2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
4 * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Matthew Dillon <dillon@backplane.com>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * This module implements a slab allocator drop-in replacement for the
40 * A slab allocator reserves a ZONE for each chunk size, then lays the
41 * chunks out in an array within the zone. Allocation and deallocation
42 * is nearly instantanious, and fragmentation/overhead losses are limited
43 * to a fixed worst-case amount.
45 * The downside of this slab implementation is in the chunk size
46 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
47 * In a kernel implementation all this memory will be physical so
48 * the zone size is adjusted downward on machines with less physical
49 * memory. The upside is that overhead is bounded... this is the *worst*
52 * Slab management is done on a per-cpu basis and no locking or mutexes
53 * are required, only a critical section. When one cpu frees memory
54 * belonging to another cpu's slab manager an asynchronous IPI message
55 * will be queued to execute the operation. In addition, both the
56 * high level slab allocator and the low level zone allocator optimize
57 * M_ZERO requests, and the slab allocator does not have to pre initialize
58 * the linked list of chunks.
60 * XXX Balancing is needed between cpus. Balance will be handled through
61 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64 * the new zone should be restricted to M_USE_RESERVE requests only.
66 * Alloc Size Chunking Number of zones
76 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78 * Allocations >= ZoneLimit go directly to kmem.
79 * (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
81 * Alignment properties:
82 * - All power-of-2 sized allocations are power-of-2 aligned.
83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84 * power-of-2 round up of 'size'.
85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86 * above table 'Chunking' column).
88 * API REQUIREMENTS AND SIDE EFFECTS
90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91 * have remained compatible with the following API requirements:
93 * + malloc(0) is allowed and returns non-NULL (ahc driver)
94 * + ability to allocate arbitrarily large chunks of memory
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/kernel.h>
100 #include <sys/slaballoc.h>
101 #include <sys/mbuf.h>
102 #include <sys/vmmeter.h>
103 #include <sys/lock.h>
104 #include <sys/thread.h>
105 #include <sys/globaldata.h>
106 #include <sys/sysctl.h>
108 #include <sys/kthread.h>
109 #include <sys/malloc.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
121 #include <machine/cpu.h>
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
126 #if (__VM_CACHELINE_SIZE == 32)
127 #define CAN_CACHEALIGN(sz) ((sz) >= 256)
128 #elif (__VM_CACHELINE_SIZE == 64)
129 #define CAN_CACHEALIGN(sz) ((sz) >= 512)
130 #elif (__VM_CACHELINE_SIZE == 128)
131 #define CAN_CACHEALIGN(sz) ((sz) >= 1024)
133 #error "unsupported cacheline size"
136 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
138 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x"
139 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags
141 #if !defined(KTR_MEMORY)
142 #define KTR_MEMORY KTR_ALL
144 KTR_INFO_MASTER(memory
);
145 KTR_INFO(KTR_MEMORY
, memory
, malloc_beg
, 0, "malloc begin");
146 KTR_INFO(KTR_MEMORY
, memory
, malloc_end
, 1, MEMORY_STRING
, MEMORY_ARGS
);
147 KTR_INFO(KTR_MEMORY
, memory
, free_zero
, 2, MEMORY_STRING
, MEMORY_ARGS
);
148 KTR_INFO(KTR_MEMORY
, memory
, free_ovsz
, 3, MEMORY_STRING
, MEMORY_ARGS
);
149 KTR_INFO(KTR_MEMORY
, memory
, free_ovsz_delayed
, 4, MEMORY_STRING
, MEMORY_ARGS
);
150 KTR_INFO(KTR_MEMORY
, memory
, free_chunk
, 5, MEMORY_STRING
, MEMORY_ARGS
);
151 KTR_INFO(KTR_MEMORY
, memory
, free_request
, 6, MEMORY_STRING
, MEMORY_ARGS
);
152 KTR_INFO(KTR_MEMORY
, memory
, free_rem_beg
, 7, MEMORY_STRING
, MEMORY_ARGS
);
153 KTR_INFO(KTR_MEMORY
, memory
, free_rem_end
, 8, MEMORY_STRING
, MEMORY_ARGS
);
154 KTR_INFO(KTR_MEMORY
, memory
, free_beg
, 9, "free begin");
155 KTR_INFO(KTR_MEMORY
, memory
, free_end
, 10, "free end");
157 #define logmemory(name, ptr, type, size, flags) \
158 KTR_LOG(memory_ ## name, ptr, type, size, flags)
159 #define logmemory_quick(name) \
160 KTR_LOG(memory_ ## name)
163 * Fixed globals (not per-cpu)
165 __read_frequently
static int ZoneSize
;
166 __read_frequently
static int ZoneLimit
;
167 __read_frequently
static int ZonePageCount
;
168 __read_frequently
static uintptr_t ZoneMask
;
169 __read_frequently
struct malloc_type
*kmemstatistics
; /* exported to vmstat */
171 #if defined(INVARIANTS)
172 static void chunk_mark_allocated(SLZone
*z
, void *chunk
);
173 static void chunk_mark_free(SLZone
*z
, void *chunk
);
175 #define chunk_mark_allocated(z, chunk)
176 #define chunk_mark_free(z, chunk)
180 * Misc constants. Note that allocations that are exact multiples of
181 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
183 #define ZONE_RELS_THRESH 32 /* threshold number of zones */
187 * The WEIRD_ADDR is used as known text to copy into free objects to
188 * try to create deterministic failure cases if the data is accessed after
191 #define WEIRD_ADDR 0xdeadc0de
193 #define ZERO_LENGTH_PTR ((void *)-8)
196 * Misc global malloc buckets
199 MALLOC_DEFINE(M_CACHE
, "cache", "Various Dynamically allocated caches");
200 MALLOC_DEFINE(M_DEVBUF
, "devbuf", "device driver memory");
201 MALLOC_DEFINE(M_TEMP
, "temp", "misc temporary data buffers");
202 MALLOC_DEFINE(M_DRM
, "m_drm", "DRM memory allocations");
204 MALLOC_DEFINE(M_IP6OPT
, "ip6opt", "IPv6 options");
205 MALLOC_DEFINE(M_IP6NDP
, "ip6ndp", "IPv6 Neighbor Discovery");
208 * Initialize the slab memory allocator. We have to choose a zone size based
209 * on available physical memory. We choose a zone side which is approximately
210 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
211 * 128K. The zone size is limited to the bounds set in slaballoc.h
212 * (typically 32K min, 128K max).
214 static void kmeminit(void *dummy
);
215 static void kmemfinishinit(void *dummy
);
219 SYSINIT(kmem1
, SI_BOOT1_ALLOCATOR
, SI_ORDER_FIRST
, kmeminit
, NULL
);
220 SYSINIT(kmem2
, SI_BOOT2_POST_SMP
, SI_ORDER_FIRST
, kmemfinishinit
, NULL
);
224 * If enabled any memory allocated without M_ZERO is initialized to -1.
