ifconfig(8): Fix IPv6 CIDR parsing error for wgaip (wg allowed-ip)
[dragonfly.git] / sys / dev / raid / mly / mly.c
blobead19fd79f438cc6d90db18fb28b5cbf35e685a7
1 /*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/mly/mly.c,v 1.50 2010/01/28 08:41:30 mav Exp $
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/ctype.h>
38 #include <sys/stat.h>
39 #include <sys/rman.h>
40 #include <sys/thread2.h>
42 #include <bus/cam/cam.h>
43 #include <bus/cam/cam_ccb.h>
44 #include <bus/cam/cam_periph.h>
45 #include <bus/cam/cam_sim.h>
46 #include <bus/cam/cam_xpt_periph.h>
47 #include <bus/cam/cam_xpt_sim.h>
48 #include <bus/cam/scsi/scsi_all.h>
49 #include <bus/cam/scsi/scsi_message.h>
51 #include <bus/pci/pcireg.h>
52 #include <bus/pci/pcivar.h>
54 #include <dev/raid/mly/mlyreg.h>
55 #include <dev/raid/mly/mlyio.h>
56 #include <dev/raid/mly/mlyvar.h>
57 #include <dev/raid/mly/mly_tables.h>
59 static int mly_probe(device_t dev);
60 static int mly_attach(device_t dev);
61 static int mly_pci_attach(struct mly_softc *sc);
62 static int mly_detach(device_t dev);
63 static int mly_shutdown(device_t dev);
64 static void mly_intr(void *arg);
66 static int mly_sg_map(struct mly_softc *sc);
67 static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
68 static int mly_mmbox_map(struct mly_softc *sc);
69 static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
70 static void mly_free(struct mly_softc *sc);
72 static int mly_get_controllerinfo(struct mly_softc *sc);
73 static void mly_scan_devices(struct mly_softc *sc);
74 static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
75 static void mly_complete_rescan(struct mly_command *mc);
76 static int mly_get_eventstatus(struct mly_softc *sc);
77 static int mly_enable_mmbox(struct mly_softc *sc);
78 static int mly_flush(struct mly_softc *sc);
79 static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
80 size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
81 static void mly_check_event(struct mly_softc *sc);
82 static void mly_fetch_event(struct mly_softc *sc);
83 static void mly_complete_event(struct mly_command *mc);
84 static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
85 static void mly_periodic(void *data);
87 static int mly_immediate_command(struct mly_command *mc);
88 static int mly_start(struct mly_command *mc);
89 static void mly_done(struct mly_softc *sc);
90 static void mly_complete(void *context, int pending);
92 static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
93 static void mly_release_command(struct mly_command *mc);
94 static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
95 static int mly_alloc_commands(struct mly_softc *sc);
96 static void mly_release_commands(struct mly_softc *sc);
97 static void mly_map_command(struct mly_command *mc);
98 static void mly_unmap_command(struct mly_command *mc);
100 static int mly_cam_attach(struct mly_softc *sc);
101 static void mly_cam_detach(struct mly_softc *sc);
102 static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
103 static void mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
104 static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105 static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106 static void mly_cam_poll(struct cam_sim *sim);
107 static void mly_cam_complete(struct mly_command *mc);
108 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109 static int mly_name_device(struct mly_softc *sc, int bus, int target);
111 static int mly_fwhandshake(struct mly_softc *sc);
113 static void mly_describe_controller(struct mly_softc *sc);
114 #ifdef MLY_DEBUG
115 static void mly_printstate(struct mly_softc *sc);
116 static void mly_print_command(struct mly_command *mc);
117 static void mly_print_packet(struct mly_command *mc);
118 static void mly_panic(struct mly_softc *sc, char *reason);
119 static int mly_timeout(struct mly_softc *sc);
120 #endif
121 void mly_print_controller(int controller);
124 static d_open_t mly_user_open;
125 static d_close_t mly_user_close;
126 static d_ioctl_t mly_user_ioctl;
127 static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128 static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
130 #define MLY_CMD_TIMEOUT 20
132 static device_method_t mly_methods[] = {
133 /* Device interface */
134 DEVMETHOD(device_probe, mly_probe),
135 DEVMETHOD(device_attach, mly_attach),
136 DEVMETHOD(device_detach, mly_detach),
137 DEVMETHOD(device_shutdown, mly_shutdown),
138 DEVMETHOD_END
141 static driver_t mly_pci_driver = {
142 "mly",
143 mly_methods,
144 sizeof(struct mly_softc)
147 static devclass_t mly_devclass;
148 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, NULL, NULL);
149 MODULE_DEPEND(mly, pci, 1, 1, 1);
150 MODULE_DEPEND(mly, cam, 1, 1, 1);
152 static struct dev_ops mly_ops = {
153 { "mly", 0, 0 },
154 .d_open = mly_user_open,
155 .d_close = mly_user_close,
156 .d_ioctl = mly_user_ioctl,
159 /********************************************************************************
160 ********************************************************************************
161 Device Interface
162 ********************************************************************************
163 ********************************************************************************/
165 static struct mly_ident
167 u_int16_t vendor;
168 u_int16_t device;
169 u_int16_t subvendor;
170 u_int16_t subdevice;
171 int hwif;
172 char *desc;
173 } mly_identifiers[] = {
174 {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
175 {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
176 {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
177 {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
178 {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
179 {0, 0, 0, 0, 0, 0}
182 /********************************************************************************
183 * Compare the provided PCI device with the list we support.
185 static int
186 mly_probe(device_t dev)
188 struct mly_ident *m;
190 debug_called(1);
192 for (m = mly_identifiers; m->vendor != 0; m++) {
193 if ((m->vendor == pci_get_vendor(dev)) &&
194 (m->device == pci_get_device(dev)) &&
195 ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
196 (m->subdevice == pci_get_subdevice(dev))))) {
198 device_set_desc(dev, m->desc);
199 return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
202 return(ENXIO);
205 /********************************************************************************
206 * Initialise the controller and softc
208 static int
209 mly_attach(device_t dev)
211 struct mly_softc *sc = device_get_softc(dev);
212 int error;
214 debug_called(1);
216 sc->mly_dev = dev;
218 #ifdef MLY_DEBUG
219 if (device_get_unit(sc->mly_dev) == 0)
220 mly_softc0 = sc;
221 #endif
224 * Do PCI-specific initialisation.
226 if ((error = mly_pci_attach(sc)) != 0)
227 goto out;
229 callout_init(&sc->mly_periodic);
230 callout_init(&sc->mly_timeout);
233 * Initialise per-controller queues.
235 mly_initq_free(sc);
236 mly_initq_busy(sc);
237 mly_initq_complete(sc);
240 * Initialise command-completion task.
242 TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
244 /* disable interrupts before we start talking to the controller */
245 MLY_MASK_INTERRUPTS(sc);
248 * Wait for the controller to come ready, handshake with the firmware if required.
249 * This is typically only necessary on platforms where the controller BIOS does not
250 * run.
252 if ((error = mly_fwhandshake(sc)))
253 goto out;
256 * Allocate initial command buffers.
258 if ((error = mly_alloc_commands(sc)))
259 goto out;
262 * Obtain controller feature information
264 if ((error = mly_get_controllerinfo(sc)))
265 goto out;
268 * Reallocate command buffers now we know how many we want.
270 mly_release_commands(sc);
271 if ((error = mly_alloc_commands(sc)))
272 goto out;
275 * Get the current event counter for health purposes, populate the initial
276 * health status buffer.
278 if ((error = mly_get_eventstatus(sc)))
279 goto out;
282 * Enable memory-mailbox mode.
284 if ((error = mly_enable_mmbox(sc)))
285 goto out;
288 * Attach to CAM.
290 if ((error = mly_cam_attach(sc)))
291 goto out;
294 * Print a little information about the controller
296 mly_describe_controller(sc);
299 * Mark all attached devices for rescan.
301 mly_scan_devices(sc);
304 * Instigate the first status poll immediately. Rescan completions won't
305 * happen until interrupts are enabled, which should still be before
306 * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
308 mly_periodic(sc);
311 * Create the control device.
313 sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
314 UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
315 "mly%d", device_get_unit(sc->mly_dev));
316 sc->mly_dev_t->si_drv1 = sc;
318 /* enable interrupts now */
319 MLY_UNMASK_INTERRUPTS(sc);
321 #ifdef MLY_DEBUG
322 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
323 (timeout_t *)mly_timeout, sc);
324 #endif
326 out:
327 if (error != 0)
328 mly_free(sc);
329 return(error);
332 /********************************************************************************
333 * Perform PCI-specific initialisation.
335 static int
336 mly_pci_attach(struct mly_softc *sc)
338 int i, error;
339 u_int32_t command;
341 debug_called(1);
343 /* assume failure is 'not configured' */
344 error = ENXIO;
347 * Verify that the adapter is correctly set up in PCI space.
349 * XXX we shouldn't do this; the PCI code should.
351 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
352 command |= PCIM_CMD_BUSMASTEREN;
353 pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
354 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
355 if (!(command & PCIM_CMD_BUSMASTEREN)) {
356 mly_printf(sc, "can't enable busmaster feature\n");
357 goto fail;
359 if ((command & PCIM_CMD_MEMEN) == 0) {
360 mly_printf(sc, "memory window not available\n");
361 goto fail;
365 * Allocate the PCI register window.
367 sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
368 if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
369 SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
370 mly_printf(sc, "can't allocate register window\n");
371 goto fail;
373 sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
374 sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
377 * Allocate and connect our interrupt.
