Fix the way <sys/ioccom.h> is included throughout our tree.
[dragonfly.git] / sys / dev / raid / mly / mly.c
blob2cb1c07eb5ada88741a50e2c3ca3cd5be3bf9195
1 /*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/mly/mly.c,v 1.3.2.3 2001/03/05 20:17:24 msmith Exp $
28 * $DragonFly: src/sys/dev/raid/mly/mly.c,v 1.21 2008/05/18 20:30:23 pavalos Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/ctype.h>
39 #include <sys/stat.h>
40 #include <sys/rman.h>
41 #include <sys/thread2.h>
43 #include <bus/cam/cam.h>
44 #include <bus/cam/cam_ccb.h>
45 #include <bus/cam/cam_periph.h>
46 #include <bus/cam/cam_sim.h>
47 #include <bus/cam/cam_xpt_sim.h>
48 #include <bus/cam/scsi/scsi_all.h>
49 #include <bus/cam/scsi/scsi_message.h>
51 #include <bus/pci/pcireg.h>
52 #include <bus/pci/pcivar.h>
54 #include "mlyreg.h"
55 #include "mlyio.h"
56 #include "mlyvar.h"
57 #include "mly_tables.h"
59 static int mly_probe(device_t dev);
60 static int mly_attach(device_t dev);
61 static int mly_pci_attach(struct mly_softc *sc);
62 static int mly_detach(device_t dev);
63 static int mly_shutdown(device_t dev);
64 static void mly_intr(void *arg);
66 static int mly_sg_map(struct mly_softc *sc);
67 static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
68 static int mly_mmbox_map(struct mly_softc *sc);
69 static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
70 static void mly_free(struct mly_softc *sc);
72 static int mly_get_controllerinfo(struct mly_softc *sc);
73 static void mly_scan_devices(struct mly_softc *sc);
74 static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
75 static void mly_complete_rescan(struct mly_command *mc);
76 static int mly_get_eventstatus(struct mly_softc *sc);
77 static int mly_enable_mmbox(struct mly_softc *sc);
78 static int mly_flush(struct mly_softc *sc);
79 static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
80 size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
81 static void mly_check_event(struct mly_softc *sc);
82 static void mly_fetch_event(struct mly_softc *sc);
83 static void mly_complete_event(struct mly_command *mc);
84 static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
85 static void mly_periodic(void *data);
87 static int mly_immediate_command(struct mly_command *mc);
88 static int mly_start(struct mly_command *mc);
89 static void mly_done(struct mly_softc *sc);
90 static void mly_complete(void *context, int pending);
92 static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
93 static void mly_release_command(struct mly_command *mc);
94 static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
95 static int mly_alloc_commands(struct mly_softc *sc);
96 static void mly_release_commands(struct mly_softc *sc);
97 static void mly_map_command(struct mly_command *mc);
98 static void mly_unmap_command(struct mly_command *mc);
100 static int mly_cam_attach(struct mly_softc *sc);
101 static void mly_cam_detach(struct mly_softc *sc);
102 static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
103 static void mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
104 static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105 static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106 static void mly_cam_poll(struct cam_sim *sim);
107 static void mly_cam_complete(struct mly_command *mc);
108 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109 static int mly_name_device(struct mly_softc *sc, int bus, int target);
111 static int mly_fwhandshake(struct mly_softc *sc);
113 static void mly_describe_controller(struct mly_softc *sc);
114 #ifdef MLY_DEBUG
115 static void mly_printstate(struct mly_softc *sc);
116 static void mly_print_command(struct mly_command *mc);
117 static void mly_print_packet(struct mly_command *mc);
118 static void mly_panic(struct mly_softc *sc, char *reason);
119 #endif
120 void mly_print_controller(int controller);
121 static int mly_timeout(struct mly_softc *sc);
124 static d_open_t mly_user_open;
125 static d_close_t mly_user_close;
126 static d_ioctl_t mly_user_ioctl;
127 static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128 static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
130 #define MLY_CMD_TIMEOUT 20
132 static device_method_t mly_methods[] = {
133 /* Device interface */
134 DEVMETHOD(device_probe, mly_probe),
135 DEVMETHOD(device_attach, mly_attach),
136 DEVMETHOD(device_detach, mly_detach),
137 DEVMETHOD(device_shutdown, mly_shutdown),
138 { 0, 0 }
141 static driver_t mly_pci_driver = {
142 "mly",
143 mly_methods,
144 sizeof(struct mly_softc)
147 static devclass_t mly_devclass;
148 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
150 #define MLY_CDEV_MAJOR 158
152 static struct dev_ops mly_ops = {
153 { "mly", MLY_CDEV_MAJOR, 0 },
154 .d_open = mly_user_open,
155 .d_close = mly_user_close,
156 .d_ioctl = mly_user_ioctl,
159 /********************************************************************************
160 ********************************************************************************
161 Device Interface
162 ********************************************************************************
163 ********************************************************************************/
165 static struct mly_ident
167 u_int16_t vendor;
168 u_int16_t device;
169 u_int16_t subvendor;
170 u_int16_t subdevice;
171 int hwif;
172 char *desc;
173 } mly_identifiers[] = {
174 {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
175 {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
176 {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
177 {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
178 {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
179 {0, 0, 0, 0, 0, 0}
182 /********************************************************************************
183 * Compare the provided PCI device with the list we support.
185 static int
186 mly_probe(device_t dev)
188 struct mly_ident *m;
190 debug_called(1);
192 for (m = mly_identifiers; m->vendor != 0; m++) {
193 if ((m->vendor == pci_get_vendor(dev)) &&
194 (m->device == pci_get_device(dev)) &&
195 ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
196 (m->subdevice == pci_get_subdevice(dev))))) {
198 device_set_desc(dev, m->desc);
199 return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
202 return(ENXIO);
205 /********************************************************************************
206 * Initialise the controller and softc
208 static int
209 mly_attach(device_t dev)
211 struct mly_softc *sc = device_get_softc(dev);
212 int error;
214 debug_called(1);
216 sc->mly_dev = dev;
218 #ifdef MLY_DEBUG
219 if (device_get_unit(sc->mly_dev) == 0)
220 mly_softc0 = sc;
221 #endif
224 * Do PCI-specific initialisation.
226 if ((error = mly_pci_attach(sc)) != 0)
227 goto out;
229 callout_init(&sc->mly_periodic);
230 callout_init(&sc->mly_timeout);
233 * Initialise per-controller queues.
235 mly_initq_free(sc);
236 mly_initq_busy(sc);
237 mly_initq_complete(sc);
240 * Initialise command-completion task.
242 TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
244 /* disable interrupts before we start talking to the controller */
245 MLY_MASK_INTERRUPTS(sc);
248 * Wait for the controller to come ready, handshake with the firmware if required.
249 * This is typically only necessary on platforms where the controller BIOS does not
250 * run.
252 if ((error = mly_fwhandshake(sc)))
253 goto out;
256 * Allocate initial command buffers.
258 if ((error = mly_alloc_commands(sc)))
259 goto out;
262 * Obtain controller feature information
264 if ((error = mly_get_controllerinfo(sc)))
265 goto out;
268 * Reallocate command buffers now we know how many we want.
270 mly_release_commands(sc);
271 if ((error = mly_alloc_commands(sc)))
272 goto out;
275 * Get the current event counter for health purposes, populate the initial
276 * health status buffer.
278 if ((error = mly_get_eventstatus(sc)))
279 goto out;
282 * Enable memory-mailbox mode.
284 if ((error = mly_enable_mmbox(sc)))
285 goto out;
288 * Attach to CAM.
290 if ((error = mly_cam_attach(sc)))
291 goto out;
294 * Print a little information about the controller
296 mly_describe_controller(sc);
299 * Mark all attached devices for rescan.
301 mly_scan_devices(sc);
304 * Instigate the first status poll immediately. Rescan completions won't
305 * happen until interrupts are enabled, which should still be before
306 * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
308 mly_periodic((void *)sc);
311 * Create the control device.
313 dev_ops_add(&mly_ops, -1, device_get_unit(sc->mly_dev));
314 sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
315 UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
316 "mly%d", device_get_unit(sc->mly_dev));
317 sc->mly_dev_t->si_drv1 = sc;
319 /* enable interrupts now */
320 MLY_UNMASK_INTERRUPTS(sc);
322 #ifdef MLY_DEBUG
323 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
324 (timeout_t *)mly_timeout, sc);
325 #endif
327 out:
328 if (error != 0)
329 mly_free(sc);
330 return(error);
333 /********************************************************************************
334 * Perform PCI-specific initialisation.
336 static int
337 mly_pci_attach(struct mly_softc *sc)
339 int i, error;
340 u_int32_t command;
342 debug_called(1);
344 /* assume failure is 'not configured' */
345 error = ENXIO;
348 * Verify that the adapter is correctly set up in PCI space.
350 * XXX we shouldn't do this; the PCI code should.
352 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
353 command |= PCIM_CMD_BUSMASTEREN;
354 pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
355 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
356 if (!(command & PCIM_CMD_BUSMASTEREN)) {
357 mly_printf(sc, "can't enable busmaster feature\n");
358 goto fail;
360 if ((command & PCIM_CMD_MEMEN) == 0) {
361 mly_printf(sc, "memory window not available\n");
362 goto fail;
366 * Allocate the PCI register window.
368 sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
369 if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
370 SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
371 mly_printf(sc, "can't allocate register window\n");
372 goto fail;
374 sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
375 sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
378 * Allocate and connect our interrupt.
380 sc->mly_irq_rid = 0;
381 if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
382 &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
383 mly_printf(sc, "can't allocate interrupt\n");
384 goto fail;
386 error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
387 mly_intr, sc, &sc->mly_intr, NULL);
388 if (error) {
389 mly_printf(sc, "can't set up interrupt\n");
390 goto fail;
393 /* assume failure is 'out of memory' */
394 error = ENOMEM;
397 * Allocate the parent bus DMA tag appropriate for our PCI interface.
