sed(1): Move regex.h to be the last included
[dragonfly.git] / sys / kern / kern_slaballoc.c
blob815eddd88a6b8c5a1ad9b45deb58e6ff6dfe0bdd
1 /*
2 * (MPSAFE)
4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
5 *
6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved.
7 *
8 * This code is derived from software contributed to The DragonFly Project
9 * by Matthew Dillon <dillon@backplane.com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
79 * Allocations >= ZoneLimit go directly to kmem.
81 * Alignment properties:
82 * - All power-of-2 sized allocations are power-of-2 aligned.
83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84 * power-of-2 round up of 'size'.
85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86 * above table 'Chunking' column).
88 * API REQUIREMENTS AND SIDE EFFECTS
90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91 * have remained compatible with the following API requirements:
93 * + malloc(0) is allowed and returns non-NULL (ahc driver)
94 * + ability to allocate arbitrarily large chunks of memory
97 #include "opt_vm.h"
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
121 #include <machine/cpu.h>
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
126 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
128 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
147 #define logmemory(name, ptr, type, size, flags) \
148 KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name) \
150 KTR_LOG(memory_ ## name)
153 * Fixed globals (not per-cpu)
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc; /* in KB */
160 static int ZoneGenAlloc; /* in KB */
161 struct malloc_type *kmemstatistics; /* exported to vmstat */
162 static int32_t weirdary[16];
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
176 * Misc constants. Note that allocations that are exact multiples of
177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
179 #define ZONE_RELS_THRESH 32 /* threshold number of zones */
182 * The WEIRD_ADDR is used as known text to copy into free objects to
183 * try to create deterministic failure cases if the data is accessed after
184 * free.
186 #define WEIRD_ADDR 0xdeadc0de
187 #define MAX_COPY sizeof(weirdary)
188 #define ZERO_LENGTH_PTR ((void *)-8)
191 * Misc global malloc buckets
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
202 * Initialize the slab memory allocator. We have to choose a zone size based
203 * on available physical memory. We choose a zone side which is approximately
204 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
205 * 128K. The zone size is limited to the bounds set in slaballoc.h
206 * (typically 32K min, 128K max).
208 static void kmeminit(void *dummy);
210 char *ZeroPage;
212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
214 #ifdef INVARIANTS
216 * If enabled any memory allocated without M_ZERO is initialized to -1.
218 static int use_malloc_pattern;
219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
220 &use_malloc_pattern, 0,
221 "Initialize memory to -1 if M_ZERO not specified");
222 #endif
224 static int ZoneRelsThresh = ZONE_RELS_THRESH;
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
228 static long SlabsAllocated;
229 static long SlabsFreed;
230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, "");
231 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, "");
234 * Returns the kernel memory size limit for the purposes of initializing
235 * various subsystem caches. The smaller of available memory and the KVM
236 * memory space is returned.
238 * The size in megabytes is returned.
240 size_t
241 kmem_lim_size(void)
243 size_t limsize;
245 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
246 if (limsize > KvaSize)
247 limsize = KvaSize;
248 return (limsize / (1024 * 1024));
251 static void
252 kmeminit(void *dummy)
254 size_t limsize;
255 int usesize;
256 int i;
258 limsize = kmem_lim_size();
259 usesize = (int)(limsize * 1024); /* convert to KB */
262 * If the machine has a large KVM space and more than 8G of ram,
263 * double the zone release threshold to reduce SMP invalidations.
264 * If more than 16G of ram, do it again.
266 * The BIOS eats a little ram so add some slop. We want 8G worth of
267 * memory sticks to trigger the first adjustment.
269 if (ZoneRelsThresh == ZONE_RELS_THRESH) {
270 if (limsize >= 7 * 1024)
271 ZoneRelsThresh *= 2;
272 if (limsize >= 15 * 1024)
273 ZoneRelsThresh *= 2;
277 * Calculate the zone size. This typically calculates to
278 * ZALLOC_MAX_ZONE_SIZE
280 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
281 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
282 ZoneSize <<= 1;
283 ZoneLimit = ZoneSize / 4;
284 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
285 ZoneLimit = ZALLOC_ZONE_LIMIT;
286 ZoneMask = ~(uintptr_t)(ZoneSize - 1);
287 ZonePageCount = ZoneSize / PAGE_SIZE;
289 for (i = 0; i < NELEM(weirdary); ++i)
290 weirdary[i] = WEIRD_ADDR;
292 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
294 if (bootverbose)
295 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
299 * Initialize a malloc type tracking structure.
301 void
302 malloc_init(void *data)
304 struct malloc_type *type = data;
305 size_t limsize;
307 if (type->ks_magic != M_MAGIC)
308 panic("malloc type lacks magic");
310 if (type->ks_limit != 0)
311 return;
313 if (vmstats.v_page_count == 0)
314 panic("malloc_init not allowed before vm init");
316 limsize = kmem_lim_size() * (1024 * 1024);
317 type->ks_limit = limsize / 10;
319 type->ks_next = kmemstatistics;
320 kmemstatistics = type;
323 void
324 malloc_uninit(void *data)
326 struct malloc_type *type = data;
327 struct malloc_type *t;
328 #ifdef INVARIANTS
329 int i;
330 long ttl;
331 #endif
333 if (type->ks_magic != M_MAGIC)
334 panic("malloc type lacks magic");
336 if (vmstats.v_page_count == 0)
337 panic("malloc_uninit not allowed before vm init");
339 if (type->ks_limit == 0)
340 panic("malloc_uninit on uninitialized type");
342 /* Make sure that all pending kfree()s are finished. */
343 lwkt_synchronize_ipiqs("muninit");
345 #ifdef INVARIANTS
347 * memuse is only correct in aggregation. Due to memory being allocated
348 * on one cpu and freed on another individual array entries may be
349 * negative or positive (canceling each other out).
