1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */
2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
64 #include "opt_ip6fw.h"
66 #include "opt_inet6.h"
67 #include "opt_ipsec.h"
69 #include <sys/param.h>
70 #include <sys/malloc.h>
72 #include <sys/errno.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
81 #include <sys/thread2.h>
82 #include <sys/msgport2.h>
85 #include <net/route.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet6/in6_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet/in_pcb.h>
95 #include <netinet6/nd6.h>
96 #include <netinet6/ip6protosw.h>
99 #include <netinet6/ipsec.h>
101 #include <netinet6/ipsec6.h>
103 #include <netproto/key/key.h>
107 #include <netproto/ipsec/ipsec.h>
108 #include <netproto/ipsec/ipsec6.h>
109 #include <netproto/ipsec/key.h>
112 #include <net/ip6fw/ip6_fw.h>
114 #include <net/net_osdep.h>
116 static MALLOC_DEFINE(M_IPMOPTS
, "ip6_moptions", "internet multicast options");
119 struct mbuf
*ip6e_ip6
;
120 struct mbuf
*ip6e_hbh
;
121 struct mbuf
*ip6e_dest1
;
122 struct mbuf
*ip6e_rthdr
;
123 struct mbuf
*ip6e_dest2
;
126 static int ip6_pcbopt (int, u_char
*, int, struct ip6_pktopts
**, int);
127 static int ip6_setpktoption (int, u_char
*, int, struct ip6_pktopts
*,
129 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
131 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
132 static int ip6_setmoptions (int, struct ip6_moptions
**, struct mbuf
*);
133 static int ip6_getmoptions (int, struct ip6_moptions
*, struct mbuf
**);
134 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
135 struct ifnet
*, struct in6_addr
*, u_long
*, int *);
136 static int copyexthdr (void *, struct mbuf
**);
137 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
139 static int ip6_insert_jumboopt (struct ip6_exthdrs
*, u_int32_t
);
140 static struct mbuf
*ip6_splithdr (struct mbuf
*);
141 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
145 * header (with pri, len, nxt, hlim, src, dst).
146 * This function may modify ver and hlim only.
147 * The mbuf chain containing the packet will be freed.
148 * The mbuf opt, if present, will not be freed.
150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
152 * which is rt_rmx.rmx_mtu.
155 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
, struct route_in6
*ro
,
156 int flags
, struct ip6_moptions
*im6o
,
157 struct ifnet
**ifpp
, /* XXX: just for statistics */
160 struct ip6_hdr
*ip6
, *mhip6
;
161 struct ifnet
*ifp
, *origifp
;
165 int hlen
, tlen
, len
, off
;
166 struct route_in6 ip6route
;
167 struct sockaddr_in6
*dst
;
169 struct in6_ifaddr
*ia
= NULL
;
171 int alwaysfrag
, dontfrag
;
172 u_int32_t optlen
, plen
= 0, unfragpartlen
;
173 struct ip6_exthdrs exthdrs
;
174 struct in6_addr finaldst
;
175 struct route_in6
*ro_pmtu
= NULL
;
176 boolean_t hdrsplit
= FALSE
;
177 boolean_t needipsec
= FALSE
;
179 boolean_t needipsectun
= FALSE
;
180 struct secpolicy
*sp
= NULL
;
181 struct socket
*so
= inp
? inp
->inp_socket
: NULL
;
183 ip6
= mtod(m
, struct ip6_hdr
*);
186 boolean_t needipsectun
= FALSE
;
187 struct secpolicy
*sp
= NULL
;
189 ip6
= mtod(m
, struct ip6_hdr
*);
192 bzero(&exthdrs
, sizeof exthdrs
);
195 if ((error
= copyexthdr(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
)))
197 if ((error
= copyexthdr(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
)))
199 if ((error
= copyexthdr(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
)))
201 if ((error
= copyexthdr(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
)))
206 /* get a security policy for this packet */
208 sp
= ipsec6_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
, 0, &error
);
210 sp
= ipsec6_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
, so
, &error
);
213 ipsec6stat
.out_inval
++;
220 switch (sp
->policy
) {
221 case IPSEC_POLICY_DISCARD
:
223 * This packet is just discarded.
225 ipsec6stat
.out_polvio
++;
228 case IPSEC_POLICY_BYPASS
:
229 case IPSEC_POLICY_NONE
:
230 /* no need to do IPsec. */
234 case IPSEC_POLICY_IPSEC
:
235 if (sp
->req
== NULL
) {
236 error
= key_spdacquire(sp
); /* acquire a policy */
242 case IPSEC_POLICY_ENTRUST
:
244 kprintf("ip6_output: Invalid policy found. %d\n", sp
->policy
);
248 /* get a security policy for this packet */
250 sp
= ipsec_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
, 0, &error
);
252 sp
= ipsec_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
, inp
, &error
);
255 newipsecstat
.ips_out_inval
++;
262 switch (sp
->policy
) {
263 case IPSEC_POLICY_DISCARD
:
265 * This packet is just discarded.
267 newipsecstat
.ips_out_polvio
++;
270 case IPSEC_POLICY_BYPASS
:
271 case IPSEC_POLICY_NONE
:
272 /* no need to do IPsec. */
276 case IPSEC_POLICY_IPSEC
:
277 if (sp
->req
== NULL
) {
278 error
= key_spdacquire(sp
); /* acquire a policy */
284 case IPSEC_POLICY_ENTRUST
:
286 kprintf("ip6_output: Invalid policy found. %d\n", sp
->policy
);
288 #endif /* FAST_IPSEC */
291 * Calculate the total length of the extension header chain.
292 * Keep the length of the unfragmentable part for fragmentation.
294 optlen
= m_lengthm(exthdrs
.ip6e_hbh
, NULL
) +
295 m_lengthm(exthdrs
.ip6e_dest1
, NULL
) +
296 m_lengthm(exthdrs
.ip6e_rthdr
, NULL
);
298 unfragpartlen
= optlen
+ sizeof(struct ip6_hdr
);
300 /* NOTE: we don't add AH/ESP length here. do that later. */
301 optlen
+= m_lengthm(exthdrs
.ip6e_dest2
, NULL
);
304 * If we need IPsec, or there is at least one extension header,
305 * separate IP6 header from the payload.
307 if ((needipsec
|| optlen
) && !hdrsplit
) {
308 exthdrs
.ip6e_ip6
= ip6_splithdr(m
);
309 if (exthdrs
.ip6e_ip6
== NULL
) {
313 m
= exthdrs
.ip6e_ip6
;
318 ip6
= mtod(m
, struct ip6_hdr
*);
320 /* adjust mbuf packet header length */
321 m
->m_pkthdr
.len
+= optlen
;
322 plen
= m
->m_pkthdr
.len
- sizeof(*ip6
);
324 /* If this is a jumbo payload, insert a jumbo payload option. */
325 if (plen
> IPV6_MAXPACKET
) {
327 exthdrs
.ip6e_ip6
= ip6_splithdr(m
);
328 if (exthdrs
.ip6e_ip6
== NULL
) {
332 m
= exthdrs
.ip6e_ip6
;
336 ip6
= mtod(m
, struct ip6_hdr
*);
337 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0)
341 ip6
->ip6_plen
= htons(plen
);
344 * Concatenate headers and fill in next header fields.
345 * Here we have, on "m"
347 * and we insert headers accordingly. Finally, we should be getting:
348 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
350 * during the header composing process, "m" points to IPv6 header.
351 * "mprev" points to an extension header prior to esp.
354 nexthdrp
= &ip6
->ip6_nxt
;
358 * we treat dest2 specially. this makes IPsec processing
359 * much easier. the goal here is to make mprev point the
360 * mbuf prior to dest2.
362 * result: IPv6 dest2 payload
363 * m and mprev will point to IPv6 header.
365 if (exthdrs
.ip6e_dest2
) {
367 panic("assumption failed: hdr not split");
368 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
369 m
->m_next
= exthdrs
.ip6e_dest2
;
370 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
371 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
375 * Place m1 after mprev.
377 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
381 panic("assumption failed: hdr not split");\
382 *mtod(m1, u_char *) = *nexthdrp;\
384 nexthdrp = mtod(m1, u_char *);\
385 m1->m_next = mprev->m_next;\
392 * result: IPv6 hbh dest1 rthdr dest2 payload
393 * m will point to IPv6 header. mprev will point to the
394 * extension header prior to dest2 (rthdr in the above case).
396 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
397 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
398 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
400 #if defined(IPSEC) || defined(FAST_IPSEC)
402 struct ipsec_output_state state
;
404 struct ip6_rthdr
*rh
= NULL
;
407 * pointers after IPsec headers are not valid any more.
408 * other pointers need a great care too.
409 * (IPsec routines should not mangle mbufs prior to AH/ESP)
411 exthdrs
.ip6e_dest2
= NULL
;
413 if (exthdrs
.ip6e_rthdr
) {
414 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
415 segleft_org
= rh
->ip6r_segleft
;
416 rh
->ip6r_segleft
= 0;
419 bzero(&state
, sizeof state
);
421 error
= ipsec6_output_trans(&state
, nexthdrp
, mprev
, sp
, flags
,
425 /* mbuf is already reclaimed in ipsec6_output_trans. */
435 kprintf("ip6_output (ipsec): error code %d\n",
439 /* don't show these error codes to the user */
445 if (exthdrs
.ip6e_rthdr
) {
446 /* ah6_output doesn't modify mbuf chain */
447 rh
->ip6r_segleft
= segleft_org
;
453 * If there is a routing header, replace the destination address field
454 * with the first hop of the routing header.
456 if (exthdrs
.ip6e_rthdr
) {
457 struct ip6_rthdr
*rh
;
459 finaldst
= ip6
->ip6_dst
;
460 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
461 switch (rh
->ip6r_type
) {
462 default: /* is it possible? */
468 /* Source address validation */
469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
470 !(flags
& IPV6_DADOUTPUT
)) {
472 ip6stat
.ip6s_badscope
++;
475 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
477 ip6stat
.ip6s_badscope
++;
481 ip6stat
.ip6s_localout
++;
488 bzero(ro
, sizeof(*ro
));
491 if (opt
&& opt
->ip6po_rthdr
)
492 ro
= &opt
->ip6po_route
;
493 dst
= (struct sockaddr_in6
*)&ro
->ro_dst
;
496 * If there is a cached route,
497 * check that it is to the same destination
498 * and is still up. If not, free it and try again.
500 if (ro
->ro_rt
!= NULL
&&
501 (!(ro
->ro_rt
->rt_flags
& RTF_UP
) || dst
->sin6_family
!= AF_INET6
||
502 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
))) {
506 if (ro
->ro_rt
== NULL
) {
507 bzero(dst
, sizeof(*dst
));
508 dst
->sin6_family
= AF_INET6
;
509 dst
->sin6_len
= sizeof(struct sockaddr_in6
);
510 dst
->sin6_addr
= ip6
->ip6_dst
;
512 #if defined(IPSEC) || defined(FAST_IPSEC)
513 if (needipsec
&& needipsectun
) {
514 struct ipsec_output_state state
;
517 * All the extension headers will become inaccessible
518 * (since they can be encrypted).