399 * Note that all of these controllers are 64-bit capable.
401 if (bus_dma_tag_create(NULL, /* parent */
402 1, 0, /* alignment, boundary */
403 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
404 BUS_SPACE_MAXADDR, /* highaddr */
405 NULL, NULL, /* filter, filterarg */
406 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
407 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
408 BUS_DMA_ALLOCNOW, /* flags */
409 &sc->mly_parent_dmat)) {
410 mly_printf(sc, "can't allocate parent DMA tag\n");
411 goto fail;
415 * Create DMA tag for mapping buffers into controller-addressable space.
417 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
418 1, 0, /* alignment, boundary */
419 BUS_SPACE_MAXADDR, /* lowaddr */
420 BUS_SPACE_MAXADDR, /* highaddr */
421 NULL, NULL, /* filter, filterarg */
422 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
423 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
424 0, /* flags */
425 &sc->mly_buffer_dmat)) {
426 mly_printf(sc, "can't allocate buffer DMA tag\n");
427 goto fail;
431 * Initialise the DMA tag for command packets.
433 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
434 1, 0, /* alignment, boundary */
435 BUS_SPACE_MAXADDR, /* lowaddr */
436 BUS_SPACE_MAXADDR, /* highaddr */
437 NULL, NULL, /* filter, filterarg */
438 sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
439 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
440 BUS_DMA_ALLOCNOW, /* flags */
441 &sc->mly_packet_dmat)) {
442 mly_printf(sc, "can't allocate command packet DMA tag\n");
443 goto fail;
447 * Detect the hardware interface version
449 for (i = 0; mly_identifiers[i].vendor != 0; i++) {
450 if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
451 (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
452 sc->mly_hwif = mly_identifiers[i].hwif;
453 switch(sc->mly_hwif) {
454 case MLY_HWIF_I960RX:
455 debug(1, "set hardware up for i960RX");
456 sc->mly_doorbell_true = 0x00;
457 sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
458 sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
459 sc->mly_idbr = MLY_I960RX_IDBR;
460 sc->mly_odbr = MLY_I960RX_ODBR;
461 sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
462 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
463 sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
464 break;
465 case MLY_HWIF_STRONGARM:
466 debug(1, "set hardware up for StrongARM");
467 sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
468 sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
469 sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
470 sc->mly_idbr = MLY_STRONGARM_IDBR;
471 sc->mly_odbr = MLY_STRONGARM_ODBR;
472 sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
473 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
474 sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
475 break;
477 break;
482 * Create the scatter/gather mappings.
484 if ((error = mly_sg_map(sc)))
485 goto fail;
488 * Allocate and map the memory mailbox
490 if ((error = mly_mmbox_map(sc)))
491 goto fail;
493 error = 0;
495 fail:
496 return(error);
499 /********************************************************************************
500 * Shut the controller down and detach all our resources.
502 static int
503 mly_detach(device_t dev)
505 int error;
507 if ((error = mly_shutdown(dev)) != 0)
508 return(error);
510 mly_free(device_get_softc(dev));
511 return(0);
514 /********************************************************************************
515 * Bring the controller to a state where it can be safely left alone.
517 * Note that it should not be necessary to wait for any outstanding commands,
518 * as they should be completed prior to calling here.
520 * XXX this applies for I/O, but not status polls; we should beware of
521 * the case where a status command is running while we detach.
523 static int
524 mly_shutdown(device_t dev)
526 struct mly_softc *sc = device_get_softc(dev);
528 debug_called(1);
530 if (sc->mly_state & MLY_STATE_OPEN)
531 return(EBUSY);
533 /* kill the periodic event */
534 callout_stop(&sc->mly_periodic);
536 /* flush controller */
537 mly_printf(sc, "flushing cache...");
538 kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
540 MLY_MASK_INTERRUPTS(sc);
542 return(0);
545 /*******************************************************************************
546 * Take an interrupt, or be poked by other code to look for interrupt-worthy
547 * status.
549 static void
550 mly_intr(void *arg)
552 struct mly_softc *sc = (struct mly_softc *)arg;
554 debug_called(2);
556 mly_done(sc);
559 /********************************************************************************
560 ********************************************************************************
561 Bus-dependant Resource Management
562 ********************************************************************************
563 ********************************************************************************/
565 /********************************************************************************
566 * Allocate memory for the scatter/gather tables
568 static int
569 mly_sg_map(struct mly_softc *sc)
571 size_t segsize;
573 debug_called(1);
576 * Create a single tag describing a region large enough to hold all of
577 * the s/g lists we will need.
579 segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
580 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
581 1, 0, /* alignment,boundary */
582 BUS_SPACE_MAXADDR, /* lowaddr */
583 BUS_SPACE_MAXADDR, /* highaddr */
584 NULL, NULL, /* filter, filterarg */
585 segsize, 1, /* maxsize, nsegments */
586 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
587 BUS_DMA_ALLOCNOW, /* flags */
588 &sc->mly_sg_dmat)) {
589 mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
590 return(ENOMEM);
594 * Allocate enough s/g maps for all commands and permanently map them into
595 * controller-visible space.
597 * XXX this assumes we can get enough space for all the s/g maps in one
598 * contiguous slab.
600 if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
601 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
602 mly_printf(sc, "can't allocate s/g table\n");
603 return(ENOMEM);
605 if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
606 segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
607 return (ENOMEM);
608 return(0);
611 /********************************************************************************
612 * Save the physical address of the base of the s/g table.
614 static void
615 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
617 struct mly_softc *sc = (struct mly_softc *)arg;
619 debug_called(1);
621 /* save base of s/g table's address in bus space */
622 sc->mly_sg_busaddr = segs->ds_addr;
625 /********************************************************************************
626 * Allocate memory for the memory-mailbox interface
628 static int
629 mly_mmbox_map(struct mly_softc *sc)
633 * Create a DMA tag for a single contiguous region large enough for the
634 * memory mailbox structure.
636 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
637 1, 0, /* alignment,boundary */
638 BUS_SPACE_MAXADDR, /* lowaddr */
639 BUS_SPACE_MAXADDR, /* highaddr */
640 NULL, NULL, /* filter, filterarg */
641 sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
642 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
643 BUS_DMA_ALLOCNOW, /* flags */
644 &sc->mly_mmbox_dmat)) {
645 mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
646 return(ENOMEM);
650 * Allocate the buffer
652 if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
653 mly_printf(sc, "can't allocate memory mailbox\n");
654 return(ENOMEM);
656 if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
657 sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
658 BUS_DMA_NOWAIT) != 0)
659 return (ENOMEM);
660 bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
661 return(0);
665 /********************************************************************************
666 * Save the physical address of the memory mailbox
668 static void
669 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
671 struct mly_softc *sc = (struct mly_softc *)arg;
673 debug_called(1);
675 sc->mly_mmbox_busaddr = segs->ds_addr;
678 /********************************************************************************
679 * Free all of the resources associated with (sc)
681 * Should not be called if the controller is active.
683 static void
684 mly_free(struct mly_softc *sc)
687 debug_called(1);
689 /* Remove the management device */
690 destroy_dev(sc->mly_dev_t);
692 /* detach from CAM */
693 mly_cam_detach(sc);
695 /* release command memory */
696 mly_release_commands(sc);
698 /* throw away the controllerinfo structure */
699 if (sc->mly_controllerinfo != NULL)
700 kfree(sc->mly_controllerinfo, M_DEVBUF);
702 /* throw away the controllerparam structure */
703 if (sc->mly_controllerparam != NULL)
704 kfree(sc->mly_controllerparam, M_DEVBUF);
706 /* destroy data-transfer DMA tag */
707 if (sc->mly_buffer_dmat)
708 bus_dma_tag_destroy(sc->mly_buffer_dmat);
710 /* free and destroy DMA memory and tag for s/g lists */
711 if (sc->mly_sg_table) {
712 bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
713 bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
715 if (sc->mly_sg_dmat)
716 bus_dma_tag_destroy(sc->mly_sg_dmat);
718 /* free and destroy DMA memory and tag for memory mailbox */
719 if (sc->mly_mmbox) {
720 bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
721 bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
723 if (sc->mly_mmbox_dmat)
724 bus_dma_tag_destroy(sc->mly_mmbox_dmat);
726 /* disconnect the interrupt handler */
727 if (sc->mly_intr)
728 bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
729 if (sc->mly_irq != NULL)
730 bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
732 /* destroy the parent DMA tag */
733 if (sc->mly_parent_dmat)
734 bus_dma_tag_destroy(sc->mly_parent_dmat);
736 /* release the register window mapping */
737 if (sc->mly_regs_resource != NULL)
738 bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
741 /********************************************************************************
742 ********************************************************************************
743 Command Wrappers
744 ********************************************************************************
745 ********************************************************************************/
747 /********************************************************************************
748 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
750 static int
751 mly_get_controllerinfo(struct mly_softc *sc)
753 struct mly_command_ioctl mci;
754 u_int8_t status;
755 int error;
757 debug_called(1);
759 if (sc->mly_controllerinfo != NULL)
760 kfree(sc->mly_controllerinfo, M_DEVBUF);
762 /* build the getcontrollerinfo ioctl and send it */
763 bzero(&mci, sizeof(mci));
764 sc->mly_controllerinfo = NULL;
765 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
766 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
767 &status, NULL, NULL)))
768 return(error);
769 if (status != 0)
770 return(EIO);
772 if (sc->mly_controllerparam != NULL)
773 kfree(sc->mly_controllerparam, M_DEVBUF);
775 /* build the getcontrollerparameter ioctl and send it */
776 bzero(&mci, sizeof(mci));
777 sc->mly_controllerparam = NULL;
778 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
779 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
780 &status, NULL, NULL)))
781 return(error);
782 if (status != 0)
783 return(EIO);
785 return(0);
788 /********************************************************************************
789 * Schedule all possible devices for a rescan.