351 for (i = ttl = 0; i < ncpus; ++i)
352 ttl += type->ks_memuse[i];
353 if (ttl) {
354 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
355 ttl, type->ks_shortdesc, i);
357 #endif
358 if (type == kmemstatistics) {
359 kmemstatistics = type->ks_next;
360 } else {
361 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
362 if (t->ks_next == type) {
363 t->ks_next = type->ks_next;
364 break;
368 type->ks_next = NULL;
369 type->ks_limit = 0;
373 * Increase the kmalloc pool limit for the specified pool. No changes
374 * are the made if the pool would shrink.
376 void
377 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
379 if (type->ks_limit == 0)
380 malloc_init(type);
381 if (bytes == 0)
382 bytes = KvaSize;
383 if (type->ks_limit < bytes)
384 type->ks_limit = bytes;
388 * Dynamically create a malloc pool. This function is a NOP if *typep is
389 * already non-NULL.
391 void
392 kmalloc_create(struct malloc_type **typep, const char *descr)
394 struct malloc_type *type;
396 if (*typep == NULL) {
397 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
398 type->ks_magic = M_MAGIC;
399 type->ks_shortdesc = descr;
400 malloc_init(type);
401 *typep = type;
406 * Destroy a dynamically created malloc pool. This function is a NOP if
407 * the pool has already been destroyed.
409 void
410 kmalloc_destroy(struct malloc_type **typep)
412 if (*typep != NULL) {
413 malloc_uninit(*typep);
414 kfree(*typep, M_TEMP);
415 *typep = NULL;
420 * Calculate the zone index for the allocation request size and set the
421 * allocation request size to that particular zone's chunk size.
423 static __inline int
424 zoneindex(unsigned long *bytes, unsigned long *align)
426 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
427 if (n < 128) {
428 *bytes = n = (n + 7) & ~7;
429 *align = 8;
430 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
432 if (n < 256) {
433 *bytes = n = (n + 15) & ~15;
434 *align = 16;
435 return(n / 16 + 7);
437 if (n < 8192) {
438 if (n < 512) {
439 *bytes = n = (n + 31) & ~31;
440 *align = 32;
441 return(n / 32 + 15);
443 if (n < 1024) {
444 *bytes = n = (n + 63) & ~63;
445 *align = 64;
446 return(n / 64 + 23);
448 if (n < 2048) {
449 *bytes = n = (n + 127) & ~127;
450 *align = 128;
451 return(n / 128 + 31);
453 if (n < 4096) {
454 *bytes = n = (n + 255) & ~255;
455 *align = 256;
456 return(n / 256 + 39);
458 *bytes = n = (n + 511) & ~511;
459 *align = 512;
460 return(n / 512 + 47);
462 #if ZALLOC_ZONE_LIMIT > 8192
463 if (n < 16384) {
464 *bytes = n = (n + 1023) & ~1023;
465 *align = 1024;
466 return(n / 1024 + 55);
468 #endif
469 #if ZALLOC_ZONE_LIMIT > 16384
470 if (n < 32768) {
471 *bytes = n = (n + 2047) & ~2047;
472 *align = 2048;
473 return(n / 2048 + 63);
475 #endif
476 panic("Unexpected byte count %d", n);
477 return(0);
480 static __inline
481 void
482 clean_zone_rchunks(SLZone *z)
484 SLChunk *bchunk;
486 while ((bchunk = z->z_RChunks) != NULL) {
487 cpu_ccfence();
488 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
489 *z->z_LChunksp = bchunk;
490 while (bchunk) {
491 chunk_mark_free(z, bchunk);
492 z->z_LChunksp = &bchunk->c_Next;
493 bchunk = bchunk->c_Next;
494 ++z->z_NFree;
496 break;
498 /* retry */
503 * If the zone becomes totally free, and there are other zones we
504 * can allocate from, move this zone to the FreeZones list. Since
505 * this code can be called from an IPI callback, do *NOT* try to mess
506 * with kernel_map here. Hysteresis will be performed at malloc() time.
508 static __inline
509 SLZone *
510 check_zone_free(SLGlobalData *slgd, SLZone *z)
512 if (z->z_NFree == z->z_NMax &&
513 (z->z_Next || LIST_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z) &&
514 z->z_RCount == 0
516 SLZone *znext;
517 int *kup;
519 znext = LIST_NEXT(z, z_Entry);
520 LIST_REMOVE(z, z_Entry);
522 z->z_Magic = -1;
523 LIST_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
524 ++slgd->NFreeZones;
525 kup = btokup(z);
526 *kup = 0;
527 z = znext;
528 } else {
529 z = LIST_NEXT(z, z_Entry);
531 return z;
534 #ifdef SLAB_DEBUG
536 * Used to debug memory corruption issues. Record up to (typically 32)
537 * allocation sources for this zone (for a particular chunk size).