519 * Don't panic, we need no more updates to extension headers
520 * on inner IPv6 packet (since they are now encapsulated).
522 * IPv6 [ESP|AH] IPv6 [extension headers] payload
524 bzero(&exthdrs
, sizeof(exthdrs
));
525 exthdrs
.ip6e_ip6
= m
;
527 bzero(&state
, sizeof(state
));
529 state
.ro
= (struct route
*)ro
;
530 state
.dst
= (struct sockaddr
*)dst
;
532 error
= ipsec6_output_tunnel(&state
, sp
, flags
);
535 ro
= (struct route_in6
*)state
.ro
;
536 dst
= (struct sockaddr_in6
*)state
.dst
;
538 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
549 kprintf("ip6_output (ipsec): error code %d\n", error
);
552 /* don't show these error codes to the user */
559 exthdrs
.ip6e_ip6
= m
;
563 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
566 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
567 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
569 * interface selection comes here
570 * if an interface is specified from an upper layer,
573 if (ro
->ro_rt
== NULL
) {
575 * non-bsdi always clone routes, if parent is
578 rtalloc((struct route
*)ro
);
580 if (ro
->ro_rt
== NULL
) {
581 ip6stat
.ip6s_noroute
++;
582 error
= EHOSTUNREACH
;
583 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
586 ia
= ifatoia6(ro
->ro_rt
->rt_ifa
);
587 ifp
= ro
->ro_rt
->rt_ifp
;
589 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
)
590 dst
= (struct sockaddr_in6
*)ro
->ro_rt
->rt_gateway
;
591 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
593 in6_ifstat_inc(ifp
, ifs6_out_request
);
596 * Check if the outgoing interface conflicts with
597 * the interface specified by ifi6_ifindex (if specified).
598 * Note that loopback interface is always okay.
599 * (this may happen when we are sending a packet to one of
600 * our own addresses.)
602 if (opt
&& opt
->ip6po_pktinfo
603 && opt
->ip6po_pktinfo
->ipi6_ifindex
) {
604 if (!(ifp
->if_flags
& IFF_LOOPBACK
)
605 && ifp
->if_index
!= opt
->ip6po_pktinfo
->ipi6_ifindex
) {
606 ip6stat
.ip6s_noroute
++;
607 in6_ifstat_inc(ifp
, ifs6_out_discard
);
608 error
= EHOSTUNREACH
;
613 if (opt
&& opt
->ip6po_hlim
!= -1)
614 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
617 struct in6_multi
*in6m
;
619 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
622 * See if the caller provided any multicast options
626 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
627 if (im6o
->im6o_multicast_ifp
!= NULL
)
628 ifp
= im6o
->im6o_multicast_ifp
;
630 ip6
->ip6_hlim
= ip6_defmcasthlim
;
633 * See if the caller provided the outgoing interface
634 * as an ancillary data.
635 * Boundary check for ifindex is assumed to be already done.
637 if (opt
&& opt
->ip6po_pktinfo
&& opt
->ip6po_pktinfo
->ipi6_ifindex
)
638 ifp
= ifindex2ifnet
[opt
->ip6po_pktinfo
->ipi6_ifindex
];
641 * If the destination is a node-local scope multicast,
642 * the packet should be loop-backed only.
644 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
646 * If the outgoing interface is already specified,
647 * it should be a loopback interface.
649 if (ifp
&& !(ifp
->if_flags
& IFF_LOOPBACK
)) {
650 ip6stat
.ip6s_badscope
++;
651 error
= ENETUNREACH
; /* XXX: better error? */
652 /* XXX correct ifp? */
653 in6_ifstat_inc(ifp
, ifs6_out_discard
);
660 if (opt
&& opt
->ip6po_hlim
!= -1)
661 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
664 * If caller did not provide an interface lookup a
665 * default in the routing table. This is either a
666 * default for the speicfied group (i.e. a host
667 * route), or a multicast default (a route for the
671 if (ro
->ro_rt
== NULL
) {
673 rtpurelookup((struct sockaddr
*)&ro
->ro_dst
);
675 if (ro
->ro_rt
== NULL
) {
676 ip6stat
.ip6s_noroute
++;
677 error
= EHOSTUNREACH
;
678 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
681 ia
= ifatoia6(ro
->ro_rt
->rt_ifa
);
682 ifp
= ro
->ro_rt
->rt_ifp
;
686 if (!(flags
& IPV6_FORWARDING
))
687 in6_ifstat_inc(ifp
, ifs6_out_request
);
688 in6_ifstat_inc(ifp
, ifs6_out_mcast
);
691 * Confirm that the outgoing interface supports multicast.
693 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
694 ip6stat
.ip6s_noroute
++;
695 in6_ifstat_inc(ifp
, ifs6_out_discard
);
699 in6m
= IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
);
701 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
703 * If we belong to the destination multicast group
704 * on the outgoing interface, and the caller did not
705 * forbid loopback, loop back a copy.
707 ip6_mloopback(ifp
, m
, dst
);
710 * If we are acting as a multicast router, perform
711 * multicast forwarding as if the packet had just
712 * arrived on the interface to which we are about
713 * to send. The multicast forwarding function
714 * recursively calls this function, using the
715 * IPV6_FORWARDING flag to prevent infinite recursion.
717 * Multicasts that are looped back by ip6_mloopback(),
718 * above, will be forwarded by the ip6_input() routine,
721 if (ip6_mrouter
&& !(flags
& IPV6_FORWARDING
)) {
722 if (ip6_mforward(ip6
, ifp
, m
) != 0) {
729 * Multicasts with a hoplimit of zero may be looped back,
730 * above, but must not be transmitted on a network.
731 * Also, multicasts addressed to the loopback interface
732 * are not sent -- the above call to ip6_mloopback() will
733 * loop back a copy if this host actually belongs to the
734 * destination group on the loopback interface.
736 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
)) {
743 * Fill the outgoing inteface to tell the upper layer
744 * to increment per-interface statistics.
749 /* Determine path MTU. */
750 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
,
755 * The caller of this function may specify to use the minimum MTU
757 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
758 * setting. The logic is a bit complicated; by default, unicast
759 * packets will follow path MTU while multicast packets will be sent at
760 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
761 * including unicast ones will be sent at the minimum MTU. Multicast
762 * packets will always be sent at the minimum MTU unless
763 * IP6PO_MINMTU_DISABLE is explicitly specified.
764 * See RFC 3542 for more details.
766 if (mtu
> IPV6_MMTU
) {
767 if ((flags
& IPV6_MINMTU
))
769 else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
)
771 else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
773 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
778 /* Fake scoped addresses */
779 if ((ifp
->if_flags
& IFF_LOOPBACK
) != 0) {
781 * If source or destination address is a scoped address, and
782 * the packet is going to be sent to a loopback interface,
783 * we should keep the original interface.
787 * XXX: this is a very experimental and temporary solution.
788 * We eventually have sockaddr_in6 and use the sin6_scope_id
789 * field of the structure here.
790 * We rely on the consistency between two scope zone ids
791 * of source and destination, which should already be assured.
792 * Larger scopes than link will be supported in the future.
795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
))
796 origifp
= ifindex2ifnet
[ntohs(ip6
->ip6_src
.s6_addr16
[1])];
797 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
))
798 origifp
= ifindex2ifnet
[ntohs(ip6
->ip6_dst
.s6_addr16
[1])];
800 * XXX: origifp can be NULL even in those two cases above.
801 * For example, if we remove the (only) link-local address
802 * from the loopback interface, and try to send a link-local
803 * address without link-id information. Then the source
804 * address is ::1, and the destination address is the
805 * link-local address with its s6_addr16[1] being zero.
806 * What is worse, if the packet goes to the loopback interface
807 * by a default rejected route, the null pointer would be
808 * passed to looutput, and the kernel would hang.
809 * The following last resort would prevent such disaster.
817 * clear embedded scope identifiers if necessary.
818 * in6_clearscope will touch the addresses only when necessary.
820 in6_clearscope(&ip6
->ip6_src
);
821 in6_clearscope(&ip6
->ip6_dst
);
824 * Check with the firewall...
826 if (ip6_fw_enable
&& ip6_fw_chk_ptr
) {
829 m
->m_pkthdr
.rcvif
= NULL
; /* XXX */
830 /* If ipfw says divert, we have to just drop packet */
831 if ((*ip6_fw_chk_ptr
)(&ip6
, ifp
, &port
, &m
)) {
842 * If the outgoing packet contains a hop-by-hop options header,
843 * it must be examined and processed even by the source node.
844 * (RFC 2460, section 4.)
846 if (exthdrs
.ip6e_hbh
) {
847 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
848 u_int32_t dummy1
; /* XXX unused */
849 u_int32_t dummy2
; /* XXX unused */
852 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
)
853 panic("ip6e_hbh is not continuous");
856 * XXX: if we have to send an ICMPv6 error to the sender,
857 * we need the M_LOOP flag since icmp6_error() expects
858 * the IPv6 and the hop-by-hop options header are
859 * continuous unless the flag is set.
861 m
->m_flags
|= M_LOOP
;
862 m
->m_pkthdr
.rcvif
= ifp
;
863 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
864 ((hbh
->ip6h_len
+ 1) << 3) - sizeof(struct ip6_hbh
),
865 &dummy1
, &dummy2
) < 0) {
866 /* m was already freed at this point */
867 error
= EINVAL
;/* better error? */
870 m
->m_flags
&= ~M_LOOP
; /* XXX */
871 m
->m_pkthdr
.rcvif
= NULL
;
875 * Run through list of hooks for output packets.
877 if (pfil_has_hooks(&inet6_pfil_hook
)) {
878 error
= pfil_run_hooks(&inet6_pfil_hook
, &m
, ifp
, PFIL_OUT
);
879 if (error
!= 0 || m
== NULL
)
881 ip6
= mtod(m
, struct ip6_hdr
*);
885 * Send the packet to the outgoing interface.
886 * If necessary, do IPv6 fragmentation before sending.
888 * the logic here is rather complex:
889 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
890 * 1-a: send as is if tlen <= path mtu
891 * 1-b: fragment if tlen > path mtu
893 * 2: if user asks us not to fragment (dontfrag == 1)
894 * 2-a: send as is if tlen <= interface mtu
895 * 2-b: error if tlen > interface mtu
897 * 3: if we always need to attach fragment header (alwaysfrag == 1)
900 * 4: if dontfrag == 1 && alwaysfrag == 1
901 * error, as we cannot handle this conflicting request
903 tlen
= m
->m_pkthdr
.len
;
905 if (opt
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
))
909 if (dontfrag
&& alwaysfrag
) { /* case 4 */
910 /* conflicting request - can't transmit */
914 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
916 * Even if the DONTFRAG option is specified, we cannot send the
917 * packet when the data length is larger than the MTU of the
918 * outgoing interface.