792 static void
793 mly_scan_devices(struct mly_softc *sc)
795 int bus, target;
797 debug_called(1);
800 * Clear any previous BTL information.
802 bzero(&sc->mly_btl, sizeof(sc->mly_btl));
805 * Mark all devices as requiring a rescan, and let the next
806 * periodic scan collect them.
808 for (bus = 0; bus < sc->mly_cam_channels; bus++)
809 if (MLY_BUS_IS_VALID(sc, bus))
810 for (target = 0; target < MLY_MAX_TARGETS; target++)
811 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
815 /********************************************************************************
816 * Rescan a device, possibly as a consequence of getting an event which suggests
817 * that it may have changed.
819 * If we suffer resource starvation, we can abandon the rescan as we'll be
820 * retried.
822 static void
823 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
825 struct mly_command *mc;
826 struct mly_command_ioctl *mci;
828 debug_called(1);
830 /* check that this bus is valid */
831 if (!MLY_BUS_IS_VALID(sc, bus))
832 return;
834 /* get a command */
835 if (mly_alloc_command(sc, &mc))
836 return;
838 /* set up the data buffer */
839 mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
840 mc->mc_flags |= MLY_CMD_DATAIN;
841 mc->mc_complete = mly_complete_rescan;
844 * Build the ioctl.
846 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
847 mci->opcode = MDACMD_IOCTL;
848 mci->addr.phys.controller = 0;
849 mci->timeout.value = 30;
850 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
851 if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
852 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
853 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
854 mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
855 debug(1, "logical device %d", mci->addr.log.logdev);
856 } else {
857 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
858 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
859 mci->addr.phys.lun = 0;
860 mci->addr.phys.target = target;
861 mci->addr.phys.channel = bus;
862 debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
866 * Dispatch the command. If we successfully send the command, clear the rescan
867 * bit.
869 if (mly_start(mc) != 0) {
870 mly_release_command(mc);
871 } else {
872 sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
876 /********************************************************************************
877 * Handle the completion of a rescan operation
879 static void
880 mly_complete_rescan(struct mly_command *mc)
882 struct mly_softc *sc = mc->mc_sc;
883 struct mly_ioctl_getlogdevinfovalid *ldi;
884 struct mly_ioctl_getphysdevinfovalid *pdi;
885 struct mly_command_ioctl *mci;
886 struct mly_btl btl, *btlp;
887 int bus, target, rescan;
889 debug_called(1);
892 * Recover the bus and target from the command. We need these even in
893 * the case where we don't have a useful response.
895 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
896 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
897 bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
898 target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
899 } else {
900 bus = mci->addr.phys.channel;
901 target = mci->addr.phys.target;
903 /* XXX validate bus/target? */
905 /* the default result is 'no device' */
906 bzero(&btl, sizeof(btl));
908 /* if the rescan completed OK, we have possibly-new BTL data */
909 if (mc->mc_status == 0) {
910 if (mc->mc_length == sizeof(*ldi)) {
911 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
912 if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
913 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
914 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
915 bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
916 MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
917 /* XXX what can we do about this? */
919 btl.mb_flags = MLY_BTL_LOGICAL;
920 btl.mb_type = ldi->raid_level;
921 btl.mb_state = ldi->state;
922 debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
923 mly_describe_code(mly_table_device_type, ldi->raid_level),
924 mly_describe_code(mly_table_device_state, ldi->state));
925 } else if (mc->mc_length == sizeof(*pdi)) {
926 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
927 if ((pdi->channel != bus) || (pdi->target != target)) {
928 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
929 bus, target, pdi->channel, pdi->target);
930 /* XXX what can we do about this? */
932 btl.mb_flags = MLY_BTL_PHYSICAL;
933 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
934 btl.mb_state = pdi->state;
935 btl.mb_speed = pdi->speed;
936 btl.mb_width = pdi->width;
937 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
938 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
939 debug(1, "BTL rescan for %d:%d returns %s", bus, target,
940 mly_describe_code(mly_table_device_state, pdi->state));
941 } else {
942 mly_printf(sc, "BTL rescan result invalid\n");
946 kfree(mc->mc_data, M_DEVBUF);
947 mly_release_command(mc);
950 * Decide whether we need to rescan the device.
952 rescan = 0;
954 /* device type changes (usually between 'nothing' and 'something') */
955 btlp = &sc->mly_btl[bus][target];
956 if (btl.mb_flags != btlp->mb_flags) {
957 debug(1, "flags changed, rescanning");
958 rescan = 1;
961 /* XXX other reasons? */
964 * Update BTL information.
966 *btlp = btl;
969 * Perform CAM rescan if required.
971 if (rescan)
972 mly_cam_rescan_btl(sc, bus, target);
975 /********************************************************************************
976 * Get the current health status and set the 'next event' counter to suit.
978 static int
979 mly_get_eventstatus(struct mly_softc *sc)
981 struct mly_command_ioctl mci;
982 struct mly_health_status *mh;
983 u_int8_t status;
984 int error;
986 /* build the gethealthstatus ioctl and send it */
987 bzero(&mci, sizeof(mci));
988 mh = NULL;
989 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
991 if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
992 return(error);
993 if (status != 0)
994 return(EIO);
996 /* get the event counter */
997 sc->mly_event_change = mh->change_counter;
998 sc->mly_event_waiting = mh->next_event;
999 sc->mly_event_counter = mh->next_event;
1001 /* save the health status into the memory mailbox */
1002 bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1004 debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1006 kfree(mh, M_DEVBUF);
1007 return(0);
1010 /********************************************************************************
1011 * Enable the memory mailbox mode.
1013 static int
1014 mly_enable_mmbox(struct mly_softc *sc)
1016 struct mly_command_ioctl mci;
1017 u_int8_t *sp, status;
1018 int error;
1020 debug_called(1);
1022 /* build the ioctl and send it */
1023 bzero(&mci, sizeof(mci));
1024 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1025 /* set buffer addresses */
1026 mci.param.setmemorymailbox.command_mailbox_physaddr =
1027 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1028 mci.param.setmemorymailbox.status_mailbox_physaddr =
1029 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1030 mci.param.setmemorymailbox.health_buffer_physaddr =
1031 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1033 /* set buffer sizes - abuse of data_size field is revolting */
1034 sp = (u_int8_t *)&mci.data_size;
1035 sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1036 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1037 mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1039 debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1040 mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1041 mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1042 mci.param.setmemorymailbox.health_buffer_physaddr,
1043 mci.param.setmemorymailbox.health_buffer_size);
1045 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1046 return(error);
1047 if (status != 0)
1048 return(EIO);
1049 sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1050 debug(1, "memory mailbox active");
1051 return(0);
1054 /********************************************************************************
1055 * Flush all pending I/O from the controller.
1057 static int
1058 mly_flush(struct mly_softc *sc)
1060 struct mly_command_ioctl mci;
1061 u_int8_t status;
1062 int error;
1064 debug_called(1);
1066 /* build the ioctl */
1067 bzero(&mci, sizeof(mci));
1068 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1069 mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1071 /* pass it off to the controller */
1072 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1073 return(error);
1075 return((status == 0) ? 0 : EIO);
1078 /********************************************************************************
1079 * Perform an ioctl command.
1081 * If (data) is not NULL, the command requires data transfer. If (*data) is NULL
1082 * the command requires data transfer from the controller, and we will allocate
1083 * a buffer for it. If (*data) is not NULL, the command requires data transfer
1084 * to the controller.
1086 * XXX passing in the whole ioctl structure is ugly. Better ideas?
1088 * XXX we don't even try to handle the case where datasize > 4k. We should.
1090 static int
1091 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1092 u_int8_t *status, void *sense_buffer, size_t *sense_length)
1094 struct mly_command *mc;
1095 struct mly_command_ioctl *mci;
1096 int error;
1098 debug_called(1);
1100 mc = NULL;
1101 if (mly_alloc_command(sc, &mc)) {
1102 error = ENOMEM;
1103 goto out;
1106 /* copy the ioctl structure, but save some important fields and then fixup */
1107 mci = &mc->mc_packet->ioctl;
1108 ioctl->sense_buffer_address = mci->sense_buffer_address;
1109 ioctl->maximum_sense_size = mci->maximum_sense_size;
1110 *mci = *ioctl;
1111 mci->opcode = MDACMD_IOCTL;
1112 mci->timeout.value = 30;
1113 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1115 /* handle the data buffer */
1116 if (data != NULL) {
1117 if (*data == NULL) {
1118 /* allocate data buffer */
1119 mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1120 mc->mc_flags |= MLY_CMD_DATAIN;
1121 } else {
1122 mc->mc_data = *data;
1123 mc->mc_flags |= MLY_CMD_DATAOUT;
1125 mc->mc_length = datasize;
1126 mc->mc_packet->generic.data_size = datasize;
1129 /* run the command */
1130 if ((error = mly_immediate_command(mc)))
1131 goto out;
1133 /* clean up and return any data */
1134 *status = mc->mc_status;
1135 if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1136 bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1137 *sense_length = mc->mc_sense;
1138 goto out;
1141 /* should we return a data pointer? */
1142 if ((data != NULL) && (*data == NULL))
1143 *data = mc->mc_data;
1145 /* command completed OK */
1146 error = 0;
1148 out:
1149 if (mc != NULL) {
1150 /* do we need to free a data buffer we allocated? */
1151 if (error && (mc->mc_data != NULL) && (*data == NULL))
1152 kfree(mc->mc_data, M_DEVBUF);
1153 mly_release_command(mc);
1155 return(error);
1158 /********************************************************************************
1159 * Check for event(s) outstanding in the controller.