379 sc->mly_irq_rid = 0;
380 if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
381 &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
382 mly_printf(sc, "can't allocate interrupt\n");
383 goto fail;
385 error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
386 mly_intr, sc, &sc->mly_intr, NULL);
387 if (error) {
388 mly_printf(sc, "can't set up interrupt\n");
389 goto fail;
392 /* assume failure is 'out of memory' */
393 error = ENOMEM;
396 * Allocate the parent bus DMA tag appropriate for our PCI interface.
398 * Note that all of these controllers are 64-bit capable.
400 if (bus_dma_tag_create(NULL, /* parent */
401 1, 0, /* alignment, boundary */
402 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
403 BUS_SPACE_MAXADDR, /* highaddr */
404 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
405 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
406 BUS_DMA_ALLOCNOW, /* flags */
407 &sc->mly_parent_dmat)) {
408 mly_printf(sc, "can't allocate parent DMA tag\n");
409 goto fail;
413 * Create DMA tag for mapping buffers into controller-addressable space.
415 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
416 1, 0, /* alignment, boundary */
417 BUS_SPACE_MAXADDR, /* lowaddr */
418 BUS_SPACE_MAXADDR, /* highaddr */
419 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
420 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
421 0, /* flags */
422 &sc->mly_buffer_dmat)) {
423 mly_printf(sc, "can't allocate buffer DMA tag\n");
424 goto fail;
428 * Initialise the DMA tag for command packets.
430 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
431 1, 0, /* alignment, boundary */
432 BUS_SPACE_MAXADDR, /* lowaddr */
433 BUS_SPACE_MAXADDR, /* highaddr */
434 sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
435 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
436 BUS_DMA_ALLOCNOW, /* flags */
437 &sc->mly_packet_dmat)) {
438 mly_printf(sc, "can't allocate command packet DMA tag\n");
439 goto fail;
443 * Detect the hardware interface version
445 for (i = 0; mly_identifiers[i].vendor != 0; i++) {
446 if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
447 (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
448 sc->mly_hwif = mly_identifiers[i].hwif;
449 switch(sc->mly_hwif) {
450 case MLY_HWIF_I960RX:
451 debug(1, "set hardware up for i960RX");
452 sc->mly_doorbell_true = 0x00;
453 sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
454 sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
455 sc->mly_idbr = MLY_I960RX_IDBR;
456 sc->mly_odbr = MLY_I960RX_ODBR;
457 sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
458 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
459 sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
460 break;
461 case MLY_HWIF_STRONGARM:
462 debug(1, "set hardware up for StrongARM");
463 sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
464 sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
465 sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
466 sc->mly_idbr = MLY_STRONGARM_IDBR;
467 sc->mly_odbr = MLY_STRONGARM_ODBR;
468 sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
469 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
470 sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
471 break;
473 break;
478 * Create the scatter/gather mappings.
480 if ((error = mly_sg_map(sc)))
481 goto fail;
484 * Allocate and map the memory mailbox
486 if ((error = mly_mmbox_map(sc)))
487 goto fail;
489 error = 0;
491 fail:
492 return(error);
495 /********************************************************************************
496 * Shut the controller down and detach all our resources.
498 static int
499 mly_detach(device_t dev)
501 int error;
503 if ((error = mly_shutdown(dev)) != 0)
504 return(error);
506 mly_free(device_get_softc(dev));
507 return(0);
510 /********************************************************************************
511 * Bring the controller to a state where it can be safely left alone.
513 * Note that it should not be necessary to wait for any outstanding commands,
514 * as they should be completed prior to calling here.
516 * XXX this applies for I/O, but not status polls; we should beware of
517 * the case where a status command is running while we detach.
519 static int
520 mly_shutdown(device_t dev)
522 struct mly_softc *sc = device_get_softc(dev);
524 debug_called(1);
526 if (sc->mly_state & MLY_STATE_OPEN)
527 return(EBUSY);
529 /* kill the periodic event */
530 callout_stop(&sc->mly_periodic);
532 /* flush controller */
533 mly_printf(sc, "flushing cache...");
534 kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
536 MLY_MASK_INTERRUPTS(sc);
538 return(0);
541 /*******************************************************************************
542 * Take an interrupt, or be poked by other code to look for interrupt-worthy
543 * status.
545 static void
546 mly_intr(void *arg)
548 struct mly_softc *sc = (struct mly_softc *)arg;
550 debug_called(2);
552 mly_done(sc);
555 /********************************************************************************
556 ********************************************************************************
557 Bus-dependant Resource Management
558 ********************************************************************************
559 ********************************************************************************/
561 /********************************************************************************
562 * Allocate memory for the scatter/gather tables
564 static int
565 mly_sg_map(struct mly_softc *sc)
567 size_t segsize;
569 debug_called(1);
572 * Create a single tag describing a region large enough to hold all of
573 * the s/g lists we will need.
575 segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
576 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
577 1, 0, /* alignment,boundary */
578 BUS_SPACE_MAXADDR, /* lowaddr */
579 BUS_SPACE_MAXADDR, /* highaddr */
580 segsize, 1, /* maxsize, nsegments */
581 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
582 BUS_DMA_ALLOCNOW, /* flags */
583 &sc->mly_sg_dmat)) {
584 mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
585 return(ENOMEM);
589 * Allocate enough s/g maps for all commands and permanently map them into
590 * controller-visible space.
592 * XXX this assumes we can get enough space for all the s/g maps in one
593 * contiguous slab.
595 if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
596 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
597 mly_printf(sc, "can't allocate s/g table\n");
598 return(ENOMEM);
600 if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
601 segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
602 return (ENOMEM);
603 return(0);
606 /********************************************************************************
607 * Save the physical address of the base of the s/g table.
609 static void
610 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
612 struct mly_softc *sc = (struct mly_softc *)arg;
614 debug_called(1);
616 /* save base of s/g table's address in bus space */
617 sc->mly_sg_busaddr = segs->ds_addr;
620 /********************************************************************************
621 * Allocate memory for the memory-mailbox interface
623 static int
624 mly_mmbox_map(struct mly_softc *sc)
628 * Create a DMA tag for a single contiguous region large enough for the
629 * memory mailbox structure.
631 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
632 1, 0, /* alignment,boundary */
633 BUS_SPACE_MAXADDR, /* lowaddr */
634 BUS_SPACE_MAXADDR, /* highaddr */
635 sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
636 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
637 BUS_DMA_ALLOCNOW, /* flags */
638 &sc->mly_mmbox_dmat)) {
639 mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
640 return(ENOMEM);
644 * Allocate the buffer
646 if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
647 mly_printf(sc, "can't allocate memory mailbox\n");
648 return(ENOMEM);
650 if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
651 sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
652 BUS_DMA_NOWAIT) != 0)
653 return (ENOMEM);
654 bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
655 return(0);
659 /********************************************************************************
660 * Save the physical address of the memory mailbox
662 static void
663 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
665 struct mly_softc *sc = (struct mly_softc *)arg;
667 debug_called(1);
669 sc->mly_mmbox_busaddr = segs->ds_addr;
672 /********************************************************************************
673 * Free all of the resources associated with (sc)
675 * Should not be called if the controller is active.
677 static void
678 mly_free(struct mly_softc *sc)
681 debug_called(1);
683 /* Remove the management device */
684 destroy_dev(sc->mly_dev_t);
686 /* detach from CAM */
687 mly_cam_detach(sc);
689 /* release command memory */
690 mly_release_commands(sc);
692 /* throw away the controllerinfo structure */
693 if (sc->mly_controllerinfo != NULL)
694 kfree(sc->mly_controllerinfo, M_DEVBUF);
696 /* throw away the controllerparam structure */
697 if (sc->mly_controllerparam != NULL)
698 kfree(sc->mly_controllerparam, M_DEVBUF);
700 /* destroy data-transfer DMA tag */
701 if (sc->mly_buffer_dmat)
702 bus_dma_tag_destroy(sc->mly_buffer_dmat);
704 /* free and destroy DMA memory and tag for s/g lists */
705 if (sc->mly_sg_table) {
706 bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
707 bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
709 if (sc->mly_sg_dmat)
710 bus_dma_tag_destroy(sc->mly_sg_dmat);
712 /* free and destroy DMA memory and tag for memory mailbox */
713 if (sc->mly_mmbox) {
714 bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
715 bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
717 if (sc->mly_mmbox_dmat)
718 bus_dma_tag_destroy(sc->mly_mmbox_dmat);
720 /* disconnect the interrupt handler */
721 if (sc->mly_intr)
722 bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
723 if (sc->mly_irq != NULL)
724 bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
726 /* destroy the parent DMA tag */
727 if (sc->mly_parent_dmat)
728 bus_dma_tag_destroy(sc->mly_parent_dmat);
730 /* release the register window mapping */
731 if (sc->mly_regs_resource != NULL)
732 bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
735 /********************************************************************************
736 ********************************************************************************
737 Command Wrappers
738 ********************************************************************************
739 ********************************************************************************/
741 /********************************************************************************
742 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
744 static int
745 mly_get_controllerinfo(struct mly_softc *sc)
747 struct mly_command_ioctl mci;
748 u_int8_t status;
749 int error;
751 debug_called(1);
753 if (sc->mly_controllerinfo != NULL)
754 kfree(sc->mly_controllerinfo, M_DEVBUF);
756 /* build the getcontrollerinfo ioctl and send it */
757 bzero(&mci, sizeof(mci));
758 sc->mly_controllerinfo = NULL;
759 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
760 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
761 &status, NULL, NULL)))
762 return(error);
763 if (status != 0)
764 return(EIO);
766 if (sc->mly_controllerparam != NULL)
767 kfree(sc->mly_controllerparam, M_DEVBUF);
769 /* build the getcontrollerparameter ioctl and send it */
770 bzero(&mci, sizeof(mci));
771 sc->mly_controllerparam = NULL;
772 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
773 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
774 &status, NULL, NULL)))
775 return(error);
776 if (status != 0)
777 return(EIO);
779 return(0);
782 /********************************************************************************
783 * Schedule all possible devices for a rescan.