919 * Notify the error by sending IPV6_PATHMTU ancillary data as
920 * well as returning an error code (the latter is not described
924 struct ip6ctlparam ip6cp
;
926 mtu32
= (u_int32_t
)mtu
;
927 bzero(&ip6cp
, sizeof(ip6cp
));
928 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
929 kpfctlinput2(PRC_MSGSIZE
, (struct sockaddr
*)&ro_pmtu
->ro_dst
,
937 * transmit packet without fragmentation
939 if (dontfrag
|| (!alwaysfrag
&& tlen
<= mtu
)) { /* case 1-a and 2-a */
940 struct in6_ifaddr
*ia6
;
942 ip6
= mtod(m
, struct ip6_hdr
*);
943 ia6
= in6_ifawithifp(ifp
, &ip6
->ip6_src
);
945 /* Record statistics for this interface address. */
946 IFA_STAT_INC(&ia6
->ia_ifa
, opackets
, 1);
947 IFA_STAT_INC(&ia6
->ia_ifa
, obytes
, m
->m_pkthdr
.len
);
950 /* clean ipsec history once it goes out of the node */
953 error
= nd6_output(ifp
, origifp
, m
, dst
, ro
->ro_rt
);
958 * try to fragment the packet. case 1-b and 3
960 if (mtu
< IPV6_MMTU
) {
962 * note that path MTU is never less than IPV6_MMTU
966 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
968 } else if (ip6
->ip6_plen
== 0) {
969 /* jumbo payload cannot be fragmented */
971 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
974 struct mbuf
**mnext
, *m_frgpart
;
975 struct ip6_frag
*ip6f
;
976 u_int32_t id
= htonl(ip6_id
++);
980 * Too large for the destination or interface;
981 * fragment if possible.
982 * Must be able to put at least 8 bytes per fragment.
984 hlen
= unfragpartlen
;
985 if (mtu
> IPV6_MAXPACKET
)
986 mtu
= IPV6_MAXPACKET
;
988 len
= (mtu
- hlen
- sizeof(struct ip6_frag
)) & ~7;
991 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
995 mnext
= &m
->m_nextpkt
;
998 * Change the next header field of the last header in the
999 * unfragmentable part.
1001 if (exthdrs
.ip6e_rthdr
) {
1002 nextproto
= *mtod(exthdrs
.ip6e_rthdr
, u_char
*);
1003 *mtod(exthdrs
.ip6e_rthdr
, u_char
*) = IPPROTO_FRAGMENT
;
1004 } else if (exthdrs
.ip6e_dest1
) {
1005 nextproto
= *mtod(exthdrs
.ip6e_dest1
, u_char
*);
1006 *mtod(exthdrs
.ip6e_dest1
, u_char
*) = IPPROTO_FRAGMENT
;
1007 } else if (exthdrs
.ip6e_hbh
) {
1008 nextproto
= *mtod(exthdrs
.ip6e_hbh
, u_char
*);
1009 *mtod(exthdrs
.ip6e_hbh
, u_char
*) = IPPROTO_FRAGMENT
;
1011 nextproto
= ip6
->ip6_nxt
;
1012 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
1016 * Loop through length of segment after first fragment,
1017 * make new header and copy data of each part and link onto
1021 for (off
= hlen
; off
< tlen
; off
+= len
) {
1022 MGETHDR(m
, M_NOWAIT
, MT_HEADER
);
1025 ip6stat
.ip6s_odropped
++;
1028 m
->m_pkthdr
.rcvif
= NULL
;
1029 m
->m_flags
= m0
->m_flags
& M_COPYFLAGS
;
1031 mnext
= &m
->m_nextpkt
;
1032 m
->m_data
+= max_linkhdr
;
1033 mhip6
= mtod(m
, struct ip6_hdr
*);
1035 m
->m_len
= sizeof(*mhip6
);
1036 error
= ip6_insertfraghdr(m0
, m
, hlen
, &ip6f
);
1038 ip6stat
.ip6s_odropped
++;
1041 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
1042 if (off
+ len
>= tlen
)
1045 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
1046 mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
1047 sizeof(*ip6f
) - sizeof(struct ip6_hdr
)));
1048 if ((m_frgpart
= m_copy(m0
, off
, len
)) == NULL
) {
1050 ip6stat
.ip6s_odropped
++;
1053 m_cat(m
, m_frgpart
);
1054 m
->m_pkthdr
.len
= len
+ hlen
+ sizeof(*ip6f
);
1055 m
->m_pkthdr
.rcvif
= NULL
;
1056 ip6f
->ip6f_reserved
= 0;
1057 ip6f
->ip6f_ident
= id
;
1058 ip6f
->ip6f_nxt
= nextproto
;
1059 ip6stat
.ip6s_ofragments
++;
1060 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
1063 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
1067 * Remove leading garbages.
1071 m0
->m_nextpkt
= NULL
;
1073 for (m0
= m
; m
; m
= m0
) {
1075 m
->m_nextpkt
= NULL
;
1077 /* Record statistics for this interface address. */
1079 IFA_STAT_INC(&ia
->ia_ifa
, opackets
, 1);
1080 IFA_STAT_INC(&ia
->ia_ifa
, obytes
,
1084 /* clean ipsec history once it goes out of the node */
1087 error
= nd6_output(ifp
, origifp
, m
, dst
, ro
->ro_rt
);
1093 ip6stat
.ip6s_fragmented
++;
1096 if (ro
== &ip6route
&& ro
->ro_rt
) { /* brace necessary for RTFREE */
1098 } else if (ro_pmtu
== &ip6route
&& ro_pmtu
->ro_rt
) {
1099 RTFREE(ro_pmtu
->ro_rt
);
1114 m_freem(exthdrs
.ip6e_hbh
); /* m_freem will check if mbuf is 0 */
1115 m_freem(exthdrs
.ip6e_dest1
);
1116 m_freem(exthdrs
.ip6e_rthdr
);
1117 m_freem(exthdrs
.ip6e_dest2
);
1125 copyexthdr(void *h
, struct mbuf
**mp
)
1127 struct ip6_ext
*hdr
= h
;
1134 hlen
= (hdr
->ip6e_len
+ 1) * 8;
1135 if (hlen
> MCLBYTES
)
1136 return ENOBUFS
; /* XXX */
1138 m
= m_getb(hlen
, M_NOWAIT
, MT_DATA
, 0);
1143 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
1150 * Insert jumbo payload option.
1153 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
1159 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1162 * If there is no hop-by-hop options header, allocate new one.
1163 * If there is one but it doesn't have enough space to store the
1164 * jumbo payload option, allocate a cluster to store the whole options.
1165 * Otherwise, use it to store the options.
1167 if (exthdrs
->ip6e_hbh
== NULL
) {
1168 MGET(mopt
, M_NOWAIT
, MT_DATA
);
1171 mopt
->m_len
= JUMBOOPTLEN
;
1172 optbuf
= mtod(mopt
, u_char
*);
1173 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1174 exthdrs
->ip6e_hbh
= mopt
;
1176 struct ip6_hbh
*hbh
;
1178 mopt
= exthdrs
->ip6e_hbh
;
1179 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
1182 * - exthdrs->ip6e_hbh is not referenced from places
1183 * other than exthdrs.
1184 * - exthdrs->ip6e_hbh is not an mbuf chain.
1186 int oldoptlen
= mopt
->m_len
;
1190 * XXX: give up if the whole (new) hbh header does
1191 * not fit even in an mbuf cluster.
1193 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
)
1197 * As a consequence, we must always prepare a cluster
1200 n
= m_getcl(M_NOWAIT
, MT_DATA
, 0);
1203 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
1204 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
), oldoptlen
);
1205 optbuf
= mtod(n
, caddr_t
) + oldoptlen
;
1207 mopt
= exthdrs
->ip6e_hbh
= n
;
1209 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
1210 mopt
->m_len
+= JUMBOOPTLEN
;
1212 optbuf
[0] = IP6OPT_PADN
;
1216 * Adjust the header length according to the pad and
1217 * the jumbo payload option.
1219 hbh
= mtod(mopt
, struct ip6_hbh
*);
1220 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
1223 /* fill in the option. */
1224 optbuf
[2] = IP6OPT_JUMBO
;
1226 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
1227 bcopy(&v
, &optbuf
[4], sizeof(u_int32_t
));
1229 /* finally, adjust the packet header length */
1230 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
1237 * Insert fragment header and copy unfragmentable header portions.
1240 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
1241 struct ip6_frag
**frghdrp
)
1243 struct mbuf
*n
, *mlast
;
1245 if (hlen
> sizeof(struct ip6_hdr
)) {
1246 n
= m_copym(m0
, sizeof(struct ip6_hdr
),
1247 hlen
- sizeof(struct ip6_hdr
), M_NOWAIT
);
1254 /* Search for the last mbuf of unfragmentable part. */
1255 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
)
1258 if (!(mlast
->m_flags
& M_EXT
) &&
1259 M_TRAILINGSPACE(mlast
) >= sizeof(struct ip6_frag
)) {
1260 /* use the trailing space of the last mbuf for the fragment hdr */
1261 *frghdrp
= (struct ip6_frag
*)
1262 (mtod(mlast
, caddr_t
) + mlast
->m_len
);
1263 mlast
->m_len
+= sizeof(struct ip6_frag
);
1264 m
->m_pkthdr
.len
+= sizeof(struct ip6_frag
);
1266 /* allocate a new mbuf for the fragment header */
1269 MGET(mfrg
, M_NOWAIT
, MT_DATA
);
1272 mfrg
->m_len
= sizeof(struct ip6_frag
);
1273 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
1274 mlast
->m_next
= mfrg
;
1281 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
1282 struct ifnet
*ifp
, struct in6_addr
*dst
, u_long
*mtup
,
1289 if (ro_pmtu
!= ro
) {
1290 /* The first hop and the final destination may differ. */
1291 struct sockaddr_in6
*sa6_dst
=
1292 (struct sockaddr_in6
*)&ro_pmtu
->ro_dst
;
1293 if (ro_pmtu
->ro_rt
&&
1294 ((ro_pmtu
->ro_rt
->rt_flags
& RTF_UP
) == 0 ||
1295 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
))) {
1296 RTFREE(ro_pmtu
->ro_rt
);
1297 ro_pmtu
->ro_rt
= NULL
;
1299 if (ro_pmtu
->ro_rt
== NULL
) {
1300 bzero(sa6_dst
, sizeof(*sa6_dst
));
1301 sa6_dst
->sin6_family
= AF_INET6
;
1302 sa6_dst
->sin6_len
= sizeof(struct sockaddr_in6
);
1303 sa6_dst
->sin6_addr
= *dst
;
1305 rtalloc((struct route
*)ro_pmtu
);
1308 if (ro_pmtu
->ro_rt
) {
1312 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
1313 ifmtu
= IN6_LINKMTU(ifp
);
1314 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
1317 } else if (mtu
< IPV6_MMTU
) {
1319 * RFC2460 section 5, last paragraph:
1320 * if we record ICMPv6 too big message with
1321 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1322 * or smaller, with framgent header attached.