1161 static void
1162 mly_check_event(struct mly_softc *sc)
1166 * The controller may have updated the health status information,
1167 * so check for it here. Note that the counters are all in host memory,
1168 * so this check is very cheap. Also note that we depend on checking on
1169 * completion
1171 if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1172 sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1173 debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1174 sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1175 sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1177 /* wake up anyone that might be interested in this */
1178 wakeup(&sc->mly_event_change);
1180 if (sc->mly_event_counter != sc->mly_event_waiting)
1181 mly_fetch_event(sc);
1184 /********************************************************************************
1185 * Fetch one event from the controller.
1187 * If we fail due to resource starvation, we'll be retried the next time a
1188 * command completes.
1190 static void
1191 mly_fetch_event(struct mly_softc *sc)
1193 struct mly_command *mc;
1194 struct mly_command_ioctl *mci;
1195 u_int32_t event;
1197 debug_called(1);
1199 /* get a command */
1200 if (mly_alloc_command(sc, &mc))
1201 return;
1203 /* set up the data buffer */
1204 mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1205 mc->mc_length = sizeof(struct mly_event);
1206 mc->mc_flags |= MLY_CMD_DATAIN;
1207 mc->mc_complete = mly_complete_event;
1210 * Get an event number to fetch. It's possible that we've raced with another
1211 * context for the last event, in which case there will be no more events.
1213 crit_enter();
1214 if (sc->mly_event_counter == sc->mly_event_waiting) {
1215 mly_release_command(mc);
1216 crit_exit();
1217 return;
1219 event = sc->mly_event_counter++;
1220 crit_exit();
1223 * Build the ioctl.
1225 * At this point we are committed to sending this request, as it
1226 * will be the only one constructed for this particular event number.
1228 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1229 mci->opcode = MDACMD_IOCTL;
1230 mci->data_size = sizeof(struct mly_event);
1231 mci->addr.phys.lun = (event >> 16) & 0xff;
1232 mci->addr.phys.target = (event >> 24) & 0xff;
1233 mci->addr.phys.channel = 0;
1234 mci->addr.phys.controller = 0;
1235 mci->timeout.value = 30;
1236 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1237 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1238 mci->param.getevent.sequence_number_low = event & 0xffff;
1240 debug(1, "fetch event %u", event);
1243 * Submit the command.
1245 * Note that failure of mly_start() will result in this event never being
1246 * fetched.
1248 if (mly_start(mc) != 0) {
1249 mly_printf(sc, "couldn't fetch event %u\n", event);
1250 mly_release_command(mc);
1254 /********************************************************************************
1255 * Handle the completion of an event poll.
1257 static void
1258 mly_complete_event(struct mly_command *mc)
1260 struct mly_softc *sc = mc->mc_sc;
1261 struct mly_event *me = (struct mly_event *)mc->mc_data;
1263 debug_called(1);
1266 * If the event was successfully fetched, process it.
1268 if (mc->mc_status == SCSI_STATUS_OK) {
1269 mly_process_event(sc, me);
1270 kfree(me, M_DEVBUF);
1272 mly_release_command(mc);
1275 * Check for another event.
1277 mly_check_event(sc);
1280 /********************************************************************************
1281 * Process a controller event.
1283 static void
1284 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1286 struct scsi_sense_data *ssd = (struct scsi_sense_data *)&me->sense[0];
1287 char *fp, *tp;
1288 int bus, target, event, class, action;
1291 * Errors can be reported using vendor-unique sense data. In this case, the
1292 * event code will be 0x1c (Request sense data present), the sense key will
1293 * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1294 * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1295 * and low seven bits of the ASC (low seven bits of the high byte).
1297 if ((me->code == 0x1c) &&
1298 ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1299 (ssd->add_sense_code & 0x80)) {
1300 event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1301 } else {
1302 event = me->code;
1305 /* look up event, get codes */
1306 fp = mly_describe_code(mly_table_event, event);
1308 debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
1310 /* quiet event? */
1311 class = fp[0];
1312 if (isupper(class) && bootverbose)
1313 class = tolower(class);
1315 /* get action code, text string */
1316 action = fp[1];
1317 tp = &fp[2];
1320 * Print some information about the event.
1322 * This code uses a table derived from the corresponding portion of the Linux
1323 * driver, and thus the parser is very similar.
1325 switch(class) {
1326 case 'p': /* error on physical device */
1327 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1328 if (action == 'r')
1329 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1330 break;
1331 case 'l': /* error on logical unit */
1332 case 'm': /* message about logical unit */
1333 bus = MLY_LOGDEV_BUS(sc, me->lun);
1334 target = MLY_LOGDEV_TARGET(sc, me->lun);
1335 mly_name_device(sc, bus, target);
1336 mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1337 if (action == 'r')
1338 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1339 break;
1340 break;
1341 case 's': /* report of sense data */
1342 if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1343 (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1344 (ssd->add_sense_code == 0x04) &&
1345 ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1346 break; /* ignore NO_SENSE or NOT_READY in one case */
1348 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1349 mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
1350 ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1351 mly_printf(sc, " info %4D csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1352 if (action == 'r')
1353 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1354 break;
1355 case 'e':
1356 mly_printf(sc, tp, me->target, me->lun);
1357 kprintf("\n");
1358 break;
1359 case 'c':
1360 mly_printf(sc, "controller %s\n", tp);
1361 break;
1362 case '?':
1363 mly_printf(sc, "%s - %d\n", tp, me->code);
1364 break;
1365 default: /* probably a 'noisy' event being ignored */
1366 break;
1370 /********************************************************************************
1371 * Perform periodic activities.
1373 static void
1374 mly_periodic(void *data)
1376 struct mly_softc *sc = (struct mly_softc *)data;
1377 int bus, target;
1379 debug_called(2);
1382 * Scan devices.
1384 for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1385 if (MLY_BUS_IS_VALID(sc, bus)) {
1386 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1388 /* ignore the controller in this scan */
1389 if (target == sc->mly_controllerparam->initiator_id)
1390 continue;
1392 /* perform device rescan? */
1393 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1394 mly_rescan_btl(sc, bus, target);
1399 /* check for controller events */
1400 mly_check_event(sc);
1402 /* reschedule ourselves */
1403 callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1406 /********************************************************************************
1407 ********************************************************************************
1408 Command Processing
1409 ********************************************************************************
1410 ********************************************************************************/
1412 /********************************************************************************
1413 * Run a command and wait for it to complete.
1416 static int
1417 mly_immediate_command(struct mly_command *mc)
1419 struct mly_softc *sc = mc->mc_sc;
1420 int error;
1422 debug_called(1);
1424 /* spinning at splcam is ugly, but we're only used during controller init */
1425 crit_enter();
1426 if ((error = mly_start(mc))) {
1427 crit_exit();
1428 return(error);
1431 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1432 /* sleep on the command */
1433 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1434 tsleep(mc, 0, "mlywait", 0);
1436 } else {
1437 /* spin and collect status while we do */
1438 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1439 mly_done(mc->mc_sc);
1442 crit_exit();
1443 return(0);
1446 /********************************************************************************
1447 * Deliver a command to the controller.
1449 * XXX it would be good to just queue commands that we can't submit immediately
1450 * and send them later, but we probably want a wrapper for that so that
1451 * we don't hang on a failed submission for an immediate command.
1453 static int
1454 mly_start(struct mly_command *mc)
1456 struct mly_softc *sc = mc->mc_sc;
1457 union mly_command_packet *pkt;
1459 debug_called(2);
1462 * Set the command up for delivery to the controller.
1464 mly_map_command(mc);
1465 mc->mc_packet->generic.command_id = mc->mc_slot;
1467 #ifdef MLY_DEBUG
1468 mc->mc_timestamp = time_second;
1469 #endif
1471 crit_enter();
1474 * Do we have to use the hardware mailbox?
1476 if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1478 * Check to see if the controller is ready for us.
1480 if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1481 crit_exit();
1482 return(EBUSY);
1484 mc->mc_flags |= MLY_CMD_BUSY;
1487 * It's ready, send the command.
1489 MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1490 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1492 } else { /* use memory-mailbox mode */
1494 pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1496 /* check to see if the next index is free yet */
1497 if (pkt->mmbox.flag != 0) {
1498 crit_exit();
1499 return(EBUSY);
1501 mc->mc_flags |= MLY_CMD_BUSY;
1503 /* copy in new command */
1504 bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1505 /* barrier to ensure completion of previous write before we write the flag */
1506 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1507 BUS_SPACE_BARRIER_WRITE);
1508 /* copy flag last */
1509 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1510 /* barrier to ensure completion of previous write before we notify the controller */
1511 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1512 BUS_SPACE_BARRIER_WRITE);
1514 /* signal controller, update index */
1515 MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1516 sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1519 mly_enqueue_busy(mc);
1520 crit_exit();
1521 return(0);
1524 /********************************************************************************
1525 * Pick up command status from the controller, schedule a completion event
1527 static void
1528 mly_done(struct mly_softc *sc)
1530 struct mly_command *mc;
1531 union mly_status_packet *sp;
1532 u_int16_t slot;
1533 int worked;
1535 crit_enter();
1536 worked = 0;
1538 /* pick up hardware-mailbox commands */
1539 if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1540 slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1541 if (slot < MLY_SLOT_MAX) {
1542 mc = &sc->mly_command[slot - MLY_SLOT_START];
1543 mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1544 mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1545 mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1546 mly_remove_busy(mc);
1547 mc->mc_flags &= ~MLY_CMD_BUSY;
1548 mly_enqueue_complete(mc);
1549 worked = 1;
1550 } else {
1551 /* slot 0xffff may mean "extremely bogus command" */
1552 mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1554 /* unconditionally acknowledge status */
1555 MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1556 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1559 /* pick up memory-mailbox commands */
1560 if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1561 for (;;) {
1562 sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1564 /* check for more status */
1565 if (sp->mmbox.flag == 0)
1566 break;
1568 /* get slot number */
1569 slot = sp->status.command_id;
1570 if (slot < MLY_SLOT_MAX) {
1571 mc = &sc->mly_command[slot - MLY_SLOT_START];
1572 mc->mc_status = sp->status.status;
1573 mc->mc_sense = sp->status.sense_length;
1574 mc->mc_resid = sp->status.residue;
1575 mly_remove_busy(mc);
1576 mc->mc_flags &= ~MLY_CMD_BUSY;
1577 mly_enqueue_complete(mc);
1578 worked = 1;
1579 } else {
1580 /* slot 0xffff may mean "extremely bogus command" */
1581 mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1582 slot, sc->mly_mmbox_status_index);
1585 /* clear and move to next index */
1586 sp->mmbox.flag = 0;
1587 sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1589 /* acknowledge that we have collected status value(s) */
1590 MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1593 crit_exit();
1594 if (worked) {
1595 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1596 taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1597 else
1598 mly_complete(sc, 0);
1602 /********************************************************************************
1603 * Process completed commands
1605 static void
1606 mly_complete(void *context, int pending)
1608 struct mly_softc *sc = (struct mly_softc *)context;
1609 struct mly_command *mc;
1610 void (* mc_complete)(struct mly_command *mc);
1613 debug_called(2);
1616 * Spin pulling commands off the completed queue and processing them.
