comparison function for sorting by proportional resident set size */
999 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1001 struct kinfo_proc *p1;
1002 struct kinfo_proc *p2;
1003 int result;
1004 pctcpu lresult;
1006 /* remove one level of indirection */
1007 p1 = *(struct kinfo_proc **) pp1;
1008 p2 = *(struct kinfo_proc **) pp2;
1010 ORDERKEY_PRSSIZE
1011 ORDERKEY_RSSIZE
1012 ORDERKEY_MEM
1013 ORDERKEY_KIDLE
1014 ORDERKEY_PCTCPU
1015 ORDERKEY_CPTICKS
1016 ORDERKEY_STATE
1017 ORDERKEY_PRIO
1020 return (result);
1023 /* compare_time - the comparison function for sorting by total cpu time */
1026 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1028 struct kinfo_proc *p1;
1029 struct kinfo_proc *p2;
1030 int result;
1031 pctcpu lresult;
1033 /* remove one level of indirection */
1034 p1 = *(struct kinfo_proc **) pp1;
1035 p2 = *(struct kinfo_proc **) pp2;
1037 ORDERKEY_KIDLE
1038 ORDERKEY_CPTICKS
1039 ORDERKEY_PCTCPU
1040 ORDERKEY_KTHREADS
1041 ORDERKEY_KTHREADS_PRIO
1042 ORDERKEY_STATE
1043 ORDERKEY_PRIO
1044 ORDERKEY_RSSIZE
1045 ORDERKEY_MEM
1048 return (result);
1052 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1054 struct kinfo_proc *p1;
1055 struct kinfo_proc *p2;
1056 int result;
1057 pctcpu lresult;
1059 /* remove one level of indirection */
1060 p1 = *(struct kinfo_proc **) pp1;
1061 p2 = *(struct kinfo_proc **) pp2;
1063 ORDERKEY_KIDLE
1064 ORDERKEY_CTIME
1065 ORDERKEY_PCTCPU
1066 ORDERKEY_KTHREADS
1067 ORDERKEY_KTHREADS_PRIO
1068 ORDERKEY_STATE
1069 ORDERKEY_PRIO
1070 ORDERKEY_RSSIZE
1071 ORDERKEY_MEM
1074 return (result);
1077 /* compare_prio - the comparison function for sorting by cpu percentage */
1080 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1082 struct kinfo_proc *p1;
1083 struct kinfo_proc *p2;
1084 int result;
1085 pctcpu lresult;
1087 /* remove one level of indirection */
1088 p1 = *(struct kinfo_proc **) pp1;
1089 p2 = *(struct kinfo_proc **) pp2;
1091 ORDERKEY_KTHREADS
1092 ORDERKEY_KTHREADS_PRIO
1093 ORDERKEY_PRIO
1094 ORDERKEY_KIDLE
1095 ORDERKEY_CPTICKS
1096 ORDERKEY_PCTCPU
1097 ORDERKEY_STATE
1098 ORDERKEY_RSSIZE
1099 ORDERKEY_MEM
1102 return (result);
1106 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1108 struct kinfo_proc *p1;
1109 struct kinfo_proc *p2;
1110 int result;
1111 pctcpu lresult;
1113 /* remove one level of indirection */
1114 p1 = *(struct kinfo_proc **)pp1;
1115 p2 = *(struct kinfo_proc **)pp2;
1117 ORDERKEY_KTHREADS
1118 ORDERKEY_KTHREADS_PRIO
1119 ORDERKEY_KIDLE
1120 ORDERKEY_CPTICKS
1121 ORDERKEY_PCTCPU
1122 ORDERKEY_STATE
1123 ORDERKEY_RSSIZE
1124 ORDERKEY_MEM
1127 return (result);
1130 /* compare_pid - the comparison function for sorting by process id */
1133 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1135 struct kinfo_proc *p1;
1136 struct kinfo_proc *p2;
1137 int result;
1139 /* remove one level of indirection */
1140 p1 = *(struct kinfo_proc **) pp1;
1141 p2 = *(struct kinfo_proc **) pp2;
1143 ORDERKEY_PID
1146 return(result);
1150 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1151 * the process does not exist.
1152 * It is EXTREMLY IMPORTANT that this function work correctly.
1153 * If top runs setuid root (as in SVR4), then this function
1154 * is the only thing that stands in the way of a serious
1155 * security problem. It validates requests for the "kill"
1156 * and "renice" commands.
1160 proc_owner(int pid)
1162 int xcnt;
1163 struct kinfo_proc **prefp;
1164 struct kinfo_proc *pp;
1166 prefp = pref;
1167 xcnt = pref_len;
1168 while (--xcnt >= 0) {
1169 pp = *prefp++;
1170 if (PP(pp, pid) == (pid_t) pid) {
1171 return ((int)PP(pp, ruid));
1174 return (-1);
1179 * swapmode is based on a program called swapinfo written
1180 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
1183 swapmode(int *retavail, int *retfree)
1185 int n;
1186 int pagesize = getpagesize();
1187 struct kvm_swap swapary[1];
1189 *retavail = 0;
1190 *retfree = 0;
1192 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1194 n = kvm_getswapinfo(kd, swapary, 1, 0);
1195 if (n < 0 || swapary[0].ksw_total == 0)
1196 return (0);
1198 *retavail = CONVERT(swapary[0].ksw_total);
1199 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1201 n = (int)((double)swapary[0].ksw_used * 100.0 /
1202 (double)swapary[0].ksw_total);
1203 return (n);