540 static void
541 slab_record_source(SLZone *z, const char *file, int line)
543 int i;
544 int b = line & (SLAB_DEBUG_ENTRIES - 1);
546 i = b;
547 do {
548 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
549 return;
550 if (z->z_Sources[i].file == NULL)
551 break;
552 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
553 } while (i != b);
554 z->z_Sources[i].file = file;
555 z->z_Sources[i].line = line;
558 #endif
560 static __inline unsigned long
561 powerof2_size(unsigned long size)
563 int i;
565 if (size == 0 || powerof2(size))
566 return size;
568 i = flsl(size);
569 return (1UL << i);
573 * kmalloc() (SLAB ALLOCATOR)
575 * Allocate memory via the slab allocator. If the request is too large,
576 * or if it page-aligned beyond a certain size, we fall back to the
577 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
578 * &SlabMisc if you don't care.
580 * M_RNOWAIT - don't block.
581 * M_NULLOK - return NULL instead of blocking.
582 * M_ZERO - zero the returned memory.
583 * M_USE_RESERVE - allow greater drawdown of the free list
584 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
585 * M_POWEROF2 - roundup size to the nearest power of 2
587 * MPSAFE
590 #ifdef SLAB_DEBUG
591 void *
592 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
593 const char *file, int line)
594 #else
595 void *
596 kmalloc(unsigned long size, struct malloc_type *type, int flags)
597 #endif
599 SLZone *z;
600 SLChunk *chunk;
601 SLGlobalData *slgd;
602 struct globaldata *gd;
603 unsigned long align;
604 int zi;
605 #ifdef INVARIANTS
606 int i;
607 #endif
609 logmemory_quick(malloc_beg);
610 gd = mycpu;
611 slgd = &gd->gd_slab;
614 * XXX silly to have this in the critical path.
616 if (type->ks_limit == 0) {
617 crit_enter();
618 malloc_init(type);
619 crit_exit();
621 ++type->ks_calls;
623 if (flags & M_POWEROF2)
624 size = powerof2_size(size);
627 * Handle the case where the limit is reached. Panic if we can't return
628 * NULL. The original malloc code looped, but this tended to
629 * simply deadlock the computer.
631 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
632 * to determine if a more complete limit check should be done. The
633 * actual memory use is tracked via ks_memuse[cpu].
635 while (type->ks_loosememuse >= type->ks_limit) {
636 int i;
637 long ttl;
639 for (i = ttl = 0; i < ncpus; ++i)
640 ttl += type->ks_memuse[i];
641 type->ks_loosememuse = ttl; /* not MP synchronized */
642 if ((ssize_t)ttl < 0) /* deal with occassional race */
643 ttl = 0;
644 if (ttl >= type->ks_limit) {
645 if (flags & M_NULLOK) {
646 logmemory(malloc_end, NULL, type, size, flags);
647 return(NULL);
649 panic("%s: malloc limit exceeded", type->ks_shortdesc);
654 * Handle the degenerate size == 0 case. Yes, this does happen.
655 * Return a special pointer. This is to maintain compatibility with
656 * the original malloc implementation. Certain devices, such as the
657 * adaptec driver, not only allocate 0 bytes, they check for NULL and
658 * also realloc() later on. Joy.
660 if (size == 0) {
661 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
662 return(ZERO_LENGTH_PTR);
666 * Handle hysteresis from prior frees here in malloc(). We cannot
667 * safely manipulate the kernel_map in free() due to free() possibly
668 * being called via an IPI message or from sensitive interrupt code.
670 * NOTE: ku_pagecnt must be cleared before we free the slab or we
671 * might race another cpu allocating the kva and setting
672 * ku_pagecnt.
674 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
675 crit_enter();
676 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */
677 int *kup;
679 z = LIST_FIRST(&slgd->FreeZones);
680 LIST_REMOVE(z, z_Entry);
681 --slgd->NFreeZones;
682 kup = btokup(z);
683 *kup = 0;
684 kmem_slab_free(z, ZoneSize); /* may block */
685 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
687 crit_exit();
691 * XXX handle oversized frees that were queued from kfree().
693 while (LIST_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
694 crit_enter();
695 if ((z = LIST_FIRST(&slgd->FreeOvZones)) != NULL) {
696 vm_size_t tsize;
698 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
699 LIST_REMOVE(z, z_Entry);
700 tsize = z->z_ChunkSize;
701 kmem_slab_free(z, tsize); /* may block */
702 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
704 crit_exit();
708 * Handle large allocations directly. There should not be very many of
709 * these so performance is not a big issue.
711 * The backend allocator is pretty nasty on a SMP system. Use the
712 * slab allocator for one and two page-sized chunks even though we lose
713 * some efficiency. XXX maybe fix mmio and the elf loader instead.
715 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
716 int *kup;
718 size = round_page(size);
719 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
720 if (chunk == NULL) {
721 logmemory(malloc_end, NULL, type, size, flags);
722 return(NULL);
724 atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
725 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
726 flags |= M_PASSIVE_ZERO;
727 kup = btokup(chunk);
728 *kup = size / PAGE_SIZE;
729 crit_enter();
730 goto done;
734 * Attempt to allocate out of an existing zone. First try the free list,
735 * then allocate out of unallocated space. If we find a good zone move
736 * it to the head of the list so later allocations find it quickly
737 * (we might have thousands of zones in the list).