226 __read_frequently
static int use_malloc_pattern
;
227 SYSCTL_INT(_debug
, OID_AUTO
, use_malloc_pattern
, CTLFLAG_RW
,
228 &use_malloc_pattern
, 0,
229 "Initialize memory to -1 if M_ZERO not specified");
231 __read_frequently
static int32_t weirdary
[16];
232 __read_frequently
static int use_weird_array
;
233 SYSCTL_INT(_debug
, OID_AUTO
, use_weird_array
, CTLFLAG_RW
,
235 "Initialize memory to weird values on kfree()");
238 __read_frequently
static int ZoneRelsThresh
= ZONE_RELS_THRESH
;
239 SYSCTL_INT(_kern
, OID_AUTO
, zone_cache
, CTLFLAG_RW
, &ZoneRelsThresh
, 0, "");
240 __read_frequently
static int kzone_pollfreq
= 1;
241 SYSCTL_INT(_kern
, OID_AUTO
, kzone_pollfreq
, CTLFLAG_RW
, &kzone_pollfreq
, 0, "");
243 static struct spinlock kmemstat_spin
=
244 SPINLOCK_INITIALIZER(&kmemstat_spin
, "malinit");
245 static struct malloc_type
*kmemstat_poll
;
248 * Returns the kernel memory size limit for the purposes of initializing
249 * various subsystem caches. The smaller of available memory and the KVM
250 * memory space is returned.
252 * The size in megabytes is returned.
259 limsize
= (size_t)vmstats
.v_page_count
* PAGE_SIZE
;
260 if (limsize
> KvaSize
)
262 return (limsize
/ (1024 * 1024));
266 kmeminit(void *dummy
)
274 limsize
= kmem_lim_size();
275 usesize
= (int)(limsize
* 1024); /* convert to KB */
278 * If the machine has a large KVM space and more than 8G of ram,
279 * double the zone release threshold to reduce SMP invalidations.
280 * If more than 16G of ram, do it again.
282 * The BIOS eats a little ram so add some slop. We want 8G worth of
283 * memory sticks to trigger the first adjustment.
285 if (ZoneRelsThresh
== ZONE_RELS_THRESH
) {
286 if (limsize
>= 7 * 1024)
288 if (limsize
>= 15 * 1024)
290 if (limsize
>= 31 * 1024)
292 if (limsize
>= 63 * 1024)
294 if (limsize
>= 127 * 1024)
299 * Calculate the zone size. This typically calculates to
300 * ZALLOC_MAX_ZONE_SIZE
302 ZoneSize
= ZALLOC_MIN_ZONE_SIZE
;
303 while (ZoneSize
< ZALLOC_MAX_ZONE_SIZE
&& (ZoneSize
<< 1) < usesize
)
305 ZoneLimit
= ZoneSize
/ 4;
306 if (ZoneLimit
> ZALLOC_ZONE_LIMIT
)
307 ZoneLimit
= ZALLOC_ZONE_LIMIT
;
308 ZoneMask
= ~(uintptr_t)(ZoneSize
- 1);
309 ZonePageCount
= ZoneSize
/ PAGE_SIZE
;
312 for (i
= 0; i
< NELEM(weirdary
); ++i
)
313 weirdary
[i
] = WEIRD_ADDR
;
316 ZeroPage
= kmem_slab_alloc(PAGE_SIZE
, PAGE_SIZE
, M_WAITOK
|M_ZERO
);
319 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize
/ 1024);
323 * Once we know how many cpus are configured reduce ZoneRelsThresh
324 * based on multiples of 32 cpu threads.
327 kmemfinishinit(void *dummy
)
330 ZoneRelsThresh
= ZoneRelsThresh
* 32 / ncpus
;
334 * (low level) Initialize slab-related elements in the globaldata structure.
336 * Occurs after kmeminit().
339 slab_gdinit(globaldata_t gd
)
345 for (i
= 0; i
< NZONES
; ++i
)
346 TAILQ_INIT(&slgd
->ZoneAry
[i
]);
347 TAILQ_INIT(&slgd
->FreeZones
);
348 TAILQ_INIT(&slgd
->FreeOvZones
);
352 * Initialize a malloc type tracking structure.
355 malloc_init(void *data
)
357 struct malloc_type
*type
= data
;
358 struct kmalloc_use
*use
;
362 if (type
->ks_magic
!= M_MAGIC
)
363 panic("malloc type lacks magic");
365 if (type
->ks_limit
!= 0)
368 if (vmstats
.v_page_count
== 0)
369 panic("malloc_init not allowed before vm init");
371 limsize
= kmem_lim_size() * (1024 * 1024);
372 type
->ks_limit
= limsize
/ 10;
373 if (type
->ks_flags
& KSF_OBJSIZE
)
374 malloc_mgt_init(type
, &type
->ks_mgt
, type
->ks_objsize
);
377 use
= &type
->ks_use0
;
379 use
= kmalloc(ncpus
* sizeof(*use
), M_TEMP
, M_WAITOK
| M_ZERO
);
380 if (type
->ks_flags
& KSF_OBJSIZE
) {
381 for (n
= 0; n
< ncpus
; ++n
)
382 malloc_mgt_init(type
, &use
[n
].mgt
, type
->ks_objsize
);
385 spin_lock(&kmemstat_spin
);
386 type
->ks_next
= kmemstatistics
;
388 kmemstatistics
= type
;
389 spin_unlock(&kmemstat_spin
);
393 malloc_uninit(void *data
)
395 struct malloc_type
*type
= data
;
396 struct malloc_type
*t
;
402 if (type
->ks_magic
!= M_MAGIC
)
403 panic("malloc type lacks magic");
405 if (vmstats
.v_page_count
== 0)
406 panic("malloc_uninit not allowed before vm init");
408 if (type
->ks_limit
== 0)
409 panic("malloc_uninit on uninitialized type");
411 /* Make sure that all pending kfree()s are finished. */
412 lwkt_synchronize_ipiqs("muninit");
415 * Remove from the kmemstatistics list, blocking if the removal races
416 * the kmalloc poller.
418 * Advance kmemstat_poll if necessary.
420 spin_lock(&kmemstat_spin
);
421 while (type
->ks_flags
& KSF_POLLING
)
422 ssleep(type
, &kmemstat_spin
, 0, "kmuninit", 0);
424 if (kmemstat_poll
== type
)
425 kmemstat_poll
= type
->ks_next
;
427 if (kmemstatistics
== type
) {
428 kmemstatistics
= type
->ks_next
;
430 for (t
= kmemstatistics
; t
->ks_next
!= NULL
; t
= t
->ks_next
) {
431 if (t
->ks_next
== type
) {
432 t
->ks_next
= type
->ks_next
;
437 type
->ks_next
= NULL
;
439 spin_unlock(&kmemstat_spin
);
442 * memuse is only correct in aggregation. Due to memory being allocated
443 * on one cpu and freed on another individual array entries may be
444 * negative or positive (canceling each other out).