786 static void
787 mly_scan_devices(struct mly_softc *sc)
789 int bus, target;
791 debug_called(1);
794 * Clear any previous BTL information.
796 bzero(&sc->mly_btl, sizeof(sc->mly_btl));
799 * Mark all devices as requiring a rescan, and let the next
800 * periodic scan collect them.
802 for (bus = 0; bus < sc->mly_cam_channels; bus++)
803 if (MLY_BUS_IS_VALID(sc, bus))
804 for (target = 0; target < MLY_MAX_TARGETS; target++)
805 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
809 /********************************************************************************
810 * Rescan a device, possibly as a consequence of getting an event which suggests
811 * that it may have changed.
813 * If we suffer resource starvation, we can abandon the rescan as we'll be
814 * retried.
816 static void
817 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
819 struct mly_command *mc;
820 struct mly_command_ioctl *mci;
822 debug_called(1);
824 /* check that this bus is valid */
825 if (!MLY_BUS_IS_VALID(sc, bus))
826 return;
828 /* get a command */
829 if (mly_alloc_command(sc, &mc))
830 return;
832 /* set up the data buffer */
833 mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
834 mc->mc_flags |= MLY_CMD_DATAIN;
835 mc->mc_complete = mly_complete_rescan;
838 * Build the ioctl.
840 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
841 mci->opcode = MDACMD_IOCTL;
842 mci->addr.phys.controller = 0;
843 mci->timeout.value = 30;
844 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
845 if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
846 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
847 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
848 mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
849 debug(1, "logical device %d", mci->addr.log.logdev);
850 } else {
851 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
852 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
853 mci->addr.phys.lun = 0;
854 mci->addr.phys.target = target;
855 mci->addr.phys.channel = bus;
856 debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
860 * Dispatch the command. If we successfully send the command, clear the rescan
861 * bit.
863 if (mly_start(mc) != 0) {
864 mly_release_command(mc);
865 } else {
866 sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
870 /********************************************************************************
871 * Handle the completion of a rescan operation
873 static void
874 mly_complete_rescan(struct mly_command *mc)
876 struct mly_softc *sc = mc->mc_sc;
877 struct mly_ioctl_getlogdevinfovalid *ldi;
878 struct mly_ioctl_getphysdevinfovalid *pdi;
879 struct mly_command_ioctl *mci;
880 struct mly_btl btl, *btlp;
881 int bus, target, rescan;
883 debug_called(1);
886 * Recover the bus and target from the command. We need these even in
887 * the case where we don't have a useful response.
889 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
890 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
891 bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
892 target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
893 } else {
894 bus = mci->addr.phys.channel;
895 target = mci->addr.phys.target;
897 /* XXX validate bus/target? */
899 /* the default result is 'no device' */
900 bzero(&btl, sizeof(btl));
902 /* if the rescan completed OK, we have possibly-new BTL data */
903 if (mc->mc_status == 0) {
904 if (mc->mc_length == sizeof(*ldi)) {
905 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
906 if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
907 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
908 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
909 bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
910 MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
911 /* XXX what can we do about this? */
913 btl.mb_flags = MLY_BTL_LOGICAL;
914 btl.mb_type = ldi->raid_level;
915 btl.mb_state = ldi->state;
916 debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
917 mly_describe_code(mly_table_device_type, ldi->raid_level),
918 mly_describe_code(mly_table_device_state, ldi->state));
919 } else if (mc->mc_length == sizeof(*pdi)) {
920 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
921 if ((pdi->channel != bus) || (pdi->target != target)) {
922 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
923 bus, target, pdi->channel, pdi->target);
924 /* XXX what can we do about this? */
926 btl.mb_flags = MLY_BTL_PHYSICAL;
927 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
928 btl.mb_state = pdi->state;
929 btl.mb_speed = pdi->speed;
930 btl.mb_width = pdi->width;
931 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
932 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
933 debug(1, "BTL rescan for %d:%d returns %s", bus, target,
934 mly_describe_code(mly_table_device_state, pdi->state));
935 } else {
936 mly_printf(sc, "BTL rescan result invalid\n");
940 kfree(mc->mc_data, M_DEVBUF);
941 mly_release_command(mc);
944 * Decide whether we need to rescan the device.
946 rescan = 0;
948 /* device type changes (usually between 'nothing' and 'something') */
949 btlp = &sc->mly_btl[bus][target];
950 if (btl.mb_flags != btlp->mb_flags) {
951 debug(1, "flags changed, rescanning");
952 rescan = 1;
955 /* XXX other reasons? */
958 * Update BTL information.
960 *btlp = btl;
963 * Perform CAM rescan if required.
965 if (rescan)
966 mly_cam_rescan_btl(sc, bus, target);
969 /********************************************************************************
970 * Get the current health status and set the 'next event' counter to suit.
972 static int
973 mly_get_eventstatus(struct mly_softc *sc)
975 struct mly_command_ioctl mci;
976 struct mly_health_status *mh;
977 u_int8_t status;
978 int error;
980 /* build the gethealthstatus ioctl and send it */
981 bzero(&mci, sizeof(mci));
982 mh = NULL;
983 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
985 if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
986 return(error);
987 if (status != 0)
988 return(EIO);
990 /* get the event counter */
991 sc->mly_event_change = mh->change_counter;
992 sc->mly_event_waiting = mh->next_event;
993 sc->mly_event_counter = mh->next_event;
995 /* save the health status into the memory mailbox */
996 bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
998 debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1000 kfree(mh, M_DEVBUF);
1001 return(0);
1004 /********************************************************************************
1005 * Enable the memory mailbox mode.
1007 static int
1008 mly_enable_mmbox(struct mly_softc *sc)
1010 struct mly_command_ioctl mci;
1011 u_int8_t *sp, status;
1012 int error;
1014 debug_called(1);
1016 /* build the ioctl and send it */
1017 bzero(&mci, sizeof(mci));
1018 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1019 /* set buffer addresses */
1020 mci.param.setmemorymailbox.command_mailbox_physaddr =
1021 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1022 mci.param.setmemorymailbox.status_mailbox_physaddr =
1023 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1024 mci.param.setmemorymailbox.health_buffer_physaddr =
1025 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1027 /* set buffer sizes - abuse of data_size field is revolting */
1028 sp = (u_int8_t *)&mci.data_size;
1029 sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1030 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1031 mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1033 debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1034 mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1035 mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1036 mci.param.setmemorymailbox.health_buffer_physaddr,
1037 mci.param.setmemorymailbox.health_buffer_size);
1039 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1040 return(error);
1041 if (status != 0)
1042 return(EIO);
1043 sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1044 debug(1, "memory mailbox active");
1045 return(0);
1048 /********************************************************************************
1049 * Flush all pending I/O from the controller.
1051 static int
1052 mly_flush(struct mly_softc *sc)
1054 struct mly_command_ioctl mci;
1055 u_int8_t status;
1056 int error;
1058 debug_called(1);
1060 /* build the ioctl */
1061 bzero(&mci, sizeof(mci));
1062 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1063 mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1065 /* pass it off to the controller */
1066 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1067 return(error);
1069 return((status == 0) ? 0 : EIO);
1072 /********************************************************************************
1073 * Perform an ioctl command.
1075 * If (data) is not NULL, the command requires data transfer. If (*data) is NULL
1076 * the command requires data transfer from the controller, and we will allocate
1077 * a buffer for it. If (*data) is not NULL, the command requires data transfer
1078 * to the controller.
1080 * XXX passing in the whole ioctl structure is ugly. Better ideas?
1082 * XXX we don't even try to handle the case where datasize > 4k. We should.
1084 static int
1085 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1086 u_int8_t *status, void *sense_buffer, size_t *sense_length)
1088 struct mly_command *mc;
1089 struct mly_command_ioctl *mci;
1090 int error;
1092 debug_called(1);
1094 mc = NULL;
1095 if (mly_alloc_command(sc, &mc)) {
1096 error = ENOMEM;
1097 goto out;
1100 /* copy the ioctl structure, but save some important fields and then fixup */
1101 mci = &mc->mc_packet->ioctl;
1102 ioctl->sense_buffer_address = mci->sense_buffer_address;
1103 ioctl->maximum_sense_size = mci->maximum_sense_size;
1104 *mci = *ioctl;
1105 mci->opcode = MDACMD_IOCTL;
1106 mci->timeout.value = 30;
1107 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1109 /* handle the data buffer */
1110 if (data != NULL) {
1111 if (*data == NULL) {
1112 /* allocate data buffer */
1113 mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1114 mc->mc_flags |= MLY_CMD_DATAIN;
1115 } else {
1116 mc->mc_data = *data;
1117 mc->mc_flags |= MLY_CMD_DATAOUT;
1119 mc->mc_length = datasize;
1120 mc->mc_packet->generic.data_size = datasize;
1123 /* run the command */
1124 if ((error = mly_immediate_command(mc)))
1125 goto out;
1127 /* clean up and return any data */
1128 *status = mc->mc_status;
1129 if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1130 bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1131 *sense_length = mc->mc_sense;
1132 goto out;
1135 /* should we return a data pointer? */
1136 if ((data != NULL) && (*data == NULL))
1137 *data = mc->mc_data;
1139 /* command completed OK */
1140 error = 0;
1142 out:
1143 if (mc != NULL) {
1144 /* do we need to free a data buffer we allocated? */
1145 if (error && (mc->mc_data != NULL) && (*data == NULL))
1146 kfree(mc->mc_data, M_DEVBUF);
1147 mly_release_command(mc);
1149 return(error);
1152 /********************************************************************************
1153 * Check for event(s) outstanding in the controller.