739 * Note: zoneindex() will panic of size is too large.
741 zi = zoneindex(&size, &align);
742 KKASSERT(zi < NZONES);
743 crit_enter();
745 if ((z = LIST_FIRST(&slgd->ZoneAry[zi])) != NULL) {
747 * Locate a chunk - we have to have at least one. If this is the
748 * last chunk go ahead and do the work to retrieve chunks freed
749 * from remote cpus, and if the zone is still empty move it off
750 * the ZoneAry.
752 if (--z->z_NFree <= 0) {
753 KKASSERT(z->z_NFree == 0);
756 * WARNING! This code competes with other cpus. It is ok
757 * for us to not drain RChunks here but we might as well, and
758 * it is ok if more accumulate after we're done.
760 * Set RSignal before pulling rchunks off, indicating that we
761 * will be moving ourselves off of the ZoneAry. Remote ends will
762 * read RSignal before putting rchunks on thus interlocking
763 * their IPI signaling.
765 if (z->z_RChunks == NULL)
766 atomic_swap_int(&z->z_RSignal, 1);
768 clean_zone_rchunks(z);
771 * Remove from the zone list if no free chunks remain.
772 * Clear RSignal
774 if (z->z_NFree == 0) {
775 LIST_REMOVE(z, z_Entry);
776 } else {
777 z->z_RSignal = 0;
782 * Fast path, we have chunks available in z_LChunks.
784 chunk = z->z_LChunks;
785 if (chunk) {
786 chunk_mark_allocated(z, chunk);
787 z->z_LChunks = chunk->c_Next;
788 if (z->z_LChunks == NULL)
789 z->z_LChunksp = &z->z_LChunks;
790 #ifdef SLAB_DEBUG
791 slab_record_source(z, file, line);
792 #endif
793 goto done;
797 * No chunks are available in LChunks, the free chunk MUST be
798 * in the never-before-used memory area, controlled by UIndex.
800 * The consequences are very serious if our zone got corrupted so
801 * we use an explicit panic rather than a KASSERT.
803 if (z->z_UIndex + 1 != z->z_NMax)
804 ++z->z_UIndex;
805 else
806 z->z_UIndex = 0;
808 if (z->z_UIndex == z->z_UEndIndex)
809 panic("slaballoc: corrupted zone");
811 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
812 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
813 flags &= ~M_ZERO;
814 flags |= M_PASSIVE_ZERO;
816 chunk_mark_allocated(z, chunk);
817 #ifdef SLAB_DEBUG
818 slab_record_source(z, file, line);
819 #endif
820 goto done;
824 * If all zones are exhausted we need to allocate a new zone for this
825 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
826 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
827 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
828 * we do not pre-zero it because we do not want to mess up the L1 cache.
830 * At least one subsystem, the tty code (see CROUND) expects power-of-2
831 * allocations to be power-of-2 aligned. We maintain compatibility by
832 * adjusting the base offset below.
835 int off;
836 int *kup;
838 if ((z = LIST_FIRST(&slgd->FreeZones)) != NULL) {
839 LIST_REMOVE(z, z_Entry);
840 --slgd->NFreeZones;
841 bzero(z, sizeof(SLZone));
842 z->z_Flags |= SLZF_UNOTZEROD;
843 } else {
844 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
845 if (z == NULL)
846 goto fail;
847 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
851 * How big is the base structure?
853 #if defined(INVARIANTS)
855 * Make room for z_Bitmap. An exact calculation is somewhat more
856 * complicated so don't make an exact calculation.
858 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
859 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
860 #else
861 off = sizeof(SLZone);
862 #endif
865 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
866 * Otherwise properly align the data according to the chunk size.
868 if (powerof2(size))
869 align = size;
870 off = roundup2(off, align);
872 z->z_Magic = ZALLOC_SLAB_MAGIC;
873 z->z_ZoneIndex = zi;
874 z->z_NMax = (ZoneSize - off) / size;
875 z->z_NFree = z->z_NMax - 1;
876 z->z_BasePtr = (char *)z + off;
877 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
878 z->z_ChunkSize = size;
879 z->z_CpuGd = gd;
880 z->z_Cpu = gd->gd_cpuid;
881 z->z_LChunksp = &z->z_LChunks;
882 #ifdef SLAB_DEBUG
883 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
884 bzero(z->z_Sources, sizeof(z->z_Sources));
885 #endif
886 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
887 LIST_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
888 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
889 flags &= ~M_ZERO; /* already zero'd */
890 flags |= M_PASSIVE_ZERO;
892 kup = btokup(z);
893 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
894 chunk_mark_allocated(z, chunk);
895 #ifdef SLAB_DEBUG
896 slab_record_source(z, file, line);
897 #endif
900 * Slide the base index for initial allocations out of the next
901 * zone we create so we do not over-weight the lower part of the
902 * cpu memory caches.