449 for (i
= 0; i
< ncpus
; ++i
) {
451 ttl
+= type
->ks_use
[i
].memuse
;
453 if (type
->ks_flags
& KSF_OBJSIZE
)
454 malloc_mgt_uninit(type
, &type
->ks_use
[i
].mgt
);
456 if (type
->ks_flags
& KSF_OBJSIZE
)
457 malloc_mgt_uninit(type
, &type
->ks_mgt
);
460 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
461 ttl
, type
->ks_shortdesc
, i
);
465 if (type
->ks_use
!= &type
->ks_use0
) {
466 kfree(type
->ks_use
, M_TEMP
);
472 * Slowly polls all kmalloc zones for cleanup
475 kmalloc_poller_thread(void)
477 struct malloc_type
*type
;
481 * Very slow poll by default, adjustable with sysctl
485 sticks
= kzone_pollfreq
;
488 sticks
= hz
/ sticks
+ 1; /* approximate */
490 sticks
= hz
; /* safety */
491 tsleep((caddr_t
)&sticks
, 0, "kmslp", sticks
);
494 * [re]poll one zone each period.
496 spin_lock(&kmemstat_spin
);
497 type
= kmemstat_poll
;
500 type
= kmemstatistics
;
502 atomic_set_int(&type
->ks_flags
, KSF_POLLING
);
503 spin_unlock(&kmemstat_spin
);
504 if (malloc_mgt_poll(type
)) {
505 spin_lock(&kmemstat_spin
);
506 kmemstat_poll
= type
->ks_next
;
508 spin_lock(&kmemstat_spin
);
510 atomic_clear_int(&type
->ks_flags
, KSF_POLLING
);
513 kmemstat_poll
= NULL
;
515 spin_unlock(&kmemstat_spin
);
519 static struct thread
*kmalloc_poller_td
;
520 static struct kproc_desc kmalloc_poller_kp
= {
522 kmalloc_poller_thread
,
525 SYSINIT(kmalloc_polller
, SI_SUB_KTHREAD_PAGE
, SI_ORDER_FIRST
,
526 kproc_start
, &kmalloc_poller_kp
);
529 * Reinitialize all installed malloc regions after ncpus has been
530 * determined. type->ks_use0 is initially set to &type->ks_use0,
531 * this function will dynamically allocate it as appropriate for ncpus.
534 malloc_reinit_ncpus(void)
536 struct malloc_type
*t
;
537 struct kmalloc_use
*use
;
541 * If only one cpu we can leave ks_use set to ks_use0
547 * Expand ks_use for all kmalloc blocks
549 for (t
= kmemstatistics
; t
; t
= t
->ks_next
) {
550 KKASSERT(t
->ks_use
== &t
->ks_use0
);
551 t
->ks_use
= kmalloc(sizeof(*use
) * ncpus
, M_TEMP
, M_WAITOK
|M_ZERO
);
552 t
->ks_use
[0] = t
->ks_use0
;
553 if (t
->ks_flags
& KSF_OBJSIZE
) {
554 malloc_mgt_relocate(&t
->ks_use0
.mgt
, &t
->ks_use
[0].mgt
);
555 for (n
= 1; n
< ncpus
; ++n
)
556 malloc_mgt_init(t
, &t
->ks_use
[n
].mgt
, t
->ks_objsize
);
562 * Increase the kmalloc pool limit for the specified pool. No changes
563 * are the made if the pool would shrink.
566 kmalloc_raise_limit(struct malloc_type
*type
, size_t bytes
)
568 KKASSERT(type
->ks_limit
!= 0);
571 if (type
->ks_limit
< bytes
)
572 type
->ks_limit
= bytes
;
576 kmalloc_set_unlimited(struct malloc_type
*type
)
578 type
->ks_limit
= kmem_lim_size() * (1024 * 1024);
582 * Dynamically create a malloc pool. This function is a NOP if *typep is
586 kmalloc_create(struct malloc_type
**typep
, const char *descr
)
588 struct malloc_type
*type
;
590 if (*typep
== NULL
) {
591 type
= kmalloc(sizeof(*type
), M_TEMP
, M_WAITOK
| M_ZERO
);
592 type
->ks_magic
= M_MAGIC
;
593 type
->ks_shortdesc
= descr
;
600 _kmalloc_create_obj(struct malloc_type
**typep
, const char *descr
,
603 struct malloc_type
*type
;
605 if (*typep
== NULL
) {
606 type
= kmalloc(sizeof(*type
), M_TEMP
, M_WAITOK
| M_ZERO
);
607 type
->ks_magic
= M_MAGIC
;
608 type
->ks_shortdesc
= descr
;
609 type
->ks_flags
= KSF_OBJSIZE
;
610 type
->ks_objsize
= __VM_CACHELINE_ALIGN(objsize
);
617 * Destroy a dynamically created malloc pool. This function is a NOP if
618 * the pool has already been destroyed.
620 * WARNING! For kmalloc_obj's, the exis state for related slabs is ignored,
621 * only call once all references are 100% known to be gone.
624 kmalloc_destroy(struct malloc_type
**typep
)
626 if (*typep
!= NULL
) {
627 malloc_uninit(*typep
);
628 kfree(*typep
, M_TEMP
);
634 * Calculate the zone index for the allocation request size and set the
635 * allocation request size to that particular zone's chunk size.
638 zoneindex(unsigned long *bytes
, unsigned long *align
)
640 unsigned int n
= (unsigned int)*bytes
; /* unsigned for shift opt */
643 *bytes
= n
= (n
+ 7) & ~7;
645 return(n
/ 8 - 1); /* 8 byte chunks, 16 zones */
648 *bytes
= n
= (n
+ 15) & ~15;
654 *bytes
= n
= (n
+ 31) & ~31;
659 *bytes
= n
= (n
+ 63) & ~63;
664 *bytes
= n
= (n
+ 127) & ~127;
666 return(n
/ 128 + 31);
669 *bytes
= n
= (n
+ 255) & ~255;
671 return(n
/ 256 + 39);
673 *bytes
= n
= (n
+ 511) & ~511;
675 return(n
/ 512 + 47);
677 #if ZALLOC_ZONE_LIMIT > 8192
679 *bytes
= n
= (n
+ 1023) & ~1023;
681 return(n
/ 1024 + 55);
684 #if ZALLOC_ZONE_LIMIT > 16384
686 *bytes
= n
= (n
+ 2047) & ~2047;
688 return(n
/ 2048 + 63);
691 panic("Unexpected byte count %d", n
);
696 clean_zone_rchunks(SLZone
*z
)
700 while ((bchunk
= z
->z_RChunks
) != NULL
) {
702 if (atomic_cmpset_ptr(&z
->z_RChunks
, bchunk
, NULL
)) {
703 *z
->z_LChunksp
= bchunk
;
705 chunk_mark_free(z
, bchunk
);
706 z
->z_LChunksp
= &bchunk
->c_Next
;
707 bchunk
= bchunk
->c_Next
;
717 * If the zone becomes totally free and is not the only zone listed for a
718 * chunk size we move it to the FreeZones list. We always leave at least
719 * one zone per chunk size listed, even if it is freeable.