1618 while ((mc = mly_dequeue_complete(sc)) != NULL) {
1621 * Free controller resources, mark command complete.
1623 * Note that as soon as we mark the command complete, it may be freed
1624 * out from under us, so we need to save the mc_complete field in
1625 * order to later avoid dereferencing mc. (We would not expect to
1626 * have a polling/sleeping consumer with mc_complete != NULL).
1628 mly_unmap_command(mc);
1629 mc_complete = mc->mc_complete;
1630 mc->mc_flags |= MLY_CMD_COMPLETE;
1633 * Call completion handler or wake up sleeping consumer.
1635 if (mc_complete != NULL) {
1636 mc_complete(mc);
1637 } else {
1638 wakeup(mc);
1643 * XXX if we are deferring commands due to controller-busy status, we should
1644 * retry submitting them here.
1648 /********************************************************************************
1649 ********************************************************************************
1650 Command Buffer Management
1651 ********************************************************************************
1652 ********************************************************************************/
1654 /********************************************************************************
1655 * Allocate a command.
1657 static int
1658 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1660 struct mly_command *mc;
1662 debug_called(3);
1664 if ((mc = mly_dequeue_free(sc)) == NULL)
1665 return(ENOMEM);
1667 *mcp = mc;
1668 return(0);
1671 /********************************************************************************
1672 * Release a command back to the freelist.
1674 static void
1675 mly_release_command(struct mly_command *mc)
1677 debug_called(3);
1680 * Fill in parts of the command that may cause confusion if
1681 * a consumer doesn't when we are later allocated.
1683 mc->mc_data = NULL;
1684 mc->mc_flags = 0;
1685 mc->mc_complete = NULL;
1686 mc->mc_private = NULL;
1689 * By default, we set up to overwrite the command packet with
1690 * sense information.
1692 mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1693 mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1695 mly_enqueue_free(mc);
1698 /********************************************************************************
1699 * Map helper for command allocation.
1701 static void
1702 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1704 struct mly_softc *sc = (struct mly_softc *)arg;
1706 debug_called(1);
1708 sc->mly_packetphys = segs[0].ds_addr;
1711 /********************************************************************************
1712 * Allocate and initialise command and packet structures.
1714 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1715 * allocation to that number. If we don't yet know how many commands the
1716 * controller supports, allocate a very small set (suitable for initialisation
1717 * purposes only).
1719 static int
1720 mly_alloc_commands(struct mly_softc *sc)
1722 struct mly_command *mc;
1723 int i, ncmd;
1725 if (sc->mly_controllerinfo == NULL) {
1726 ncmd = 4;
1727 } else {
1728 ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1732 * Allocate enough space for all the command packets in one chunk and
1733 * map them permanently into controller-visible space.
1735 if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1736 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1737 return(ENOMEM);
1739 if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1740 ncmd * sizeof(union mly_command_packet),
1741 mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1742 return (ENOMEM);
1744 for (i = 0; i < ncmd; i++) {
1745 mc = &sc->mly_command[i];
1746 bzero(mc, sizeof(*mc));
1747 mc->mc_sc = sc;
1748 mc->mc_slot = MLY_SLOT_START + i;
1749 mc->mc_packet = sc->mly_packet + i;
1750 mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1751 if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1752 mly_release_command(mc);
1754 return(0);
1757 /********************************************************************************
1758 * Free all the storage held by commands.
1760 * Must be called with all commands on the free list.
1762 static void
1763 mly_release_commands(struct mly_softc *sc)
1765 struct mly_command *mc;
1767 /* throw away command buffer DMA maps */
1768 while (mly_alloc_command(sc, &mc) == 0)
1769 bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1771 /* release the packet storage */
1772 if (sc->mly_packet != NULL) {
1773 bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1774 bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1775 sc->mly_packet = NULL;
1780 /********************************************************************************
1781 * Command-mapping helper function - populate this command's s/g table
1782 * with the s/g entries for its data.
1784 static void
1785 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1787 struct mly_command *mc = (struct mly_command *)arg;
1788 struct mly_softc *sc = mc->mc_sc;
1789 struct mly_command_generic *gen = &(mc->mc_packet->generic);
1790 struct mly_sg_entry *sg;
1791 int i, tabofs;
1793 debug_called(2);
1795 /* can we use the transfer structure directly? */
1796 if (nseg <= 2) {
1797 sg = &gen->transfer.direct.sg[0];
1798 gen->command_control.extended_sg_table = 0;
1799 } else {
1800 tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1801 sg = sc->mly_sg_table + tabofs;
1802 gen->transfer.indirect.entries[0] = nseg;
1803 gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1804 gen->command_control.extended_sg_table = 1;
1807 /* copy the s/g table */
1808 for (i = 0; i < nseg; i++) {
1809 sg[i].physaddr = segs[i].ds_addr;
1810 sg[i].length = segs[i].ds_len;
1815 #if 0
1816 /********************************************************************************
1817 * Command-mapping helper function - save the cdb's physical address.
1819 * We don't support 'large' SCSI commands at this time, so this is unused.
1821 static void
1822 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1824 struct mly_command *mc = (struct mly_command *)arg;
1826 debug_called(2);
1828 /* XXX can we safely assume that a CDB will never cross a page boundary? */
1829 if ((segs[0].ds_addr % PAGE_SIZE) >
1830 ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1831 panic("cdb crosses page boundary");
1833 /* fix up fields in the command packet */
1834 mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1836 #endif
1838 /********************************************************************************
1839 * Map a command into controller-visible space
1841 static void
1842 mly_map_command(struct mly_command *mc)
1844 struct mly_softc *sc = mc->mc_sc;
1846 debug_called(2);
1848 /* don't map more than once */
1849 if (mc->mc_flags & MLY_CMD_MAPPED)
1850 return;
1852 /* does the command have a data buffer? */
1853 if (mc->mc_data != NULL) {
1854 bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1855 mly_map_command_sg, mc, 0);
1857 if (mc->mc_flags & MLY_CMD_DATAIN)
1858 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1859 if (mc->mc_flags & MLY_CMD_DATAOUT)
1860 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1862 mc->mc_flags |= MLY_CMD_MAPPED;
1865 /********************************************************************************
1866 * Unmap a command from controller-visible space
1868 static void
1869 mly_unmap_command(struct mly_command *mc)
1871 struct mly_softc *sc = mc->mc_sc;
1873 debug_called(2);
1875 if (!(mc->mc_flags & MLY_CMD_MAPPED))
1876 return;
1878 /* does the command have a data buffer? */
1879 if (mc->mc_data != NULL) {
1880 if (mc->mc_flags & MLY_CMD_DATAIN)
1881 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1882 if (mc->mc_flags & MLY_CMD_DATAOUT)
1883 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1885 bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1887 mc->mc_flags &= ~MLY_CMD_MAPPED;
1891 /********************************************************************************
1892 ********************************************************************************
1893 CAM interface
1894 ********************************************************************************
1895 ********************************************************************************/
1897 /********************************************************************************
1898 * Attach the physical and virtual SCSI busses to CAM.
1900 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1901 * than the highest physical bus. Physical busses are only registered if
1902 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1904 * When we refer to a "bus", we are referring to the bus number registered with
1905 * the SIM, wheras a "channel" is a channel number given to the adapter. In order
1906 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1907 * interchangeably.
1909 static int
1910 mly_cam_attach(struct mly_softc *sc)
1912 struct cam_devq *devq;
1913 int chn, i;
1915 debug_called(1);
1918 * Allocate a devq for all our channels combined.
1920 if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1921 mly_printf(sc, "can't allocate CAM SIM queue\n");
1922 return(ENOMEM);
1926 * If physical channel registration has been requested, register these first.
1927 * Note that we enable tagged command queueing for physical channels.
1929 if (ktestenv("hw.mly.register_physical_channels")) {
1930 chn = 0;
1931 for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1933 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1934 device_get_unit(sc->mly_dev),
1935 &sim_mplock,
1936 sc->mly_controllerinfo->maximum_parallel_commands,
1937 1, devq)) == NULL) {
1938 return(ENOMEM);
1940 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1941 mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1942 return(ENXIO);
1944 debug(1, "registered physical channel %d", chn);
1949 * Register our virtual channels, with bus numbers matching channel numbers.
1951 chn = sc->mly_controllerinfo->physical_channels_present;
1952 for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1953 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1954 device_get_unit(sc->mly_dev),
1955 &sim_mplock,
1956 sc->mly_controllerinfo->maximum_parallel_commands,
1957 0, devq)) == NULL) {
1958 return(ENOMEM);
1960 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1961 mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1962 return(ENXIO);
1964 debug(1, "registered virtual channel %d", chn);
1968 * This is the total number of channels that (might have been) registered with
1969 * CAM. Some may not have been; check the mly_cam_sim array to be certain.
