HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / vfs / nfs / nfs_vnops.c
blob2b5658ed4f88f521e50ff6af1d3e195ace6ef23c
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95
37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.77 2008/06/08 08:38:06 sephe Exp $
43 * vnode op calls for Sun NFS version 2 and 3
46 #include "opt_inet.h"
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
72 #include <sys/buf2.h>
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
77 #undef DIRBLKSIZ
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
91 #include <sys/thread2.h>
93 /* Defs */
94 #define TRUE 1
95 #define FALSE 0
97 static int nfsspec_read (struct vop_read_args *);
98 static int nfsspec_write (struct vop_write_args *);
99 static int nfsfifo_read (struct vop_read_args *);
100 static int nfsfifo_write (struct vop_write_args *);
101 static int nfsspec_close (struct vop_close_args *);
102 static int nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static int nfs_lookup (struct vop_old_lookup_args *);
106 static int nfs_create (struct vop_old_create_args *);
107 static int nfs_mknod (struct vop_old_mknod_args *);
108 static int nfs_open (struct vop_open_args *);
109 static int nfs_close (struct vop_close_args *);
110 static int nfs_access (struct vop_access_args *);
111 static int nfs_getattr (struct vop_getattr_args *);
112 static int nfs_setattr (struct vop_setattr_args *);
113 static int nfs_read (struct vop_read_args *);
114 static int nfs_mmap (struct vop_mmap_args *);
115 static int nfs_fsync (struct vop_fsync_args *);
116 static int nfs_remove (struct vop_old_remove_args *);
117 static int nfs_link (struct vop_old_link_args *);
118 static int nfs_rename (struct vop_old_rename_args *);
119 static int nfs_mkdir (struct vop_old_mkdir_args *);
120 static int nfs_rmdir (struct vop_old_rmdir_args *);
121 static int nfs_symlink (struct vop_old_symlink_args *);
122 static int nfs_readdir (struct vop_readdir_args *);
123 static int nfs_bmap (struct vop_bmap_args *);
124 static int nfs_strategy (struct vop_strategy_args *);
125 static int nfs_lookitup (struct vnode *, const char *, int,
126 struct ucred *, struct thread *, struct nfsnode **);
127 static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int nfsspec_access (struct vop_access_args *);
129 static int nfs_readlink (struct vop_readlink_args *);
130 static int nfs_print (struct vop_print_args *);
131 static int nfs_advlock (struct vop_advlock_args *);
133 static int nfs_nresolve (struct vop_nresolve_args *);
135 * Global vfs data structures for nfs
137 struct vop_ops nfsv2_vnode_vops = {
138 .vop_default = vop_defaultop,
139 .vop_access = nfs_access,
140 .vop_advlock = nfs_advlock,
141 .vop_bmap = nfs_bmap,
142 .vop_close = nfs_close,
143 .vop_old_create = nfs_create,
144 .vop_fsync = nfs_fsync,
145 .vop_getattr = nfs_getattr,
146 .vop_getpages = nfs_getpages,
147 .vop_putpages = nfs_putpages,
148 .vop_inactive = nfs_inactive,
149 .vop_old_link = nfs_link,
150 .vop_old_lookup = nfs_lookup,
151 .vop_old_mkdir = nfs_mkdir,
152 .vop_old_mknod = nfs_mknod,
153 .vop_mmap = nfs_mmap,
154 .vop_open = nfs_open,
155 .vop_poll = nfs_poll,
156 .vop_print = nfs_print,
157 .vop_read = nfs_read,
158 .vop_readdir = nfs_readdir,
159 .vop_readlink = nfs_readlink,
160 .vop_reclaim = nfs_reclaim,
161 .vop_old_remove = nfs_remove,
162 .vop_old_rename = nfs_rename,
163 .vop_old_rmdir = nfs_rmdir,
164 .vop_setattr = nfs_setattr,
165 .vop_strategy = nfs_strategy,
166 .vop_old_symlink = nfs_symlink,
167 .vop_write = nfs_write,
168 .vop_nresolve = nfs_nresolve
172 * Special device vnode ops
174 struct vop_ops nfsv2_spec_vops = {
175 .vop_default = spec_vnoperate,
176 .vop_access = nfsspec_access,
177 .vop_close = nfsspec_close,
178 .vop_fsync = nfs_fsync,
179 .vop_getattr = nfs_getattr,
180 .vop_inactive = nfs_inactive,
181 .vop_print = nfs_print,
182 .vop_read = nfsspec_read,
183 .vop_reclaim = nfs_reclaim,
184 .vop_setattr = nfs_setattr,
185 .vop_write = nfsspec_write
188 struct vop_ops nfsv2_fifo_vops = {
189 .vop_default = fifo_vnoperate,
190 .vop_access = nfsspec_access,
191 .vop_close = nfsfifo_close,
192 .vop_fsync = nfs_fsync,
193 .vop_getattr = nfs_getattr,
194 .vop_inactive = nfs_inactive,
195 .vop_print = nfs_print,
196 .vop_read = nfsfifo_read,
197 .vop_reclaim = nfs_reclaim,
198 .vop_setattr = nfs_setattr,
199 .vop_write = nfsfifo_write
202 static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 struct componentname *cnp,
204 struct vattr *vap);
205 static int nfs_removerpc (struct vnode *dvp, const char *name,
206 int namelen,
207 struct ucred *cred, struct thread *td);
208 static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 int fnamelen, struct vnode *tdvp,
210 const char *tnameptr, int tnamelen,
211 struct ucred *cred, struct thread *td);
212 static int nfs_renameit (struct vnode *sdvp,
213 struct componentname *scnp,
214 struct sillyrename *sp);
217 * Global variables
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
227 SYSCTL_DECL(_vfs_nfs);
229 static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
231 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
233 static int nfsneg_cache_timeout = NFS_MINATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
235 &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
237 static int nfspos_cache_timeout = NFS_MINATTRTIMO;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
239 &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
241 static int nfsv3_commit_on_close = 0;
242 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
243 &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
244 #if 0
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
246 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
248 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
249 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
250 #endif
252 #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \
253 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \
254 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
255 static int
256 nfs3_access_otw(struct vnode *vp, int wmode,
257 struct thread *td, struct ucred *cred)
259 const int v3 = 1;
260 u_int32_t *tl;
261 int error = 0, attrflag;
263 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
264 caddr_t bpos, dpos, cp2;
265 int32_t t1, t2;
266 caddr_t cp;
267 u_int32_t rmode;
268 struct nfsnode *np = VTONFS(vp);
270 nfsstats.rpccnt[NFSPROC_ACCESS]++;
271 nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
272 nfsm_fhtom(vp, v3);
273 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
274 *tl = txdr_unsigned(wmode);
275 nfsm_request(vp, NFSPROC_ACCESS, td, cred);
276 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
277 if (!error) {
278 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
279 rmode = fxdr_unsigned(u_int32_t, *tl);
280 np->n_mode = rmode;
281 np->n_modeuid = cred->cr_uid;
282 np->n_modestamp = mycpu->gd_time_seconds;
284 m_freem(mrep);
285 nfsmout:
286 return error;
290 * nfs access vnode op.
291 * For nfs version 2, just return ok. File accesses may fail later.
292 * For nfs version 3, use the access rpc to check accessibility. If file modes
293 * are changed on the server, accesses might still fail later.
295 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
297 static int
298 nfs_access(struct vop_access_args *ap)
300 struct vnode *vp = ap->a_vp;
301 thread_t td = curthread;
302 int error = 0;
303 u_int32_t mode, wmode;
304 int v3 = NFS_ISV3(vp);
305 struct nfsnode *np = VTONFS(vp);
308 * Disallow write attempts on filesystems mounted read-only;
309 * unless the file is a socket, fifo, or a block or character
310 * device resident on the filesystem.
312 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
313 switch (vp->v_type) {
314 case VREG:
315 case VDIR:
316 case VLNK:
317 return (EROFS);
318 default:
319 break;
323 * For nfs v3, check to see if we have done this recently, and if
324 * so return our cached result instead of making an ACCESS call.
325 * If not, do an access rpc, otherwise you are stuck emulating
326 * ufs_access() locally using the vattr. This may not be correct,
327 * since the server may apply other access criteria such as
328 * client uid-->server uid mapping that we do not know about.
330 if (v3) {
331 if (ap->a_mode & VREAD)
332 mode = NFSV3ACCESS_READ;
333 else
334 mode = 0;
335 if (vp->v_type != VDIR) {
336 if (ap->a_mode & VWRITE)
337 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
338 if (ap->a_mode & VEXEC)
339 mode |= NFSV3ACCESS_EXECUTE;
340 } else {
341 if (ap->a_mode & VWRITE)
342 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
343 NFSV3ACCESS_DELETE);
344 if (ap->a_mode & VEXEC)
345 mode |= NFSV3ACCESS_LOOKUP;
347 /* XXX safety belt, only make blanket request if caching */
348 if (nfsaccess_cache_timeout > 0) {
349 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
350 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
351 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
352 } else {
353 wmode = mode;
357 * Does our cached result allow us to give a definite yes to
358 * this request?
360 if (np->n_modestamp &&
361 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
362 (ap->a_cred->cr_uid == np->n_modeuid) &&
363 ((np->n_mode & mode) == mode)) {
364 nfsstats.accesscache_hits++;
365 } else {
367 * Either a no, or a don't know. Go to the wire.
369 nfsstats.accesscache_misses++;
370 error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
371 if (!error) {
372 if ((np->n_mode & mode) != mode) {
373 error = EACCES;
377 } else {
378 if ((error = nfsspec_access(ap)) != 0)
379 return (error);
382 * Attempt to prevent a mapped root from accessing a file
383 * which it shouldn't. We try to read a byte from the file
384 * if the user is root and the file is not zero length.
385 * After calling nfsspec_access, we should have the correct
386 * file size cached.
388 if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
389 && VTONFS(vp)->n_size > 0) {
390 struct iovec aiov;
391 struct uio auio;
392 char buf[1];
394 aiov.iov_base = buf;
395 aiov.iov_len = 1;
396 auio.uio_iov = &aiov;
397 auio.uio_iovcnt = 1;
398 auio.uio_offset = 0;
399 auio.uio_resid = 1;
400 auio.uio_segflg = UIO_SYSSPACE;
401 auio.uio_rw = UIO_READ;
402 auio.uio_td = td;
404 if (vp->v_type == VREG) {
405 error = nfs_readrpc(vp, &auio);
406 } else if (vp->v_type == VDIR) {
407 char* bp;
408 bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
409 aiov.iov_base = bp;
410 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
411 error = nfs_readdirrpc(vp, &auio);
412 kfree(bp, M_TEMP);
413 } else if (vp->v_type == VLNK) {
414 error = nfs_readlinkrpc(vp, &auio);
415 } else {
416 error = EACCES;
421 * [re]record creds for reading and/or writing if access
422 * was granted. Assume the NFS server will grant read access
423 * for execute requests.
425 if (error == 0) {
426 if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
427 crhold(ap->a_cred);
428 if (np->n_rucred)
429 crfree(np->n_rucred);
430 np->n_rucred = ap->a_cred;
432 if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
433 crhold(ap->a_cred);
434 if (np->n_wucred)
435 crfree(np->n_wucred);
436 np->n_wucred = ap->a_cred;
439 return(error);
443 * nfs open vnode op
444 * Check to see if the type is ok
445 * and that deletion is not in progress.
446 * For paged in text files, you will need to flush the page cache
447 * if consistency is lost.
449 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
450 * struct file *a_fp)
452 /* ARGSUSED */
453 static int
454 nfs_open(struct vop_open_args *ap)
456 struct vnode *vp = ap->a_vp;
457 struct nfsnode *np = VTONFS(vp);
458 struct vattr vattr;
459 int error;
461 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
462 #ifdef DIAGNOSTIC
463 kprintf("open eacces vtyp=%d\n",vp->v_type);
464 #endif
465 return (EOPNOTSUPP);
469 * Clear the attribute cache only if opening with write access. It
470 * is unclear if we should do this at all here, but we certainly
471 * should not clear the cache unconditionally simply because a file
472 * is being opened.