721 * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
722 * otherwise MP races can result in our free_remote code accessing a
723 * destroyed zone. The remote end interlocks z_RCount with z_RChunks
724 * so one has to test both z_NFree and z_RCount.
726 * Since this code can be called from an IPI callback, do *NOT* try to mess
727 * with kernel_map here. Hysteresis will be performed at kmalloc() time.
729 static __inline SLZone
*
730 check_zone_free(SLGlobalData
*slgd
, SLZone
*z
)
734 znext
= TAILQ_NEXT(z
, z_Entry
);
735 if (z
->z_NFree
== z
->z_NMax
&& z
->z_RCount
== 0 &&
736 (TAILQ_FIRST(&slgd
->ZoneAry
[z
->z_ZoneIndex
]) != z
|| znext
)) {
739 TAILQ_REMOVE(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
742 TAILQ_INSERT_HEAD(&slgd
->FreeZones
, z
, z_Entry
);
752 * Used to debug memory corruption issues. Record up to (typically 32)
753 * allocation sources for this zone (for a particular chunk size).
757 slab_record_source(SLZone
*z
, const char *file
, int line
)
760 int b
= line
& (SLAB_DEBUG_ENTRIES
- 1);
764 if (z
->z_Sources
[i
].file
== file
&& z
->z_Sources
[i
].line
== line
)
766 if (z
->z_Sources
[i
].file
== NULL
)
768 i
= (i
+ 1) & (SLAB_DEBUG_ENTRIES
- 1);
770 z
->z_Sources
[i
].file
= file
;
771 z
->z_Sources
[i
].line
= line
;
776 static __inline
unsigned long
777 powerof2_size(unsigned long size
)
781 if (size
== 0 || powerof2(size
))
789 * kmalloc() (SLAB ALLOCATOR)
791 * Allocate memory via the slab allocator. If the request is too large,
792 * or if it page-aligned beyond a certain size, we fall back to the
793 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
794 * &SlabMisc if you don't care.
796 * M_RNOWAIT - don't block.
797 * M_NULLOK - return NULL instead of blocking.
798 * M_ZERO - zero the returned memory.
799 * M_USE_RESERVE - allow greater drawdown of the free list
800 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
801 * M_POWEROF2 - roundup size to the nearest power of 2
806 /* don't let kmalloc macro mess up function declaration */
811 _kmalloc_debug(unsigned long size
, struct malloc_type
*type
, int flags
,
812 const char *file
, int line
)
815 _kmalloc(unsigned long size
, struct malloc_type
*type
, int flags
)
821 struct globaldata
*gd
;
828 logmemory_quick(malloc_beg
);
833 * XXX silly to have this in the critical path.
835 KKASSERT(type
->ks_limit
!= 0);
836 ++type
->ks_use
[gd
->gd_cpuid
].calls
;
839 * Flagged for cache-alignment
841 if (flags
& M_CACHEALIGN
) {
842 if (size
< __VM_CACHELINE_SIZE
)
843 size
= __VM_CACHELINE_SIZE
;
844 else if (!CAN_CACHEALIGN(size
))
849 * Flagged to force nearest power-of-2 (higher or same)
851 if (flags
& M_POWEROF2
)
852 size
= powerof2_size(size
);
855 * Handle the case where the limit is reached. Panic if we can't return
856 * NULL. The original malloc code looped, but this tended to
857 * simply deadlock the computer.
859 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
860 * to determine if a more complete limit check should be done. The
861 * actual memory use is tracked via ks_use[cpu].memuse.
863 while (type
->ks_loosememuse
>= type
->ks_limit
) {
867 for (i
= ttl
= 0; i
< ncpus
; ++i
)
868 ttl
+= type
->ks_use
[i
].memuse
;
869 type
->ks_loosememuse
= ttl
; /* not MP synchronized */
870 if ((ssize_t
)ttl
< 0) /* deal with occassional race */
872 if (ttl
>= type
->ks_limit
) {
873 if (flags
& M_NULLOK
) {
874 logmemory(malloc_end
, NULL
, type
, size
, flags
);
877 panic("%s: malloc limit exceeded", type
->ks_shortdesc
);
882 * Handle the degenerate size == 0 case. Yes, this does happen.
883 * Return a special pointer. This is to maintain compatibility with
884 * the original malloc implementation. Certain devices, such as the
885 * adaptec driver, not only allocate 0 bytes, they check for NULL and
886 * also realloc() later on. Joy.
889 logmemory(malloc_end
, ZERO_LENGTH_PTR
, type
, size
, flags
);
890 return(ZERO_LENGTH_PTR
);
894 * Handle hysteresis from prior frees here in malloc(). We cannot
895 * safely manipulate the kernel_map in free() due to free() possibly
896 * being called via an IPI message or from sensitive interrupt code.
898 * NOTE: ku_pagecnt must be cleared before we free the slab or we
899 * might race another cpu allocating the kva and setting
902 while (slgd
->NFreeZones
> ZoneRelsThresh
&& (flags
& M_RNOWAIT
) == 0) {
904 if (slgd
->NFreeZones
> ZoneRelsThresh
) { /* crit sect race */
907 z
= TAILQ_LAST(&slgd
->FreeZones
, SLZoneList
);
909 TAILQ_REMOVE(&slgd
->FreeZones
, z
, z_Entry
);
913 kmem_slab_free(z
, ZoneSize
); /* may block */
919 * XXX handle oversized frees that were queued from kfree().
921 while (TAILQ_FIRST(&slgd
->FreeOvZones
) && (flags
& M_RNOWAIT
) == 0) {
923 if ((z
= TAILQ_LAST(&slgd
->FreeOvZones
, SLZoneList
)) != NULL
) {
926 KKASSERT(z
->z_Magic
== ZALLOC_OVSZ_MAGIC
);
927 TAILQ_REMOVE(&slgd
->FreeOvZones
, z
, z_Entry
);
928 tsize
= z
->z_ChunkSize
;
929 kmem_slab_free(z
, tsize
); /* may block */
935 * Handle large allocations directly. There should not be very many of
936 * these so performance is not a big issue.