1323 * (fragment header is needed regardless from the
1324 * packet size, for translators to identify packets)
1328 } else if (mtu
> ifmtu
) {
1330 * The MTU on the route is larger than the MTU on
1331 * the interface! This shouldn't happen, unless the
1332 * MTU of the interface has been changed after the
1333 * interface was brought up. Change the MTU in the
1334 * route to match the interface MTU (as long as the
1335 * field isn't locked).
1338 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
;
1341 mtu
= IN6_LINKMTU(ifp
);
1343 error
= EHOSTUNREACH
; /* XXX */
1348 *alwaysfragp
= alwaysfrag
;
1353 * IP6 socket option processing.
1356 ip6_ctloutput_dispatch(netmsg_t msg
)
1360 error
= ip6_ctloutput(msg
->ctloutput
.base
.nm_so
,
1361 msg
->ctloutput
.nm_sopt
);
1362 lwkt_replymsg(&msg
->ctloutput
.base
.lmsg
, error
);
1366 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
1368 int optdatalen
,uproto
;
1370 struct inpcb
*in6p
= so
->so_pcb
;
1373 int level
, op
, optname
;
1378 level
= sopt
->sopt_level
;
1379 op
= sopt
->sopt_dir
;
1380 optname
= sopt
->sopt_name
;
1381 optlen
= sopt
->sopt_valsize
;
1384 panic("ip6_ctloutput: arg soopt is NULL");
1390 uproto
= (int)so
->so_proto
->pr_protocol
;
1391 privileged
= (td
== NULL
|| priv_check(td
, PRIV_ROOT
)) ? 0 : 1;
1393 if (level
== IPPROTO_IPV6
) {
1398 case IPV6_2292PKTOPTIONS
:
1399 #ifdef IPV6_PKTOPTIONS
1400 case IPV6_PKTOPTIONS
:
1405 error
= soopt_getm(sopt
, &m
); /* XXX */
1408 soopt_to_mbuf(sopt
, m
); /* XXX */
1409 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
1411 m_freem(m
); /* XXX */
1416 * Use of some Hop-by-Hop options or some
1417 * Destination options, might require special
1418 * privilege. That is, normal applications
1419 * (without special privilege) might be forbidden
1420 * from setting certain options in outgoing packets,
1421 * and might never see certain options in received
1422 * packets. [RFC 2292 Section 6]
1423 * KAME specific note:
1424 * KAME prevents non-privileged users from sending or
1425 * receiving ANY hbh/dst options in order to avoid
1426 * overhead of parsing options in the kernel.
1428 case IPV6_RECVHOPOPTS
:
1429 case IPV6_RECVDSTOPTS
:
1430 case IPV6_RECVRTHDRDSTOPTS
:
1433 case IPV6_RECVPKTINFO
:
1434 case IPV6_RECVHOPLIMIT
:
1435 case IPV6_RECVRTHDR
:
1436 case IPV6_RECVPATHMTU
:
1437 case IPV6_RECVTCLASS
:
1438 case IPV6_AUTOFLOWLABEL
:
1441 case IPV6_UNICAST_HOPS
:
1445 if (optlen
!= sizeof(int)) {
1449 error
= soopt_to_kbuf(sopt
, &optval
,
1450 sizeof optval
, sizeof optval
);
1455 case IPV6_UNICAST_HOPS
:
1456 if (optval
< -1 || optval
>= 256)
1459 /* -1 = kernel default */
1460 in6p
->in6p_hops
= optval
;
1463 #define OPTSET(bit) \
1466 in6p->in6p_flags |= (bit); \
1468 in6p->in6p_flags &= ~(bit); \
1470 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1472 * Although changed to RFC3542, It's better to also support RFC2292 API
1474 #define OPTSET2292(bit) \
1476 in6p->in6p_flags |= IN6P_RFC2292; \
1478 in6p->in6p_flags |= (bit); \
1480 in6p->in6p_flags &= ~(bit); \
1481 } while (/*CONSTCOND*/ 0)
1483 case IPV6_RECVPKTINFO
:
1484 /* cannot mix with RFC2292 */
1485 if (OPTBIT(IN6P_RFC2292
)) {
1489 OPTSET(IN6P_PKTINFO
);
1494 struct ip6_pktopts
**optp
;
1496 /* cannot mix with RFC2292 */
1497 if (OPTBIT(IN6P_RFC2292
)) {
1501 optp
= &in6p
->in6p_outputopts
;
1502 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
1503 (u_char
*)&optval
, sizeof(optval
),
1508 case IPV6_RECVHOPLIMIT
:
1509 /* cannot mix with RFC2292 */
1510 if (OPTBIT(IN6P_RFC2292
)) {
1514 OPTSET(IN6P_HOPLIMIT
);
1517 case IPV6_RECVHOPOPTS
:
1518 /* cannot mix with RFC2292 */
1519 if (OPTBIT(IN6P_RFC2292
)) {
1523 OPTSET(IN6P_HOPOPTS
);
1526 case IPV6_RECVDSTOPTS
:
1527 /* cannot mix with RFC2292 */
1528 if (OPTBIT(IN6P_RFC2292
)) {
1532 OPTSET(IN6P_DSTOPTS
);
1535 case IPV6_RECVRTHDRDSTOPTS
:
1536 /* cannot mix with RFC2292 */
1537 if (OPTBIT(IN6P_RFC2292
)) {
1541 OPTSET(IN6P_RTHDRDSTOPTS
);
1544 case IPV6_RECVRTHDR
:
1545 /* cannot mix with RFC2292 */
1546 if (OPTBIT(IN6P_RFC2292
)) {
1553 case IPV6_RECVPATHMTU
:
1555 * We ignore this option for TCP
1557 * (RFC3542 leaves this case
1560 if (uproto
!= IPPROTO_TCP
)
1564 case IPV6_RECVTCLASS
:
1565 /* cannot mix with RFC2292 XXX */
1566 if (OPTBIT(IN6P_RFC2292
)) {
1570 OPTSET(IN6P_TCLASS
);
1573 case IPV6_AUTOFLOWLABEL
:
1574 OPTSET(IN6P_AUTOFLOWLABEL
);
1583 * make setsockopt(IPV6_V6ONLY)
1584 * available only prior to bind(2).
1586 if (in6p
->in6p_lport
||
1587 !IN6_IS_ADDR_UNSPECIFIED(&in6p
->in6p_laddr
))
1593 /* Don't allow v4-mapped */
1602 case IPV6_USE_MIN_MTU
:
1603 case IPV6_PREFER_TEMPADDR
:
1604 if (optlen
!= sizeof(optval
)) {
1608 error
= soopt_to_kbuf(sopt
, &optval
,
1609 sizeof optval
, sizeof optval
);
1613 struct ip6_pktopts
**optp
;
1614 optp
= &in6p
->in6p_outputopts
;
1615 error
= ip6_pcbopt(optname
,
1616 (u_char
*)&optval
, sizeof(optval
),
1621 case IPV6_2292PKTINFO
:
1622 case IPV6_2292HOPLIMIT
:
1623 case IPV6_2292HOPOPTS
:
1624 case IPV6_2292DSTOPTS
:
1625 case IPV6_2292RTHDR
:
1627 if (optlen
!= sizeof(int)) {
1631 error
= soopt_to_kbuf(sopt
, &optval
,
1632 sizeof optval
, sizeof optval
);
1636 case IPV6_2292PKTINFO
:
1637 OPTSET2292(IN6P_PKTINFO
);
1639 case IPV6_2292HOPLIMIT
:
1640 OPTSET2292(IN6P_HOPLIMIT
);
1642 case IPV6_2292HOPOPTS
:
1644 * Check super-user privilege.
1645 * See comments for IPV6_RECVHOPOPTS.
1649 OPTSET2292(IN6P_HOPOPTS
);
1651 case IPV6_2292DSTOPTS
:
1654 OPTSET2292(IN6P_DSTOPTS
|IN6P_RTHDRDSTOPTS
); /* XXX */
1656 case IPV6_2292RTHDR
:
1657 OPTSET2292(IN6P_RTHDR
);
1666 case IPV6_RTHDRDSTOPTS
:
1670 * New advanced API (RFC3542)
1673 u_char optbuf_storage
[MCLBYTES
];
1675 struct ip6_pktopts
**optp
;
1677 /* cannot mix with RFC2292 */
1678 if (OPTBIT(IN6P_RFC2292
)) {
1684 * We only ensure valsize is not too large
1685 * here. Further validation will be done
1688 error
= soopt_to_kbuf(sopt
, optbuf_storage
,
1689 sizeof(optbuf_storage
), 0);
1692 optlen
= sopt
->sopt_valsize
;
1693 optbuf
= optbuf_storage
;
1694 optp
= &in6p
->in6p_outputopts
;
1695 error
= ip6_pcbopt(optname
, optbuf
, optlen
,
1701 case IPV6_MULTICAST_IF
:
1702 case IPV6_MULTICAST_HOPS
:
1703 case IPV6_MULTICAST_LOOP
:
1704 case IPV6_JOIN_GROUP
:
1705 case IPV6_LEAVE_GROUP
:
1709 if (sopt
->sopt_valsize
> MLEN
) {
1714 MGET(m
, sopt
->sopt_td
? M_WAITOK
: M_NOWAIT
, MT_HEADER
);
1719 m
->m_len
= sopt
->sopt_valsize
;
1720 error
= soopt_to_kbuf(sopt
, mtod(m
, char *),
1721 m
->m_len
, m
->m_len
);
1722 error
= ip6_setmoptions(sopt
->sopt_name
,
1723 &in6p
->in6p_moptions
,
1729 case IPV6_PORTRANGE
:
1730 error
= soopt_to_kbuf(sopt
, &optval
,
1731 sizeof optval
, sizeof optval
);
1736 case IPV6_PORTRANGE_DEFAULT
:
1737 in6p
->in6p_flags
&= ~(IN6P_LOWPORT
);
1738 in6p
->in6p_flags
&= ~(IN6P_HIGHPORT
);
1741 case IPV6_PORTRANGE_HIGH
:
1742 in6p
->in6p_flags
&= ~(IN6P_LOWPORT
);
1743 in6p
->in6p_flags
|= IN6P_HIGHPORT
;
1746 case IPV6_PORTRANGE_LOW
:
1747 in6p
->in6p_flags
&= ~(IN6P_HIGHPORT
);
1748 in6p
->in6p_flags
|= IN6P_LOWPORT
;
1757 #if defined(IPSEC) || defined(FAST_IPSEC)
1758 case IPV6_IPSEC_POLICY
:
1764 if ((error
= soopt_getm(sopt
, &m
)) != 0) /* XXX */
1766 soopt_to_mbuf(sopt
, m
); /* XXX */
1768 req
= mtod(m
, caddr_t
);
1771 error
= ipsec6_set_policy(in6p
, optname
, req
,
1776 #endif /* KAME IPSEC */
1784 struct mbuf
**mp
= &m
;
1786 if (ip6_fw_ctl_ptr
== NULL
)
1789 if ((error
= soopt_getm(sopt
, &m
)) != 0)
1792 soopt_to_mbuf(sopt
, m
);
1793 error
= (*ip6_fw_ctl_ptr
)(optname
, mp
);
1799 error
= ENOPROTOOPT
;
1806 case IPV6_2292PKTOPTIONS
:
1807 #ifdef IPV6_PKTOPTIONS
1808 case IPV6_PKTOPTIONS
:
1811 * RFC3542 (effectively) deprecated the
1812 * semantics of the 2292-style pktoptions.