474 if (ap->a_mode & FWRITE)
475 np->n_attrstamp = 0;
478 * For normal NFS, reconcile changes made locally verses
479 * changes made remotely. Note that VOP_GETATTR only goes
480 * to the wire if the cached attribute has timed out or been
481 * cleared.
483 * If local modifications have been made clear the attribute
484 * cache to force an attribute and modified time check. If
485 * GETATTR detects that the file has been changed by someone
486 * other then us it will set NRMODIFIED.
488 * If we are opening a directory and local changes have been
489 * made we have to invalidate the cache in order to ensure
490 * that we get the most up-to-date information from the
491 * server. XXX
493 if (np->n_flag & NLMODIFIED) {
494 np->n_attrstamp = 0;
495 if (vp->v_type == VDIR) {
496 error = nfs_vinvalbuf(vp, V_SAVE, 1);
497 if (error == EINTR)
498 return (error);
499 nfs_invaldir(vp);
502 error = VOP_GETATTR(vp, &vattr);
503 if (error)
504 return (error);
505 if (np->n_flag & NRMODIFIED) {
506 if (vp->v_type == VDIR)
507 nfs_invaldir(vp);
508 error = nfs_vinvalbuf(vp, V_SAVE, 1);
509 if (error == EINTR)
510 return (error);
511 np->n_flag &= ~NRMODIFIED;
514 return (vop_stdopen(ap));
518 * nfs close vnode op
519 * What an NFS client should do upon close after writing is a debatable issue.
520 * Most NFS clients push delayed writes to the server upon close, basically for
521 * two reasons:
522 * 1 - So that any write errors may be reported back to the client process
523 * doing the close system call. By far the two most likely errors are
524 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
525 * 2 - To put a worst case upper bound on cache inconsistency between
526 * multiple clients for the file.
527 * There is also a consistency problem for Version 2 of the protocol w.r.t.
528 * not being able to tell if other clients are writing a file concurrently,
529 * since there is no way of knowing if the changed modify time in the reply
530 * is only due to the write for this client.
531 * (NFS Version 3 provides weak cache consistency data in the reply that
532 * should be sufficient to detect and handle this case.)
534 * The current code does the following:
535 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
536 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
537 * or commit them (this satisfies 1 and 2 except for the
538 * case where the server crashes after this close but
539 * before the commit RPC, which is felt to be "good
540 * enough". Changing the last argument to nfs_flush() to
541 * a 1 would force a commit operation, if it is felt a
542 * commit is necessary now.
543 * for NQNFS - do nothing now, since 2 is dealt with via leases and
544 * 1 should be dealt with via an fsync() system call for
545 * cases where write errors are important.
547 * nfs_close(struct vnode *a_vp, int a_fflag)
549 /* ARGSUSED */
550 static int
551 nfs_close(struct vop_close_args *ap)
553 struct vnode *vp = ap->a_vp;
554 struct nfsnode *np = VTONFS(vp);
555 int error = 0;
556 thread_t td = curthread;
558 if (vp->v_type == VREG) {
559 if (np->n_flag & NLMODIFIED) {
560 if (NFS_ISV3(vp)) {
562 * Under NFSv3 we have dirty buffers to dispose of. We
563 * must flush them to the NFS server. We have the option
564 * of waiting all the way through the commit rpc or just
565 * waiting for the initial write. The default is to only
566 * wait through the initial write so the data is in the
567 * server's cache, which is roughly similar to the state
568 * a standard disk subsystem leaves the file in on close().
570 * We cannot clear the NLMODIFIED bit in np->n_flag due to
571 * potential races with other processes, and certainly
572 * cannot clear it if we don't commit.
574 int cm = nfsv3_commit_on_close ? 1 : 0;
575 error = nfs_flush(vp, MNT_WAIT, td, cm);
576 /* np->n_flag &= ~NLMODIFIED; */
577 } else {
578 error = nfs_vinvalbuf(vp, V_SAVE, 1);
580 np->n_attrstamp = 0;
582 if (np->n_flag & NWRITEERR) {
583 np->n_flag &= ~NWRITEERR;
584 error = np->n_error;
587 vop_stdclose(ap);
588 return (error);
592 * nfs getattr call from vfs.
594 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
596 static int
597 nfs_getattr(struct vop_getattr_args *ap)
599 struct vnode *vp = ap->a_vp;
600 struct nfsnode *np = VTONFS(vp);
601 caddr_t cp;
602 u_int32_t *tl;
603 int32_t t1, t2;
604 caddr_t bpos, dpos;
605 int error = 0;
606 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
607 int v3 = NFS_ISV3(vp);
608 thread_t td = curthread;
611 * Update local times for special files.
613 if (np->n_flag & (NACC | NUPD))
614 np->n_flag |= NCHG;
616 * First look in the cache.
618 if (nfs_getattrcache(vp, ap->a_vap) == 0)
619 return (0);
621 if (v3 && nfsaccess_cache_timeout > 0) {
622 nfsstats.accesscache_misses++;
623 nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
624 if (nfs_getattrcache(vp, ap->a_vap) == 0)
625 return (0);
628 nfsstats.rpccnt[NFSPROC_GETATTR]++;
629 nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
630 nfsm_fhtom(vp, v3);
631 nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
632 if (!error) {
633 nfsm_loadattr(vp, ap->a_vap);
635 m_freem(mrep);
636 nfsmout:
637 return (error);
641 * nfs setattr call.
643 * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
645 static int
646 nfs_setattr(struct vop_setattr_args *ap)
648 struct vnode *vp = ap->a_vp;
649 struct nfsnode *np = VTONFS(vp);
650 struct vattr *vap = ap->a_vap;
651 int error = 0;
652 u_quad_t tsize;
653 thread_t td = curthread;
655 #ifndef nolint
656 tsize = (u_quad_t)0;
657 #endif
660 * Setting of flags is not supported.
662 if (vap->va_flags != VNOVAL)
663 return (EOPNOTSUPP);
666 * Disallow write attempts if the filesystem is mounted read-only.
668 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
669 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
670 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
671 (vp->v_mount->mnt_flag & MNT_RDONLY))
672 return (EROFS);
673 if (vap->va_size != VNOVAL) {
674 switch (vp->v_type) {
675 case VDIR:
676 return (EISDIR);
677 case VCHR:
678 case VBLK:
679 case VSOCK:
680 case VFIFO:
681 if (vap->va_mtime.tv_sec == VNOVAL &&
682 vap->va_atime.tv_sec == VNOVAL &&
683 vap->va_mode == (mode_t)VNOVAL &&
684 vap->va_uid == (uid_t)VNOVAL &&
685 vap->va_gid == (gid_t)VNOVAL)
686 return (0);
687 vap->va_size = VNOVAL;
688 break;
689 default:
691 * Disallow write attempts if the filesystem is
692 * mounted read-only.
694 if (vp->v_mount->mnt_flag & MNT_RDONLY)
695 return (EROFS);
698 * This is nasty. The RPCs we send to flush pending
699 * data often return attribute information which is
700 * cached via a callback to nfs_loadattrcache(), which
701 * has the effect of changing our notion of the file
702 * size. Due to flushed appends and other operations
703 * the file size can be set to virtually anything,
704 * including values that do not match either the old
705 * or intended file size.
707 * When this condition is detected we must loop to
708 * try the operation again. Hopefully no more
709 * flushing is required on the loop so it works the
710 * second time around. THIS CASE ALMOST ALWAYS
711 * HAPPENS!
713 tsize = np->n_size;
714 again:
715 error = nfs_meta_setsize(vp, td, vap->va_size);
717 if (np->n_flag & NLMODIFIED) {
718 if (vap->va_size == 0)
719 error = nfs_vinvalbuf(vp, 0, 1);
720 else
721 error = nfs_vinvalbuf(vp, V_SAVE, 1);
724 * note: this loop case almost always happens at
725 * least once per truncation.
727 if (error == 0 && np->n_size != vap->va_size)
728 goto again;
729 np->n_vattr.va_size = vap->va_size;
730 break;
732 } else if ((vap->va_mtime.tv_sec != VNOVAL ||
733 vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
734 vp->v_type == VREG &&
735 (error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
737 return (error);
739 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
742 * Sanity check if a truncation was issued. This should only occur
743 * if multiple processes are racing on the same file.
745 if (error == 0 && vap->va_size != VNOVAL &&
746 np->n_size != vap->va_size) {
747 kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
748 goto again;
750 if (error && vap->va_size != VNOVAL) {
751 np->n_size = np->n_vattr.va_size = tsize;
752 vnode_pager_setsize(vp, np->n_size);
754 return (error);
758 * Do an nfs setattr rpc.
760 static int
761 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
762 struct ucred *cred, struct thread *td)
764 struct nfsv2_sattr *sp;
765 struct nfsnode *np = VTONFS(vp);
766 caddr_t cp;
767 int32_t t1, t2;
768 caddr_t bpos, dpos, cp2;
769 u_int32_t *tl;
770 int error = 0, wccflag = NFSV3_WCCRATTR;
771 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
772 int v3 = NFS_ISV3(vp);
774 nfsstats.rpccnt[NFSPROC_SETATTR]++;
775 nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
776 nfsm_fhtom(vp, v3);
777 if (v3) {
778 nfsm_v3attrbuild(vap, TRUE);
779 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
780 *tl = nfs_false;
781 } else {
782 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
783 if (vap->va_mode == (mode_t)VNOVAL)
784 sp->sa_mode = nfs_xdrneg1;
785 else
786 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
787 if (vap->va_uid == (uid_t)VNOVAL)
788 sp->sa_uid = nfs_xdrneg1;
789 else
790 sp->sa_uid = txdr_unsigned(vap->va_uid);
791 if (vap->va_gid == (gid_t)VNOVAL)
792 sp->sa_gid = nfs_xdrneg1;
793 else
794 sp->sa_gid = txdr_unsigned(vap->va_gid);
795 sp->sa_size = txdr_unsigned(vap->va_size);
796 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
797 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
799 nfsm_request(vp, NFSPROC_SETATTR, td, cred);
800 if (v3) {
801 np->n_modestamp = 0;
802 nfsm_wcc_data(vp, wccflag);
803 } else
804 nfsm_loadattr(vp, (struct vattr *)0);
805 m_freem(mrep);
806 nfsmout:
807 return (error);
810 static
811 void
812 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
814 if (nctimeout == 0)
815 nctimeout = 1;
816 else
817 nctimeout *= hz;
818 cache_setvp(nch, vp);
819 cache_settimeout(nch, nctimeout);
823 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove
824 * nfs_lookup() until all remaining new api calls are implemented.
826 * Resolve a namecache entry. This function is passed a locked ncp and
827 * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
829 static int
830 nfs_nresolve(struct vop_nresolve_args *ap)
832 struct thread *td = curthread;
833 struct namecache *ncp;
834 struct ucred *cred;
835 struct nfsnode *np;
836 struct vnode *dvp;
837 struct vnode *nvp;
838 nfsfh_t *fhp;
839 int attrflag;
840 int fhsize;
841 int error;
842 int len;
843 int v3;
844 /******NFSM MACROS********/
845 struct mbuf *mb, *mrep, *mreq, *mb2, *md;
846 caddr_t bpos, dpos, cp, cp2;
847 u_int32_t *tl;
848 int32_t t1, t2;
850 cred = ap->a_cred;
851 dvp = ap->a_dvp;
853 if ((error = vget(dvp, LK_SHARED)) != 0)
854 return (error);
856 nvp = NULL;
857 v3 = NFS_ISV3(dvp);
858 nfsstats.lookupcache_misses++;
859 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
860 ncp = ap->a_nch->ncp;
861 len = ncp->nc_nlen;
862 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
863 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
864 nfsm_fhtom(dvp, v3);
865 nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
866 nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
867 if (error) {
869 * Cache negatve lookups to reduce NFS traffic, but use
870 * a fast timeout. Otherwise use a timeout of 1 tick.