938 * The backend allocator is pretty nasty on a SMP system. Use the
939 * slab allocator for one and two page-sized chunks even though we lose
940 * some efficiency. XXX maybe fix mmio and the elf loader instead.
942 if (size
>= ZoneLimit
|| ((size
& PAGE_MASK
) == 0 && size
> PAGE_SIZE
*2)) {
945 size
= round_page(size
);
946 chunk
= kmem_slab_alloc(size
, PAGE_SIZE
, flags
);
948 logmemory(malloc_end
, NULL
, type
, size
, flags
);
951 flags
&= ~M_ZERO
; /* result already zero'd if M_ZERO was set */
952 flags
|= M_PASSIVE_ZERO
;
954 *kup
= size
/ PAGE_SIZE
;
960 * Attempt to allocate out of an existing zone. First try the free list,
961 * then allocate out of unallocated space. If we find a good zone move
962 * it to the head of the list so later allocations find it quickly
963 * (we might have thousands of zones in the list).
965 * Note: zoneindex() will panic of size is too large.
967 zi
= zoneindex(&size
, &align
);
968 KKASSERT(zi
< NZONES
);
971 if ((z
= TAILQ_LAST(&slgd
->ZoneAry
[zi
], SLZoneList
)) != NULL
) {
973 * Locate a chunk - we have to have at least one. If this is the
974 * last chunk go ahead and do the work to retrieve chunks freed
975 * from remote cpus, and if the zone is still empty move it off
978 if (--z
->z_NFree
<= 0) {
979 KKASSERT(z
->z_NFree
== 0);
982 * WARNING! This code competes with other cpus. It is ok
983 * for us to not drain RChunks here but we might as well, and
984 * it is ok if more accumulate after we're done.
986 * Set RSignal before pulling rchunks off, indicating that we
987 * will be moving ourselves off of the ZoneAry. Remote ends will
988 * read RSignal before putting rchunks on thus interlocking
989 * their IPI signaling.
991 if (z
->z_RChunks
== NULL
)
992 atomic_swap_int(&z
->z_RSignal
, 1);
994 clean_zone_rchunks(z
);
997 * Remove from the zone list if no free chunks remain.
1000 if (z
->z_NFree
== 0) {
1001 TAILQ_REMOVE(&slgd
->ZoneAry
[zi
], z
, z_Entry
);
1008 * Fast path, we have chunks available in z_LChunks.
1010 chunk
= z
->z_LChunks
;
1012 chunk_mark_allocated(z
, chunk
);
1013 z
->z_LChunks
= chunk
->c_Next
;
1014 if (z
->z_LChunks
== NULL
)
1015 z
->z_LChunksp
= &z
->z_LChunks
;
1017 slab_record_source(z
, file
, line
);
1023 * No chunks are available in LChunks, the free chunk MUST be
1024 * in the never-before-used memory area, controlled by UIndex.
1026 * The consequences are very serious if our zone got corrupted so
1027 * we use an explicit panic rather than a KASSERT.
1029 if (z
->z_UIndex
+ 1 != z
->z_NMax
)
1034 if (z
->z_UIndex
== z
->z_UEndIndex
)
1035 panic("slaballoc: corrupted zone");
1037 chunk
= (SLChunk
*)(z
->z_BasePtr
+ z
->z_UIndex
* size
);
1038 if ((z
->z_Flags
& SLZF_UNOTZEROD
) == 0) {
1040 flags
|= M_PASSIVE_ZERO
;
1042 chunk_mark_allocated(z
, chunk
);
1044 slab_record_source(z
, file
, line
);
1050 * If all zones are exhausted we need to allocate a new zone for this
1051 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
1052 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
1053 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
1054 * we do not pre-zero it because we do not want to mess up the L1 cache.
1056 * At least one subsystem, the tty code (see CROUND) expects power-of-2
1057 * allocations to be power-of-2 aligned. We maintain compatibility by
1058 * adjusting the base offset below.
1064 if ((z
= TAILQ_FIRST(&slgd
->FreeZones
)) != NULL
) {
1065 TAILQ_REMOVE(&slgd
->FreeZones
, z
, z_Entry
);
1067 bzero(z
, sizeof(SLZone
));
1068 z
->z_Flags
|= SLZF_UNOTZEROD
;
1070 z
= kmem_slab_alloc(ZoneSize
, ZoneSize
, flags
|M_ZERO
);
1076 * How big is the base structure?
1078 #if defined(INVARIANTS)
1080 * Make room for z_Bitmap. An exact calculation is somewhat more
1081 * complicated so don't make an exact calculation.
1083 off
= offsetof(SLZone
, z_Bitmap
[(ZoneSize
/ size
+ 31) / 32]);
1084 bzero(z
->z_Bitmap
, (ZoneSize
/ size
+ 31) / 8);
1086 off
= sizeof(SLZone
);
1090 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
1091 * Otherwise properly align the data according to the chunk size.
1095 off
= roundup2(off
, align
);
1097 z
->z_Magic
= ZALLOC_SLAB_MAGIC
;
1098 z
->z_ZoneIndex
= zi
;
1099 z
->z_NMax
= (ZoneSize
- off
) / size
;
1100 z
->z_NFree
= z
->z_NMax
- 1;
1101 z
->z_BasePtr
= (char *)z
+ off
;
1102 z
->z_UIndex
= z
->z_UEndIndex
= slgd
->JunkIndex
% z
->z_NMax
;
1103 z
->z_ChunkSize
= size
;
1105 z
->z_Cpu
= gd
->gd_cpuid
;
1106 z
->z_LChunksp
= &z
->z_LChunks
;
1108 bcopy(z
->z_Sources
, z
->z_AltSources
, sizeof(z
->z_Sources
));
1109 bzero(z
->z_Sources
, sizeof(z
->z_Sources
));
1111 chunk
= (SLChunk
*)(z
->z_BasePtr
+ z
->z_UIndex
* size
);
1112 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[zi
], z
, z_Entry
);
1113 if ((z
->z_Flags
& SLZF_UNOTZEROD
) == 0) {
1114 flags
&= ~M_ZERO
; /* already zero'd */
1115 flags
|= M_PASSIVE_ZERO
;
1118 *kup
= -(z
->z_Cpu
+ 1); /* -1 to -(N+1) */
1119 chunk_mark_allocated(z
, chunk
);
1121 slab_record_source(z
, file
, line
);
1125 * Slide the base index for initial allocations out of the next
1126 * zone we create so we do not over-weight the lower part of the
1127 * cpu memory caches.