1971 sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1972 sc->mly_controllerinfo->virtual_channels_present;
1974 return(0);
1977 /********************************************************************************
1978 * Detach from CAM
1980 static void
1981 mly_cam_detach(struct mly_softc *sc)
1983 int i;
1985 debug_called(1);
1987 for (i = 0; i < sc->mly_cam_channels; i++) {
1988 if (sc->mly_cam_sim[i] != NULL) {
1989 xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1990 cam_sim_free(sc->mly_cam_sim[i]);
1993 if (sc->mly_cam_devq != NULL)
1994 cam_simq_release(sc->mly_cam_devq);
1997 /************************************************************************
1998 * Rescan a device.
2000 static void
2001 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2003 union ccb *ccb;
2005 debug_called(1);
2007 ccb = kmalloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO);
2009 if (xpt_create_path(&sc->mly_cam_path, xpt_periph,
2010 cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2011 mly_printf(sc, "rescan failed (can't create path)\n");
2012 kfree(ccb, M_TEMP);
2013 return;
2015 xpt_setup_ccb(&ccb->ccb_h, sc->mly_cam_path, 5/*priority (low)*/);
2016 ccb->ccb_h.func_code = XPT_SCAN_LUN;
2017 ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2018 ccb->crcn.flags = CAM_FLAG_NONE;
2019 debug(1, "rescan target %d:%d", bus, target);
2020 xpt_action(ccb);
2023 static void
2024 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2026 kfree(ccb, M_TEMP);
2029 /********************************************************************************
2030 * Handle an action requested by CAM
2032 static void
2033 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2035 struct mly_softc *sc = cam_sim_softc(sim);
2037 debug_called(2);
2039 switch (ccb->ccb_h.func_code) {
2041 /* perform SCSI I/O */
2042 case XPT_SCSI_IO:
2043 if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2044 return;
2045 break;
2047 /* perform geometry calculations */
2048 case XPT_CALC_GEOMETRY:
2050 struct ccb_calc_geometry *ccg = &ccb->ccg;
2051 u_int32_t secs_per_cylinder;
2053 debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2055 if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2056 ccg->heads = 255;
2057 ccg->secs_per_track = 63;
2058 } else { /* MLY_BIOSGEOM_2G */
2059 ccg->heads = 128;
2060 ccg->secs_per_track = 32;
2062 secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2063 ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2064 ccb->ccb_h.status = CAM_REQ_CMP;
2065 break;
2068 /* handle path attribute inquiry */
2069 case XPT_PATH_INQ:
2071 struct ccb_pathinq *cpi = &ccb->cpi;
2073 debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2075 cpi->version_num = 1;
2076 cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
2077 cpi->target_sprt = 0;
2078 cpi->hba_misc = 0;
2079 cpi->max_target = MLY_MAX_TARGETS - 1;
2080 cpi->max_lun = MLY_MAX_LUNS - 1;
2081 cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2082 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2083 strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2084 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2085 cpi->unit_number = cam_sim_unit(sim);
2086 cpi->bus_id = cam_sim_bus(sim);
2087 cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
2088 cpi->transport = XPORT_SPI;
2089 cpi->transport_version = 2;
2090 cpi->protocol = PROTO_SCSI;
2091 cpi->protocol_version = SCSI_REV_2;
2092 ccb->ccb_h.status = CAM_REQ_CMP;
2093 break;
2096 case XPT_GET_TRAN_SETTINGS:
2098 struct ccb_trans_settings *cts = &ccb->cts;
2099 int bus, target;
2100 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2101 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2103 cts->protocol = PROTO_SCSI;
2104 cts->protocol_version = SCSI_REV_2;
2105 cts->transport = XPORT_SPI;
2106 cts->transport_version = 2;
2108 scsi->flags = 0;
2109 scsi->valid = 0;
2110 spi->flags = 0;
2111 spi->valid = 0;
2113 bus = cam_sim_bus(sim);
2114 target = cts->ccb_h.target_id;
2115 debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2116 /* logical device? */
2117 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2118 /* nothing special for these */
2119 /* physical device? */
2120 } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2121 /* allow CAM to try tagged transactions */
2122 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2123 scsi->valid |= CTS_SCSI_VALID_TQ;
2125 /* convert speed (MHz) to usec */
2126 if (sc->mly_btl[bus][target].mb_speed == 0) {
2127 spi->sync_period = 1000000 / 5;
2128 } else {
2129 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2132 /* convert bus width to CAM internal encoding */
2133 switch (sc->mly_btl[bus][target].mb_width) {
2134 case 32:
2135 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2136 break;
2137 case 16:
2138 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2139 break;
2140 case 8:
2141 default:
2142 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2143 break;
2145 spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2147 /* not a device, bail out */
2148 } else {
2149 cts->ccb_h.status = CAM_REQ_CMP_ERR;
2150 break;
2153 /* disconnect always OK */
2154 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2155 spi->valid |= CTS_SPI_VALID_DISC;
2157 cts->ccb_h.status = CAM_REQ_CMP;
2158 break;
2161 default: /* we can't do this */
2162 debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2163 ccb->ccb_h.status = CAM_REQ_INVALID;
2164 break;
2167 xpt_done(ccb);
2170 /********************************************************************************
2171 * Handle an I/O operation requested by CAM
2173 static int
2174 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2176 struct mly_softc *sc = cam_sim_softc(sim);
2177 struct mly_command *mc;
2178 struct mly_command_scsi_small *ss;
2179 int bus, target;
2180 int error;
2182 bus = cam_sim_bus(sim);
2183 target = csio->ccb_h.target_id;
2185 debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2187 /* validate bus number */
2188 if (!MLY_BUS_IS_VALID(sc, bus)) {
2189 debug(0, " invalid bus %d", bus);
2190 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2193 /* check for I/O attempt to a protected device */
2194 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2195 debug(2, " device protected");
2196 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2199 /* check for I/O attempt to nonexistent device */
2200 if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2201 debug(2, " device %d:%d does not exist", bus, target);
2202 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2205 /* XXX increase if/when we support large SCSI commands */
2206 if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2207 debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2208 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2211 /* check that the CDB pointer is not to a physical address */
2212 if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2213 debug(0, " CDB pointer is to physical address");
2214 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2217 /* if there is data transfer, it must be to/from a virtual address */
2218 if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2219 if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
2220 debug(0, " data pointer is to physical address");
2221 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2223 if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
2224 debug(0, " data has premature s/g setup");
2225 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2229 /* abandon aborted ccbs or those that have failed validation */
2230 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2231 debug(2, "abandoning CCB due to abort/validation failure");
2232 return(EINVAL);
2236 * Get a command, or push the ccb back to CAM and freeze the queue.
2238 if ((error = mly_alloc_command(sc, &mc))) {
2239 crit_enter();
2240 xpt_freeze_simq(sim, 1);
2241 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2242 sc->mly_qfrzn_cnt++;
2243 crit_exit();
2244 return(error);
2247 /* build the command */
2248 mc->mc_data = csio->data_ptr;
2249 mc->mc_length = csio->dxfer_len;
2250 mc->mc_complete = mly_cam_complete;
2251 mc->mc_private = csio;
2253 /* save the bus number in the ccb for later recovery XXX should be a better way */
2254 csio->ccb_h.sim_priv.entries[0].field = bus;
2256 /* build the packet for the controller */
2257 ss = &mc->mc_packet->scsi_small;
2258 ss->opcode = MDACMD_SCSI;
2259 if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2260 ss->command_control.disable_disconnect = 1;
2261 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2262 ss->command_control.data_direction = MLY_CCB_WRITE;
2263 ss->data_size = csio->dxfer_len;
2264 ss->addr.phys.lun = csio->ccb_h.target_lun;
2265 ss->addr.phys.target = csio->ccb_h.target_id;
2266 ss->addr.phys.channel = bus;
2267 if (csio->ccb_h.timeout < (60 * 1000)) {
2268 ss->timeout.value = csio->ccb_h.timeout / 1000;
2269 ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2270 } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2271 ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2272 ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2273 } else {
2274 ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
2275 ss->timeout.scale = MLY_TIMEOUT_HOURS;
2277 ss->maximum_sense_size = csio->sense_len;
2278 ss->cdb_length = csio->cdb_len;
2279 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2280 bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2281 } else {
2282 bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2285 /* give the command to the controller */
2286 if ((error = mly_start(mc))) {
2287 crit_enter();
2288 xpt_freeze_simq(sim, 1);
2289 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2290 sc->mly_qfrzn_cnt++;
2291 crit_exit();
2292 return(error);
2295 return(0);
2298 /********************************************************************************
2299 * Check for possibly-completed commands.
2301 static void
2302 mly_cam_poll(struct cam_sim *sim)
2304 struct mly_softc *sc = cam_sim_softc(sim);
2306 debug_called(2);
2308 mly_done(sc);
2311 /********************************************************************************
2312 * Handle completion of a command - pass results back through the CCB
2314 static void
2315 mly_cam_complete(struct mly_command *mc)
2317 struct mly_softc *sc = mc->mc_sc;
2318 struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
2319 struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
2320 struct mly_btl *btl;
2321 u_int8_t cmd;
2322 int bus, target;
2324 debug_called(2);
2326 csio->scsi_status = mc->mc_status;
2327 switch(mc->mc_status) {
2328 case SCSI_STATUS_OK:
2330 * In order to report logical device type and status, we overwrite
2331 * the result of the INQUIRY command to logical devices.