871 * XXX we should add a namecache flag for no-caching
872 * to uncache the negative hit as soon as possible, but
873 * we cannot simply destroy the entry because it is used
874 * as a placeholder by the caller.
876 if (error == ENOENT)
877 nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
878 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
879 m_freem(mrep);
880 goto nfsmout;
884 * Success, get the file handle, do various checks, and load
885 * post-operation data from the reply packet. Theoretically
886 * we should never be looking up "." so, theoretically, we
887 * should never get the same file handle as our directory. But
888 * we check anyway. XXX
890 * Note that no timeout is set for the positive cache hit. We
891 * assume, theoretically, that ESTALE returns will be dealt with
892 * properly to handle NFS races and in anycase we cannot depend
893 * on a timeout to deal with NFS open/create/excl issues so instead
894 * of a bad hack here the rest of the NFS client code needs to do
895 * the right thing.
897 nfsm_getfh(fhp, fhsize, v3);
899 np = VTONFS(dvp);
900 if (NFS_CMPFH(np, fhp, fhsize)) {
901 vref(dvp);
902 nvp = dvp;
903 } else {
904 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
905 if (error) {
906 m_freem(mrep);
907 vput(dvp);
908 return (error);
910 nvp = NFSTOV(np);
912 if (v3) {
913 nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
914 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
915 } else {
916 nfsm_loadattr(nvp, NULL);
918 nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
919 m_freem(mrep);
920 nfsmout:
921 vput(dvp);
922 if (nvp) {
923 if (nvp == dvp)
924 vrele(nvp);
925 else
926 vput(nvp);
928 return (error);
932 * 'cached' nfs directory lookup
934 * NOTE: cannot be removed until NFS implements all the new n*() API calls.
936 * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
937 * struct componentname *a_cnp)
939 static int
940 nfs_lookup(struct vop_old_lookup_args *ap)
942 struct componentname *cnp = ap->a_cnp;
943 struct vnode *dvp = ap->a_dvp;
944 struct vnode **vpp = ap->a_vpp;
945 int flags = cnp->cn_flags;
946 struct vnode *newvp;
947 u_int32_t *tl;
948 caddr_t cp;
949 int32_t t1, t2;
950 struct nfsmount *nmp;
951 caddr_t bpos, dpos, cp2;
952 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
953 long len;
954 nfsfh_t *fhp;
955 struct nfsnode *np;
956 int lockparent, wantparent, error = 0, attrflag, fhsize;
957 int v3 = NFS_ISV3(dvp);
960 * Read-only mount check and directory check.
962 *vpp = NULLVP;
963 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
964 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
965 return (EROFS);
967 if (dvp->v_type != VDIR)
968 return (ENOTDIR);
971 * Look it up in the cache. Note that ENOENT is only returned if we
972 * previously entered a negative hit (see later on). The additional
973 * nfsneg_cache_timeout check causes previously cached results to
974 * be instantly ignored if the negative caching is turned off.
976 lockparent = flags & CNP_LOCKPARENT;
977 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
978 nmp = VFSTONFS(dvp->v_mount);
979 np = VTONFS(dvp);
982 * Go to the wire.
984 error = 0;
985 newvp = NULLVP;
986 nfsstats.lookupcache_misses++;
987 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
988 len = cnp->cn_namelen;
989 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
990 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
991 nfsm_fhtom(dvp, v3);
992 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
993 nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
994 if (error) {
995 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
996 m_freem(mrep);
997 goto nfsmout;
999 nfsm_getfh(fhp, fhsize, v3);
1002 * Handle RENAME case...
1004 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1005 if (NFS_CMPFH(np, fhp, fhsize)) {
1006 m_freem(mrep);
1007 return (EISDIR);
1009 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1010 if (error) {
1011 m_freem(mrep);
1012 return (error);
1014 newvp = NFSTOV(np);
1015 if (v3) {
1016 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1017 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1018 } else
1019 nfsm_loadattr(newvp, (struct vattr *)0);
1020 *vpp = newvp;
1021 m_freem(mrep);
1022 if (!lockparent) {
1023 vn_unlock(dvp);
1024 cnp->cn_flags |= CNP_PDIRUNLOCK;
1026 return (0);
1029 if (flags & CNP_ISDOTDOT) {
1030 vn_unlock(dvp);
1031 cnp->cn_flags |= CNP_PDIRUNLOCK;
1032 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1033 if (error) {
1034 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1035 cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1036 return (error); /* NOTE: return error from nget */
1038 newvp = NFSTOV(np);
1039 if (lockparent) {
1040 error = vn_lock(dvp, LK_EXCLUSIVE);
1041 if (error) {
1042 vput(newvp);
1043 return (error);
1045 cnp->cn_flags |= CNP_PDIRUNLOCK;
1047 } else if (NFS_CMPFH(np, fhp, fhsize)) {
1048 vref(dvp);
1049 newvp = dvp;
1050 } else {
1051 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1052 if (error) {
1053 m_freem(mrep);
1054 return (error);
1056 if (!lockparent) {
1057 vn_unlock(dvp);
1058 cnp->cn_flags |= CNP_PDIRUNLOCK;
1060 newvp = NFSTOV(np);
1062 if (v3) {
1063 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1064 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1065 } else
1066 nfsm_loadattr(newvp, (struct vattr *)0);
1067 #if 0
1068 /* XXX MOVE TO nfs_nremove() */
1069 if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1070 cnp->cn_nameiop != NAMEI_DELETE) {
1071 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1073 #endif
1074 *vpp = newvp;
1075 m_freem(mrep);
1076 nfsmout:
1077 if (error) {
1078 if (newvp != NULLVP) {
1079 vrele(newvp);
1080 *vpp = NULLVP;
1082 if ((cnp->cn_nameiop == NAMEI_CREATE ||
1083 cnp->cn_nameiop == NAMEI_RENAME) &&
1084 error == ENOENT) {
1085 if (!lockparent) {
1086 vn_unlock(dvp);
1087 cnp->cn_flags |= CNP_PDIRUNLOCK;
1089 if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1090 error = EROFS;
1091 else
1092 error = EJUSTRETURN;
1095 return (error);
1099 * nfs read call.
1100 * Just call nfs_bioread() to do the work.
1102 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1103 * struct ucred *a_cred)
1105 static int
1106 nfs_read(struct vop_read_args *ap)
1108 struct vnode *vp = ap->a_vp;
1110 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1111 switch (vp->v_type) {
1112 case VREG:
1113 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1114 case VDIR:
1115 return (EISDIR);
1116 default:
1117 return EOPNOTSUPP;
1122 * nfs readlink call
1124 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1126 static int
1127 nfs_readlink(struct vop_readlink_args *ap)
1129 struct vnode *vp = ap->a_vp;
1131 if (vp->v_type != VLNK)
1132 return (EINVAL);
1133 return (nfs_bioread(vp, ap->a_uio, 0));
1137 * Do a readlink rpc.
1138 * Called by nfs_doio() from below the buffer cache.
1141 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1143 u_int32_t *tl;
1144 caddr_t cp;
1145 int32_t t1, t2;
1146 caddr_t bpos, dpos, cp2;
1147 int error = 0, len, attrflag;
1148 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1149 int v3 = NFS_ISV3(vp);
1151 nfsstats.rpccnt[NFSPROC_READLINK]++;
1152 nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1153 nfsm_fhtom(vp, v3);
1154 nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1155 if (v3)
1156 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1157 if (!error) {
1158 nfsm_strsiz(len, NFS_MAXPATHLEN);
1159 if (len == NFS_MAXPATHLEN) {
1160 struct nfsnode *np = VTONFS(vp);
1161 if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1162 len = np->n_size;
1164 nfsm_mtouio(uiop, len);
1166 m_freem(mrep);
1167 nfsmout:
1168 return (error);
1172 * nfs read rpc call
1173 * Ditto above
1176 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1178 u_int32_t *tl;
1179 caddr_t cp;
1180 int32_t t1, t2;
1181 caddr_t bpos, dpos, cp2;
1182 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1183 struct nfsmount *nmp;
1184 int error = 0, len, retlen, tsiz, eof, attrflag;
1185 int v3 = NFS_ISV3(vp);
1187 #ifndef nolint
1188 eof = 0;
1189 #endif
1190 nmp = VFSTONFS(vp->v_mount);
1191 tsiz = uiop->uio_resid;
1192 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1193 return (EFBIG);
1194 while (tsiz > 0) {
1195 nfsstats.rpccnt[NFSPROC_READ]++;
1196 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1197 nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1198 nfsm_fhtom(vp, v3);
1199 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1200 if (v3) {
1201 txdr_hyper(uiop->uio_offset, tl);
1202 *(tl + 2) = txdr_unsigned(len);
1203 } else {
1204 *tl++ = txdr_unsigned(uiop->uio_offset);
1205 *tl++ = txdr_unsigned(len);
1206 *tl = 0;
1208 nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1209 if (v3) {
1210 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1211 if (error) {
1212 m_freem(mrep);
1213 goto nfsmout;
1215 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1216 eof = fxdr_unsigned(int, *(tl + 1));
1217 } else
1218 nfsm_loadattr(vp, (struct vattr *)0);
1219 nfsm_strsiz(retlen, nmp->nm_rsize);
1220 nfsm_mtouio(uiop, retlen);
1221 m_freem(mrep);
1222 tsiz -= retlen;
1223 if (v3) {
1224 if (eof || retlen == 0) {
1225 tsiz = 0;
1227 } else if (retlen < len) {
1228 tsiz = 0;
1231 nfsmout:
1232 return (error);
1236 * nfs write call
1239 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1241 u_int32_t *tl;
1242 caddr_t cp;
1243 int32_t t1, t2, backup;
1244 caddr_t bpos, dpos, cp2;
1245 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1246 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1247 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1248 int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1250 #ifndef DIAGNOSTIC
1251 if (uiop->uio_iovcnt != 1)
1252 panic("nfs: writerpc iovcnt > 1");
1253 #endif
1254 *must_commit = 0;
1255 tsiz = uiop->uio_resid;
1256 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1257 return (EFBIG);
1258 while (tsiz > 0) {
1259 nfsstats.rpccnt[NFSPROC_WRITE]++;
1260 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1261 nfsm_reqhead(vp, NFSPROC_WRITE,
1262 NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1263 nfsm_fhtom(vp, v3);
1264 if (v3) {
1265 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1266 txdr_hyper(uiop->uio_offset, tl);
1267 tl += 2;
1268 *tl++ = txdr_unsigned(len);
1269 *tl++ = txdr_unsigned(*iomode);
1270 *tl = txdr_unsigned(len);
1271 } else {
1272 u_int32_t x;
1274 nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1275 /* Set both "begin" and "current" to non-garbage. */
1276 x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1277 *tl++ = x; /* "begin offset" */
1278 *tl++ = x; /* "current offset" */
1279 x = txdr_unsigned(len);
1280 *tl++ = x; /* total to this offset */
1281 *tl = x; /* size of this write */
1283 nfsm_uiotom(uiop, len);
1284 nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1285 if (v3) {
1287 * The write RPC returns a before and after mtime. The
1288 * nfsm_wcc_data() macro checks the before n_mtime
1289 * against the before time and stores the after time
1290 * in the nfsnode's cached vattr and n_mtime field.
1291 * The NRMODIFIED bit will be set if the before
1292 * time did not match the original mtime.