1813 * Since it was not reliable in nature (i.e.,
1814 * applications had to expect the lack of some
1815 * information after all), it would make sense
1816 * to simplify this part by always returning
1819 if (in6p
->in6p_options
) {
1821 m
= m_copym(in6p
->in6p_options
,
1822 0, M_COPYALL
, M_WAITOK
);
1823 error
= soopt_from_mbuf(sopt
, m
);
1827 sopt
->sopt_valsize
= 0;
1830 case IPV6_RECVHOPOPTS
:
1831 case IPV6_RECVDSTOPTS
:
1832 case IPV6_RECVRTHDRDSTOPTS
:
1833 case IPV6_UNICAST_HOPS
:
1834 case IPV6_RECVPKTINFO
:
1835 case IPV6_RECVHOPLIMIT
:
1836 case IPV6_RECVRTHDR
:
1837 case IPV6_RECVPATHMTU
:
1838 case IPV6_RECVTCLASS
:
1839 case IPV6_AUTOFLOWLABEL
:
1842 case IPV6_PORTRANGE
:
1845 case IPV6_RECVHOPOPTS
:
1846 optval
= OPTBIT(IN6P_HOPOPTS
);
1849 case IPV6_RECVDSTOPTS
:
1850 optval
= OPTBIT(IN6P_DSTOPTS
);
1853 case IPV6_RECVRTHDRDSTOPTS
:
1854 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
1857 case IPV6_RECVPKTINFO
:
1858 optval
= OPTBIT(IN6P_PKTINFO
);
1861 case IPV6_RECVHOPLIMIT
:
1862 optval
= OPTBIT(IN6P_HOPLIMIT
);
1865 case IPV6_RECVRTHDR
:
1866 optval
= OPTBIT(IN6P_RTHDR
);
1869 case IPV6_RECVPATHMTU
:
1870 optval
= OPTBIT(IN6P_MTU
);
1873 case IPV6_RECVTCLASS
:
1874 optval
= OPTBIT(IN6P_TCLASS
);
1877 case IPV6_AUTOFLOWLABEL
:
1878 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
1882 case IPV6_UNICAST_HOPS
:
1883 optval
= in6p
->in6p_hops
;
1887 optval
= OPTBIT(IN6P_FAITH
);
1894 case IPV6_PORTRANGE
:
1897 flags
= in6p
->in6p_flags
;
1898 if (flags
& IN6P_HIGHPORT
)
1899 optval
= IPV6_PORTRANGE_HIGH
;
1900 else if (flags
& IN6P_LOWPORT
)
1901 optval
= IPV6_PORTRANGE_LOW
;
1907 soopt_from_kbuf(sopt
, &optval
,
1914 struct ip6_mtuinfo mtuinfo
;
1915 struct route_in6 sro
;
1917 bzero(&sro
, sizeof(sro
));
1919 if (!(so
->so_state
& SS_ISCONNECTED
))
1922 * XXX: we dot not consider the case of source
1923 * routing, or optional information to specify
1924 * the outgoing interface.
1926 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
1927 &in6p
->in6p_faddr
, &pmtu
, NULL
);
1932 if (pmtu
> IPV6_MAXPACKET
)
1933 pmtu
= IPV6_MAXPACKET
;
1935 bzero(&mtuinfo
, sizeof(mtuinfo
));
1936 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
1937 optdata
= (void *)&mtuinfo
;
1938 optdatalen
= sizeof(mtuinfo
);
1939 soopt_from_kbuf(sopt
, optdata
,
1944 case IPV6_2292PKTINFO
:
1945 case IPV6_2292HOPLIMIT
:
1946 case IPV6_2292HOPOPTS
:
1947 case IPV6_2292RTHDR
:
1948 case IPV6_2292DSTOPTS
:
1949 if (optname
== IPV6_2292HOPOPTS
||
1950 optname
== IPV6_2292DSTOPTS
||
1954 case IPV6_2292PKTINFO
:
1955 optval
= OPTBIT(IN6P_PKTINFO
);
1957 case IPV6_2292HOPLIMIT
:
1958 optval
= OPTBIT(IN6P_HOPLIMIT
);
1960 case IPV6_2292HOPOPTS
:
1963 optval
= OPTBIT(IN6P_HOPOPTS
);
1965 case IPV6_2292RTHDR
:
1966 optval
= OPTBIT(IN6P_RTHDR
);
1968 case IPV6_2292DSTOPTS
:
1971 optval
= OPTBIT(IN6P_DSTOPTS
|IN6P_RTHDRDSTOPTS
);
1974 soopt_from_kbuf(sopt
, &optval
,
1982 case IPV6_RTHDRDSTOPTS
:
1986 case IPV6_USE_MIN_MTU
:
1987 case IPV6_PREFER_TEMPADDR
:
1988 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
1992 case IPV6_MULTICAST_IF
:
1993 case IPV6_MULTICAST_HOPS
:
1994 case IPV6_MULTICAST_LOOP
:
1995 case IPV6_JOIN_GROUP
:
1996 case IPV6_LEAVE_GROUP
:
1999 error
= ip6_getmoptions(sopt
->sopt_name
,
2000 in6p
->in6p_moptions
, &m
);
2002 soopt_from_kbuf(sopt
,
2003 mtod(m
, char *), m
->m_len
);
2009 #if defined(IPSEC) || defined(FAST_IPSEC)
2010 case IPV6_IPSEC_POLICY
:
2014 struct mbuf
*m
= NULL
;
2015 struct mbuf
**mp
= &m
;
2017 error
= soopt_getm(sopt
, &m
); /* XXX */
2020 soopt_to_mbuf(sopt
, m
); /* XXX */
2022 req
= mtod(m
, caddr_t
);
2025 error
= ipsec6_get_policy(in6p
, req
, len
, mp
);
2027 error
= soopt_from_mbuf(sopt
, m
);/*XXX*/
2028 if (error
== 0 && m
!= NULL
)
2032 #endif /* KAME IPSEC */
2037 struct mbuf
**mp
= &m
;
2039 if (ip6_fw_ctl_ptr
== NULL
)
2043 error
= (*ip6_fw_ctl_ptr
)(optname
, mp
);
2045 error
= soopt_from_mbuf(sopt
, m
); /* XXX */
2046 if (error
== 0 && m
!= NULL
)
2052 error
= ENOPROTOOPT
;
2064 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2066 int error
= 0, optval
, optlen
;
2067 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
2068 struct in6pcb
*in6p
= sotoin6pcb(so
);
2069 int level
, op
, optname
;
2072 level
= sopt
->sopt_level
;
2073 op
= sopt
->sopt_dir
;
2074 optname
= sopt
->sopt_name
;
2075 optlen
= sopt
->sopt_valsize
;
2077 panic("ip6_raw_ctloutput: arg soopt is NULL");
2079 if (level
!= IPPROTO_IPV6
) {
2086 * For ICMPv6 sockets, no modification allowed for checksum
2087 * offset, permit "no change" values to help existing apps.
2089 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2090 * for an ICMPv6 socket will fail."
2091 * The current behavior does not meet RFC3542.
2095 if (optlen
!= sizeof(int)) {
2099 error
= soopt_to_kbuf(sopt
, &optval
,
2100 sizeof optval
, sizeof optval
);
2103 if ((optval
% 2) != 0) {
2104 /* the API assumes even offset values */
2106 } else if (so
->so_proto
->pr_protocol
==
2108 if (optval
!= icmp6off
)
2111 in6p
->in6p_cksum
= optval
;
2115 if (so
->so_proto
->pr_protocol
== IPPROTO_ICMPV6
)
2118 optval
= in6p
->in6p_cksum
;
2120 soopt_from_kbuf(sopt
, &optval
, sizeof(optval
));
2130 error
= ENOPROTOOPT
;
2138 * Set up IP6 options in pcb for insertion in output packets or
2139 * specifying behavior of outgoing packets.
2142 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
,
2143 struct socket
*so
, struct sockopt
*sopt
)
2146 struct ip6_pktopts
*opt
= *pktopt
;
2149 /* turn off any old options. */
2152 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
2153 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
2154 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
2155 kprintf("ip6_pcbopts: all specified options are cleared.\n");
2157 ip6_clearpktopts(opt
, -1);
2159 opt
= kmalloc(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
2162 if (!m
|| m
->m_len
== 0) {
2164 * Only turning off any previous options, regardless of
2165 * whether the opt is just created or given.