2333 bus = csio->ccb_h.sim_priv.entries[0].field;
2334 target = csio->ccb_h.target_id;
2335 /* XXX validate bus/target? */
2336 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2337 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2338 cmd = *csio->cdb_io.cdb_ptr;
2339 } else {
2340 cmd = csio->cdb_io.cdb_bytes[0];
2342 if (cmd == INQUIRY) {
2343 btl = &sc->mly_btl[bus][target];
2344 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2345 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2346 padstr(inq->revision, "", 4);
2350 debug(2, "SCSI_STATUS_OK");
2351 csio->ccb_h.status = CAM_REQ_CMP;
2352 break;
2354 case SCSI_STATUS_CHECK_COND:
2355 debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
2356 csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2357 bzero(&csio->sense_data, SSD_FULL_SIZE);
2358 bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2359 csio->sense_len = mc->mc_sense;
2360 csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2361 csio->resid = mc->mc_resid; /* XXX this is a signed value... */
2362 break;
2364 case SCSI_STATUS_BUSY:
2365 debug(1, "SCSI_STATUS_BUSY");
2366 csio->ccb_h.status = CAM_SCSI_BUSY;
2367 break;
2369 default:
2370 debug(1, "unknown status 0x%x", csio->scsi_status);
2371 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2372 break;
2375 crit_enter();
2376 if (sc->mly_qfrzn_cnt) {
2377 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2378 sc->mly_qfrzn_cnt--;
2380 crit_exit();
2382 xpt_done((union ccb *)csio);
2383 mly_release_command(mc);
2386 /********************************************************************************
2387 * Find a peripheral attahed at (bus),(target)
2389 static struct cam_periph *
2390 mly_find_periph(struct mly_softc *sc, int bus, int target)
2392 struct cam_periph *periph;
2393 struct cam_path *path;
2394 int status;
2396 status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2397 if (status == CAM_REQ_CMP) {
2398 periph = cam_periph_find(path, NULL);
2399 xpt_free_path(path);
2400 } else {
2401 periph = NULL;
2403 return(periph);
2406 /********************************************************************************
2407 * Name the device at (bus)(target)
2409 static int
2410 mly_name_device(struct mly_softc *sc, int bus, int target)
2412 struct cam_periph *periph;
2414 if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2415 ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2416 return(0);
2418 sc->mly_btl[bus][target].mb_name[0] = 0;
2419 return(ENOENT);
2422 /********************************************************************************
2423 ********************************************************************************
2424 Hardware Control
2425 ********************************************************************************
2426 ********************************************************************************/
2428 /********************************************************************************
2429 * Handshake with the firmware while the card is being initialised.
2431 static int
2432 mly_fwhandshake(struct mly_softc *sc)
2434 u_int8_t error, param0, param1;
2435 int spinup = 0;
2437 debug_called(1);
2439 /* set HM_STSACK and let the firmware initialise */
2440 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2441 DELAY(1000); /* too short? */
2443 /* if HM_STSACK is still true, the controller is initialising */
2444 if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2445 return(0);
2446 mly_printf(sc, "controller initialisation started\n");
2448 /* spin waiting for initialisation to finish, or for a message to be delivered */
2449 while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2450 /* check for a message */
2451 if (MLY_ERROR_VALID(sc)) {
2452 error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2453 param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2454 param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2456 switch(error) {
2457 case MLY_MSG_SPINUP:
2458 if (!spinup) {
2459 mly_printf(sc, "drive spinup in progress\n");
2460 spinup = 1; /* only print this once (should print drive being spun?) */
2462 break;
2463 case MLY_MSG_RACE_RECOVERY_FAIL:
2464 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2465 break;
2466 case MLY_MSG_RACE_IN_PROGRESS:
2467 mly_printf(sc, "mirror race recovery in progress\n");
2468 break;
2469 case MLY_MSG_RACE_ON_CRITICAL:
2470 mly_printf(sc, "mirror race recovery on a critical drive\n");
2471 break;
2472 case MLY_MSG_PARITY_ERROR:
2473 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2474 return(ENXIO);
2475 default:
2476 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2480 return(0);
2483 /********************************************************************************
2484 ********************************************************************************
2485 Debugging and Diagnostics
2486 ********************************************************************************
2487 ********************************************************************************/
2489 /********************************************************************************
2490 * Print some information about the controller.
2492 static void
2493 mly_describe_controller(struct mly_softc *sc)
2495 struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
2497 mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2498 mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2499 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
2500 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2501 mi->memory_size);
2503 if (bootverbose) {
2504 mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2505 mly_describe_code(mly_table_oemname, mi->oem_information),
2506 mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2507 mi->interface_speed, mi->interface_width, mi->interface_name);
2508 mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2509 mi->memory_size, mi->memory_speed, mi->memory_width,
2510 mly_describe_code(mly_table_memorytype, mi->memory_type),
2511 mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2512 mi->cache_size);
2513 mly_printf(sc, "CPU: %s @ %dMHZ\n",
2514 mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2515 if (mi->l2cache_size != 0)
2516 mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2517 if (mi->exmemory_size != 0)
2518 mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2519 mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2520 mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2521 mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2522 mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2523 mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2524 mi->maximum_block_count, mi->maximum_sg_entries);
2525 mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2526 mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2527 mly_printf(sc, "physical devices present %d\n",
2528 mi->physical_devices_present);
2529 mly_printf(sc, "physical disks present/offline %d/%d\n",
2530 mi->physical_disks_present, mi->physical_disks_offline);
2531 mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2532 mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2533 mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2534 mi->virtual_channels_possible);
2535 mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2536 mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2537 mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2541 #ifdef MLY_DEBUG
2542 /********************************************************************************
2543 * Print some controller state
2545 static void
2546 mly_printstate(struct mly_softc *sc)
2548 mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
2549 MLY_GET_REG(sc, sc->mly_idbr),
2550 MLY_GET_REG(sc, sc->mly_odbr),
2551 MLY_GET_REG(sc, sc->mly_error_status),
2552 sc->mly_idbr,
2553 sc->mly_odbr,
2554 sc->mly_error_status);
2555 mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
2556 MLY_GET_REG(sc, sc->mly_interrupt_mask),
2557 MLY_GET_REG(sc, sc->mly_interrupt_status));
2558 mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2559 MLY_GET_REG(sc, sc->mly_command_mailbox),
2560 MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2561 MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2562 MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2563 MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2564 MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2565 MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2566 MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2567 mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
2568 MLY_GET_REG(sc, sc->mly_status_mailbox),
2569 MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2570 MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2571 MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2572 MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2573 MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2574 MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2575 MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2576 mly_printf(sc, " %04x %08x\n",
2577 MLY_GET_REG2(sc, sc->mly_status_mailbox),
2578 MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2581 struct mly_softc *mly_softc0 = NULL;
2582 void
2583 mly_printstate0(void)
2585 if (mly_softc0 != NULL)
2586 mly_printstate(mly_softc0);
2589 /********************************************************************************
2590 * Print a command
2592 static void
2593 mly_print_command(struct mly_command *mc)
2595 struct mly_softc *sc = mc->mc_sc;
2597 mly_printf(sc, "COMMAND @ %p\n", mc);
2598 mly_printf(sc, " slot %d\n", mc->mc_slot);
2599 mly_printf(sc, " status 0x%x\n", mc->mc_status);
2600 mly_printf(sc, " sense len %d\n", mc->mc_sense);
2601 mly_printf(sc, " resid %d\n", mc->mc_resid);
2602 mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2603 if (mc->mc_packet != NULL)
2604 mly_print_packet(mc);
2605 mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
2606 mly_printf(sc, " flags %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2607 mly_printf(sc, " complete %p\n", mc->mc_complete);
2608 mly_printf(sc, " private %p\n", mc->mc_private);
2611 /********************************************************************************
2612 * Print a command packet
2614 static void
2615 mly_print_packet(struct mly_command *mc)
2617 struct mly_softc *sc = mc->mc_sc;
2618 struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
2619 struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
2620 struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
2621 struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
2622 int transfer;
2624 mly_printf(sc, " command_id %d\n", ge->command_id);
2625 mly_printf(sc, " opcode %d\n", ge->opcode);
2626 mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
2627 ge->command_control.force_unit_access,
2628 ge->command_control.disable_page_out,
2629 ge->command_control.extended_sg_table,
2630 (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2631 ge->command_control.no_auto_sense,
2632 ge->command_control.disable_disconnect);
2633 mly_printf(sc, " data_size %d\n", ge->data_size);
2634 mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2635 mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
2636 mly_printf(sc, " target %d\n", ge->addr.phys.target);
2637 mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