1294 wccflag = NFSV3_WCCCHK;
1295 nfsm_wcc_data(vp, wccflag);
1296 if (!error) {
1297 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1298 + NFSX_V3WRITEVERF);
1299 rlen = fxdr_unsigned(int, *tl++);
1300 if (rlen == 0) {
1301 error = NFSERR_IO;
1302 m_freem(mrep);
1303 break;
1304 } else if (rlen < len) {
1305 backup = len - rlen;
1306 uiop->uio_iov->iov_base -= backup;
1307 uiop->uio_iov->iov_len += backup;
1308 uiop->uio_offset -= backup;
1309 uiop->uio_resid += backup;
1310 len = rlen;
1312 commit = fxdr_unsigned(int, *tl++);
1315 * Return the lowest committment level
1316 * obtained by any of the RPCs.
1318 if (committed == NFSV3WRITE_FILESYNC)
1319 committed = commit;
1320 else if (committed == NFSV3WRITE_DATASYNC &&
1321 commit == NFSV3WRITE_UNSTABLE)
1322 committed = commit;
1323 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1324 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1325 NFSX_V3WRITEVERF);
1326 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1327 } else if (bcmp((caddr_t)tl,
1328 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1329 *must_commit = 1;
1330 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1331 NFSX_V3WRITEVERF);
1334 } else {
1335 nfsm_loadattr(vp, (struct vattr *)0);
1337 m_freem(mrep);
1338 if (error)
1339 break;
1340 tsiz -= len;
1342 nfsmout:
1343 if (vp->v_mount->mnt_flag & MNT_ASYNC)
1344 committed = NFSV3WRITE_FILESYNC;
1345 *iomode = committed;
1346 if (error)
1347 uiop->uio_resid = tsiz;
1348 return (error);
1352 * nfs mknod rpc
1353 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1354 * mode set to specify the file type and the size field for rdev.
1356 static int
1357 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1358 struct vattr *vap)
1360 struct nfsv2_sattr *sp;
1361 u_int32_t *tl;
1362 caddr_t cp;
1363 int32_t t1, t2;
1364 struct vnode *newvp = (struct vnode *)0;
1365 struct nfsnode *np = (struct nfsnode *)0;
1366 struct vattr vattr;
1367 char *cp2;
1368 caddr_t bpos, dpos;
1369 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1370 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1371 int rmajor, rminor;
1372 int v3 = NFS_ISV3(dvp);
1374 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1375 rmajor = txdr_unsigned(vap->va_rmajor);
1376 rminor = txdr_unsigned(vap->va_rminor);
1377 } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1378 rmajor = nfs_xdrneg1;
1379 rminor = nfs_xdrneg1;
1380 } else {
1381 return (EOPNOTSUPP);
1383 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1384 return (error);
1386 nfsstats.rpccnt[NFSPROC_MKNOD]++;
1387 nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1388 + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1389 nfsm_fhtom(dvp, v3);
1390 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1391 if (v3) {
1392 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1393 *tl++ = vtonfsv3_type(vap->va_type);
1394 nfsm_v3attrbuild(vap, FALSE);
1395 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1396 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1397 *tl++ = txdr_unsigned(vap->va_rmajor);
1398 *tl = txdr_unsigned(vap->va_rminor);
1400 } else {
1401 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1402 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1403 sp->sa_uid = nfs_xdrneg1;
1404 sp->sa_gid = nfs_xdrneg1;
1405 sp->sa_size = makeudev(rmajor, rminor);
1406 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1407 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1409 nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1410 if (!error) {
1411 nfsm_mtofh(dvp, newvp, v3, gotvp);
1412 if (!gotvp) {
1413 if (newvp) {
1414 vput(newvp);
1415 newvp = (struct vnode *)0;
1417 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1418 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1419 if (!error)
1420 newvp = NFSTOV(np);
1423 if (v3)
1424 nfsm_wcc_data(dvp, wccflag);
1425 m_freem(mrep);
1426 nfsmout:
1427 if (error) {
1428 if (newvp)
1429 vput(newvp);
1430 } else {
1431 *vpp = newvp;
1433 VTONFS(dvp)->n_flag |= NLMODIFIED;
1434 if (!wccflag)
1435 VTONFS(dvp)->n_attrstamp = 0;
1436 return (error);
1440 * nfs mknod vop
1441 * just call nfs_mknodrpc() to do the work.
1443 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1444 * struct componentname *a_cnp, struct vattr *a_vap)
1446 /* ARGSUSED */
1447 static int
1448 nfs_mknod(struct vop_old_mknod_args *ap)
1450 return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1453 static u_long create_verf;
1455 * nfs file create call
1457 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1458 * struct componentname *a_cnp, struct vattr *a_vap)
1460 static int
1461 nfs_create(struct vop_old_create_args *ap)
1463 struct vnode *dvp = ap->a_dvp;
1464 struct vattr *vap = ap->a_vap;
1465 struct componentname *cnp = ap->a_cnp;
1466 struct nfsv2_sattr *sp;
1467 u_int32_t *tl;
1468 caddr_t cp;
1469 int32_t t1, t2;
1470 struct nfsnode *np = (struct nfsnode *)0;
1471 struct vnode *newvp = (struct vnode *)0;
1472 caddr_t bpos, dpos, cp2;
1473 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1474 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1475 struct vattr vattr;
1476 int v3 = NFS_ISV3(dvp);
1479 * Oops, not for me..
1481 if (vap->va_type == VSOCK)
1482 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1484 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1485 return (error);
1487 if (vap->va_vaflags & VA_EXCLUSIVE)
1488 fmode |= O_EXCL;
1489 again:
1490 nfsstats.rpccnt[NFSPROC_CREATE]++;
1491 nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1492 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1493 nfsm_fhtom(dvp, v3);
1494 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1495 if (v3) {
1496 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1497 if (fmode & O_EXCL) {
1498 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1499 nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1500 #ifdef INET
1501 if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1502 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1503 else
1504 #endif
1505 *tl++ = create_verf;
1506 *tl = ++create_verf;
1507 } else {
1508 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1509 nfsm_v3attrbuild(vap, FALSE);
1511 } else {
1512 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1513 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1514 sp->sa_uid = nfs_xdrneg1;
1515 sp->sa_gid = nfs_xdrneg1;
1516 sp->sa_size = 0;
1517 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1518 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1520 nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1521 if (!error) {
1522 nfsm_mtofh(dvp, newvp, v3, gotvp);
1523 if (!gotvp) {
1524 if (newvp) {
1525 vput(newvp);
1526 newvp = (struct vnode *)0;
1528 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1529 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1530 if (!error)
1531 newvp = NFSTOV(np);
1534 if (v3)
1535 nfsm_wcc_data(dvp, wccflag);
1536 m_freem(mrep);
1537 nfsmout:
1538 if (error) {
1539 if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1540 fmode &= ~O_EXCL;
1541 goto again;
1543 if (newvp)
1544 vput(newvp);
1545 } else if (v3 && (fmode & O_EXCL)) {
1547 * We are normally called with only a partially initialized
1548 * VAP. Since the NFSv3 spec says that server may use the
1549 * file attributes to store the verifier, the spec requires
1550 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1551 * in atime, but we can't really assume that all servers will
1552 * so we ensure that our SETATTR sets both atime and mtime.
1554 if (vap->va_mtime.tv_sec == VNOVAL)
1555 vfs_timestamp(&vap->va_mtime);
1556 if (vap->va_atime.tv_sec == VNOVAL)
1557 vap->va_atime = vap->va_mtime;
1558 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1560 if (!error) {
1562 * The new np may have enough info for access
1563 * checks, make sure rucred and wucred are
1564 * initialized for read and write rpc's.
1566 np = VTONFS(newvp);
1567 if (np->n_rucred == NULL)
1568 np->n_rucred = crhold(cnp->cn_cred);
1569 if (np->n_wucred == NULL)
1570 np->n_wucred = crhold(cnp->cn_cred);
1571 *ap->a_vpp = newvp;
1573 VTONFS(dvp)->n_flag |= NLMODIFIED;
1574 if (!wccflag)
1575 VTONFS(dvp)->n_attrstamp = 0;
1576 return (error);
1580 * nfs file remove call
1581 * To try and make nfs semantics closer to ufs semantics, a file that has
1582 * other processes using the vnode is renamed instead of removed and then
1583 * removed later on the last close.
1584 * - If v_sysref.refcnt > 1
1585 * If a rename is not already in the works
1586 * call nfs_sillyrename() to set it up
1587 * else
1588 * do the remove rpc
1590 * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1591 * struct componentname *a_cnp)
1593 static int
1594 nfs_remove(struct vop_old_remove_args *ap)
1596 struct vnode *vp = ap->a_vp;
1597 struct vnode *dvp = ap->a_dvp;
1598 struct componentname *cnp = ap->a_cnp;
1599 struct nfsnode *np = VTONFS(vp);
1600 int error = 0;
1601 struct vattr vattr;
1603 #ifndef DIAGNOSTIC
1604 if (vp->v_sysref.refcnt < 1)
1605 panic("nfs_remove: bad v_sysref.refcnt");
1606 #endif
1607 if (vp->v_type == VDIR)
1608 error = EPERM;
1609 else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1610 VOP_GETATTR(vp, &vattr) == 0 &&
1611 vattr.va_nlink > 1)) {
1613 * throw away biocache buffers, mainly to avoid
1614 * unnecessary delayed writes later.
1616 error = nfs_vinvalbuf(vp, 0, 1);
1617 /* Do the rpc */
1618 if (error != EINTR)
1619 error = nfs_removerpc(dvp, cnp->cn_nameptr,
1620 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1622 * Kludge City: If the first reply to the remove rpc is lost..
1623 * the reply to the retransmitted request will be ENOENT
1624 * since the file was in fact removed
1625 * Therefore, we cheat and return success.
1627 if (error == ENOENT)
1628 error = 0;
1629 } else if (!np->n_sillyrename) {
1630 error = nfs_sillyrename(dvp, vp, cnp);
1632 np->n_attrstamp = 0;
1633 return (error);
1637 * nfs file remove rpc called from nfs_inactive
1640 nfs_removeit(struct sillyrename *sp)
1642 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1643 sp->s_cred, NULL));
1647 * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1649 static int
1650 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1651 struct ucred *cred, struct thread *td)
1653 u_int32_t *tl;
1654 caddr_t cp;
1655 int32_t t1, t2;
1656 caddr_t bpos, dpos, cp2;
1657 int error = 0, wccflag = NFSV3_WCCRATTR;
1658 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1659 int v3 = NFS_ISV3(dvp);
1661 nfsstats.rpccnt[NFSPROC_REMOVE]++;
1662 nfsm_reqhead(dvp, NFSPROC_REMOVE,
1663 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1664 nfsm_fhtom(dvp, v3);
1665 nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1666 nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1667 if (v3)
1668 nfsm_wcc_data(dvp, wccflag);
1669 m_freem(mrep);
1670 nfsmout:
1671 VTONFS(dvp)->n_flag |= NLMODIFIED;
1672 if (!wccflag)
1673 VTONFS(dvp)->n_attrstamp = 0;
1674 return (error);
1678 * nfs file rename call
1680 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1681 * struct componentname *a_fcnp, struct vnode *a_tdvp,
1682 * struct vnode *a_tvp, struct componentname *a_tcnp)
1684 static int
1685 nfs_rename(struct vop_old_rename_args *ap)
1687 struct vnode *fvp = ap->a_fvp;
1688 struct vnode *tvp = ap->a_tvp;
1689 struct vnode *fdvp = ap->a_fdvp;
1690 struct vnode *tdvp = ap->a_tdvp;
1691 struct componentname *tcnp = ap->a_tcnp;
1692 struct componentname *fcnp = ap->a_fcnp;
1693 int error;
1695 /* Check for cross-device rename */
1696 if ((fvp->v_mount != tdvp->v_mount) ||
1697 (tvp && (fvp->v_mount != tvp->v_mount))) {
1698 error = EXDEV;
1699 goto out;
1703 * We have to flush B_DELWRI data prior to renaming
1704 * the file. If we don't, the delayed-write buffers
1705 * can be flushed out later after the file has gone stale
1706 * under NFSV3. NFSV2 does not have this problem because
1707 * ( as far as I can tell ) it flushes dirty buffers more
1708 * often.