2167 kfree(opt
, M_IP6OPT
);
2171 /* set options specified by user. */
2172 if ((error
= ip6_setpktoptions(m
, opt
, NULL
, so
->so_proto
->pr_protocol
, priv
)) != 0) {
2173 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
2174 kfree(opt
, M_IP6OPT
);
2183 * Below three functions are introduced by merge to RFC3542
2187 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
2189 void *optdata
= NULL
;
2191 struct ip6_ext
*ip6e
;
2193 struct in6_pktinfo null_pktinfo
;
2194 int deftclass
= 0, on
;
2195 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
2196 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
2200 if (pktopt
&& pktopt
->ip6po_pktinfo
)
2201 optdata
= (void *)pktopt
->ip6po_pktinfo
;
2203 /* XXX: we don't have to do this every time... */
2204 bzero(&null_pktinfo
, sizeof(null_pktinfo
));
2205 optdata
= (void *)&null_pktinfo
;
2207 optdatalen
= sizeof(struct in6_pktinfo
);
2210 if (pktopt
&& pktopt
->ip6po_tclass
>= 0)
2211 optdata
= (void *)&pktopt
->ip6po_tclass
;
2213 optdata
= (void *)&deftclass
;
2214 optdatalen
= sizeof(int);
2217 if (pktopt
&& pktopt
->ip6po_hbh
) {
2218 optdata
= (void *)pktopt
->ip6po_hbh
;
2219 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
2220 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
2224 if (pktopt
&& pktopt
->ip6po_rthdr
) {
2225 optdata
= (void *)pktopt
->ip6po_rthdr
;
2226 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
2227 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
2230 case IPV6_RTHDRDSTOPTS
:
2231 if (pktopt
&& pktopt
->ip6po_dest1
) {
2232 optdata
= (void *)pktopt
->ip6po_dest1
;
2233 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
2234 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
2238 if (pktopt
&& pktopt
->ip6po_dest2
) {
2239 optdata
= (void *)pktopt
->ip6po_dest2
;
2240 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
2241 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
2245 if (pktopt
&& pktopt
->ip6po_nexthop
) {
2246 optdata
= (void *)pktopt
->ip6po_nexthop
;
2247 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
2250 case IPV6_USE_MIN_MTU
:
2252 optdata
= (void *)&pktopt
->ip6po_minmtu
;
2254 optdata
= (void *)&defminmtu
;
2255 optdatalen
= sizeof(int);
2258 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
))
2262 optdata
= (void *)&on
;
2263 optdatalen
= sizeof(on
);
2265 case IPV6_PREFER_TEMPADDR
:
2267 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
2269 optdata
= (void *)&defpreftemp
;
2270 optdatalen
= sizeof(int);
2272 default: /* should not happen */
2274 panic("ip6_getpcbopt: unexpected option");
2276 return (ENOPROTOOPT
);
2279 soopt_from_kbuf(sopt
, optdata
, optdatalen
);
2285 * initialize ip6_pktopts. beware that there are non-zero default values in
2290 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
, int uproto
)
2292 struct ip6_pktopts
*opt
;
2294 if (*pktopt
== NULL
) {
2295 *pktopt
= kmalloc(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
2296 init_ip6pktopts(*pktopt
);
2300 return (ip6_setpktoption(optname
, buf
, len
, opt
, 1, 0, uproto
, priv
));
2304 * initialize ip6_pktopts. beware that there are non-zero default values in
2308 init_ip6pktopts(struct ip6_pktopts
*opt
)
2311 bzero(opt
, sizeof(*opt
));
2312 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
2313 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
2314 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
2315 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
2319 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
2324 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
2325 if (pktopt
->ip6po_pktinfo
)
2326 kfree(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
2327 pktopt
->ip6po_pktinfo
= NULL
;
2329 if (optname
== -1 || optname
== IPV6_HOPLIMIT
)
2330 pktopt
->ip6po_hlim
= -1;
2331 if (optname
== -1 || optname
== IPV6_TCLASS
)
2332 pktopt
->ip6po_tclass
= -1;
2333 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
2334 if (pktopt
->ip6po_nextroute
.ro_rt
) {
2335 RTFREE(pktopt
->ip6po_nextroute
.ro_rt
);
2336 pktopt
->ip6po_nextroute
.ro_rt
= NULL
;
2338 if (pktopt
->ip6po_nexthop
)
2339 kfree(pktopt
->ip6po_nexthop
, M_IP6OPT
);
2340 pktopt
->ip6po_nexthop
= NULL
;
2342 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
2343 if (pktopt
->ip6po_hbh
)
2344 kfree(pktopt
->ip6po_hbh
, M_IP6OPT
);
2345 pktopt
->ip6po_hbh
= NULL
;
2347 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
2348 if (pktopt
->ip6po_dest1
)
2349 kfree(pktopt
->ip6po_dest1
, M_IP6OPT
);
2350 pktopt
->ip6po_dest1
= NULL
;
2352 if (optname
== -1 || optname
== IPV6_RTHDR
) {
2353 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
2354 kfree(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
2355 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
2356 if (pktopt
->ip6po_route
.ro_rt
) {
2357 RTFREE(pktopt
->ip6po_route
.ro_rt
);
2358 pktopt
->ip6po_route
.ro_rt
= NULL
;
2361 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
2362 if (pktopt
->ip6po_dest2
)
2363 kfree(pktopt
->ip6po_dest2
, M_IP6OPT
);
2364 pktopt
->ip6po_dest2
= NULL
;
2368 #define PKTOPT_EXTHDRCPY(type) \
2371 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2372 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2373 if (dst->type == NULL)\
2375 bcopy(src->type, dst->type, hlen);\
2379 struct ip6_pktopts
*
2380 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
2382 struct ip6_pktopts
*dst
;
2385 kprintf("ip6_clearpktopts: invalid argument\n");
2389 dst
= kmalloc(sizeof(*dst
), M_IP6OPT
, canwait
| M_ZERO
);
2393 dst
->ip6po_hlim
= src
->ip6po_hlim
;
2394 if (src
->ip6po_pktinfo
) {
2395 dst
->ip6po_pktinfo
= kmalloc(sizeof(*dst
->ip6po_pktinfo
),
2397 if (dst
->ip6po_pktinfo
== NULL
)
2399 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
2401 if (src
->ip6po_nexthop
) {
2402 dst
->ip6po_nexthop
= kmalloc(src
->ip6po_nexthop
->sa_len
,
2404 if (dst
->ip6po_nexthop
== NULL
)
2406 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
2407 src
->ip6po_nexthop
->sa_len
);
2409 PKTOPT_EXTHDRCPY(ip6po_hbh
);
2410 PKTOPT_EXTHDRCPY(ip6po_dest1
);
2411 PKTOPT_EXTHDRCPY(ip6po_dest2
);
2412 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
2416 if (dst
->ip6po_pktinfo
) kfree(dst
->ip6po_pktinfo
, M_IP6OPT
);
2417 if (dst
->ip6po_nexthop
) kfree(dst
->ip6po_nexthop
, M_IP6OPT
);
2418 if (dst
->ip6po_hbh
) kfree(dst
->ip6po_hbh
, M_IP6OPT
);
2419 if (dst
->ip6po_dest1
) kfree(dst
->ip6po_dest1
, M_IP6OPT
);
2420 if (dst
->ip6po_dest2
) kfree(dst
->ip6po_dest2
, M_IP6OPT
);
2421 if (dst
->ip6po_rthdr
) kfree(dst
->ip6po_rthdr
, M_IP6OPT
);
2422 kfree(dst
, M_IP6OPT
);
2427 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
2429 if (dst
== NULL
|| src
== NULL
) {
2431 kprintf("ip6_clearpktopts: invalid argument\n");
2436 dst
->ip6po_hlim
= src
->ip6po_hlim
;
2437 dst
->ip6po_tclass
= src
->ip6po_tclass
;
2438 dst
->ip6po_flags
= src
->ip6po_flags
;
2439 if (src
->ip6po_pktinfo
) {
2440 dst
->ip6po_pktinfo
= kmalloc(sizeof(*dst
->ip6po_pktinfo
),
2442 if (dst
->ip6po_pktinfo
== NULL
)
2444 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
2446 if (src
->ip6po_nexthop
) {
2447 dst
->ip6po_nexthop
= kmalloc(src
->ip6po_nexthop
->sa_len
,
2449 if (dst
->ip6po_nexthop
== NULL
)
2451 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
2452 src
->ip6po_nexthop
->sa_len
);
2454 PKTOPT_EXTHDRCPY(ip6po_hbh
);
2455 PKTOPT_EXTHDRCPY(ip6po_dest1
);
2456 PKTOPT_EXTHDRCPY(ip6po_dest2
);
2457 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
2461 ip6_clearpktopts(dst
, -1);
2464 #undef PKTOPT_EXTHDRCPY
2467 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
2472 ip6_clearpktopts(pktopt
, -1);
2474 kfree(pktopt
, M_IP6OPT
);
2478 * Set the IP6 multicast options in response to user setsockopt().
2481 ip6_setmoptions(int optname
, struct ip6_moptions
**im6op
, struct mbuf
*m
)
2484 u_int loop
, ifindex
;
2485 struct ipv6_mreq
*mreq
;
2487 struct ip6_moptions
*im6o
= *im6op
;
2488 struct route_in6 ro
;
2489 struct sockaddr_in6
*dst
;
2490 struct in6_multi_mship
*imm
;
2491 struct thread
*td
= curthread
;
2495 * No multicast option buffer attached to the pcb;
2496 * allocate one and initialize to default values.
2498 im6o
= (struct ip6_moptions
*)
2499 kmalloc(sizeof(*im6o
), M_IPMOPTS
, M_WAITOK
);
2502 im6o
->im6o_multicast_ifp
= NULL
;
2503 im6o
->im6o_multicast_hlim
= ip6_defmcasthlim
;
2504 im6o
->im6o_multicast_loop
= IPV6_DEFAULT_MULTICAST_LOOP
;
2505 LIST_INIT(&im6o
->im6o_memberships
);
2510 case IPV6_MULTICAST_IF
:
2512 * Select the interface for outgoing multicast packets.
2514 if (m
== NULL
|| m
->m_len
!= sizeof(u_int
)) {
2518 bcopy(mtod(m
, u_int
*), &ifindex
, sizeof(ifindex
));
2519 if (ifindex
< 0 || if_index
< ifindex
) {
2520 error
= ENXIO
; /* XXX EINVAL? */
2523 ifp
= ifindex2ifnet
[ifindex
];
2524 if (ifp
== NULL
|| !(ifp
->if_flags
& IFF_MULTICAST
)) {
2525 error
= EADDRNOTAVAIL
;
2528 im6o
->im6o_multicast_ifp
= ifp
;
2531 case IPV6_MULTICAST_HOPS
:
2534 * Set the IP6 hoplimit for outgoing multicast packets.
2537 if (m
== NULL
|| m
->m_len
!= sizeof(int)) {
2541 bcopy(mtod(m
, u_int
*), &optval
, sizeof(optval
));
2542 if (optval
< -1 || optval
>= 256)
2544 else if (optval
== -1)
2545 im6o
->im6o_multicast_hlim
= ip6_defmcasthlim
;
2547 im6o
->im6o_multicast_hlim
= optval
;
2551 case IPV6_MULTICAST_LOOP
:
2553 * Set the loopback flag for outgoing multicast packets.
2554 * Must be zero or one.
2556 if (m
== NULL
|| m
->m_len
!= sizeof(u_int
)) {
2560 bcopy(mtod(m
, u_int
*), &loop
, sizeof(loop
));
2565 im6o
->im6o_multicast_loop
= loop
;
2568 case IPV6_JOIN_GROUP
:
2570 * Add a multicast group membership.
2571 * Group must be a valid IP6 multicast address.