904 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
905 & (ZALLOC_MAX_ZONE_SIZE - 1);
908 done:
909 ++type->ks_inuse[gd->gd_cpuid];
910 type->ks_memuse[gd->gd_cpuid] += size;
911 type->ks_loosememuse += size; /* not MP synchronized */
912 crit_exit();
914 if (flags & M_ZERO)
915 bzero(chunk, size);
916 #ifdef INVARIANTS
917 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
918 if (use_malloc_pattern) {
919 for (i = 0; i < size; i += sizeof(int)) {
920 *(int *)((char *)chunk + i) = -1;
923 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
925 #endif
926 logmemory(malloc_end, chunk, type, size, flags);
927 return(chunk);
928 fail:
929 crit_exit();
930 logmemory(malloc_end, NULL, type, size, flags);
931 return(NULL);
935 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
937 * Generally speaking this routine is not called very often and we do
938 * not attempt to optimize it beyond reusing the same pointer if the
939 * new size fits within the chunking of the old pointer's zone.
941 #ifdef SLAB_DEBUG
942 void *
943 krealloc_debug(void *ptr, unsigned long size,
944 struct malloc_type *type, int flags,
945 const char *file, int line)
946 #else
947 void *
948 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
949 #endif
951 unsigned long osize;
952 unsigned long align;
953 SLZone *z;
954 void *nptr;
955 int *kup;
957 KKASSERT((flags & M_ZERO) == 0); /* not supported */
959 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
960 return(kmalloc_debug(size, type, flags, file, line));
961 if (size == 0) {
962 kfree(ptr, type);
963 return(NULL);
967 * Handle oversized allocations. XXX we really should require that a
968 * size be passed to free() instead of this nonsense.
970 kup = btokup(ptr);
971 if (*kup > 0) {
972 osize = *kup << PAGE_SHIFT;
973 if (osize == round_page(size))
974 return(ptr);
975 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
976 return(NULL);
977 bcopy(ptr, nptr, min(size, osize));
978 kfree(ptr, type);
979 return(nptr);
983 * Get the original allocation's zone. If the new request winds up
984 * using the same chunk size we do not have to do anything.
986 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
987 kup = btokup(z);
988 KKASSERT(*kup < 0);
989 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
992 * Allocate memory for the new request size. Note that zoneindex has
993 * already adjusted the request size to the appropriate chunk size, which
994 * should optimize our bcopy(). Then copy and return the new pointer.
996 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
997 * necessary align the result.
999 * We can only zoneindex (to align size to the chunk size) if the new
1000 * size is not too large.
1002 if (size < ZoneLimit) {
1003 zoneindex(&size, &align);
1004 if (z->z_ChunkSize == size)
1005 return(ptr);
1007 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1008 return(NULL);
1009 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1010 kfree(ptr, type);
1011 return(nptr);
1015 * Return the kmalloc limit for this type, in bytes.
1017 long
1018 kmalloc_limit(struct malloc_type *type)
1020 if (type->ks_limit == 0) {
1021 crit_enter();
1022 if (type->ks_limit == 0)
1023 malloc_init(type);
1024 crit_exit();
1026 return(type->ks_limit);
1030 * Allocate a copy of the specified string.
1032 * (MP SAFE) (MAY BLOCK)
1034 #ifdef SLAB_DEBUG
1035 char *
1036 kstrdup_debug(const char *str, struct malloc_type *type,
1037 const char *file, int line)
1038 #else
1039 char *
1040 kstrdup(const char *str, struct malloc_type *type)
1041 #endif
1043 int zlen; /* length inclusive of terminating NUL */
1044 char *nstr;
1046 if (str == NULL)
1047 return(NULL);
1048 zlen = strlen(str) + 1;
1049 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1050 bcopy(str, nstr, zlen);
1051 return(nstr);
1055 * Notify our cpu that a remote cpu has freed some chunks in a zone that
1056 * we own. RCount will be bumped so the memory should be good, but validate
1057 * that it really is.
1059 static
1060 void
1061 kfree_remote(void *ptr)
1063 SLGlobalData *slgd;
1064 SLZone *z;
1065 int nfree;
1066 int *kup;
1068 slgd = &mycpu->gd_slab;
1069 z = ptr;
1070 kup = btokup(z);
1071 KKASSERT(*kup == -((int)mycpuid + 1));
1072 KKASSERT(z->z_RCount > 0);
1073 atomic_subtract_int(&z->z_RCount, 1);
1075 logmemory(free_rem_beg, z, NULL, 0L, 0);
1076 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1077 KKASSERT(z->z_Cpu == mycpu->gd_cpuid);
1078 nfree = z->z_NFree;
1081 * Indicate that we will no longer be off of the ZoneAry by
1082 * clearing RSignal.
1084 if (z->z_RChunks)
1085 z->z_RSignal = 0;
1088 * Atomically extract the bchunks list and then process it back
1089 * into the lchunks list. We want to append our bchunks to the
1090 * lchunks list and not prepend since we likely do not have
1091 * cache mastership of the related data (not that it helps since
1092 * we are using c_Next).
1094 clean_zone_rchunks(z);
1095 if (z->z_NFree && nfree == 0) {
1096 LIST_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1100 * If the zone becomes totally free, and there are other zones we
1101 * can allocate from, move this zone to the FreeZones list. Since
1102 * this code can be called from an IPI callback, do *NOT* try to mess
1103 * with kernel_map here. Hysteresis will be performed at malloc() time.