1711 VOP_FSYNC(fvp, MNT_WAIT);
1712 if (tvp)
1713 VOP_FSYNC(tvp, MNT_WAIT);
1716 * If the tvp exists and is in use, sillyrename it before doing the
1717 * rename of the new file over it.
1719 * XXX Can't sillyrename a directory.
1721 * We do not attempt to do any namecache purges in this old API
1722 * routine. The new API compat functions have access to the actual
1723 * namecache structures and will do it for us.
1725 if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1726 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1727 vput(tvp);
1728 tvp = NULL;
1729 } else if (tvp) {
1733 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1734 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1735 tcnp->cn_td);
1737 out:
1738 if (tdvp == tvp)
1739 vrele(tdvp);
1740 else
1741 vput(tdvp);
1742 if (tvp)
1743 vput(tvp);
1744 vrele(fdvp);
1745 vrele(fvp);
1747 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1749 if (error == ENOENT)
1750 error = 0;
1751 return (error);
1755 * nfs file rename rpc called from nfs_remove() above
1757 static int
1758 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1759 struct sillyrename *sp)
1761 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1762 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1766 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1768 static int
1769 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1770 struct vnode *tdvp, const char *tnameptr, int tnamelen,
1771 struct ucred *cred, struct thread *td)
1773 u_int32_t *tl;
1774 caddr_t cp;
1775 int32_t t1, t2;
1776 caddr_t bpos, dpos, cp2;
1777 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1778 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1779 int v3 = NFS_ISV3(fdvp);
1781 nfsstats.rpccnt[NFSPROC_RENAME]++;
1782 nfsm_reqhead(fdvp, NFSPROC_RENAME,
1783 (NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1784 nfsm_rndup(tnamelen));
1785 nfsm_fhtom(fdvp, v3);
1786 nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1787 nfsm_fhtom(tdvp, v3);
1788 nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1789 nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1790 if (v3) {
1791 nfsm_wcc_data(fdvp, fwccflag);
1792 nfsm_wcc_data(tdvp, twccflag);
1794 m_freem(mrep);
1795 nfsmout:
1796 VTONFS(fdvp)->n_flag |= NLMODIFIED;
1797 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1798 if (!fwccflag)
1799 VTONFS(fdvp)->n_attrstamp = 0;
1800 if (!twccflag)
1801 VTONFS(tdvp)->n_attrstamp = 0;
1802 return (error);
1806 * nfs hard link create call
1808 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1809 * struct componentname *a_cnp)
1811 static int
1812 nfs_link(struct vop_old_link_args *ap)
1814 struct vnode *vp = ap->a_vp;
1815 struct vnode *tdvp = ap->a_tdvp;
1816 struct componentname *cnp = ap->a_cnp;
1817 u_int32_t *tl;
1818 caddr_t cp;
1819 int32_t t1, t2;
1820 caddr_t bpos, dpos, cp2;
1821 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1822 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1823 int v3;
1825 if (vp->v_mount != tdvp->v_mount) {
1826 return (EXDEV);
1830 * Push all writes to the server, so that the attribute cache
1831 * doesn't get "out of sync" with the server.
1832 * XXX There should be a better way!
1834 VOP_FSYNC(vp, MNT_WAIT);
1836 v3 = NFS_ISV3(vp);
1837 nfsstats.rpccnt[NFSPROC_LINK]++;
1838 nfsm_reqhead(vp, NFSPROC_LINK,
1839 NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1840 nfsm_fhtom(vp, v3);
1841 nfsm_fhtom(tdvp, v3);
1842 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1843 nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1844 if (v3) {
1845 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1846 nfsm_wcc_data(tdvp, wccflag);
1848 m_freem(mrep);
1849 nfsmout:
1850 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1851 if (!attrflag)
1852 VTONFS(vp)->n_attrstamp = 0;
1853 if (!wccflag)
1854 VTONFS(tdvp)->n_attrstamp = 0;
1856 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1858 if (error == EEXIST)
1859 error = 0;
1860 return (error);
1864 * nfs symbolic link create call
1866 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1867 * struct componentname *a_cnp, struct vattr *a_vap,
1868 * char *a_target)
1870 static int
1871 nfs_symlink(struct vop_old_symlink_args *ap)
1873 struct vnode *dvp = ap->a_dvp;
1874 struct vattr *vap = ap->a_vap;
1875 struct componentname *cnp = ap->a_cnp;
1876 struct nfsv2_sattr *sp;
1877 u_int32_t *tl;
1878 caddr_t cp;
1879 int32_t t1, t2;
1880 caddr_t bpos, dpos, cp2;
1881 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1882 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1883 struct vnode *newvp = (struct vnode *)0;
1884 int v3 = NFS_ISV3(dvp);
1886 nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1887 slen = strlen(ap->a_target);
1888 nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1889 nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1890 nfsm_fhtom(dvp, v3);
1891 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1892 if (v3) {
1893 nfsm_v3attrbuild(vap, FALSE);
1895 nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1896 if (!v3) {
1897 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1898 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1899 sp->sa_uid = nfs_xdrneg1;
1900 sp->sa_gid = nfs_xdrneg1;
1901 sp->sa_size = nfs_xdrneg1;
1902 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1903 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1907 * Issue the NFS request and get the rpc response.
1909 * Only NFSv3 responses returning an error of 0 actually return
1910 * a file handle that can be converted into newvp without having
1911 * to do an extra lookup rpc.
1913 nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1914 if (v3) {
1915 if (error == 0)
1916 nfsm_mtofh(dvp, newvp, v3, gotvp);
1917 nfsm_wcc_data(dvp, wccflag);
1921 * out code jumps -> here, mrep is also freed.
1924 m_freem(mrep);
1925 nfsmout:
1928 * If we get an EEXIST error, silently convert it to no-error
1929 * in case of an NFS retry.
1931 if (error == EEXIST)
1932 error = 0;
1935 * If we do not have (or no longer have) an error, and we could
1936 * not extract the newvp from the response due to the request being
1937 * NFSv2 or the error being EEXIST. We have to do a lookup in order
1938 * to obtain a newvp to return.
1940 if (error == 0 && newvp == NULL) {
1941 struct nfsnode *np = NULL;
1943 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1944 cnp->cn_cred, cnp->cn_td, &np);
1945 if (!error)
1946 newvp = NFSTOV(np);
1948 if (error) {
1949 if (newvp)
1950 vput(newvp);
1951 } else {
1952 *ap->a_vpp = newvp;
1954 VTONFS(dvp)->n_flag |= NLMODIFIED;
1955 if (!wccflag)
1956 VTONFS(dvp)->n_attrstamp = 0;
1957 return (error);
1961 * nfs make dir call
1963 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1964 * struct componentname *a_cnp, struct vattr *a_vap)
1966 static int
1967 nfs_mkdir(struct vop_old_mkdir_args *ap)
1969 struct vnode *dvp = ap->a_dvp;
1970 struct vattr *vap = ap->a_vap;
1971 struct componentname *cnp = ap->a_cnp;
1972 struct nfsv2_sattr *sp;
1973 u_int32_t *tl;
1974 caddr_t cp;
1975 int32_t t1, t2;
1976 int len;
1977 struct nfsnode *np = (struct nfsnode *)0;
1978 struct vnode *newvp = (struct vnode *)0;
1979 caddr_t bpos, dpos, cp2;
1980 int error = 0, wccflag = NFSV3_WCCRATTR;
1981 int gotvp = 0;
1982 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1983 struct vattr vattr;
1984 int v3 = NFS_ISV3(dvp);
1986 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1987 return (error);
1989 len = cnp->cn_namelen;
1990 nfsstats.rpccnt[NFSPROC_MKDIR]++;
1991 nfsm_reqhead(dvp, NFSPROC_MKDIR,
1992 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1993 nfsm_fhtom(dvp, v3);
1994 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1995 if (v3) {
1996 nfsm_v3attrbuild(vap, FALSE);
1997 } else {
1998 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1999 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2000 sp->sa_uid = nfs_xdrneg1;
2001 sp->sa_gid = nfs_xdrneg1;
2002 sp->sa_size = nfs_xdrneg1;
2003 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2004 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2006 nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2007 if (!error)
2008 nfsm_mtofh(dvp, newvp, v3, gotvp);
2009 if (v3)
2010 nfsm_wcc_data(dvp, wccflag);
2011 m_freem(mrep);
2012 nfsmout:
2013 VTONFS(dvp)->n_flag |= NLMODIFIED;
2014 if (!wccflag)
2015 VTONFS(dvp)->n_attrstamp = 0;
2017 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2018 * if we can succeed in looking up the directory.
2020 if (error == EEXIST || (!error && !gotvp)) {
2021 if (newvp) {
2022 vrele(newvp);
2023 newvp = (struct vnode *)0;
2025 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2026 cnp->cn_td, &np);
2027 if (!error) {
2028 newvp = NFSTOV(np);
2029 if (newvp->v_type != VDIR)
2030 error = EEXIST;
2033 if (error) {
2034 if (newvp)
2035 vrele(newvp);
2036 } else
2037 *ap->a_vpp = newvp;
2038 return (error);
2042 * nfs remove directory call
2044 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2045 * struct componentname *a_cnp)
2047 static int
2048 nfs_rmdir(struct vop_old_rmdir_args *ap)
2050 struct vnode *vp = ap->a_vp;
2051 struct vnode *dvp = ap->a_dvp;
2052 struct componentname *cnp = ap->a_cnp;
2053 u_int32_t *tl;
2054 caddr_t cp;
2055 int32_t t1, t2;
2056 caddr_t bpos, dpos, cp2;
2057 int error = 0, wccflag = NFSV3_WCCRATTR;
2058 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2059 int v3 = NFS_ISV3(dvp);
2061 if (dvp == vp)
2062 return (EINVAL);
2063 nfsstats.rpccnt[NFSPROC_RMDIR]++;
2064 nfsm_reqhead(dvp, NFSPROC_RMDIR,
2065 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2066 nfsm_fhtom(dvp, v3);
2067 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2068 nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2069 if (v3)
2070 nfsm_wcc_data(dvp, wccflag);
2071 m_freem(mrep);
2072 nfsmout:
2073 VTONFS(dvp)->n_flag |= NLMODIFIED;
2074 if (!wccflag)
2075 VTONFS(dvp)->n_attrstamp = 0;
2077 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2079 if (error == ENOENT)
2080 error = 0;
2081 return (error);
2085 * nfs readdir call
2087 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2089 static int
2090 nfs_readdir(struct vop_readdir_args *ap)
2092 struct vnode *vp = ap->a_vp;
2093 struct nfsnode *np = VTONFS(vp);
2094 struct uio *uio = ap->a_uio;
2095 int tresid, error;
2096 struct vattr vattr;
2098 if (vp->v_type != VDIR)
2099 return (EPERM);
2101 if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2102 return (error);
2105 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2106 * and then check that is still valid, or if this is an NQNFS mount
2107 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that
2108 * VOP_GETATTR() does not necessarily go to the wire.
2110 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2111 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2112 if (VOP_GETATTR(vp, &vattr) == 0 &&
2113 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2115 nfsstats.direofcache_hits++;
2116 goto done;
2121 * Call nfs_bioread() to do the real work. nfs_bioread() does its
2122 * own cache coherency checks so we do not have to.
2124 tresid = uio->uio_resid;
2125 error = nfs_bioread(vp, uio, 0);
2127 if (!error && uio->uio_resid == tresid)
2128 nfsstats.direofcache_misses++;
2129 done:
2130 vn_unlock(vp);
2131 return (error);
2135 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc.