2573 if (m
== NULL
|| m
->m_len
!= sizeof(struct ipv6_mreq
)) {
2577 mreq
= mtod(m
, struct ipv6_mreq
*);
2578 if (IN6_IS_ADDR_UNSPECIFIED(&mreq
->ipv6mr_multiaddr
)) {
2580 * We use the unspecified address to specify to accept
2581 * all multicast addresses. Only super user is allowed
2584 if (priv_check(td
, PRIV_ROOT
)) {
2588 } else if (!IN6_IS_ADDR_MULTICAST(&mreq
->ipv6mr_multiaddr
)) {
2594 * If the interface is specified, validate it.
2596 if (mreq
->ipv6mr_interface
< 0
2597 || if_index
< mreq
->ipv6mr_interface
) {
2598 error
= ENXIO
; /* XXX EINVAL? */
2602 * If no interface was explicitly specified, choose an
2603 * appropriate one according to the given multicast address.
2605 if (mreq
->ipv6mr_interface
== 0) {
2607 * If the multicast address is in node-local scope,
2608 * the interface should be a loopback interface.
2609 * Otherwise, look up the routing table for the
2610 * address, and choose the outgoing interface.
2611 * XXX: is it a good approach?
2613 if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq
->ipv6mr_multiaddr
)) {
2617 dst
= (struct sockaddr_in6
*)&ro
.ro_dst
;
2618 bzero(dst
, sizeof(*dst
));
2619 dst
->sin6_len
= sizeof(struct sockaddr_in6
);
2620 dst
->sin6_family
= AF_INET6
;
2621 dst
->sin6_addr
= mreq
->ipv6mr_multiaddr
;
2622 rtalloc((struct route
*)&ro
);
2623 if (ro
.ro_rt
== NULL
) {
2624 error
= EADDRNOTAVAIL
;
2627 ifp
= ro
.ro_rt
->rt_ifp
;
2631 ifp
= ifindex2ifnet
[mreq
->ipv6mr_interface
];
2634 * See if we found an interface, and confirm that it
2635 * supports multicast
2637 if (ifp
== NULL
|| !(ifp
->if_flags
& IFF_MULTICAST
)) {
2638 error
= EADDRNOTAVAIL
;
2642 * Put interface index into the multicast address,
2643 * if the address has link-local scope.
2645 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq
->ipv6mr_multiaddr
)) {
2646 mreq
->ipv6mr_multiaddr
.s6_addr16
[1]
2647 = htons(mreq
->ipv6mr_interface
);
2650 * See if the membership already exists.
2652 for (imm
= im6o
->im6o_memberships
.lh_first
;
2653 imm
!= NULL
; imm
= imm
->i6mm_chain
.le_next
)
2654 if (imm
->i6mm_maddr
->in6m_ifp
== ifp
&&
2655 IN6_ARE_ADDR_EQUAL(&imm
->i6mm_maddr
->in6m_addr
,
2656 &mreq
->ipv6mr_multiaddr
))
2663 * Everything looks good; add a new record to the multicast
2664 * address list for the given interface.
2666 imm
= kmalloc(sizeof(*imm
), M_IPMADDR
, M_WAITOK
);
2667 if ((imm
->i6mm_maddr
=
2668 in6_addmulti(&mreq
->ipv6mr_multiaddr
, ifp
, &error
)) == NULL
) {
2669 kfree(imm
, M_IPMADDR
);
2672 LIST_INSERT_HEAD(&im6o
->im6o_memberships
, imm
, i6mm_chain
);
2675 case IPV6_LEAVE_GROUP
:
2677 * Drop a multicast group membership.
2678 * Group must be a valid IP6 multicast address.
2680 if (m
== NULL
|| m
->m_len
!= sizeof(struct ipv6_mreq
)) {
2684 mreq
= mtod(m
, struct ipv6_mreq
*);
2685 if (IN6_IS_ADDR_UNSPECIFIED(&mreq
->ipv6mr_multiaddr
)) {
2686 if (priv_check(td
, PRIV_ROOT
)) {
2690 } else if (!IN6_IS_ADDR_MULTICAST(&mreq
->ipv6mr_multiaddr
)) {
2695 * If an interface address was specified, get a pointer
2696 * to its ifnet structure.
2698 if (mreq
->ipv6mr_interface
< 0
2699 || if_index
< mreq
->ipv6mr_interface
) {
2700 error
= ENXIO
; /* XXX EINVAL? */
2703 ifp
= ifindex2ifnet
[mreq
->ipv6mr_interface
];
2705 * Put interface index into the multicast address,
2706 * if the address has link-local scope.
2708 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq
->ipv6mr_multiaddr
)) {
2709 mreq
->ipv6mr_multiaddr
.s6_addr16
[1]
2710 = htons(mreq
->ipv6mr_interface
);
2714 * Find the membership in the membership list.
2716 for (imm
= im6o
->im6o_memberships
.lh_first
;
2717 imm
!= NULL
; imm
= imm
->i6mm_chain
.le_next
) {
2718 if ((ifp
== NULL
|| imm
->i6mm_maddr
->in6m_ifp
== ifp
) &&
2719 IN6_ARE_ADDR_EQUAL(&imm
->i6mm_maddr
->in6m_addr
,
2720 &mreq
->ipv6mr_multiaddr
))
2724 /* Unable to resolve interface */
2725 error
= EADDRNOTAVAIL
;
2729 * Give up the multicast address record to which the
2730 * membership points.
2732 LIST_REMOVE(imm
, i6mm_chain
);
2733 in6_delmulti(imm
->i6mm_maddr
);
2734 kfree(imm
, M_IPMADDR
);
2743 * If all options have default values, no need to keep the mbuf.
2745 if (im6o
->im6o_multicast_ifp
== NULL
&&
2746 im6o
->im6o_multicast_hlim
== ip6_defmcasthlim
&&
2747 im6o
->im6o_multicast_loop
== IPV6_DEFAULT_MULTICAST_LOOP
&&
2748 im6o
->im6o_memberships
.lh_first
== NULL
) {
2749 kfree(*im6op
, M_IPMOPTS
);
2757 * Return the IP6 multicast options in response to user getsockopt().
2760 ip6_getmoptions(int optname
, struct ip6_moptions
*im6o
, struct mbuf
**mp
)
2762 u_int
*hlim
, *loop
, *ifindex
;
2764 *mp
= m_get(M_WAITOK
, MT_HEADER
); /* XXX */
2768 case IPV6_MULTICAST_IF
:
2769 ifindex
= mtod(*mp
, u_int
*);
2770 (*mp
)->m_len
= sizeof(u_int
);
2771 if (im6o
== NULL
|| im6o
->im6o_multicast_ifp
== NULL
)
2774 *ifindex
= im6o
->im6o_multicast_ifp
->if_index
;
2777 case IPV6_MULTICAST_HOPS
:
2778 hlim
= mtod(*mp
, u_int
*);
2779 (*mp
)->m_len
= sizeof(u_int
);
2781 *hlim
= ip6_defmcasthlim
;
2783 *hlim
= im6o
->im6o_multicast_hlim
;
2786 case IPV6_MULTICAST_LOOP
:
2787 loop
= mtod(*mp
, u_int
*);
2788 (*mp
)->m_len
= sizeof(u_int
);
2790 *loop
= ip6_defmcasthlim
;
2792 *loop
= im6o
->im6o_multicast_loop
;
2796 return (EOPNOTSUPP
);
2801 * Discard the IP6 multicast options.
2804 ip6_freemoptions(struct ip6_moptions
*im6o
)
2806 struct in6_multi_mship
*imm
;
2811 while ((imm
= im6o
->im6o_memberships
.lh_first
) != NULL
) {
2812 LIST_REMOVE(imm
, i6mm_chain
);
2813 if (imm
->i6mm_maddr
)
2814 in6_delmulti(imm
->i6mm_maddr
);
2815 kfree(imm
, M_IPMADDR
);
2817 kfree(im6o
, M_IPMOPTS
);
2821 * Set a particular packet option, as a sticky option or an ancillary data
2822 * item. "len" can be 0 only when it's a sticky option.
2823 * We have 4 cases of combination of "sticky" and "cmsg":
2824 * "sticky=0, cmsg=0": impossible
2825 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2826 * "sticky=1, cmsg=0": RFC3542 socket option
2827 * "sticky=1, cmsg=1": RFC2292 socket option
2830 ip6_setpktoption(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
2831 int sticky
, int cmsg
, int uproto
, int priv
)
2833 int minmtupolicy
, preftemp
;
2836 if (!sticky
&& !cmsg
) {
2837 kprintf("ip6_setpktoption: impossible case\n");
2842 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2843 * not be specified in the context of RFC3542. Conversely,
2844 * RFC3542 types should not be specified in the context of RFC2292.
2848 case IPV6_2292PKTINFO
:
2849 case IPV6_2292HOPLIMIT
:
2850 case IPV6_2292NEXTHOP
:
2851 case IPV6_2292HOPOPTS
:
2852 case IPV6_2292DSTOPTS
:
2853 case IPV6_2292RTHDR
:
2854 case IPV6_2292PKTOPTIONS
:
2855 return (ENOPROTOOPT
);
2858 if (sticky
&& cmsg
) {
2865 case IPV6_RTHDRDSTOPTS
:
2867 case IPV6_USE_MIN_MTU
:
2870 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
2871 return (ENOPROTOOPT
);
2876 case IPV6_2292PKTINFO
:
2879 struct in6_pktinfo
*pktinfo
;
2880 if (len
!= sizeof(struct in6_pktinfo
))
2882 pktinfo
= (struct in6_pktinfo
*)buf
;
2885 * An application can clear any sticky IPV6_PKTINFO option by
2886 * doing a "regular" setsockopt with ipi6_addr being
2887 * in6addr_any and ipi6_ifindex being zero.
2888 * [RFC 3542, Section 6]
2890 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
2891 pktinfo
->ipi6_ifindex
== 0 &&
2892 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
2893 ip6_clearpktopts(opt
, optname
);
2897 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
2898 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
2902 /* validate the interface index if specified. */
2903 if (pktinfo
->ipi6_ifindex
> if_index
||
2904 pktinfo
->ipi6_ifindex
< 0) {
2908 * Check if the requested source address is indeed a
2909 * unicast address assigned to the node, and can be
2910 * used as the packet's source address.