1129 slgd
->JunkIndex
= (slgd
->JunkIndex
+ ZALLOC_SLAB_SLIDE
)
1130 & (ZALLOC_MAX_ZONE_SIZE
- 1);
1134 ++type
->ks_use
[gd
->gd_cpuid
].inuse
;
1135 type
->ks_use
[gd
->gd_cpuid
].memuse
+= size
;
1136 type
->ks_use
[gd
->gd_cpuid
].loosememuse
+= size
;
1137 if (type
->ks_use
[gd
->gd_cpuid
].loosememuse
>= ZoneSize
) {
1138 /* not MP synchronized */
1139 type
->ks_loosememuse
+= type
->ks_use
[gd
->gd_cpuid
].loosememuse
;
1140 type
->ks_use
[gd
->gd_cpuid
].loosememuse
= 0;
1147 else if ((flags
& (M_ZERO
|M_PASSIVE_ZERO
)) == 0) {
1148 if (use_malloc_pattern
) {
1149 for (i
= 0; i
< size
; i
+= sizeof(int)) {
1150 *(int *)((char *)chunk
+ i
) = -1;
1153 chunk
->c_Next
= (void *)-1; /* avoid accidental double-free check */
1156 logmemory(malloc_end
, chunk
, type
, size
, flags
);
1160 logmemory(malloc_end
, NULL
, type
, size
, flags
);
1165 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
1167 * Generally speaking this routine is not called very often and we do
1168 * not attempt to optimize it beyond reusing the same pointer if the
1169 * new size fits within the chunking of the old pointer's zone.
1173 krealloc_debug(void *ptr
, unsigned long size
,
1174 struct malloc_type
*type
, int flags
,
1175 const char *file
, int line
)
1178 krealloc(void *ptr
, unsigned long size
, struct malloc_type
*type
, int flags
)
1181 unsigned long osize
;
1182 unsigned long align
;
1187 KKASSERT((flags
& M_ZERO
) == 0); /* not supported */
1189 if (ptr
== NULL
|| ptr
== ZERO_LENGTH_PTR
)
1190 return(_kmalloc_debug(size
, type
, flags
, file
, line
));
1197 * Handle oversized allocations. XXX we really should require that a
1198 * size be passed to free() instead of this nonsense.
1202 osize
= *kup
<< PAGE_SHIFT
;
1203 if (osize
== round_page(size
))
1205 if ((nptr
= _kmalloc_debug(size
, type
, flags
, file
, line
)) == NULL
)
1207 bcopy(ptr
, nptr
, min(size
, osize
));
1213 * Get the original allocation's zone. If the new request winds up
1214 * using the same chunk size we do not have to do anything.
1216 z
= (SLZone
*)((uintptr_t)ptr
& ZoneMask
);
1219 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1222 * Allocate memory for the new request size. Note that zoneindex has
1223 * already adjusted the request size to the appropriate chunk size, which
1224 * should optimize our bcopy(). Then copy and return the new pointer.
1226 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1227 * necessary align the result.
1229 * We can only zoneindex (to align size to the chunk size) if the new
1230 * size is not too large.
1232 if (size
< ZoneLimit
) {
1233 zoneindex(&size
, &align
);
1234 if (z
->z_ChunkSize
== size
)
1237 if ((nptr
= _kmalloc_debug(size
, type
, flags
, file
, line
)) == NULL
)
1239 bcopy(ptr
, nptr
, min(size
, z
->z_ChunkSize
));
1245 kmalloc_usable_size(const void *ptr
)
1253 if (ptr
== ZERO_LENGTH_PTR
)
1257 * Check to see if the pointer blongs to an oversized segment
1261 size
= *kup
<< PAGE_SHIFT
;
1266 * Zone case. Figure out the zone based on the fact that it is
1269 z
= (SLZone
*)((uintptr_t)ptr
& ZoneMask
);
1270 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1272 return (z
->z_ChunkSize
);
1276 * Return the kmalloc limit for this type, in bytes.
1279 kmalloc_limit(struct malloc_type
*type
)
1281 KKASSERT(type
->ks_limit
!= 0);
1282 return(type
->ks_limit
);
1286 * Allocate a copy of the specified string.
1288 * (MP SAFE) (MAY BLOCK)
1292 kstrdup_debug(const char *str
, struct malloc_type
*type
,
1293 const char *file
, int line
)
1296 kstrdup(const char *str
, struct malloc_type
*type
)
1299 int zlen
; /* length inclusive of terminating NUL */
1304 zlen
= strlen(str
) + 1;
1305 nstr
= _kmalloc_debug(zlen
, type
, M_WAITOK
, file
, line
);
1306 bcopy(str
, nstr
, zlen
);
1312 kstrndup_debug(const char *str
, size_t maxlen
, struct malloc_type
*type
,
1313 const char *file
, int line
)
1316 kstrndup(const char *str
, size_t maxlen
, struct malloc_type
*type
)
1319 int zlen
; /* length inclusive of terminating NUL */
1324 zlen
= strnlen(str
, maxlen
) + 1;
1325 nstr
= _kmalloc_debug(zlen
, type
, M_WAITOK
, file
, line
);
1326 bcopy(str
, nstr
, zlen
);
1327 nstr
[zlen
- 1] = '\0';
1332 * Notify our cpu that a remote cpu has freed some chunks in a zone that
1333 * we own. RCount will be bumped so the memory should be good, but validate
1334 * that it really is.
1337 kfree_remote(void *ptr
)
1344 slgd
= &mycpu
->gd_slab
;
1347 KKASSERT(*kup
== -((int)mycpuid
+ 1));
1348 KKASSERT(z
->z_RCount
> 0);
1349 atomic_subtract_int(&z
->z_RCount
, 1);
1351 logmemory(free_rem_beg
, z
, NULL
, 0L, 0);
1352 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1353 KKASSERT(z
->z_Cpu
== mycpu
->gd_cpuid
);
1357 * Indicate that we will no longer be off of the ZoneAry by
1364 * Atomically extract the bchunks list and then process it back
1365 * into the lchunks list. We want to append our bchunks to the
1366 * lchunks list and not prepend since we likely do not have
1367 * cache mastership of the related data (not that it helps since
1368 * we are using c_Next).
1370 clean_zone_rchunks(z
);
1371 if (z
->z_NFree
&& nfree
== 0) {
1372 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
1375 check_zone_free(slgd
, z
);
1376 logmemory(free_rem_end
, z
, NULL
, 0L, 0);
1380 * free (SLAB ALLOCATOR)
1382 * Free a memory block previously allocated by malloc.
1384 * Note: We do not attempt to update ks_loosememuse as MP races could
1385 * prevent us from checking memory limits in malloc. YYY we may
1386 * consider updating ks_cpu.loosememuse.