2137 * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2138 * offset/block and converts the nfs formatted directory entries for userland
2139 * consumption as well as deals with offsets into the middle of blocks.
2140 * nfs_doio only deals with logical blocks. In particular, uio_offset will
2141 * be block-bounded. It must convert to cookies for the actual RPC.
2144 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2146 int len, left;
2147 struct nfs_dirent *dp = NULL;
2148 u_int32_t *tl;
2149 caddr_t cp;
2150 int32_t t1, t2;
2151 nfsuint64 *cookiep;
2152 caddr_t bpos, dpos, cp2;
2153 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2154 nfsuint64 cookie;
2155 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2156 struct nfsnode *dnp = VTONFS(vp);
2157 u_quad_t fileno;
2158 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2159 int attrflag;
2160 int v3 = NFS_ISV3(vp);
2162 #ifndef DIAGNOSTIC
2163 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2164 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2165 panic("nfs readdirrpc bad uio");
2166 #endif
2169 * If there is no cookie, assume directory was stale.
2171 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2172 if (cookiep)
2173 cookie = *cookiep;
2174 else
2175 return (NFSERR_BAD_COOKIE);
2177 * Loop around doing readdir rpc's of size nm_readdirsize
2178 * truncated to a multiple of DIRBLKSIZ.
2179 * The stopping criteria is EOF or buffer full.
2181 while (more_dirs && bigenough) {
2182 nfsstats.rpccnt[NFSPROC_READDIR]++;
2183 nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2184 NFSX_READDIR(v3));
2185 nfsm_fhtom(vp, v3);
2186 if (v3) {
2187 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2188 *tl++ = cookie.nfsuquad[0];
2189 *tl++ = cookie.nfsuquad[1];
2190 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2191 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2192 } else {
2193 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2194 *tl++ = cookie.nfsuquad[0];
2196 *tl = txdr_unsigned(nmp->nm_readdirsize);
2197 nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2198 if (v3) {
2199 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2200 if (!error) {
2201 nfsm_dissect(tl, u_int32_t *,
2202 2 * NFSX_UNSIGNED);
2203 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2204 dnp->n_cookieverf.nfsuquad[1] = *tl;
2205 } else {
2206 m_freem(mrep);
2207 goto nfsmout;
2210 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2211 more_dirs = fxdr_unsigned(int, *tl);
2213 /* loop thru the dir entries, converting them to std form */
2214 while (more_dirs && bigenough) {
2215 if (v3) {
2216 nfsm_dissect(tl, u_int32_t *,
2217 3 * NFSX_UNSIGNED);
2218 fileno = fxdr_hyper(tl);
2219 len = fxdr_unsigned(int, *(tl + 2));
2220 } else {
2221 nfsm_dissect(tl, u_int32_t *,
2222 2 * NFSX_UNSIGNED);
2223 fileno = fxdr_unsigned(u_quad_t, *tl++);
2224 len = fxdr_unsigned(int, *tl);
2226 if (len <= 0 || len > NFS_MAXNAMLEN) {
2227 error = EBADRPC;
2228 m_freem(mrep);
2229 goto nfsmout;
2233 * len is the number of bytes in the path element
2234 * name, not including the \0 termination.
2236 * tlen is the number of bytes w have to reserve for
2237 * the path element name.
2239 tlen = nfsm_rndup(len);
2240 if (tlen == len)
2241 tlen += 4; /* To ensure null termination */
2244 * If the entry would cross a DIRBLKSIZ boundary,
2245 * extend the previous nfs_dirent to cover the
2246 * remaining space.
2248 left = DIRBLKSIZ - blksiz;
2249 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2250 dp->nfs_reclen += left;
2251 uiop->uio_iov->iov_base += left;
2252 uiop->uio_iov->iov_len -= left;
2253 uiop->uio_offset += left;
2254 uiop->uio_resid -= left;
2255 blksiz = 0;
2257 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2258 bigenough = 0;
2259 if (bigenough) {
2260 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2261 dp->nfs_ino = fileno;
2262 dp->nfs_namlen = len;
2263 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2264 dp->nfs_type = DT_UNKNOWN;
2265 blksiz += dp->nfs_reclen;
2266 if (blksiz == DIRBLKSIZ)
2267 blksiz = 0;
2268 uiop->uio_offset += sizeof(struct nfs_dirent);
2269 uiop->uio_resid -= sizeof(struct nfs_dirent);
2270 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2271 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2272 nfsm_mtouio(uiop, len);
2275 * The uiop has advanced by nfs_dirent + len
2276 * but really needs to advance by
2277 * nfs_dirent + tlen
2279 cp = uiop->uio_iov->iov_base;
2280 tlen -= len;
2281 *cp = '\0'; /* null terminate */
2282 uiop->uio_iov->iov_base += tlen;
2283 uiop->uio_iov->iov_len -= tlen;
2284 uiop->uio_offset += tlen;
2285 uiop->uio_resid -= tlen;
2286 } else {
2288 * NFS strings must be rounded up (nfsm_myouio
2289 * handled that in the bigenough case).
2291 nfsm_adv(nfsm_rndup(len));
2293 if (v3) {
2294 nfsm_dissect(tl, u_int32_t *,
2295 3 * NFSX_UNSIGNED);
2296 } else {
2297 nfsm_dissect(tl, u_int32_t *,
2298 2 * NFSX_UNSIGNED);
2302 * If we were able to accomodate the last entry,
2303 * get the cookie for the next one. Otherwise
2304 * hold-over the cookie for the one we were not
2305 * able to accomodate.
2307 if (bigenough) {
2308 cookie.nfsuquad[0] = *tl++;
2309 if (v3)
2310 cookie.nfsuquad[1] = *tl++;
2311 } else if (v3) {
2312 tl += 2;
2313 } else {
2314 tl++;
2316 more_dirs = fxdr_unsigned(int, *tl);
2319 * If at end of rpc data, get the eof boolean
2321 if (!more_dirs) {
2322 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2323 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2325 m_freem(mrep);
2328 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2329 * by increasing d_reclen for the last record.
2331 if (blksiz > 0) {
2332 left = DIRBLKSIZ - blksiz;
2333 dp->nfs_reclen += left;
2334 uiop->uio_iov->iov_base += left;
2335 uiop->uio_iov->iov_len -= left;
2336 uiop->uio_offset += left;
2337 uiop->uio_resid -= left;
2340 if (bigenough) {
2342 * We hit the end of the directory, update direofoffset.
2344 dnp->n_direofoffset = uiop->uio_offset;
2345 } else {
2347 * There is more to go, insert the link cookie so the
2348 * next block can be read.
2350 if (uiop->uio_resid > 0)
2351 kprintf("EEK! readdirrpc resid > 0\n");
2352 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2353 *cookiep = cookie;
2355 nfsmout:
2356 return (error);
2360 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2363 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2365 int len, left;
2366 struct nfs_dirent *dp;
2367 u_int32_t *tl;
2368 caddr_t cp;
2369 int32_t t1, t2;
2370 struct vnode *newvp;
2371 nfsuint64 *cookiep;
2372 caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2373 struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2374 nfsuint64 cookie;
2375 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2376 struct nfsnode *dnp = VTONFS(vp), *np;
2377 nfsfh_t *fhp;
2378 u_quad_t fileno;
2379 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2380 int attrflag, fhsize;
2381 struct nchandle nch;
2382 struct nchandle dnch;
2383 struct nlcomponent nlc;
2385 #ifndef nolint
2386 dp = NULL;
2387 #endif
2388 #ifndef DIAGNOSTIC
2389 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2390 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2391 panic("nfs readdirplusrpc bad uio");
2392 #endif
2394 * Obtain the namecache record for the directory so we have something
2395 * to use as a basis for creating the entries. This function will
2396 * return a held (but not locked) ncp. The ncp may be disconnected
2397 * from the tree and cannot be used for upward traversals, and the
2398 * ncp may be unnamed. Note that other unrelated operations may
2399 * cause the ncp to be named at any time.
2401 cache_fromdvp(vp, NULL, 0, &dnch);
2402 bzero(&nlc, sizeof(nlc));
2403 newvp = NULLVP;
2406 * If there is no cookie, assume directory was stale.
2408 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2409 if (cookiep)
2410 cookie = *cookiep;
2411 else
2412 return (NFSERR_BAD_COOKIE);
2414 * Loop around doing readdir rpc's of size nm_readdirsize
2415 * truncated to a multiple of DIRBLKSIZ.
2416 * The stopping criteria is EOF or buffer full.
2418 while (more_dirs && bigenough) {
2419 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2420 nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2421 NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2422 nfsm_fhtom(vp, 1);
2423 nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2424 *tl++ = cookie.nfsuquad[0];
2425 *tl++ = cookie.nfsuquad[1];
2426 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2427 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2428 *tl++ = txdr_unsigned(nmp->nm_readdirsize);
2429 *tl = txdr_unsigned(nmp->nm_rsize);
2430 nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2431 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2432 if (error) {
2433 m_freem(mrep);
2434 goto nfsmout;
2436 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2437 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2438 dnp->n_cookieverf.nfsuquad[1] = *tl++;
2439 more_dirs = fxdr_unsigned(int, *tl);
2441 /* loop thru the dir entries, doctoring them to 4bsd form */
2442 while (more_dirs && bigenough) {
2443 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2444 fileno = fxdr_hyper(tl);
2445 len = fxdr_unsigned(int, *(tl + 2));
2446 if (len <= 0 || len > NFS_MAXNAMLEN) {
2447 error = EBADRPC;
2448 m_freem(mrep);
2449 goto nfsmout;
2451 tlen = nfsm_rndup(len);
2452 if (tlen == len)
2453 tlen += 4; /* To ensure null termination*/
2454 left = DIRBLKSIZ - blksiz;
2455 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2456 dp->nfs_reclen += left;
2457 uiop->uio_iov->iov_base += left;
2458 uiop->uio_iov->iov_len -= left;
2459 uiop->uio_offset += left;
2460 uiop->uio_resid -= left;
2461 blksiz = 0;
2463 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2464 bigenough = 0;
2465 if (bigenough) {
2466 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2467 dp->nfs_ino = fileno;
2468 dp->nfs_namlen = len;
2469 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2470 dp->nfs_type = DT_UNKNOWN;
2471 blksiz += dp->nfs_reclen;
2472 if (blksiz == DIRBLKSIZ)
2473 blksiz = 0;
2474 uiop->uio_offset += sizeof(struct nfs_dirent);
2475 uiop->uio_resid -= sizeof(struct nfs_dirent);
2476 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2477 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2478 nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2479 nlc.nlc_namelen = len;
2480 nfsm_mtouio(uiop, len);
2481 cp = uiop->uio_iov->iov_base;
2482 tlen -= len;
2483 *cp = '\0';
2484 uiop->uio_iov->iov_base += tlen;
2485 uiop->uio_iov->iov_len -= tlen;
2486 uiop->uio_offset += tlen;
2487 uiop->uio_resid -= tlen;
2488 } else
2489 nfsm_adv(nfsm_rndup(len));
2490 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2491 if (bigenough) {
2492 cookie.nfsuquad[0] = *tl++;
2493 cookie.nfsuquad[1] = *tl++;
2494 } else
2495 tl += 2;
2498 * Since the attributes are before the file handle
2499 * (sigh), we must skip over the attributes and then
2500 * come back and get them.