1105 * Do not move the zone if there is an IPI inflight, otherwise MP
1106 * races can result in our free_remote code accessing a destroyed
1107 * zone.
1109 if (z->z_NFree == z->z_NMax &&
1110 (z->z_Next || LIST_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z) &&
1111 z->z_RCount == 0
1113 int *kup;
1115 LIST_REMOVE(z, z_Entry);
1116 z->z_Magic = -1;
1117 LIST_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1118 ++slgd->NFreeZones;
1119 kup = btokup(z);
1120 *kup = 0;
1122 logmemory(free_rem_end, z, NULL, 0L, 0);
1126 * free (SLAB ALLOCATOR)
1128 * Free a memory block previously allocated by malloc. Note that we do not
1129 * attempt to update ks_loosememuse as MP races could prevent us from
1130 * checking memory limits in malloc.
1132 * MPSAFE
1134 void
1135 kfree(void *ptr, struct malloc_type *type)
1137 SLZone *z;
1138 SLChunk *chunk;
1139 SLGlobalData *slgd;
1140 struct globaldata *gd;
1141 int *kup;
1142 unsigned long size;
1143 SLChunk *bchunk;
1144 int rsignal;
1146 logmemory_quick(free_beg);
1147 gd = mycpu;
1148 slgd = &gd->gd_slab;
1150 if (ptr == NULL)
1151 panic("trying to free NULL pointer");
1154 * Handle special 0-byte allocations
1156 if (ptr == ZERO_LENGTH_PTR) {
1157 logmemory(free_zero, ptr, type, -1UL, 0);
1158 logmemory_quick(free_end);
1159 return;
1163 * Panic on bad malloc type
1165 if (type->ks_magic != M_MAGIC)
1166 panic("free: malloc type lacks magic");
1169 * Handle oversized allocations. XXX we really should require that a
1170 * size be passed to free() instead of this nonsense.
1172 * This code is never called via an ipi.
1174 kup = btokup(ptr);
1175 if (*kup > 0) {
1176 size = *kup << PAGE_SHIFT;
1177 *kup = 0;
1178 #ifdef INVARIANTS
1179 KKASSERT(sizeof(weirdary) <= size);
1180 bcopy(weirdary, ptr, sizeof(weirdary));
1181 #endif
1183 * NOTE: For oversized allocations we do not record the
1184 * originating cpu. It gets freed on the cpu calling
1185 * kfree(). The statistics are in aggregate.
1187 * note: XXX we have still inherited the interrupts-can't-block
1188 * assumption. An interrupt thread does not bump
1189 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
1190 * primarily until we can fix softupdate's assumptions about free().
1192 crit_enter();
1193 --type->ks_inuse[gd->gd_cpuid];
1194 type->ks_memuse[gd->gd_cpuid] -= size;
1195 if (mycpu->gd_intr_nesting_level ||
1196 (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1198 logmemory(free_ovsz_delayed, ptr, type, size, 0);
1199 z = (SLZone *)ptr;
1200 z->z_Magic = ZALLOC_OVSZ_MAGIC;
1201 z->z_ChunkSize = size;
1203 LIST_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1204 crit_exit();
1205 } else {
1206 crit_exit();
1207 logmemory(free_ovsz, ptr, type, size, 0);
1208 kmem_slab_free(ptr, size); /* may block */
1209 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1211 logmemory_quick(free_end);
1212 return;
1216 * Zone case. Figure out the zone based on the fact that it is
1217 * ZoneSize aligned.
1219 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1220 kup = btokup(z);
1221 KKASSERT(*kup < 0);
1222 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1225 * If we do not own the zone then use atomic ops to free to the
1226 * remote cpu linked list and notify the target zone using a
1227 * passive message.
1229 * The target zone cannot be deallocated while we own a chunk of it,
1230 * so the zone header's storage is stable until the very moment
1231 * we adjust z_RChunks. After that we cannot safely dereference (z).
1233 * (no critical section needed)
1235 if (z->z_CpuGd != gd) {
1237 * Making these adjustments now allow us to avoid passing (type)
1238 * to the remote cpu. Note that ks_inuse/ks_memuse is being
1239 * adjusted on OUR cpu, not the zone cpu, but it should all still
1240 * sum up properly and cancel out.
1242 crit_enter();
1243 --type->ks_inuse[gd->gd_cpuid];
1244 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1245 crit_exit();
1248 * WARNING! This code competes with other cpus. Once we
1249 * successfully link the chunk to RChunks the remote
1250 * cpu can rip z's storage out from under us.
1252 * Bumping RCount prevents z's storage from getting
1253 * ripped out.
1255 rsignal = z->z_RSignal;
1256 cpu_lfence();
1257 if (rsignal)
1258 atomic_add_int(&z->z_RCount, 1);
1260 chunk = ptr;
1261 for (;;) {
1262 bchunk = z->z_RChunks;
1263 cpu_ccfence();
1264 chunk->c_Next = bchunk;
1265 cpu_sfence();
1267 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1268 break;
1272 * We have to signal the remote cpu if our actions will cause
1273 * the remote zone to be placed back on ZoneAry so it can
1274 * move the zone back on.
1276 * We only need to deal with NULL->non-NULL RChunk transitions
1277 * and only if z_RSignal is set. We interlock by reading rsignal
1278 * before adding our chunk to RChunks. This should result in
1279 * virtually no IPI traffic.