1155 static void
1156 mly_check_event(struct mly_softc *sc)
1160 * The controller may have updated the health status information,
1161 * so check for it here. Note that the counters are all in host memory,
1162 * so this check is very cheap. Also note that we depend on checking on
1163 * completion
1165 if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1166 sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1167 debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1168 sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1169 sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1171 /* wake up anyone that might be interested in this */
1172 wakeup(&sc->mly_event_change);
1174 if (sc->mly_event_counter != sc->mly_event_waiting)
1175 mly_fetch_event(sc);
1178 /********************************************************************************
1179 * Fetch one event from the controller.
1181 * If we fail due to resource starvation, we'll be retried the next time a
1182 * command completes.
1184 static void
1185 mly_fetch_event(struct mly_softc *sc)
1187 struct mly_command *mc;
1188 struct mly_command_ioctl *mci;
1189 u_int32_t event;
1191 debug_called(1);
1193 /* get a command */
1194 if (mly_alloc_command(sc, &mc))
1195 return;
1197 /* set up the data buffer */
1198 mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1199 mc->mc_length = sizeof(struct mly_event);
1200 mc->mc_flags |= MLY_CMD_DATAIN;
1201 mc->mc_complete = mly_complete_event;
1204 * Get an event number to fetch. It's possible that we've raced with another
1205 * context for the last event, in which case there will be no more events.
1207 crit_enter();
1208 if (sc->mly_event_counter == sc->mly_event_waiting) {
1209 mly_release_command(mc);
1210 crit_exit();
1211 return;
1213 event = sc->mly_event_counter++;
1214 crit_exit();
1217 * Build the ioctl.
1219 * At this point we are committed to sending this request, as it
1220 * will be the only one constructed for this particular event number.
1222 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1223 mci->opcode = MDACMD_IOCTL;
1224 mci->data_size = sizeof(struct mly_event);
1225 mci->addr.phys.lun = (event >> 16) & 0xff;
1226 mci->addr.phys.target = (event >> 24) & 0xff;
1227 mci->addr.phys.channel = 0;
1228 mci->addr.phys.controller = 0;
1229 mci->timeout.value = 30;
1230 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1231 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1232 mci->param.getevent.sequence_number_low = event & 0xffff;
1234 debug(1, "fetch event %u", event);
1237 * Submit the command.
1239 * Note that failure of mly_start() will result in this event never being
1240 * fetched.
1242 if (mly_start(mc) != 0) {
1243 mly_printf(sc, "couldn't fetch event %u\n", event);
1244 mly_release_command(mc);
1248 /********************************************************************************
1249 * Handle the completion of an event poll.
1251 static void
1252 mly_complete_event(struct mly_command *mc)
1254 struct mly_softc *sc = mc->mc_sc;
1255 struct mly_event *me = (struct mly_event *)mc->mc_data;
1257 debug_called(1);
1260 * If the event was successfully fetched, process it.
1262 if (mc->mc_status == SCSI_STATUS_OK) {
1263 mly_process_event(sc, me);
1264 kfree(me, M_DEVBUF);
1266 mly_release_command(mc);
1269 * Check for another event.
1271 mly_check_event(sc);
1274 /********************************************************************************
1275 * Process a controller event.
1277 static void
1278 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1280 struct scsi_sense_data *ssd = (struct scsi_sense_data *)&me->sense[0];
1281 char *fp, *tp;
1282 int bus, target, event, class, action;
1283 char hexstr[2][12];
1285 * Errors can be reported using vendor-unique sense data. In this case, the
1286 * event code will be 0x1c (Request sense data present), the sense key will
1287 * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1288 * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1289 * and low seven bits of the ASC (low seven bits of the high byte).
1291 if ((me->code == 0x1c) &&
1292 ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1293 (ssd->add_sense_code & 0x80)) {
1294 event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1295 } else {
1296 event = me->code;
1299 /* look up event, get codes */
1300 fp = mly_describe_code(mly_table_event, event);
1302 debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
1304 /* quiet event? */
1305 class = fp[0];
1306 if (isupper(class) && bootverbose)
1307 class = tolower(class);
1309 /* get action code, text string */
1310 action = fp[1];
1311 tp = &fp[2];
1314 * Print some information about the event.
1316 * This code uses a table derived from the corresponding portion of the Linux
1317 * driver, and thus the parser is very similar.
1319 switch(class) {
1320 case 'p': /* error on physical device */
1321 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1322 if (action == 'r')
1323 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1324 break;
1325 case 'l': /* error on logical unit */
1326 case 'm': /* message about logical unit */
1327 bus = MLY_LOGDEV_BUS(sc, me->lun);
1328 target = MLY_LOGDEV_TARGET(sc, me->lun);
1329 mly_name_device(sc, bus, target);
1330 mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1331 if (action == 'r')
1332 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1333 break;
1334 case 's': /* report of sense data */
1335 if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1336 (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1337 (ssd->add_sense_code == 0x04) &&
1338 ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1339 break; /* ignore NO_SENSE or NOT_READY in one case */
1341 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1342 mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
1343 ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1344 mly_printf(sc, " info %s csi %s\n", hexncpy(ssd->info, 4, hexstr[0], 12, NULL),
1345 hexncpy(ssd->cmd_spec_info, 4, hexstr[1], 12, NULL));
1346 if (action == 'r')
1347 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1348 break;
1349 case 'e':
1350 mly_printf(sc, tp, me->target, me->lun);
1351 kprintf("\n");
1352 break;
1353 case 'c':
1354 mly_printf(sc, "controller %s\n", tp);
1355 break;
1356 case '?':
1357 mly_printf(sc, "%s - %d\n", tp, me->code);
1358 break;
1359 default: /* probably a 'noisy' event being ignored */
1360 break;
1364 /********************************************************************************
1365 * Perform periodic activities.
1367 static void
1368 mly_periodic(void *data)
1370 struct mly_softc *sc = (struct mly_softc *)data;
1371 int bus, target;
1373 debug_called(2);
1376 * Scan devices.
1378 for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1379 if (MLY_BUS_IS_VALID(sc, bus)) {
1380 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1382 /* ignore the controller in this scan */
1383 if (target == sc->mly_controllerparam->initiator_id)
1384 continue;
1386 /* perform device rescan? */
1387 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1388 mly_rescan_btl(sc, bus, target);
1393 /* check for controller events */
1394 mly_check_event(sc);
1396 /* reschedule ourselves */
1397 callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1400 /********************************************************************************
1401 ********************************************************************************
1402 Command Processing
1403 ********************************************************************************
1404 ********************************************************************************/
1406 /********************************************************************************
1407 * Run a command and wait for it to complete.
1410 static int
1411 mly_immediate_command(struct mly_command *mc)
1413 struct mly_softc *sc = mc->mc_sc;
1414 int error;
1416 debug_called(1);
1418 /* spinning at splcam is ugly, but we're only used during controller init */
1419 crit_enter();
1420 if ((error = mly_start(mc))) {
1421 crit_exit();
1422 return(error);
1425 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1426 /* sleep on the command */
1427 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1428 tsleep(mc, 0, "mlywait", 0);
1430 } else {
1431 /* spin and collect status while we do */
1432 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1433 mly_done(mc->mc_sc);
1436 crit_exit();
1437 return(0);
1440 /********************************************************************************
1441 * Deliver a command to the controller.
1443 * XXX it would be good to just queue commands that we can't submit immediately
1444 * and send them later, but we probably want a wrapper for that so that
1445 * we don't hang on a failed submission for an immediate command.
1447 static int
1448 mly_start(struct mly_command *mc)
1450 struct mly_softc *sc = mc->mc_sc;
1451 union mly_command_packet *pkt;
1453 debug_called(2);
1456 * Set the command up for delivery to the controller.
1458 mly_map_command(mc);
1459 mc->mc_packet->generic.command_id = mc->mc_slot;
1461 #ifdef MLY_DEBUG
1462 mc->mc_timestamp = time_uptime;
1463 #endif
1465 crit_enter();
1468 * Do we have to use the hardware mailbox?
1470 if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1472 * Check to see if the controller is ready for us.
1474 if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1475 crit_exit();
1476 return(EBUSY);
1478 mc->mc_flags |= MLY_CMD_BUSY;
1481 * It's ready, send the command.