2638 mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
2639 mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
2640 mly_printf(sc, " timeout %d %s\n",
2641 ge->timeout.value,
2642 (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2643 ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2644 mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
2645 switch(ge->opcode) {
2646 case MDACMD_SCSIPT:
2647 case MDACMD_SCSI:
2648 mly_printf(sc, " cdb length %d\n", ss->cdb_length);
2649 mly_printf(sc, " cdb %*D\n", ss->cdb_length, ss->cdb, " ");
2650 transfer = 1;
2651 break;
2652 case MDACMD_SCSILC:
2653 case MDACMD_SCSILCPT:
2654 mly_printf(sc, " cdb length %d\n", sl->cdb_length);
2655 mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
2656 transfer = 1;
2657 break;
2658 case MDACMD_IOCTL:
2659 mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
2660 switch(io->sub_ioctl) {
2661 case MDACIOCTL_SETMEMORYMAILBOX:
2662 mly_printf(sc, " health_buffer_size %d\n",
2663 io->param.setmemorymailbox.health_buffer_size);
2664 mly_printf(sc, " health_buffer_phys 0x%llx\n",
2665 io->param.setmemorymailbox.health_buffer_physaddr);
2666 mly_printf(sc, " command_mailbox 0x%llx\n",
2667 io->param.setmemorymailbox.command_mailbox_physaddr);
2668 mly_printf(sc, " status_mailbox 0x%llx\n",
2669 io->param.setmemorymailbox.status_mailbox_physaddr);
2670 transfer = 0;
2671 break;
2673 case MDACIOCTL_SETREALTIMECLOCK:
2674 case MDACIOCTL_GETHEALTHSTATUS:
2675 case MDACIOCTL_GETCONTROLLERINFO:
2676 case MDACIOCTL_GETLOGDEVINFOVALID:
2677 case MDACIOCTL_GETPHYSDEVINFOVALID:
2678 case MDACIOCTL_GETPHYSDEVSTATISTICS:
2679 case MDACIOCTL_GETLOGDEVSTATISTICS:
2680 case MDACIOCTL_GETCONTROLLERSTATISTICS:
2681 case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2682 case MDACIOCTL_CREATENEWCONF:
2683 case MDACIOCTL_ADDNEWCONF:
2684 case MDACIOCTL_GETDEVCONFINFO:
2685 case MDACIOCTL_GETFREESPACELIST:
2686 case MDACIOCTL_MORE:
2687 case MDACIOCTL_SETPHYSDEVPARAMETER:
2688 case MDACIOCTL_GETPHYSDEVPARAMETER:
2689 case MDACIOCTL_GETLOGDEVPARAMETER:
2690 case MDACIOCTL_SETLOGDEVPARAMETER:
2691 mly_printf(sc, " param %10D\n", io->param.data.param, " ");
2692 transfer = 1;
2693 break;
2695 case MDACIOCTL_GETEVENT:
2696 mly_printf(sc, " event %d\n",
2697 io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2698 transfer = 1;
2699 break;
2701 case MDACIOCTL_SETRAIDDEVSTATE:
2702 mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
2703 transfer = 0;
2704 break;
2706 case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2707 mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2708 mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
2709 mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
2710 mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
2711 mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
2712 transfer = 0;
2713 break;
2715 case MDACIOCTL_GETGROUPCONFINFO:
2716 mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
2717 transfer = 1;
2718 break;
2720 case MDACIOCTL_GET_SUBSYSTEM_DATA:
2721 case MDACIOCTL_SET_SUBSYSTEM_DATA:
2722 case MDACIOCTL_STARTDISOCVERY:
2723 case MDACIOCTL_INITPHYSDEVSTART:
2724 case MDACIOCTL_INITPHYSDEVSTOP:
2725 case MDACIOCTL_INITRAIDDEVSTART:
2726 case MDACIOCTL_INITRAIDDEVSTOP:
2727 case MDACIOCTL_REBUILDRAIDDEVSTART:
2728 case MDACIOCTL_REBUILDRAIDDEVSTOP:
2729 case MDACIOCTL_MAKECONSISTENTDATASTART:
2730 case MDACIOCTL_MAKECONSISTENTDATASTOP:
2731 case MDACIOCTL_CONSISTENCYCHECKSTART:
2732 case MDACIOCTL_CONSISTENCYCHECKSTOP:
2733 case MDACIOCTL_RESETDEVICE:
2734 case MDACIOCTL_FLUSHDEVICEDATA:
2735 case MDACIOCTL_PAUSEDEVICE:
2736 case MDACIOCTL_UNPAUSEDEVICE:
2737 case MDACIOCTL_LOCATEDEVICE:
2738 case MDACIOCTL_SETMASTERSLAVEMODE:
2739 case MDACIOCTL_DELETERAIDDEV:
2740 case MDACIOCTL_REPLACEINTERNALDEV:
2741 case MDACIOCTL_CLEARCONF:
2742 case MDACIOCTL_GETCONTROLLERPARAMETER:
2743 case MDACIOCTL_SETCONTRLLERPARAMETER:
2744 case MDACIOCTL_CLEARCONFSUSPMODE:
2745 case MDACIOCTL_STOREIMAGE:
2746 case MDACIOCTL_READIMAGE:
2747 case MDACIOCTL_FLASHIMAGES:
2748 case MDACIOCTL_RENAMERAIDDEV:
2749 default: /* no idea what to print */
2750 transfer = 0;
2751 break;
2753 break;
2755 case MDACMD_IOCTLCHECK:
2756 case MDACMD_MEMCOPY:
2757 default:
2758 transfer = 0;
2759 break; /* print nothing */
2761 if (transfer) {
2762 if (ge->command_control.extended_sg_table) {
2763 mly_printf(sc, " sg table 0x%llx/%d\n",
2764 ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2765 } else {
2766 mly_printf(sc, " 0000 0x%llx/%lld\n",
2767 ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2768 mly_printf(sc, " 0001 0x%llx/%lld\n",
2769 ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2774 /********************************************************************************
2775 * Panic in a slightly informative fashion
2777 static void
2778 mly_panic(struct mly_softc *sc, char *reason)
2780 mly_printstate(sc);
2781 panic(reason);
2784 /********************************************************************************
2785 * Print queue statistics, callable from DDB.
2787 void
2788 mly_print_controller(int controller)
2790 struct mly_softc *sc;
2792 if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2793 kprintf("mly: controller %d invalid\n", controller);
2794 } else {
2795 device_printf(sc->mly_dev, "queue curr max\n");
2796 device_printf(sc->mly_dev, "free %04d/%04d\n",
2797 sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2798 device_printf(sc->mly_dev, "busy %04d/%04d\n",
2799 sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2800 device_printf(sc->mly_dev, "complete %04d/%04d\n",
2801 sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2804 #endif
2807 /********************************************************************************
2808 ********************************************************************************
2809 Control device interface
2810 ********************************************************************************
2811 ********************************************************************************/
2813 /********************************************************************************
2814 * Accept an open operation on the control device.
2816 static int
2817 mly_user_open(struct dev_open_args *ap)
2819 cdev_t dev = ap->a_head.a_dev;
2820 int unit = minor(dev);
2821 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2823 sc->mly_state |= MLY_STATE_OPEN;
2824 return(0);
2827 /********************************************************************************
2828 * Accept the last close on the control device.
2830 static int
2831 mly_user_close(struct dev_close_args *ap)
2833 cdev_t dev = ap->a_head.a_dev;
2834 int unit = minor(dev);
2835 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2837 sc->mly_state &= ~MLY_STATE_OPEN;
2838 return (0);
2841 /********************************************************************************
2842 * Handle controller-specific control operations.
2844 static int
2845 mly_user_ioctl(struct dev_ioctl_args *ap)
2847 cdev_t dev = ap->a_head.a_dev;
2848 struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
2849 struct mly_user_command *uc = (struct mly_user_command *)ap->a_data;
2850 struct mly_user_health *uh = (struct mly_user_health *)ap->a_data;
2852 switch(ap->a_cmd) {
2853 case MLYIO_COMMAND:
2854 return(mly_user_command(sc, uc));
2855 case MLYIO_HEALTH:
2856 return(mly_user_health(sc, uh));
2857 default:
2858 return(ENOIOCTL);
2862 /********************************************************************************
2863 * Execute a command passed in from userspace.
2865 * The control structure contains the actual command for the controller, as well
2866 * as the user-space data pointer and data size, and an optional sense buffer
2867 * size/pointer. On completion, the data size is adjusted to the command
2868 * residual, and the sense buffer size to the size of the returned sense data.
2871 static int
2872 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2874 struct mly_command *mc;
2875 int error;
2877 /* allocate a command */
2878 if (mly_alloc_command(sc, &mc)) {
2879 error = ENOMEM;
2880 goto out; /* XXX Linux version will wait for a command */
2883 /* handle data size/direction */
2884 mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2885 if (mc->mc_length > 0)
2886 mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2887 if (uc->DataTransferLength > 0) {
2888 mc->mc_flags |= MLY_CMD_DATAIN;
2889 bzero(mc->mc_data, mc->mc_length);
2891 if (uc->DataTransferLength < 0) {
2892 mc->mc_flags |= MLY_CMD_DATAOUT;
2893 if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2894 goto out;
2897 /* copy the controller command */
2898 bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2900 /* clear command completion handler so that we get woken up */
2901 mc->mc_complete = NULL;
2903 /* execute the command */
2904 if ((error = mly_start(mc)) != 0)
2905 goto out;
2906 crit_enter();
2907 while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2908 tsleep(mc, 0, "mlyioctl", 0);
2909 crit_exit();
2911 /* return the data to userspace */
2912 if (uc->DataTransferLength > 0)
2913 if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2914 goto out;
2916 /* return the sense buffer to userspace */
2917 if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2918 if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2919 min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2920 goto out;
2923 /* return command results to userspace (caller will copy out) */
2924 uc->DataTransferLength = mc->mc_resid;
2925 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2926 uc->CommandStatus = mc->mc_status;
2927 error = 0;
2929 out:
2930 if (mc->mc_data != NULL)
2931 kfree(mc->mc_data, M_DEVBUF);
2932 if (mc != NULL)
2933 mly_release_command(mc);
2934 return(error);
2937 /********************************************************************************
2938 * Return health status to userspace. If the health change index in the user
2939 * structure does not match that currently exported by the controller, we
2940 * return the current status immediately. Otherwise, we block until either
2941 * interrupted or new status is delivered.
2943 static int
2944 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2946 struct mly_health_status mh;
2947 int error;
2949 /* fetch the current health status from userspace */
2950 if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2951 return(error);
2953 /* spin waiting for a status update */
2954 crit_enter();
2955 error = EWOULDBLOCK;
2956 while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2957 error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2958 crit_exit();
2960 /* copy the controller's health status buffer out (there is a race here if it changes again) */
2961 error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2962 sizeof(uh->HealthStatusBuffer));
2963 return(error);
2966 static int
2967 mly_timeout(struct mly_softc *sc)
2969 struct mly_command *mc;
2970 int deadline;
2972 deadline = time_second - MLY_CMD_TIMEOUT;
2973 TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2974 if ((mc->mc_timestamp < deadline)) {
2975 device_printf(sc->mly_dev,
2976 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2977 (int)(time_second - mc->mc_timestamp));
2981 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2982 (timeout_t *)mly_timeout, sc);
2984 return (0);