2502 attrflag = fxdr_unsigned(int, *tl);
2503 if (attrflag) {
2504 dpossav1 = dpos;
2505 mdsav1 = md;
2506 nfsm_adv(NFSX_V3FATTR);
2507 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2508 doit = fxdr_unsigned(int, *tl);
2509 if (doit) {
2510 nfsm_getfh(fhp, fhsize, 1);
2511 if (NFS_CMPFH(dnp, fhp, fhsize)) {
2512 vref(vp);
2513 newvp = vp;
2514 np = dnp;
2515 } else {
2516 error = nfs_nget(vp->v_mount, fhp,
2517 fhsize, &np);
2518 if (error)
2519 doit = 0;
2520 else
2521 newvp = NFSTOV(np);
2524 if (doit && bigenough) {
2525 dpossav2 = dpos;
2526 dpos = dpossav1;
2527 mdsav2 = md;
2528 md = mdsav1;
2529 nfsm_loadattr(newvp, (struct vattr *)0);
2530 dpos = dpossav2;
2531 md = mdsav2;
2532 dp->nfs_type =
2533 IFTODT(VTTOIF(np->n_vattr.va_type));
2534 if (dnch.ncp) {
2535 kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2536 nlc.nlc_namelen, nlc.nlc_namelen,
2537 nlc.nlc_nameptr);
2538 nch = cache_nlookup(&dnch, &nlc);
2539 cache_setunresolved(&nch);
2540 nfs_cache_setvp(&nch, newvp,
2541 nfspos_cache_timeout);
2542 cache_put(&nch);
2543 } else {
2544 kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2545 " %*.*s\n",
2546 nlc.nlc_namelen, nlc.nlc_namelen,
2547 nlc.nlc_nameptr);
2550 } else {
2551 /* Just skip over the file handle */
2552 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2553 i = fxdr_unsigned(int, *tl);
2554 nfsm_adv(nfsm_rndup(i));
2556 if (newvp != NULLVP) {
2557 if (newvp == vp)
2558 vrele(newvp);
2559 else
2560 vput(newvp);
2561 newvp = NULLVP;
2563 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2564 more_dirs = fxdr_unsigned(int, *tl);
2567 * If at end of rpc data, get the eof boolean
2569 if (!more_dirs) {
2570 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2571 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2573 m_freem(mrep);
2576 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2577 * by increasing d_reclen for the last record.
2579 if (blksiz > 0) {
2580 left = DIRBLKSIZ - blksiz;
2581 dp->nfs_reclen += left;
2582 uiop->uio_iov->iov_base += left;
2583 uiop->uio_iov->iov_len -= left;
2584 uiop->uio_offset += left;
2585 uiop->uio_resid -= left;
2589 * We are now either at the end of the directory or have filled the
2590 * block.
2592 if (bigenough)
2593 dnp->n_direofoffset = uiop->uio_offset;
2594 else {
2595 if (uiop->uio_resid > 0)
2596 kprintf("EEK! readdirplusrpc resid > 0\n");
2597 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2598 *cookiep = cookie;
2600 nfsmout:
2601 if (newvp != NULLVP) {
2602 if (newvp == vp)
2603 vrele(newvp);
2604 else
2605 vput(newvp);
2606 newvp = NULLVP;
2608 if (dnch.ncp)
2609 cache_drop(&dnch);
2610 return (error);
2614 * Silly rename. To make the NFS filesystem that is stateless look a little
2615 * more like the "ufs" a remove of an active vnode is translated to a rename
2616 * to a funny looking filename that is removed by nfs_inactive on the
2617 * nfsnode. There is the potential for another process on a different client
2618 * to create the same funny name between the nfs_lookitup() fails and the
2619 * nfs_rename() completes, but...
2621 static int
2622 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2624 struct sillyrename *sp;
2625 struct nfsnode *np;
2626 int error;
2629 * We previously purged dvp instead of vp. I don't know why, it
2630 * completely destroys performance. We can't do it anyway with the
2631 * new VFS API since we would be breaking the namecache topology.
2633 cache_purge(vp); /* XXX */
2634 np = VTONFS(vp);
2635 #ifndef DIAGNOSTIC
2636 if (vp->v_type == VDIR)
2637 panic("nfs: sillyrename dir");
2638 #endif
2639 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2640 M_NFSREQ, M_WAITOK);
2641 sp->s_cred = crdup(cnp->cn_cred);
2642 sp->s_dvp = dvp;
2643 vref(dvp);
2645 /* Fudge together a funny name */
2646 sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2648 /* Try lookitups until we get one that isn't there */
2649 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2650 cnp->cn_td, (struct nfsnode **)0) == 0) {
2651 sp->s_name[4]++;
2652 if (sp->s_name[4] > 'z') {
2653 error = EINVAL;
2654 goto bad;
2657 error = nfs_renameit(dvp, cnp, sp);
2658 if (error)
2659 goto bad;
2660 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2661 cnp->cn_td, &np);
2662 np->n_sillyrename = sp;
2663 return (0);
2664 bad:
2665 vrele(sp->s_dvp);
2666 crfree(sp->s_cred);
2667 kfree((caddr_t)sp, M_NFSREQ);
2668 return (error);
2672 * Look up a file name and optionally either update the file handle or
2673 * allocate an nfsnode, depending on the value of npp.
2674 * npp == NULL --> just do the lookup
2675 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2676 * handled too
2677 * *npp != NULL --> update the file handle in the vnode
2679 static int
2680 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2681 struct thread *td, struct nfsnode **npp)
2683 u_int32_t *tl;
2684 caddr_t cp;
2685 int32_t t1, t2;
2686 struct vnode *newvp = (struct vnode *)0;
2687 struct nfsnode *np, *dnp = VTONFS(dvp);
2688 caddr_t bpos, dpos, cp2;
2689 int error = 0, fhlen, attrflag;
2690 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2691 nfsfh_t *nfhp;
2692 int v3 = NFS_ISV3(dvp);
2694 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2695 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2696 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2697 nfsm_fhtom(dvp, v3);
2698 nfsm_strtom(name, len, NFS_MAXNAMLEN);
2699 nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2700 if (npp && !error) {
2701 nfsm_getfh(nfhp, fhlen, v3);
2702 if (*npp) {
2703 np = *npp;
2704 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2705 kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2706 np->n_fhp = &np->n_fh;
2707 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2708 np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2709 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2710 np->n_fhsize = fhlen;
2711 newvp = NFSTOV(np);
2712 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2713 vref(dvp);
2714 newvp = dvp;
2715 } else {
2716 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2717 if (error) {
2718 m_freem(mrep);
2719 return (error);
2721 newvp = NFSTOV(np);
2723 if (v3) {
2724 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2725 if (!attrflag && *npp == NULL) {
2726 m_freem(mrep);
2727 if (newvp == dvp)
2728 vrele(newvp);
2729 else
2730 vput(newvp);
2731 return (ENOENT);
2733 } else
2734 nfsm_loadattr(newvp, (struct vattr *)0);
2736 m_freem(mrep);
2737 nfsmout:
2738 if (npp && *npp == NULL) {
2739 if (error) {
2740 if (newvp) {
2741 if (newvp == dvp)
2742 vrele(newvp);
2743 else
2744 vput(newvp);
2746 } else
2747 *npp = np;
2749 return (error);
2753 * Nfs Version 3 commit rpc
2756 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2758 caddr_t cp;
2759 u_int32_t *tl;
2760 int32_t t1, t2;
2761 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2762 caddr_t bpos, dpos, cp2;
2763 int error = 0, wccflag = NFSV3_WCCRATTR;
2764 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2766 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2767 return (0);
2768 nfsstats.rpccnt[NFSPROC_COMMIT]++;
2769 nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2770 nfsm_fhtom(vp, 1);
2771 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2772 txdr_hyper(offset, tl);
2773 tl += 2;
2774 *tl = txdr_unsigned(cnt);
2775 nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2776 nfsm_wcc_data(vp, wccflag);
2777 if (!error) {
2778 nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2779 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2780 NFSX_V3WRITEVERF)) {
2781 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2782 NFSX_V3WRITEVERF);
2783 error = NFSERR_STALEWRITEVERF;
2786 m_freem(mrep);
2787 nfsmout:
2788 return (error);
2792 * Kludge City..
2793 * - make nfs_bmap() essentially a no-op that does no translation
2794 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2795 * (Maybe I could use the process's page mapping, but I was concerned that
2796 * Kernel Write might not be enabled and also figured copyout() would do
2797 * a lot more work than bcopy() and also it currently happens in the
2798 * context of the swapper process (2).
2800 * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2801 * off_t *a_doffsetp, int *a_runp, int *a_runb)
2803 static int
2804 nfs_bmap(struct vop_bmap_args *ap)
2806 if (ap->a_doffsetp != NULL)
2807 *ap->a_doffsetp = ap->a_loffset;
2808 if (ap->a_runp != NULL)
2809 *ap->a_runp = 0;
2810 if (ap->a_runb != NULL)
2811 *ap->a_runb = 0;
2812 return (0);
2816 * Strategy routine.
2818 * For async requests when nfsiod(s) are running, queue the request by
2819 * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2820 * request.
2822 static int
2823 nfs_strategy(struct vop_strategy_args *ap)
2825 struct bio *bio = ap->a_bio;
2826 struct bio *nbio;
2827 struct buf *bp = bio->bio_buf;
2828 struct thread *td;
2829 int error = 0;
2831 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2832 ("nfs_strategy: buffer %p unexpectedly marked done", bp));
2833 KASSERT(BUF_REFCNT(bp) > 0,
2834 ("nfs_strategy: buffer %p not locked", bp));
2836 if (bp->b_flags & B_ASYNC)
2837 td = NULL;
2838 else
2839 td = curthread; /* XXX */
2842 * We probably don't need to push an nbio any more since no
2843 * block conversion is required due to the use of 64 bit byte
2844 * offsets, but do it anyway.
2846 nbio = push_bio(bio);
2847 nbio->bio_offset = bio->bio_offset;
2850 * If the op is asynchronous and an i/o daemon is waiting
2851 * queue the request, wake it up and wait for completion
2852 * otherwise just do it ourselves.
2854 if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2855 error = nfs_doio(ap->a_vp, nbio, td);
2856 return (error);
2860 * Mmap a file
2862 * NB Currently unsupported.
2864 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2866 /* ARGSUSED */
2867 static int
2868 nfs_mmap(struct vop_mmap_args *ap)
2870 return (EINVAL);
2874 * fsync vnode op. Just call nfs_flush() with commit == 1.
2876 * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2878 /* ARGSUSED */
2879 static int
2880 nfs_fsync(struct vop_fsync_args *ap)
2882 return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2886 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be
2887 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains
2888 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is
2889 * set the buffer contains data that has already been written to the server
2890 * and which now needs a commit RPC.
2892 * If commit is 0 we only take one pass and only flush buffers containing new
2893 * dirty data.
2895 * If commit is 1 we take two passes, issuing a commit RPC in the second
2896 * pass.
2898 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2899 * to completely flush all pending data.
2901 * Note that the RB_SCAN code properly handles the case where the
2902 * callback might block and directly or indirectly (another thread) cause
2903 * the RB tree to change.
2906 #ifndef NFS_COMMITBVECSIZ
2907 #define NFS_COMMITBVECSIZ 16
2908 #endif
2910 struct nfs_flush_info {
2911 enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2912 struct thread *td;
2913 struct vnode *vp;
2914 int waitfor;
2915 int slpflag;
2916 int slptimeo;
2917 int loops;
2918 struct buf *bvary[NFS_COMMITBVECSIZ];
2919 int bvsize;
2920 off_t beg_off;
2921 off_t end_off;
2924 static int nfs_flush_bp(struct buf *bp, void *data);
2925 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2928 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2930 struct nfsnode *np = VTONFS(vp);
2931 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2932 struct nfs_flush_info info;
2933 int error;
2935 bzero(&info, sizeof(info));
2936 info.td = td;
2937 info.vp = vp;
2938 info.waitfor = waitfor;
2939 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2940 info.loops = 0;
2942 do {
2944 * Flush mode
2946 info.mode = NFI_FLUSHNEW;
2947 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2948 nfs_flush_bp, &info);
2951 * Take a second pass if committing and no error occured.
2952 * Clean up any left over collection (whether an error
2953 * occurs or not).