1483 MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1484 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1486 } else { /* use memory-mailbox mode */
1488 pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1490 /* check to see if the next index is free yet */
1491 if (pkt->mmbox.flag != 0) {
1492 crit_exit();
1493 return(EBUSY);
1495 mc->mc_flags |= MLY_CMD_BUSY;
1497 /* copy in new command */
1498 bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1499 /* barrier to ensure completion of previous write before we write the flag */
1500 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1501 BUS_SPACE_BARRIER_WRITE);
1502 /* copy flag last */
1503 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1504 /* barrier to ensure completion of previous write before we notify the controller */
1505 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1506 BUS_SPACE_BARRIER_WRITE);
1508 /* signal controller, update index */
1509 MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1510 sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1513 mly_enqueue_busy(mc);
1514 crit_exit();
1515 return(0);
1518 /********************************************************************************
1519 * Pick up command status from the controller, schedule a completion event
1521 static void
1522 mly_done(struct mly_softc *sc)
1524 struct mly_command *mc;
1525 union mly_status_packet *sp;
1526 u_int16_t slot;
1527 int worked;
1529 crit_enter();
1530 worked = 0;
1532 /* pick up hardware-mailbox commands */
1533 if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1534 slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1535 if (slot < MLY_SLOT_MAX) {
1536 mc = &sc->mly_command[slot - MLY_SLOT_START];
1537 mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1538 mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1539 mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1540 mly_remove_busy(mc);
1541 mc->mc_flags &= ~MLY_CMD_BUSY;
1542 mly_enqueue_complete(mc);
1543 worked = 1;
1544 } else {
1545 /* slot 0xffff may mean "extremely bogus command" */
1546 mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1548 /* unconditionally acknowledge status */
1549 MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1550 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1553 /* pick up memory-mailbox commands */
1554 if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1555 for (;;) {
1556 sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1558 /* check for more status */
1559 if (sp->mmbox.flag == 0)
1560 break;
1562 /* get slot number */
1563 slot = sp->status.command_id;
1564 if (slot < MLY_SLOT_MAX) {
1565 mc = &sc->mly_command[slot - MLY_SLOT_START];
1566 mc->mc_status = sp->status.status;
1567 mc->mc_sense = sp->status.sense_length;
1568 mc->mc_resid = sp->status.residue;
1569 mly_remove_busy(mc);
1570 mc->mc_flags &= ~MLY_CMD_BUSY;
1571 mly_enqueue_complete(mc);
1572 worked = 1;
1573 } else {
1574 /* slot 0xffff may mean "extremely bogus command" */
1575 mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1576 slot, sc->mly_mmbox_status_index);
1579 /* clear and move to next index */
1580 sp->mmbox.flag = 0;
1581 sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1583 /* acknowledge that we have collected status value(s) */
1584 MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1587 crit_exit();
1588 if (worked) {
1589 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1590 taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1591 else
1592 mly_complete(sc, 0);
1596 /********************************************************************************
1597 * Process completed commands
1599 static void
1600 mly_complete(void *context, int pending)
1602 struct mly_softc *sc = (struct mly_softc *)context;
1603 struct mly_command *mc;
1604 void (* mc_complete)(struct mly_command *mc);
1607 debug_called(2);
1610 * Spin pulling commands off the completed queue and processing them.
1612 while ((mc = mly_dequeue_complete(sc)) != NULL) {
1615 * Free controller resources, mark command complete.
1617 * Note that as soon as we mark the command complete, it may be freed
1618 * out from under us, so we need to save the mc_complete field in
1619 * order to later avoid dereferencing mc. (We would not expect to
1620 * have a polling/sleeping consumer with mc_complete != NULL).
1622 mly_unmap_command(mc);
1623 mc_complete = mc->mc_complete;
1624 mc->mc_flags |= MLY_CMD_COMPLETE;
1627 * Call completion handler or wake up sleeping consumer.
1629 if (mc_complete != NULL) {
1630 mc_complete(mc);
1631 } else {
1632 wakeup(mc);
1637 * XXX if we are deferring commands due to controller-busy status, we should
1638 * retry submitting them here.
1642 /********************************************************************************
1643 ********************************************************************************
1644 Command Buffer Management
1645 ********************************************************************************
1646 ********************************************************************************/
1648 /********************************************************************************
1649 * Allocate a command.
1651 static int
1652 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1654 struct mly_command *mc;
1656 debug_called(3);
1658 if ((mc = mly_dequeue_free(sc)) == NULL) {
1659 *mcp = NULL; /* avoid gcc warning */
1660 return(ENOMEM);
1663 *mcp = mc;
1664 return(0);
1667 /********************************************************************************
1668 * Release a command back to the freelist.
1670 static void
1671 mly_release_command(struct mly_command *mc)
1673 debug_called(3);
1676 * Fill in parts of the command that may cause confusion if
1677 * a consumer doesn't when we are later allocated.
1679 mc->mc_data = NULL;
1680 mc->mc_flags = 0;
1681 mc->mc_complete = NULL;
1682 mc->mc_private = NULL;
1685 * By default, we set up to overwrite the command packet with
1686 * sense information.
1688 mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1689 mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1691 mly_enqueue_free(mc);
1694 /********************************************************************************
1695 * Map helper for command allocation.
1697 static void
1698 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1700 struct mly_softc *sc = (struct mly_softc *)arg;
1702 debug_called(1);
1704 sc->mly_packetphys = segs[0].ds_addr;
1707 /********************************************************************************
1708 * Allocate and initialise command and packet structures.
1710 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1711 * allocation to that number. If we don't yet know how many commands the
1712 * controller supports, allocate a very small set (suitable for initialisation
1713 * purposes only).
1715 static int
1716 mly_alloc_commands(struct mly_softc *sc)
1718 struct mly_command *mc;
1719 int i, ncmd;
1721 if (sc->mly_controllerinfo == NULL) {
1722 ncmd = 4;
1723 } else {
1724 ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1728 * Allocate enough space for all the command packets in one chunk and
1729 * map them permanently into controller-visible space.
1731 if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1732 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1733 return(ENOMEM);
1735 if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1736 ncmd * sizeof(union mly_command_packet),
1737 mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1738 return (ENOMEM);
1740 for (i = 0; i < ncmd; i++) {
1741 mc = &sc->mly_command[i];
1742 bzero(mc, sizeof(*mc));
1743 mc->mc_sc = sc;
1744 mc->mc_slot = MLY_SLOT_START + i;
1745 mc->mc_packet = sc->mly_packet + i;
1746 mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1747 if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1748 mly_release_command(mc);
1750 return(0);
1753 /********************************************************************************
1754 * Free all the storage held by commands.
1756 * Must be called with all commands on the free list.
1758 static void
1759 mly_release_commands(struct mly_softc *sc)
1761 struct mly_command *mc;
1763 /* throw away command buffer DMA maps */
1764 while (mly_alloc_command(sc, &mc) == 0)
1765 bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1767 /* release the packet storage */
1768 if (sc->mly_packet != NULL) {
1769 bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1770 bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1771 sc->mly_packet = NULL;
1776 /********************************************************************************
1777 * Command-mapping helper function - populate this command's s/g table
1778 * with the s/g entries for its data.
1780 static void
1781 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1783 struct mly_command *mc = (struct mly_command *)arg;
1784 struct mly_softc *sc = mc->mc_sc;
1785 struct mly_command_generic *gen = &(mc->mc_packet->generic);
1786 struct mly_sg_entry *sg;
1787 int i, tabofs;
1789 debug_called(2);
1791 /* can we use the transfer structure directly? */
1792 if (nseg <= 2) {
1793 sg = &gen->transfer.direct.sg[0];
1794 gen->command_control.extended_sg_table = 0;
1795 } else {
1796 tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1797 sg = sc->mly_sg_table + tabofs;
1798 gen->transfer.indirect.entries[0] = nseg;
1799 gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1800 gen->command_control.extended_sg_table = 1;
1803 /* copy the s/g table */
1804 for (i = 0; i < nseg; i++) {
1805 sg[i].physaddr = segs[i].ds_addr;
1806 sg[i].length = segs[i].ds_len;
1811 #if 0
1812 /********************************************************************************
1813 * Command-mapping helper function - save the cdb's physical address.
1815 * We don't support 'large' SCSI commands at this time, so this is unused.
1817 static void
1818 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1820 struct mly_command *mc = (struct mly_command *)arg;
1822 debug_called(2);
1824 /* XXX can we safely assume that a CDB will never cross a page boundary? */
1825 if ((segs[0].ds_addr % PAGE_SIZE) >
1826 ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1827 panic("cdb crosses page boundary");
1829 /* fix up fields in the command packet */
1830 mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1832 #endif
1834 /********************************************************************************
1835 * Map a command into controller-visible space
1837 static void
1838 mly_map_command(struct mly_command *mc)
1840 struct mly_softc *sc = mc->mc_sc;
1842 debug_called(2);
1844 /* don't map more than once */
1845 if (mc->mc_flags & MLY_CMD_MAPPED)
1846 return;
1848 /* does the command have a data buffer? */
1849 if (mc->mc_data != NULL) {
1850 bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1851 mly_map_command_sg, mc, 0);
1853 if (mc->mc_flags & MLY_CMD_DATAIN)
1854 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1855 if (mc->mc_flags & MLY_CMD_DATAOUT)
1856 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1858 mc->mc_flags |= MLY_CMD_MAPPED;
1861 /********************************************************************************
1862 * Unmap a command from controller-visible space
1864 static void
1865 mly_unmap_command(struct mly_command *mc)
1867 struct mly_softc *sc = mc->mc_sc;
1869 debug_called(2);
1871 if (!(mc->mc_flags & MLY_CMD_MAPPED))
1872 return;
1874 /* does the command have a data buffer? */
1875 if (mc->mc_data != NULL) {
1876 if (mc->mc_flags & MLY_CMD_DATAIN)
1877 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1878 if (mc->mc_flags & MLY_CMD_DATAOUT)
1879 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1881 bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1883 mc->mc_flags &= ~MLY_CMD_MAPPED;
1887 /********************************************************************************
1888 ********************************************************************************
1889 CAM interface
1890 ********************************************************************************
1891 ********************************************************************************/
1893 /********************************************************************************
1894 * Attach the physical and virtual SCSI busses to CAM.
1896 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1897 * than the highest physical bus. Physical busses are only registered if
1898 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1900 * When we refer to a "bus", we are referring to the bus number registered with
1901 * the SIM, wheras a "channel" is a channel number given to the adapter. In order
1902 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1903 * interchangeably.
1905 static int
1906 mly_cam_attach(struct mly_softc *sc)
1908 struct cam_devq *devq;
1909 int chn, i;
1911 debug_called(1);
1914 * Allocate a devq for all our channels combined.