1391 _kfree(void *ptr
, struct malloc_type
*type
)
1396 struct globaldata
*gd
;
1402 logmemory_quick(free_beg
);
1404 slgd
= &gd
->gd_slab
;
1407 panic("trying to free NULL pointer");
1410 * Handle special 0-byte allocations
1412 if (ptr
== ZERO_LENGTH_PTR
) {
1413 logmemory(free_zero
, ptr
, type
, -1UL, 0);
1414 logmemory_quick(free_end
);
1419 * Panic on bad malloc type
1421 if (type
->ks_magic
!= M_MAGIC
)
1422 panic("free: malloc type lacks magic");
1425 * Handle oversized allocations. XXX we really should require that a
1426 * size be passed to free() instead of this nonsense.
1428 * This code is never called via an ipi.
1432 size
= *kup
<< PAGE_SHIFT
;
1435 if (use_weird_array
) {
1436 KKASSERT(sizeof(weirdary
) <= size
);
1437 bcopy(weirdary
, ptr
, sizeof(weirdary
));
1441 * NOTE: For oversized allocations we do not record the
1442 * originating cpu. It gets freed on the cpu calling
1443 * kfree(). The statistics are in aggregate.
1445 * note: XXX we have still inherited the interrupts-can't-block
1446 * assumption. An interrupt thread does not bump
1447 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
1448 * primarily until we can fix softupdate's assumptions about free().
1451 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1452 type
->ks_use
[gd
->gd_cpuid
].memuse
-= size
;
1453 if (mycpu
->gd_intr_nesting_level
||
1454 (gd
->gd_curthread
->td_flags
& TDF_INTTHREAD
)) {
1455 logmemory(free_ovsz_delayed
, ptr
, type
, size
, 0);
1457 z
->z_Magic
= ZALLOC_OVSZ_MAGIC
;
1458 z
->z_ChunkSize
= size
;
1460 TAILQ_INSERT_HEAD(&slgd
->FreeOvZones
, z
, z_Entry
);
1464 logmemory(free_ovsz
, ptr
, type
, size
, 0);
1465 kmem_slab_free(ptr
, size
); /* may block */
1467 logmemory_quick(free_end
);
1472 * Zone case. Figure out the zone based on the fact that it is
1475 z
= (SLZone
*)((uintptr_t)ptr
& ZoneMask
);
1478 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1481 * If we do not own the zone then use atomic ops to free to the
1482 * remote cpu linked list and notify the target zone using a
1485 * The target zone cannot be deallocated while we own a chunk of it,
1486 * so the zone header's storage is stable until the very moment
1487 * we adjust z_RChunks. After that we cannot safely dereference (z).
1489 * (no critical section needed)
1491 if (z
->z_CpuGd
!= gd
) {
1493 * Making these adjustments now allow us to avoid passing (type)
1494 * to the remote cpu. Note that inuse/memuse is being
1495 * adjusted on OUR cpu, not the zone cpu, but it should all still
1496 * sum up properly and cancel out.
1499 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1500 type
->ks_use
[gd
->gd_cpuid
].memuse
-= z
->z_ChunkSize
;
1504 * WARNING! This code competes with other cpus. Once we
1505 * successfully link the chunk to RChunks the remote
1506 * cpu can rip z's storage out from under us.
1508 * Bumping RCount prevents z's storage from getting
1511 rsignal
= z
->z_RSignal
;
1514 atomic_add_int(&z
->z_RCount
, 1);
1518 bchunk
= z
->z_RChunks
;
1520 chunk
->c_Next
= bchunk
;
1523 if (atomic_cmpset_ptr(&z
->z_RChunks
, bchunk
, chunk
))
1528 * We have to signal the remote cpu if our actions will cause
1529 * the remote zone to be placed back on ZoneAry so it can
1530 * move the zone back on.
1532 * We only need to deal with NULL->non-NULL RChunk transitions
1533 * and only if z_RSignal is set. We interlock by reading rsignal
1534 * before adding our chunk to RChunks. This should result in
1535 * virtually no IPI traffic.
1537 * We can use a passive IPI to reduce overhead even further.
1539 if (bchunk
== NULL
&& rsignal
) {
1540 logmemory(free_request
, ptr
, type
,
1541 (unsigned long)z
->z_ChunkSize
, 0);
1542 lwkt_send_ipiq_passive(z
->z_CpuGd
, kfree_remote
, z
);
1543 /* z can get ripped out from under us from this point on */
1544 } else if (rsignal
) {
1545 atomic_subtract_int(&z
->z_RCount
, 1);
1546 /* z can get ripped out from under us from this point on */
1548 logmemory_quick(free_end
);
1555 logmemory(free_chunk
, ptr
, type
, (unsigned long)z
->z_ChunkSize
, 0);
1559 chunk_mark_free(z
, chunk
);
1562 * Put weird data into the memory to detect modifications after freeing,
1563 * illegal pointer use after freeing (we should fault on the odd address),
1564 * and so forth. XXX needs more work, see the old malloc code.
1567 if (use_weird_array
) {
1568 if (z
->z_ChunkSize
< sizeof(weirdary
))
1569 bcopy(weirdary
, chunk
, z
->z_ChunkSize
);
1571 bcopy(weirdary
, chunk
, sizeof(weirdary
));
1576 * Add this free non-zero'd chunk to a linked list for reuse. Add
1577 * to the front of the linked list so it is more likely to be
1578 * reallocated, since it is already in our L1 cache.
1581 if ((vm_offset_t
)chunk
< KvaStart
|| (vm_offset_t
)chunk
>= KvaEnd
)
1582 panic("BADFREE %p", chunk
);
1584 chunk
->c_Next
= z
->z_LChunks
;
1585 z
->z_LChunks
= chunk
;
1586 if (chunk
->c_Next
== NULL
)
1587 z
->z_LChunksp
= &chunk
->c_Next
;
1590 if (chunk
->c_Next
&& (vm_offset_t
)chunk
->c_Next
< KvaStart
)
1595 * Bump the number of free chunks. If it becomes non-zero the zone
1596 * must be added back onto the appropriate list. A fully allocated
1597 * zone that sees its first free is considered 'mature' and is placed
1598 * at the head, giving the system time to potentially free the remaining
1599 * entries even while other allocations are going on and making the zone
1602 if (z
->z_NFree
++ == 0)
1603 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
1605 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1606 type
->ks_use
[gd
->gd_cpuid
].memuse
-= z
->z_ChunkSize
;
1608 check_zone_free(slgd
, z
);
1609 logmemory_quick(free_end
);
1614 * Cleanup slabs which are hanging around due to RChunks or which are wholely
1615 * free and can be moved to the free list if not moved by other means.
1617 * Called once every 10 seconds on all cpus.
1622 SLGlobalData
*slgd
= &mycpu
->gd_slab
;
1627 for (i
= 0; i
< NZONES
; ++i
) {
1628 if ((z
= TAILQ_FIRST(&slgd
->ZoneAry
[i
])) == NULL
)
1636 * Shift all RChunks to the end of the LChunks list. This is
1637 * an O(1) operation.