2955 if (commit && error == 0) {
2956 info.mode = NFI_COMMIT;
2957 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2958 nfs_flush_bp, &info);
2959 if (info.bvsize)
2960 error = nfs_flush_docommit(&info, error);
2964 * Wait for pending I/O to complete before checking whether
2965 * any further dirty buffers exist.
2967 while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2968 vp->v_track_write.bk_waitflag = 1;
2969 error = tsleep(&vp->v_track_write,
2970 info.slpflag, "nfsfsync", info.slptimeo);
2971 if (error) {
2973 * We have to be able to break out if this
2974 * is an 'intr' mount.
2976 if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2977 error = -EINTR;
2978 break;
2982 * Since we do not process pending signals,
2983 * once we get a PCATCH our tsleep() will no
2984 * longer sleep, switch to a fixed timeout
2985 * instead.
2987 if (info.slpflag == PCATCH) {
2988 info.slpflag = 0;
2989 info.slptimeo = 2 * hz;
2991 error = 0;
2994 ++info.loops;
2996 * Loop if we are flushing synchronous as well as committing,
2997 * and dirty buffers are still present. Otherwise we might livelock.
2999 } while (waitfor == MNT_WAIT && commit &&
3000 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3003 * The callbacks have to return a negative error to terminate the
3004 * RB scan.
3006 if (error < 0)
3007 error = -error;
3010 * Deal with any error collection
3012 if (np->n_flag & NWRITEERR) {
3013 error = np->n_error;
3014 np->n_flag &= ~NWRITEERR;
3016 return (error);
3020 static
3022 nfs_flush_bp(struct buf *bp, void *data)
3024 struct nfs_flush_info *info = data;
3025 off_t toff;
3026 int error;
3028 error = 0;
3029 switch(info->mode) {
3030 case NFI_FLUSHNEW:
3031 crit_enter();
3032 if (info->loops && info->waitfor == MNT_WAIT) {
3033 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3034 if (error) {
3035 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3036 if (info->slpflag & PCATCH)
3037 lkflags |= LK_PCATCH;
3038 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3039 info->slptimeo);
3041 } else {
3042 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3044 if (error == 0) {
3045 KKASSERT(bp->b_vp == info->vp);
3047 if ((bp->b_flags & B_DELWRI) == 0)
3048 panic("nfs_fsync: not dirty");
3049 if (bp->b_flags & B_NEEDCOMMIT) {
3050 BUF_UNLOCK(bp);
3051 crit_exit();
3052 break;
3054 bremfree(bp);
3056 bp->b_flags |= B_ASYNC;
3057 crit_exit();
3058 bwrite(bp);
3059 } else {
3060 crit_exit();
3061 error = 0;
3063 break;
3064 case NFI_COMMIT:
3066 * Only process buffers in need of a commit which we can
3067 * immediately lock. This may prevent a buffer from being
3068 * committed, but the normal flush loop will block on the
3069 * same buffer so we shouldn't get into an endless loop.
3071 crit_enter();
3072 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3073 (B_DELWRI | B_NEEDCOMMIT) ||
3074 BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3075 crit_exit();
3076 break;
3079 KKASSERT(bp->b_vp == info->vp);
3080 bremfree(bp);
3083 * NOTE: storing the bp in the bvary[] basically sets
3084 * it up for a commit operation.
3086 * We must call vfs_busy_pages() now so the commit operation
3087 * is interlocked with user modifications to memory mapped
3088 * pages.
3090 * Note: to avoid loopback deadlocks, we do not
3091 * assign b_runningbufspace.
3093 bp->b_cmd = BUF_CMD_WRITE;
3094 vfs_busy_pages(bp->b_vp, bp);
3095 info->bvary[info->bvsize] = bp;
3096 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3097 if (info->bvsize == 0 || toff < info->beg_off)
3098 info->beg_off = toff;
3099 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3100 if (info->bvsize == 0 || toff > info->end_off)
3101 info->end_off = toff;
3102 ++info->bvsize;
3103 if (info->bvsize == NFS_COMMITBVECSIZ) {
3104 error = nfs_flush_docommit(info, 0);
3105 KKASSERT(info->bvsize == 0);
3107 crit_exit();
3109 return (error);
3112 static
3114 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3116 struct vnode *vp;
3117 struct buf *bp;
3118 off_t bytes;
3119 int retv;
3120 int i;
3122 vp = info->vp;
3124 if (info->bvsize > 0) {
3126 * Commit data on the server, as required. Note that
3127 * nfs_commit will use the vnode's cred for the commit.
3128 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3130 bytes = info->end_off - info->beg_off;
3131 if (bytes > 0x40000000)
3132 bytes = 0x40000000;
3133 if (error) {
3134 retv = -error;
3135 } else {
3136 retv = nfs_commit(vp, info->beg_off,
3137 (int)bytes, info->td);
3138 if (retv == NFSERR_STALEWRITEVERF)
3139 nfs_clearcommit(vp->v_mount);
3143 * Now, either mark the blocks I/O done or mark the
3144 * blocks dirty, depending on whether the commit
3145 * succeeded.
3147 for (i = 0; i < info->bvsize; ++i) {
3148 bp = info->bvary[i];
3149 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3150 if (retv) {
3152 * Error, leave B_DELWRI intact
3154 vfs_unbusy_pages(bp);
3155 bp->b_cmd = BUF_CMD_DONE;
3156 brelse(bp);
3157 } else {
3159 * Success, remove B_DELWRI ( bundirty() ).
3161 * b_dirtyoff/b_dirtyend seem to be NFS
3162 * specific. We should probably move that
3163 * into bundirty(). XXX
3165 * We are faking an I/O write, we have to
3166 * start the transaction in order to
3167 * immediately biodone() it.
3169 crit_enter();
3170 bp->b_flags |= B_ASYNC;
3171 bundirty(bp);
3172 bp->b_flags &= ~B_ERROR;
3173 bp->b_dirtyoff = bp->b_dirtyend = 0;
3174 crit_exit();
3175 biodone(&bp->b_bio1);
3178 info->bvsize = 0;
3180 return (error);
3184 * NFS advisory byte-level locks.
3185 * Currently unsupported.
3187 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3188 * int a_flags)
3190 static int
3191 nfs_advlock(struct vop_advlock_args *ap)
3193 struct nfsnode *np = VTONFS(ap->a_vp);
3196 * The following kludge is to allow diskless support to work
3197 * until a real NFS lockd is implemented. Basically, just pretend
3198 * that this is a local lock.
3200 return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3204 * Print out the contents of an nfsnode.
3206 * nfs_print(struct vnode *a_vp)
3208 static int
3209 nfs_print(struct vop_print_args *ap)
3211 struct vnode *vp = ap->a_vp;
3212 struct nfsnode *np = VTONFS(vp);
3214 kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3215 np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3216 if (vp->v_type == VFIFO)
3217 fifo_printinfo(vp);
3218 kprintf("\n");
3219 return (0);
3223 * nfs special file access vnode op.
3224 * Essentially just get vattr and then imitate iaccess() since the device is
3225 * local to the client.
3227 * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3229 static int
3230 nfsspec_access(struct vop_access_args *ap)
3232 struct vattr *vap;
3233 gid_t *gp;
3234 struct ucred *cred = ap->a_cred;
3235 struct vnode *vp = ap->a_vp;
3236 mode_t mode = ap->a_mode;
3237 struct vattr vattr;
3238 int i;
3239 int error;
3242 * Disallow write attempts on filesystems mounted read-only;
3243 * unless the file is a socket, fifo, or a block or character
3244 * device resident on the filesystem.
3246 if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3247 switch (vp->v_type) {
3248 case VREG:
3249 case VDIR:
3250 case VLNK:
3251 return (EROFS);
3252 default:
3253 break;
3257 * If you're the super-user,
3258 * you always get access.
3260 if (cred->cr_uid == 0)
3261 return (0);
3262 vap = &vattr;
3263 error = VOP_GETATTR(vp, vap);
3264 if (error)
3265 return (error);
3267 * Access check is based on only one of owner, group, public.
3268 * If not owner, then check group. If not a member of the
3269 * group, then check public access.
3271 if (cred->cr_uid != vap->va_uid) {
3272 mode >>= 3;
3273 gp = cred->cr_groups;
3274 for (i = 0; i < cred->cr_ngroups; i++, gp++)
3275 if (vap->va_gid == *gp)
3276 goto found;
3277 mode >>= 3;
3278 found:
3281 error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3282 return (error);
3286 * Read wrapper for special devices.
3288 * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3289 * struct ucred *a_cred)
3291 static int
3292 nfsspec_read(struct vop_read_args *ap)
3294 struct nfsnode *np = VTONFS(ap->a_vp);
3297 * Set access flag.
3299 np->n_flag |= NACC;
3300 getnanotime(&np->n_atim);
3301 return (VOCALL(&spec_vnode_vops, &ap->a_head));
3305 * Write wrapper for special devices.
3307 * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3308 * struct ucred *a_cred)
3310 static int
3311 nfsspec_write(struct vop_write_args *ap)
3313 struct nfsnode *np = VTONFS(ap->a_vp);
3316 * Set update flag.
3318 np->n_flag |= NUPD;
3319 getnanotime(&np->n_mtim);
3320 return (VOCALL(&spec_vnode_vops, &ap->a_head));
3324 * Close wrapper for special devices.
3326 * Update the times on the nfsnode then do device close.
3328 * nfsspec_close(struct vnode *a_vp, int a_fflag)
3330 static int
3331 nfsspec_close(struct vop_close_args *ap)
3333 struct vnode *vp = ap->a_vp;
3334 struct nfsnode *np = VTONFS(vp);
3335 struct vattr vattr;
3337 if (np->n_flag & (NACC | NUPD)) {
3338 np->n_flag |= NCHG;
3339 if (vp->v_sysref.refcnt == 1 &&
3340 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3341 VATTR_NULL(&vattr);
3342 if (np->n_flag & NACC)
3343 vattr.va_atime = np->n_atim;
3344 if (np->n_flag & NUPD)
3345 vattr.va_mtime = np->n_mtim;
3346 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3349 return (VOCALL(&spec_vnode_vops, &ap->a_head));
3353 * Read wrapper for fifos.
3355 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3356 * struct ucred *a_cred)
3358 static int
3359 nfsfifo_read(struct vop_read_args *ap)
3361 struct nfsnode *np = VTONFS(ap->a_vp);
3364 * Set access flag.
3366 np->n_flag |= NACC;
3367 getnanotime(&np->n_atim);
3368 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3372 * Write wrapper for fifos.
3374 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3375 * struct ucred *a_cred)
3377 static int
3378 nfsfifo_write(struct vop_write_args *ap)
3380 struct nfsnode *np = VTONFS(ap->a_vp);
3383 * Set update flag.
3385 np->n_flag |= NUPD;
3386 getnanotime(&np->n_mtim);
3387 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3391 * Close wrapper for fifos.
3393 * Update the times on the nfsnode then do fifo close.
3395 * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3397 static int
3398 nfsfifo_close(struct vop_close_args *ap)
3400 struct vnode *vp = ap->a_vp;
3401 struct nfsnode *np = VTONFS(vp);
3402 struct vattr vattr;
3403 struct timespec ts;
3405 if (np->n_flag & (NACC | NUPD)) {
3406 getnanotime(&ts);
3407 if (np->n_flag & NACC)
3408 np->n_atim = ts;
3409 if (np->n_flag & NUPD)
3410 np->n_mtim = ts;
3411 np->n_flag |= NCHG;
3412 if (vp->v_sysref.refcnt == 1 &&
3413 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3414 VATTR_NULL(&vattr);
3415 if (np->n_flag & NACC)
3416 vattr.va_atime = np->n_atim;
3417 if (np->n_flag & NUPD)
3418 vattr.va_mtime = np->n_mtim;
3419 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3422 return (VOCALL(&fifo_vnode_vops, &ap->a_head));