1916 if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1917 mly_printf(sc, "can't allocate CAM SIM queue\n");
1918 return(ENOMEM);
1922 * If physical channel registration has been requested, register these first.
1923 * Note that we enable tagged command queueing for physical channels.
1925 if (ktestenv("hw.mly.register_physical_channels")) {
1926 chn = 0;
1927 for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1929 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1930 device_get_unit(sc->mly_dev),
1931 &sim_mplock,
1932 sc->mly_controllerinfo->maximum_parallel_commands,
1933 1, devq)) == NULL) {
1934 return(ENOMEM);
1936 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1937 mly_printf(sc, "CAM XPT physical channel registration failed\n");
1938 return(ENXIO);
1940 debug(1, "registered physical channel %d", chn);
1945 * Register our virtual channels, with bus numbers matching channel numbers.
1947 chn = sc->mly_controllerinfo->physical_channels_present;
1948 for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1949 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1950 device_get_unit(sc->mly_dev),
1951 &sim_mplock,
1952 sc->mly_controllerinfo->maximum_parallel_commands,
1953 0, devq)) == NULL) {
1954 return(ENOMEM);
1956 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1957 mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1958 return(ENXIO);
1960 debug(1, "registered virtual channel %d", chn);
1964 * This is the total number of channels that (might have been) registered with
1965 * CAM. Some may not have been; check the mly_cam_sim array to be certain.
1967 sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1968 sc->mly_controllerinfo->virtual_channels_present;
1970 return(0);
1973 /********************************************************************************
1974 * Detach from CAM
1976 static void
1977 mly_cam_detach(struct mly_softc *sc)
1979 int i;
1981 debug_called(1);
1983 for (i = 0; i < sc->mly_cam_channels; i++) {
1984 if (sc->mly_cam_sim[i] != NULL) {
1985 xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1986 cam_sim_free(sc->mly_cam_sim[i]);
1989 if (sc->mly_cam_devq != NULL)
1990 cam_simq_release(sc->mly_cam_devq);
1993 /************************************************************************
1994 * Rescan a device.
1996 static void
1997 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
1999 union ccb *ccb;
2001 debug_called(1);
2003 if ((ccb = xpt_alloc_ccb()) == NULL) {
2004 mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2005 return;
2007 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
2008 cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2009 mly_printf(sc, "rescan failed (can't create path)\n");
2010 xpt_free_ccb(&ccb->ccb_h);
2011 return;
2014 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5/*priority (low)*/);
2015 ccb->ccb_h.func_code = XPT_SCAN_LUN;
2016 ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2017 ccb->crcn.flags = CAM_FLAG_NONE;
2018 debug(1, "rescan target %d:%d", bus, target);
2019 xpt_action(ccb);
2022 static void
2023 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2025 xpt_free_ccb(&ccb->ccb_h);
2028 /********************************************************************************
2029 * Handle an action requested by CAM
2031 static void
2032 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2034 struct mly_softc *sc = cam_sim_softc(sim);
2036 debug_called(2);
2038 switch (ccb->ccb_h.func_code) {
2040 /* perform SCSI I/O */
2041 case XPT_SCSI_IO:
2042 if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2043 return;
2044 break;
2046 /* perform geometry calculations */
2047 case XPT_CALC_GEOMETRY:
2049 struct ccb_calc_geometry *ccg = &ccb->ccg;
2050 u_int32_t secs_per_cylinder;
2052 debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2054 if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2055 ccg->heads = 255;
2056 ccg->secs_per_track = 63;
2057 } else { /* MLY_BIOSGEOM_2G */
2058 ccg->heads = 128;
2059 ccg->secs_per_track = 32;
2061 secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2062 ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2063 ccb->ccb_h.status = CAM_REQ_CMP;
2064 break;
2067 /* handle path attribute inquiry */
2068 case XPT_PATH_INQ:
2070 struct ccb_pathinq *cpi = &ccb->cpi;
2072 debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2074 cpi->version_num = 1;
2075 cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
2076 cpi->target_sprt = 0;
2077 cpi->hba_misc = 0;
2078 cpi->max_target = MLY_MAX_TARGETS - 1;
2079 cpi->max_lun = MLY_MAX_LUNS - 1;
2080 cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2081 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2082 strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2083 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2084 cpi->unit_number = cam_sim_unit(sim);
2085 cpi->bus_id = cam_sim_bus(sim);
2086 cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
2087 cpi->transport = XPORT_SPI;
2088 cpi->transport_version = 2;
2089 cpi->protocol = PROTO_SCSI;
2090 cpi->protocol_version = SCSI_REV_2;
2091 ccb->ccb_h.status = CAM_REQ_CMP;
2092 break;
2095 case XPT_GET_TRAN_SETTINGS:
2097 struct ccb_trans_settings *cts = &ccb->cts;
2098 int bus, target;
2099 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2100 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2102 cts->protocol = PROTO_SCSI;
2103 cts->protocol_version = SCSI_REV_2;
2104 cts->transport = XPORT_SPI;
2105 cts->transport_version = 2;
2107 scsi->flags = 0;
2108 scsi->valid = 0;
2109 spi->flags = 0;
2110 spi->valid = 0;
2112 bus = cam_sim_bus(sim);
2113 target = cts->ccb_h.target_id;
2114 debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2115 /* logical device? */
2116 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2117 /* nothing special for these */
2118 /* physical device? */
2119 } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2120 /* allow CAM to try tagged transactions */
2121 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2122 scsi->valid |= CTS_SCSI_VALID_TQ;
2124 /* convert speed (MHz) to usec */
2125 if (sc->mly_btl[bus][target].mb_speed == 0) {
2126 spi->sync_period = 1000000 / 5;
2127 } else {
2128 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2131 /* convert bus width to CAM internal encoding */
2132 switch (sc->mly_btl[bus][target].mb_width) {
2133 case 32:
2134 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2135 break;
2136 case 16:
2137 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2138 break;
2139 case 8:
2140 default:
2141 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2142 break;
2144 spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2146 /* not a device, bail out */
2147 } else {
2148 cts->ccb_h.status = CAM_REQ_CMP_ERR;
2149 break;
2152 /* disconnect always OK */
2153 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2154 spi->valid |= CTS_SPI_VALID_DISC;
2156 cts->ccb_h.status = CAM_REQ_CMP;
2157 break;
2160 default: /* we can't do this */
2161 debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2162 ccb->ccb_h.status = CAM_REQ_INVALID;
2163 break;
2166 xpt_done(ccb);
2169 /********************************************************************************
2170 * Handle an I/O operation requested by CAM
2172 static int
2173 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2175 struct mly_softc *sc = cam_sim_softc(sim);
2176 struct mly_command *mc;
2177 struct mly_command_scsi_small *ss;
2178 int bus, target;
2179 int error;
2181 bus = cam_sim_bus(sim);
2182 target = csio->ccb_h.target_id;
2184 debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2186 /* validate bus number */
2187 if (!MLY_BUS_IS_VALID(sc, bus)) {
2188 debug(0, " invalid bus %d", bus);
2189 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2192 /* check for I/O attempt to a protected device */
2193 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2194 debug(2, " device protected");
2195 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2198 /* check for I/O attempt to nonexistent device */
2199 if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2200 debug(2, " device %d:%d does not exist", bus, target);
2201 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2204 /* XXX increase if/when we support large SCSI commands */
2205 if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2206 debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2207 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2210 /* check that the CDB pointer is not to a physical address */
2211 if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2212 debug(0, " CDB pointer is to physical address");
2213 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2216 /* if there is data transfer, it must be to/from a virtual address */
2217 if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2218 if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
2219 debug(0, " data pointer is to physical address");
2220 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2222 if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
2223 debug(0, " data has premature s/g setup");
2224 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2228 /* abandon aborted ccbs or those that have failed validation */
2229 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2230 debug(2, "abandoning CCB due to abort/validation failure");
2231 return(EINVAL);
2235 * Get a command, or push the ccb back to CAM and freeze the queue.
2237 if ((error = mly_alloc_command(sc, &mc))) {
2238 crit_enter();
2239 xpt_freeze_simq(sim, 1);
2240 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2241 sc->mly_qfrzn_cnt++;
2242 crit_exit();
2243 return(error);
2246 /* build the command */
2247 mc->mc_data = csio->data_ptr;
2248 mc->mc_length = csio->dxfer_len;
2249 mc->mc_complete = mly_cam_complete;
2250 mc->mc_private = csio;
2252 /* save the bus number in the ccb for later recovery XXX should be a better way */
2253 csio->ccb_h.sim_priv.entries[0].field = bus;
2255 /* build the packet for the controller */
2256 ss = &mc->mc_packet->scsi_small;
2257 ss->opcode = MDACMD_SCSI;
2258 if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2259 ss->command_control.disable_disconnect = 1;
2260 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2261 ss->command_control.data_direction = MLY_CCB_WRITE;
2262 ss->data_size = csio->dxfer_len;
2263 ss->addr.phys.lun = csio->ccb_h.target_lun;
2264 ss->addr.phys.target = csio->ccb_h.target_id;
2265 ss->addr.phys.channel = bus;
2266 if (csio->ccb_h.timeout < (60 * 1000)) {
2267 ss->timeout.value = csio->ccb_h.timeout / 1000;
2268 ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2269 } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2270 ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2271 ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2272 } else {
2273 ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
2274 ss->timeout.scale = MLY_TIMEOUT_HOURS;
2276 ss->maximum_sense_size = csio->sense_len;
2277 ss->cdb_length = csio->cdb_len;
2278 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2279 bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2280 } else {
2281 bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2284 /* give the command to the controller */
2285 if ((error = mly_start(mc))) {
2286 crit_enter();
2287 xpt_freeze_simq(sim, 1);
2288 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2289 sc->mly_qfrzn_cnt++;
2290 crit_exit();
2291 return(error);
2294 return(0);
2297 /********************************************************************************
2298 * Check for possibly-completed commands.