1281 * We can use a passive IPI to reduce overhead even further.
1283 if (bchunk == NULL && rsignal) {
1284 logmemory(free_request, ptr, type,
1285 (unsigned long)z->z_ChunkSize, 0);
1286 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1287 /* z can get ripped out from under us from this point on */
1288 } else if (rsignal) {
1289 atomic_subtract_int(&z->z_RCount, 1);
1290 /* z can get ripped out from under us from this point on */
1292 logmemory_quick(free_end);
1293 return;
1297 * kfree locally
1299 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1301 crit_enter();
1302 chunk = ptr;
1303 chunk_mark_free(z, chunk);
1306 * Put weird data into the memory to detect modifications after freeing,
1307 * illegal pointer use after freeing (we should fault on the odd address),
1308 * and so forth. XXX needs more work, see the old malloc code.
1310 #ifdef INVARIANTS
1311 if (z->z_ChunkSize < sizeof(weirdary))
1312 bcopy(weirdary, chunk, z->z_ChunkSize);
1313 else
1314 bcopy(weirdary, chunk, sizeof(weirdary));
1315 #endif
1318 * Add this free non-zero'd chunk to a linked list for reuse. Add
1319 * to the front of the linked list so it is more likely to be
1320 * reallocated, since it is already in our L1 cache.
1322 #ifdef INVARIANTS
1323 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1324 panic("BADFREE %p", chunk);
1325 #endif
1326 chunk->c_Next = z->z_LChunks;
1327 z->z_LChunks = chunk;
1328 if (chunk->c_Next == NULL)
1329 z->z_LChunksp = &chunk->c_Next;
1331 #ifdef INVARIANTS
1332 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1333 panic("BADFREE2");
1334 #endif
1337 * Bump the number of free chunks. If it becomes non-zero the zone
1338 * must be added back onto the appropriate list.
1340 if (z->z_NFree++ == 0) {
1341 LIST_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1344 --type->ks_inuse[z->z_Cpu];
1345 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1347 check_zone_free(slgd, z);
1348 logmemory_quick(free_end);
1349 crit_exit();
1353 * Cleanup slabs which are hanging around due to RChunks. Called once every
1354 * 10 seconds on all cpus.
1356 void
1357 slab_cleanup(void)
1359 SLGlobalData *slgd = &mycpu->gd_slab;
1360 SLZone *z;
1361 int i;
1363 crit_enter();
1364 for (i = 0; i < NZONES; ++i) {
1365 if ((z = LIST_FIRST(&slgd->ZoneAry[i])) == NULL)
1366 continue;
1367 z = LIST_NEXT(z, z_Entry);
1370 * Scan zones starting with the second zone in each list.
1372 while (z) {
1374 * Shift all RChunks to the end of the LChunks list. This is
1375 * an O(1) operation.
1377 * Then free the zone if possible.
1379 clean_zone_rchunks(z);
1380 z = check_zone_free(slgd, z);
1383 crit_exit();
1386 #if defined(INVARIANTS)
1389 * Helper routines for sanity checks
1391 static
1392 void
1393 chunk_mark_allocated(SLZone *z, void *chunk)
1395 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1396 uint32_t *bitptr;
1398 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1399 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1400 ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1401 bitptr = &z->z_Bitmap[bitdex >> 5];
1402 bitdex &= 31;
1403 KASSERT((*bitptr & (1 << bitdex)) == 0,
1404 ("memory chunk %p is already allocated!", chunk));
1405 *bitptr |= 1 << bitdex;
1408 static
1409 void
1410 chunk_mark_free(SLZone *z, void *chunk)
1412 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1413 uint32_t *bitptr;
1415 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1416 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1417 ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1418 bitptr = &z->z_Bitmap[bitdex >> 5];
1419 bitdex &= 31;
1420 KASSERT((*bitptr & (1 << bitdex)) != 0,
1421 ("memory chunk %p is already free!", chunk));
1422 *bitptr &= ~(1 << bitdex);
1425 #endif
1428 * kmem_slab_alloc()
1430 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1431 * specified alignment. M_* flags are expected in the flags field.
1433 * Alignment must be a multiple of PAGE_SIZE.
1435 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1436 * but when we move zalloc() over to use this function as its backend
1437 * we will have to switch to kreserve/krelease and call reserve(0)
1438 * after the new space is made available.
1440 * Interrupt code which has preempted other code is not allowed to
1441 * use PQ_CACHE pages. However, if an interrupt thread is run
1442 * non-preemptively or blocks and then runs non-preemptively, then
1443 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX
1445 static void *
1446 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1448 vm_size_t i;
1449 vm_offset_t addr;
1450 int count, vmflags, base_vmflags;
1451 vm_page_t mbase = NULL;
1452 vm_page_t m;
1453 thread_t td;
1455 size = round_page(size);
1456 addr = vm_map_min(&kernel_map);
1458 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1459 crit_enter();
1460 vm_map_lock(&kernel_map);
1461 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1462 vm_map_unlock(&kernel_map);
1463 if ((flags & M_NULLOK) == 0)
1464 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1465 vm_map_entry_release(count);
1466 crit_exit();
1467 return(NULL);
1471 * kernel_object maps 1:1 to kernel_map.