2912 if (opt
->ip6po_pktinfo
!= NULL
&&
2913 !IN6_IS_ADDR_UNSPECIFIED(&opt
->ip6po_pktinfo
->ipi6_addr
)) {
2914 struct in6_ifaddr
*ia6
;
2915 struct sockaddr_in6 sin6
;
2917 bzero(&sin6
, sizeof(sin6
));
2918 sin6
.sin6_len
= sizeof(sin6
);
2919 sin6
.sin6_family
= AF_INET6
;
2921 opt
->ip6po_pktinfo
->ipi6_addr
;
2922 ia6
= (struct in6_ifaddr
*)ifa_ifwithaddr(sin6tosa(&sin6
));
2924 (ia6
->ia6_flags
& (IN6_IFF_ANYCAST
|
2925 IN6_IFF_NOTREADY
)) != 0)
2926 return (EADDRNOTAVAIL
);
2930 * We store the address anyway, and let in6_selectsrc()
2931 * validate the specified address. This is because ipi6_addr
2932 * may not have enough information about its scope zone, and
2933 * we may need additional information (such as outgoing
2934 * interface or the scope zone of a destination address) to
2935 * disambiguate the scope.
2936 * XXX: the delay of the validation may confuse the
2937 * application when it is used as a sticky option.
2939 if (opt
->ip6po_pktinfo
== NULL
) {
2940 opt
->ip6po_pktinfo
= kmalloc(sizeof(*pktinfo
),
2941 M_IP6OPT
, M_NOWAIT
);
2942 if (opt
->ip6po_pktinfo
== NULL
)
2945 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof(*pktinfo
));
2949 case IPV6_2292HOPLIMIT
:
2955 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2956 * to simplify the ordering among hoplimit options.
2958 if (optname
== IPV6_HOPLIMIT
&& sticky
)
2959 return (ENOPROTOOPT
);
2961 if (len
!= sizeof(int))
2964 if (*hlimp
< -1 || *hlimp
> 255)
2967 opt
->ip6po_hlim
= *hlimp
;
2975 if (len
!= sizeof(int))
2977 tclass
= *(int *)buf
;
2978 if (tclass
< -1 || tclass
> 255)
2981 opt
->ip6po_tclass
= tclass
;
2985 case IPV6_2292NEXTHOP
:
2990 if (len
== 0) { /* just remove the option */
2991 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
2995 /* check if cmsg_len is large enough for sa_len */
2996 if (len
< sizeof(struct sockaddr
) || len
< *buf
)
2999 switch (((struct sockaddr
*)buf
)->sa_family
) {
3002 struct sockaddr_in6
*sa6
= (struct sockaddr_in6
*)buf
;
3005 if (sa6
->sin6_len
!= sizeof(struct sockaddr_in6
))
3008 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
3009 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
3014 case AF_LINK
: /* should eventually be supported */
3016 return (EAFNOSUPPORT
);
3019 /* turn off the previous option, then set the new option. */
3020 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3021 opt
->ip6po_nexthop
= kmalloc(*buf
, M_IP6OPT
, M_NOWAIT
);
3022 if (opt
->ip6po_nexthop
== NULL
)
3024 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
3027 case IPV6_2292HOPOPTS
:
3030 struct ip6_hbh
*hbh
;
3034 * XXX: We don't allow a non-privileged user to set ANY HbH
3035 * options, since per-option restriction has too much
3041 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3042 break; /* just remove the option */
3045 /* message length validation */
3046 if (len
< sizeof(struct ip6_hbh
))
3048 hbh
= (struct ip6_hbh
*)buf
;
3049 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
3053 /* turn off the previous option, then set the new option. */
3054 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3055 opt
->ip6po_hbh
= kmalloc(hbhlen
, M_IP6OPT
, M_NOWAIT
);
3056 if (opt
->ip6po_hbh
== NULL
)
3058 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
3063 case IPV6_2292DSTOPTS
:
3065 case IPV6_RTHDRDSTOPTS
:
3067 struct ip6_dest
*dest
, **newdest
= NULL
;
3073 ip6_clearpktopts(opt
, optname
);
3074 break; /* just remove the option */
3077 /* message length validation */
3078 if (len
< sizeof(struct ip6_dest
))
3080 dest
= (struct ip6_dest
*)buf
;
3081 destlen
= (dest
->ip6d_len
+ 1) << 3;
3086 * Determine the position that the destination options header
3087 * should be inserted; before or after the routing header.
3090 case IPV6_2292DSTOPTS
:
3092 * The old advacned API is ambiguous on this point.
3093 * Our approach is to determine the position based
3094 * according to the existence of a routing header.
3095 * Note, however, that this depends on the order of the
3096 * extension headers in the ancillary data; the 1st
3097 * part of the destination options header must appear
3098 * before the routing header in the ancillary data,
3100 * RFC3542 solved the ambiguity by introducing
3101 * separate ancillary data or option types.
3103 if (opt
->ip6po_rthdr
== NULL
)
3104 newdest
= &opt
->ip6po_dest1
;
3106 newdest
= &opt
->ip6po_dest2
;
3108 case IPV6_RTHDRDSTOPTS
:
3109 newdest
= &opt
->ip6po_dest1
;
3112 newdest
= &opt
->ip6po_dest2
;
3116 /* turn off the previous option, then set the new option. */
3117 ip6_clearpktopts(opt
, optname
);
3118 *newdest
= kmalloc(destlen
, M_IP6OPT
, M_NOWAIT
);
3119 if (*newdest
== NULL
)
3121 bcopy(dest
, *newdest
, destlen
);
3126 case IPV6_2292RTHDR
:
3129 struct ip6_rthdr
*rth
;
3133 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3134 break; /* just remove the option */
3137 /* message length validation */
3138 if (len
< sizeof(struct ip6_rthdr
))
3140 rth
= (struct ip6_rthdr
*)buf
;
3141 rthlen
= (rth
->ip6r_len
+ 1) << 3;
3145 switch (rth
->ip6r_type
) {
3147 return (EINVAL
); /* not supported */
3150 /* turn off the previous option */
3151 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3152 opt
->ip6po_rthdr
= kmalloc(rthlen
, M_IP6OPT
, M_NOWAIT
);
3153 if (opt
->ip6po_rthdr
== NULL
)
3155 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
3160 case IPV6_USE_MIN_MTU
:
3161 if (len
!= sizeof(int))
3163 minmtupolicy
= *(int *)buf
;
3164 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
3165 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
3166 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
3169 opt
->ip6po_minmtu
= minmtupolicy
;
3173 if (len
!= sizeof(int))
3176 if (uproto
== IPPROTO_TCP
|| *(int *)buf
== 0) {
3178 * we ignore this option for TCP sockets.
3179 * (RFC3542 leaves this case unspecified.)
3181 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
3183 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
3186 case IPV6_PREFER_TEMPADDR
:
3187 if (len
!= sizeof(int))
3189 preftemp
= *(int *)buf
;
3190 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
3191 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
3192 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
3195 opt
->ip6po_prefer_tempaddr
= preftemp
;
3199 return (ENOPROTOOPT
);
3200 } /* end of switch */
3207 * Set IPv6 outgoing packet options based on advanced API.
3210 ip6_setpktoptions(struct mbuf
*control
, struct ip6_pktopts
*opt
,
3211 struct ip6_pktopts
*stickyopt
, int uproto
, int priv
)
3213 struct cmsghdr
*cm
= NULL
;
3215 if (control
== NULL
|| opt
== NULL
)
3218 init_ip6pktopts(opt
);
3221 * XXX: Currently, we assume all the optional information is stored
3228 * If stickyopt is provided, make a local copy of the options
3229 * for this particular packet, then override them by ancillary
3231 * XXX: copypktopts() does not copy the cached route to a next
3232 * hop (if any). This is not very good in terms of efficiency,
3233 * but we can allow this since this option should be rarely
3236 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0)
3241 * XXX: Currently, we assume all the optional information is stored
3244 if (control
->m_next
)
3247 for (; control
->m_len
; control
->m_data
+= CMSG_ALIGN(cm
->cmsg_len
),
3248 control
->m_len
-= CMSG_ALIGN(cm
->cmsg_len
)) {
3251 if (control
->m_len
< CMSG_LEN(0))
3254 cm
= mtod(control
, struct cmsghdr
*);
3255 if (cm
->cmsg_len
== 0 || cm
->cmsg_len
> control
->m_len
)
3257 if (cm
->cmsg_level
!= IPPROTO_IPV6
)
3260 error
= ip6_setpktoption(cm
->cmsg_type
, CMSG_DATA(cm
),
3261 cm
->cmsg_len
- CMSG_LEN(0), opt
, 0, 1, uproto
, priv
);
3270 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3271 * packet to the input queue of a specified interface. Note that this
3272 * calls the output routine of the loopback "driver", but with an interface
3273 * pointer that might NOT be loif -- easier than replicating that code here.
3276 ip6_mloopback(struct ifnet
*ifp
, struct mbuf
*m
, struct sockaddr_in6
*dst
)
3279 struct ip6_hdr
*ip6
;
3281 copym
= m_copy(m
, 0, M_COPYALL
);
3286 * Make sure to deep-copy IPv6 header portion in case the data
3287 * is in an mbuf cluster, so that we can safely override the IPv6
3288 * header portion later.
3290 if ((copym
->m_flags
& M_EXT
) != 0 ||
3291 copym
->m_len
< sizeof(struct ip6_hdr
)) {
3292 copym
= m_pullup(copym
, sizeof(struct ip6_hdr
));
3298 if (copym
->m_len
< sizeof(*ip6
)) {
3304 ip6
= mtod(copym
, struct ip6_hdr
*);
3306 * clear embedded scope identifiers if necessary.
3307 * in6_clearscope will touch the addresses only when necessary.
3309 in6_clearscope(&ip6
->ip6_src
);
3310 in6_clearscope(&ip6
->ip6_dst
);
3312 if_simloop(ifp
, copym
, dst
->sin6_family
, 0);
3316 * Separate the IPv6 header from the payload into its own mbuf.
3318 * Returns the new mbuf chain or the original mbuf if no payload.
3319 * Returns NULL if can't allocate new mbuf for header.
3321 static struct mbuf
*
3322 ip6_splithdr(struct mbuf
*m
)
3326 if (m
->m_len
<= sizeof(struct ip6_hdr
)) /* no payload */
3329 MGETHDR(mh
, M_NOWAIT
, MT_HEADER
);
3332 mh
->m_len
= sizeof(struct ip6_hdr
);
3333 M_MOVE_PKTHDR(mh
, m
);
3334 MH_ALIGN(mh
, sizeof(struct ip6_hdr
));
3335 bcopy(mtod(m
, caddr_t
), mtod(mh
, caddr_t
), sizeof(struct ip6_hdr
));
3336 m
->m_data
+= sizeof(struct ip6_hdr
);
3337 m
->m_len
-= sizeof(struct ip6_hdr
);
3343 * Compute IPv6 extension header length.
3346 ip6_optlen(struct in6pcb
*in6p
)
3350 if (!in6p
->in6p_outputopts
)
3355 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3357 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
3358 if (in6p
->in6p_outputopts
->ip6po_rthdr
)
3359 /* dest1 is valid with rthdr only */
3360 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
3361 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
3362 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);