2300 static void
2301 mly_cam_poll(struct cam_sim *sim)
2303 struct mly_softc *sc = cam_sim_softc(sim);
2305 debug_called(2);
2307 mly_done(sc);
2310 /********************************************************************************
2311 * Handle completion of a command - pass results back through the CCB
2313 static void
2314 mly_cam_complete(struct mly_command *mc)
2316 struct mly_softc *sc = mc->mc_sc;
2317 struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
2318 struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
2319 struct mly_btl *btl;
2320 u_int8_t cmd;
2321 int bus, target;
2323 debug_called(2);
2325 csio->scsi_status = mc->mc_status;
2326 switch(mc->mc_status) {
2327 case SCSI_STATUS_OK:
2329 * In order to report logical device type and status, we overwrite
2330 * the result of the INQUIRY command to logical devices.
2332 bus = csio->ccb_h.sim_priv.entries[0].field;
2333 target = csio->ccb_h.target_id;
2334 /* XXX validate bus/target? */
2335 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2336 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2337 cmd = *csio->cdb_io.cdb_ptr;
2338 } else {
2339 cmd = csio->cdb_io.cdb_bytes[0];
2341 if (cmd == INQUIRY) {
2342 btl = &sc->mly_btl[bus][target];
2343 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2344 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2345 padstr(inq->revision, "MYLX", 4);
2349 debug(2, "SCSI_STATUS_OK");
2350 csio->ccb_h.status = CAM_REQ_CMP;
2351 break;
2353 case SCSI_STATUS_CHECK_COND:
2354 debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
2355 csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2356 bzero(&csio->sense_data, SSD_FULL_SIZE);
2357 bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2358 csio->sense_len = mc->mc_sense;
2359 csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2360 csio->resid = mc->mc_resid; /* XXX this is a signed value... */
2361 break;
2363 case SCSI_STATUS_BUSY:
2364 debug(1, "SCSI_STATUS_BUSY");
2365 csio->ccb_h.status = CAM_SCSI_BUSY;
2366 break;
2368 default:
2369 debug(1, "unknown status 0x%x", csio->scsi_status);
2370 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2371 break;
2374 crit_enter();
2375 if (sc->mly_qfrzn_cnt) {
2376 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2377 sc->mly_qfrzn_cnt--;
2379 crit_exit();
2381 xpt_done((union ccb *)csio);
2382 mly_release_command(mc);
2385 /********************************************************************************
2386 * Find a peripheral attahed at (bus),(target)
2388 static struct cam_periph *
2389 mly_find_periph(struct mly_softc *sc, int bus, int target)
2391 struct cam_periph *periph;
2392 struct cam_path *path;
2393 int status;
2395 status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2396 if (status == CAM_REQ_CMP) {
2397 periph = cam_periph_find(path, NULL);
2398 xpt_free_path(path);
2399 } else {
2400 periph = NULL;
2402 return(periph);
2405 /********************************************************************************
2406 * Name the device at (bus)(target)
2408 static int
2409 mly_name_device(struct mly_softc *sc, int bus, int target)
2411 struct cam_periph *periph;
2413 if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2414 ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2415 return(0);
2417 sc->mly_btl[bus][target].mb_name[0] = 0;
2418 return(ENOENT);
2421 /********************************************************************************
2422 ********************************************************************************
2423 Hardware Control
2424 ********************************************************************************
2425 ********************************************************************************/
2427 /********************************************************************************
2428 * Handshake with the firmware while the card is being initialised.
2430 static int
2431 mly_fwhandshake(struct mly_softc *sc)
2433 u_int8_t error, param0, param1;
2434 int spinup = 0;
2436 debug_called(1);
2438 /* set HM_STSACK and let the firmware initialise */
2439 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2440 DELAY(1000); /* too short? */
2442 /* if HM_STSACK is still true, the controller is initialising */
2443 if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2444 return(0);
2445 mly_printf(sc, "controller initialisation started\n");
2447 /* spin waiting for initialisation to finish, or for a message to be delivered */
2448 while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2449 /* check for a message */
2450 if (MLY_ERROR_VALID(sc)) {
2451 error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2452 param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2453 param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2455 switch(error) {
2456 case MLY_MSG_SPINUP:
2457 if (!spinup) {
2458 mly_printf(sc, "drive spinup in progress\n");
2459 spinup = 1; /* only print this once (should print drive being spun?) */
2461 break;
2462 case MLY_MSG_RACE_RECOVERY_FAIL:
2463 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2464 break;
2465 case MLY_MSG_RACE_IN_PROGRESS:
2466 mly_printf(sc, "mirror race recovery in progress\n");
2467 break;
2468 case MLY_MSG_RACE_ON_CRITICAL:
2469 mly_printf(sc, "mirror race recovery on a critical drive\n");
2470 break;
2471 case MLY_MSG_PARITY_ERROR:
2472 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2473 return(ENXIO);
2474 default:
2475 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2479 return(0);
2482 /********************************************************************************
2483 ********************************************************************************
2484 Debugging and Diagnostics
2485 ********************************************************************************
2486 ********************************************************************************/
2488 /********************************************************************************
2489 * Print some information about the controller.
2491 static void
2492 mly_describe_controller(struct mly_softc *sc)
2494 struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
2496 mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2497 mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2498 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
2499 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2500 mi->memory_size);
2502 if (bootverbose) {
2503 mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2504 mly_describe_code(mly_table_oemname, mi->oem_information),
2505 mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2506 mi->interface_speed, mi->interface_width, mi->interface_name);
2507 mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2508 mi->memory_size, mi->memory_speed, mi->memory_width,
2509 mly_describe_code(mly_table_memorytype, mi->memory_type),
2510 mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2511 mi->cache_size);
2512 mly_printf(sc, "CPU: %s @ %dMHz\n",
2513 mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2514 if (mi->l2cache_size != 0)
2515 mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2516 if (mi->exmemory_size != 0)
2517 mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2518 mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2519 mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2520 mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2521 mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2522 mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2523 mi->maximum_block_count, mi->maximum_sg_entries);
2524 mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2525 mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2526 mly_printf(sc, "physical devices present %d\n",
2527 mi->physical_devices_present);
2528 mly_printf(sc, "physical disks present/offline %d/%d\n",
2529 mi->physical_disks_present, mi->physical_disks_offline);
2530 mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2531 mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2532 mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2533 mi->virtual_channels_possible);
2534 mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2535 mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2536 mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2540 #ifdef MLY_DEBUG
2541 /********************************************************************************
2542 * Print some controller state
2544 static void
2545 mly_printstate(struct mly_softc *sc)
2547 mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
2548 MLY_GET_REG(sc, sc->mly_idbr),
2549 MLY_GET_REG(sc, sc->mly_odbr),
2550 MLY_GET_REG(sc, sc->mly_error_status),
2551 sc->mly_idbr,
2552 sc->mly_odbr,
2553 sc->mly_error_status);
2554 mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
2555 MLY_GET_REG(sc, sc->mly_interrupt_mask),
2556 MLY_GET_REG(sc, sc->mly_interrupt_status));
2557 mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2558 MLY_GET_REG(sc, sc->mly_command_mailbox),
2559 MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2560 MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2561 MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2562 MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2563 MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2564 MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2565 MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2566 mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
2567 MLY_GET_REG(sc, sc->mly_status_mailbox),
2568 MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2569 MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2570 MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2571 MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2572 MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2573 MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2574 MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2575 mly_printf(sc, " %04x %08x\n",
2576 MLY_GET_REG2(sc, sc->mly_status_mailbox),
2577 MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2580 struct mly_softc *mly_softc0 = NULL;
2581 void
2582 mly_printstate0(void)
2584 if (mly_softc0 != NULL)
2585 mly_printstate(mly_softc0);
2588 /********************************************************************************
2589 * Print a command
2591 static void
2592 mly_print_command(struct mly_command *mc)
2594 struct mly_softc *sc = mc->mc_sc;
2596 mly_printf(sc, "COMMAND @ %p\n", mc);
2597 mly_printf(sc, " slot %d\n", mc->mc_slot);
2598 mly_printf(sc, " status 0x%x\n", mc->mc_status);