1473 vm_object_hold(&kernel_object);
1474 vm_object_reference_locked(&kernel_object);
1475 vm_map_insert(&kernel_map, &count,
1476 &kernel_object, NULL,
1477 addr, addr, addr + size,
1478 VM_MAPTYPE_NORMAL,
1479 VM_PROT_ALL, VM_PROT_ALL,
1481 vm_object_drop(&kernel_object);
1482 vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1483 vm_map_unlock(&kernel_map);
1485 td = curthread;
1487 base_vmflags = 0;
1488 if (flags & M_ZERO)
1489 base_vmflags |= VM_ALLOC_ZERO;
1490 if (flags & M_USE_RESERVE)
1491 base_vmflags |= VM_ALLOC_SYSTEM;
1492 if (flags & M_USE_INTERRUPT_RESERVE)
1493 base_vmflags |= VM_ALLOC_INTERRUPT;
1494 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1495 panic("kmem_slab_alloc: bad flags %08x (%p)",
1496 flags, ((int **)&size)[-1]);
1500 * Allocate the pages. Do not mess with the PG_ZERO flag or map
1501 * them yet. VM_ALLOC_NORMAL can only be set if we are not preempting.
1503 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1504 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1505 * implied in this case), though I'm not sure if we really need to
1506 * do that.
1508 vmflags = base_vmflags;
1509 if (flags & M_WAITOK) {
1510 if (td->td_preempted)
1511 vmflags |= VM_ALLOC_SYSTEM;
1512 else
1513 vmflags |= VM_ALLOC_NORMAL;
1516 vm_object_hold(&kernel_object);
1517 for (i = 0; i < size; i += PAGE_SIZE) {
1518 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1519 if (i == 0)
1520 mbase = m;
1523 * If the allocation failed we either return NULL or we retry.
1525 * If M_WAITOK is specified we wait for more memory and retry.
1526 * If M_WAITOK is specified from a preemption we yield instead of
1527 * wait. Livelock will not occur because the interrupt thread
1528 * will not be preempting anyone the second time around after the
1529 * yield.
1531 if (m == NULL) {
1532 if (flags & M_WAITOK) {
1533 if (td->td_preempted) {
1534 lwkt_switch();
1535 } else {
1536 vm_wait(0);
1538 i -= PAGE_SIZE; /* retry */
1539 continue;
1541 break;
1546 * Check and deal with an allocation failure
1548 if (i != size) {
1549 while (i != 0) {
1550 i -= PAGE_SIZE;
1551 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1552 /* page should already be busy */
1553 vm_page_free(m);
1555 vm_map_lock(&kernel_map);
1556 vm_map_delete(&kernel_map, addr, addr + size, &count);
1557 vm_map_unlock(&kernel_map);
1558 vm_object_drop(&kernel_object);
1560 vm_map_entry_release(count);
1561 crit_exit();
1562 return(NULL);
1566 * Success!
1568 * NOTE: The VM pages are still busied. mbase points to the first one
1569 * but we have to iterate via vm_page_next()
1571 vm_object_drop(&kernel_object);
1572 crit_exit();
1575 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1577 m = mbase;
1578 i = 0;
1580 while (i < size) {
1582 * page should already be busy
1584 m->valid = VM_PAGE_BITS_ALL;
1585 vm_page_wire(m);
1586 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1587 1, NULL);
1588 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1589 bzero((char *)addr + i, PAGE_SIZE);
1590 vm_page_flag_clear(m, PG_ZERO);
1591 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1592 vm_page_flag_set(m, PG_REFERENCED);
1593 vm_page_wakeup(m);
1595 i += PAGE_SIZE;
1596 vm_object_hold(&kernel_object);
1597 m = vm_page_next(m);
1598 vm_object_drop(&kernel_object);
1600 smp_invltlb();
1601 vm_map_entry_release(count);
1602 atomic_add_long(&SlabsAllocated, 1);
1603 return((void *)addr);
1607 * kmem_slab_free()
1609 static void
1610 kmem_slab_free(void *ptr, vm_size_t size)
1612 crit_enter();
1613 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1614 atomic_add_long(&SlabsFreed, 1);
1615 crit_exit();
1618 void *
1619 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1620 int flags)
1622 #if (__VM_CACHELINE_SIZE == 32)
1623 #define CAN_CACHEALIGN(sz) ((sz) >= 256)
1624 #elif (__VM_CACHELINE_SIZE == 64)
1625 #define CAN_CACHEALIGN(sz) ((sz) >= 512)
1626 #elif (__VM_CACHELINE_SIZE == 128)
1627 #define CAN_CACHEALIGN(sz) ((sz) >= 1024)
1628 #else
1629 #error "unsupported cacheline size"
1630 #endif
1632 void *ret;
1634 if (size_alloc < __VM_CACHELINE_SIZE)
1635 size_alloc = __VM_CACHELINE_SIZE;
1636 else if (!CAN_CACHEALIGN(size_alloc))
1637 flags |= M_POWEROF2;
1639 ret = kmalloc(size_alloc, type, flags);
1640 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1641 ("%p(%lu) not cacheline %d aligned",
1642 ret, size_alloc, __VM_CACHELINE_SIZE));
1643 return ret;
1645 #undef CAN_CACHEALIGN