1639 * Then free the zone if possible.
1641 clean_zone_rchunks(z
);
1642 z
= check_zone_free(slgd
, z
);
1648 #if defined(INVARIANTS)
1651 * Helper routines for sanity checks
1654 chunk_mark_allocated(SLZone
*z
, void *chunk
)
1656 int bitdex
= ((char *)chunk
- (char *)z
->z_BasePtr
) / z
->z_ChunkSize
;
1659 KKASSERT((((intptr_t)chunk
^ (intptr_t)z
) & ZoneMask
) == 0);
1660 KASSERT(bitdex
>= 0 && bitdex
< z
->z_NMax
,
1661 ("memory chunk %p bit index %d is illegal", chunk
, bitdex
));
1662 bitptr
= &z
->z_Bitmap
[bitdex
>> 5];
1664 KASSERT((*bitptr
& (1 << bitdex
)) == 0,
1665 ("memory chunk %p is already allocated!", chunk
));
1666 *bitptr
|= 1 << bitdex
;
1670 chunk_mark_free(SLZone
*z
, void *chunk
)
1672 int bitdex
= ((char *)chunk
- (char *)z
->z_BasePtr
) / z
->z_ChunkSize
;
1675 KKASSERT((((intptr_t)chunk
^ (intptr_t)z
) & ZoneMask
) == 0);
1676 KASSERT(bitdex
>= 0 && bitdex
< z
->z_NMax
,
1677 ("memory chunk %p bit index %d is illegal!", chunk
, bitdex
));
1678 bitptr
= &z
->z_Bitmap
[bitdex
>> 5];
1680 KASSERT((*bitptr
& (1 << bitdex
)) != 0,
1681 ("memory chunk %p is already free!", chunk
));
1682 *bitptr
&= ~(1 << bitdex
);
1690 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1691 * specified alignment. M_* flags are expected in the flags field.
1693 * Alignment must be a multiple of PAGE_SIZE.
1695 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1696 * but when we move zalloc() over to use this function as its backend
1697 * we will have to switch to kreserve/krelease and call reserve(0)
1698 * after the new space is made available.
1700 * Interrupt code which has preempted other code is not allowed to
1701 * use PQ_CACHE pages. However, if an interrupt thread is run
1702 * non-preemptively or blocks and then runs non-preemptively, then
1703 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX
1706 kmem_slab_alloc(vm_size_t size
, vm_offset_t align
, int flags
)
1710 int count
, vmflags
, base_vmflags
;
1711 vm_page_t mbase
= NULL
;
1715 size
= round_page(size
);
1716 addr
= vm_map_min(kernel_map
);
1718 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1720 vm_map_lock(kernel_map
);
1721 if (vm_map_findspace(kernel_map
, addr
, size
, align
, 0, &addr
)) {
1722 vm_map_unlock(kernel_map
);
1723 if ((flags
& M_NULLOK
) == 0)
1724 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1725 vm_map_entry_release(count
);
1731 * kernel_object maps 1:1 to kernel_map.
1733 vm_object_hold(kernel_object
);
1734 vm_object_reference_locked(kernel_object
);
1735 vm_map_insert(kernel_map
, &count
,
1736 kernel_object
, NULL
,
1741 VM_PROT_ALL
, VM_PROT_ALL
, 0);
1742 vm_object_drop(kernel_object
);
1743 vm_map_set_wired_quick(kernel_map
, addr
, size
, &count
);
1744 vm_map_unlock(kernel_map
);
1750 base_vmflags
|= VM_ALLOC_ZERO
;
1751 if (flags
& M_USE_RESERVE
)
1752 base_vmflags
|= VM_ALLOC_SYSTEM
;
1753 if (flags
& M_USE_INTERRUPT_RESERVE
)
1754 base_vmflags
|= VM_ALLOC_INTERRUPT
;
1755 if ((flags
& (M_RNOWAIT
|M_WAITOK
)) == 0) {
1756 panic("kmem_slab_alloc: bad flags %08x (%p)",
1757 flags
, ((int **)&size
)[-1]);
1761 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only
1762 * be set if we are not preempting.
1764 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1765 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1766 * implied in this case), though I'm not sure if we really need to
1769 vmflags
= base_vmflags
;
1770 if (flags
& M_WAITOK
) {
1771 if (td
->td_preempted
)
1772 vmflags
|= VM_ALLOC_SYSTEM
;
1774 vmflags
|= VM_ALLOC_NORMAL
;
1777 vm_object_hold(kernel_object
);
1778 for (i
= 0; i
< size
; i
+= PAGE_SIZE
) {
1779 m
= vm_page_alloc(kernel_object
, OFF_TO_IDX(addr
+ i
), vmflags
);
1784 * If the allocation failed we either return NULL or we retry.
1786 * If M_WAITOK is specified we wait for more memory and retry.
1787 * If M_WAITOK is specified from a preemption we yield instead of
1788 * wait. Livelock will not occur because the interrupt thread
1789 * will not be preempting anyone the second time around after the
1793 if (flags
& M_WAITOK
) {
1794 if (td
->td_preempted
) {
1799 i
-= PAGE_SIZE
; /* retry */
1807 * Check and deal with an allocation failure
1812 m
= vm_page_lookup(kernel_object
, OFF_TO_IDX(addr
+ i
));
1813 /* page should already be busy */
1816 vm_map_lock(kernel_map
);
1817 vm_map_delete(kernel_map
, addr
, addr
+ size
, &count
);
1818 vm_map_unlock(kernel_map
);
1819 vm_object_drop(kernel_object
);
1821 vm_map_entry_release(count
);
1829 * NOTE: The VM pages are still busied. mbase points to the first one
1830 * but we have to iterate via vm_page_next()
1832 vm_object_drop(kernel_object
);
1836 * Enter the pages into the pmap and deal with M_ZERO.
1843 * page should already be busy
1845 m
->valid
= VM_PAGE_BITS_ALL
;
1847 pmap_enter(kernel_pmap
, addr
+ i
, m
,
1848 VM_PROT_ALL
| VM_PROT_NOSYNC
, 1, NULL
);
1850 pagezero((char *)addr
+ i
);
1851 KKASSERT(m
->flags
& (PG_WRITEABLE
| PG_MAPPED
));
1852 vm_page_flag_set(m
, PG_REFERENCED
);
1856 vm_object_hold(kernel_object
);
1857 m
= vm_page_next(m
);
1858 vm_object_drop(kernel_object
);
1861 vm_map_entry_release(count
);
1862 return((void *)addr
);
1869 kmem_slab_free(void *ptr
, vm_size_t size
)
1872 vm_map_remove(kernel_map
, (vm_offset_t
)ptr
, (vm_offset_t
)ptr
+ size
);