2599 mly_printf(sc, " sense len %d\n", mc->mc_sense);
2600 mly_printf(sc, " resid %d\n", mc->mc_resid);
2601 mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2602 if (mc->mc_packet != NULL)
2603 mly_print_packet(mc);
2604 mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
2605 mly_printf(sc, " flags %pb%i\n",
2606 "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n",
2607 mc->mc_flags);
2608 mly_printf(sc, " complete %p\n", mc->mc_complete);
2609 mly_printf(sc, " private %p\n", mc->mc_private);
2612 /********************************************************************************
2613 * Print a command packet
2615 static void
2616 mly_print_packet(struct mly_command *mc)
2618 struct mly_softc *sc = mc->mc_sc;
2619 struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
2620 struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
2621 struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
2622 struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
2623 int transfer;
2624 char hexstr[HEX_NCPYLEN(MLY_CMD_SCSI_SMALL_CDB)];
2626 mly_printf(sc, " command_id %d\n", ge->command_id);
2627 mly_printf(sc, " opcode %d\n", ge->opcode);
2628 mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
2629 ge->command_control.force_unit_access,
2630 ge->command_control.disable_page_out,
2631 ge->command_control.extended_sg_table,
2632 (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2633 ge->command_control.no_auto_sense,
2634 ge->command_control.disable_disconnect);
2635 mly_printf(sc, " data_size %d\n", ge->data_size);
2636 mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2637 mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
2638 mly_printf(sc, " target %d\n", ge->addr.phys.target);
2639 mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
2640 mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
2641 mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
2642 mly_printf(sc, " timeout %d %s\n",
2643 ge->timeout.value,
2644 (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2645 ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2646 mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
2647 switch(ge->opcode) {
2648 case MDACMD_SCSIPT:
2649 case MDACMD_SCSI:
2650 mly_printf(sc, " cdb length %d\n", ss->cdb_length);
2651 mly_printf(sc, " cdb %s\n",
2652 hexncpy(ss->cdb, ss->cdb_length, hexstr, HEX_NCPYLEN(ss->cdb_length), " "));
2653 transfer = 1;
2654 break;
2655 case MDACMD_SCSILC:
2656 case MDACMD_SCSILCPT:
2657 mly_printf(sc, " cdb length %d\n", sl->cdb_length);
2658 mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
2659 transfer = 1;
2660 break;
2661 case MDACMD_IOCTL:
2662 mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
2663 switch(io->sub_ioctl) {
2664 case MDACIOCTL_SETMEMORYMAILBOX:
2665 mly_printf(sc, " health_buffer_size %d\n",
2666 io->param.setmemorymailbox.health_buffer_size);
2667 mly_printf(sc, " health_buffer_phys 0x%llx\n",
2668 io->param.setmemorymailbox.health_buffer_physaddr);
2669 mly_printf(sc, " command_mailbox 0x%llx\n",
2670 io->param.setmemorymailbox.command_mailbox_physaddr);
2671 mly_printf(sc, " status_mailbox 0x%llx\n",
2672 io->param.setmemorymailbox.status_mailbox_physaddr);
2673 transfer = 0;
2674 break;
2676 case MDACIOCTL_SETREALTIMECLOCK:
2677 case MDACIOCTL_GETHEALTHSTATUS:
2678 case MDACIOCTL_GETCONTROLLERINFO:
2679 case MDACIOCTL_GETLOGDEVINFOVALID:
2680 case MDACIOCTL_GETPHYSDEVINFOVALID:
2681 case MDACIOCTL_GETPHYSDEVSTATISTICS:
2682 case MDACIOCTL_GETLOGDEVSTATISTICS:
2683 case MDACIOCTL_GETCONTROLLERSTATISTICS:
2684 case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2685 case MDACIOCTL_CREATENEWCONF:
2686 case MDACIOCTL_ADDNEWCONF:
2687 case MDACIOCTL_GETDEVCONFINFO:
2688 case MDACIOCTL_GETFREESPACELIST:
2689 case MDACIOCTL_MORE:
2690 case MDACIOCTL_SETPHYSDEVPARAMETER:
2691 case MDACIOCTL_GETPHYSDEVPARAMETER:
2692 case MDACIOCTL_GETLOGDEVPARAMETER:
2693 case MDACIOCTL_SETLOGDEVPARAMETER:
2694 mly_printf(sc, " param %10D\n", io->param.data.param, " ");
2695 transfer = 1;
2696 break;
2698 case MDACIOCTL_GETEVENT:
2699 mly_printf(sc, " event %d\n",
2700 io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2701 transfer = 1;
2702 break;
2704 case MDACIOCTL_SETRAIDDEVSTATE:
2705 mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
2706 transfer = 0;
2707 break;
2709 case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2710 mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2711 mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
2712 mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
2713 mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
2714 mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
2715 transfer = 0;
2716 break;
2718 case MDACIOCTL_GETGROUPCONFINFO:
2719 mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
2720 transfer = 1;
2721 break;
2723 case MDACIOCTL_GET_SUBSYSTEM_DATA:
2724 case MDACIOCTL_SET_SUBSYSTEM_DATA:
2725 case MDACIOCTL_STARTDISOCVERY:
2726 case MDACIOCTL_INITPHYSDEVSTART:
2727 case MDACIOCTL_INITPHYSDEVSTOP:
2728 case MDACIOCTL_INITRAIDDEVSTART:
2729 case MDACIOCTL_INITRAIDDEVSTOP:
2730 case MDACIOCTL_REBUILDRAIDDEVSTART:
2731 case MDACIOCTL_REBUILDRAIDDEVSTOP:
2732 case MDACIOCTL_MAKECONSISTENTDATASTART:
2733 case MDACIOCTL_MAKECONSISTENTDATASTOP:
2734 case MDACIOCTL_CONSISTENCYCHECKSTART:
2735 case MDACIOCTL_CONSISTENCYCHECKSTOP:
2736 case MDACIOCTL_RESETDEVICE:
2737 case MDACIOCTL_FLUSHDEVICEDATA:
2738 case MDACIOCTL_PAUSEDEVICE:
2739 case MDACIOCTL_UNPAUSEDEVICE:
2740 case MDACIOCTL_LOCATEDEVICE:
2741 case MDACIOCTL_SETMASTERSLAVEMODE:
2742 case MDACIOCTL_DELETERAIDDEV:
2743 case MDACIOCTL_REPLACEINTERNALDEV:
2744 case MDACIOCTL_CLEARCONF:
2745 case MDACIOCTL_GETCONTROLLERPARAMETER:
2746 case MDACIOCTL_SETCONTRLLERPARAMETER:
2747 case MDACIOCTL_CLEARCONFSUSPMODE:
2748 case MDACIOCTL_STOREIMAGE:
2749 case MDACIOCTL_READIMAGE:
2750 case MDACIOCTL_FLASHIMAGES:
2751 case MDACIOCTL_RENAMERAIDDEV:
2752 default: /* no idea what to print */
2753 transfer = 0;
2754 break;
2756 break;
2758 case MDACMD_IOCTLCHECK:
2759 case MDACMD_MEMCOPY:
2760 default:
2761 transfer = 0;
2762 break; /* print nothing */
2764 if (transfer) {
2765 if (ge->command_control.extended_sg_table) {
2766 mly_printf(sc, " sg table 0x%llx/%d\n",
2767 ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2768 } else {
2769 mly_printf(sc, " 0000 0x%llx/%lld\n",
2770 ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2771 mly_printf(sc, " 0001 0x%llx/%lld\n",
2772 ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2777 /********************************************************************************
2778 * Panic in a slightly informative fashion
2780 static void
2781 mly_panic(struct mly_softc *sc, char *reason)
2783 mly_printstate(sc);
2784 panic(reason);
2787 /********************************************************************************
2788 * Print queue statistics, callable from DDB.
2790 void
2791 mly_print_controller(int controller)
2793 struct mly_softc *sc;
2795 if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2796 kprintf("mly: controller %d invalid\n", controller);
2797 } else {
2798 device_printf(sc->mly_dev, "queue curr max\n");
2799 device_printf(sc->mly_dev, "free %04d/%04d\n",
2800 sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2801 device_printf(sc->mly_dev, "busy %04d/%04d\n",
2802 sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2803 device_printf(sc->mly_dev, "complete %04d/%04d\n",
2804 sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2807 #endif
2810 /********************************************************************************
2811 ********************************************************************************
2812 Control device interface
2813 ********************************************************************************
2814 ********************************************************************************/
2816 /********************************************************************************
2817 * Accept an open operation on the control device.
2819 static int
2820 mly_user_open(struct dev_open_args *ap)
2822 cdev_t dev = ap->a_head.a_dev;
2823 int unit = minor(dev);
2824 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2826 sc->mly_state |= MLY_STATE_OPEN;
2827 return(0);
2830 /********************************************************************************
2831 * Accept the last close on the control device.
2833 static int
2834 mly_user_close(struct dev_close_args *ap)
2836 cdev_t dev = ap->a_head.a_dev;
2837 int unit = minor(dev);
2838 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2840 sc->mly_state &= ~MLY_STATE_OPEN;
2841 return (0);
2844 /********************************************************************************
2845 * Handle controller-specific control operations.
2847 static int
2848 mly_user_ioctl(struct dev_ioctl_args *ap)
2850 cdev_t dev = ap->a_head.a_dev;
2851 caddr_t addr = ap->a_data;
2852 u_long cmd = ap->a_cmd;
2853 struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
2854 struct mly_user_command *uc = (struct mly_user_command *)addr;
2855 struct mly_user_health *uh = (struct mly_user_health *)addr;
2857 switch(cmd) {
2858 case MLYIO_COMMAND:
2859 return(mly_user_command(sc, uc));
2860 case MLYIO_HEALTH:
2861 return(mly_user_health(sc, uh));
2862 default:
2863 return(ENOIOCTL);
2867 /********************************************************************************
2868 * Execute a command passed in from userspace.
2870 * The control structure contains the actual command for the controller, as well
2871 * as the user-space data pointer and data size, and an optional sense buffer
2872 * size/pointer. On completion, the data size is adjusted to the command
2873 * residual, and the sense buffer size to the size of the returned sense data.
2876 static int
2877 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2879 struct mly_command *mc;
2880 int error;
2882 /* allocate a command */
2883 if (mly_alloc_command(sc, &mc)) {
2884 error = ENOMEM;
2885 goto out; /* XXX Linux version will wait for a command */
2888 /* handle data size/direction */
2889 mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2890 if (mc->mc_length > 0)
2891 mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2892 if (uc->DataTransferLength > 0) {
2893 mc->mc_flags |= MLY_CMD_DATAIN;
2894 bzero(mc->mc_data, mc->mc_length);
2896 if (uc->DataTransferLength < 0) {
2897 mc->mc_flags |= MLY_CMD_DATAOUT;
2898 if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2899 goto out;
2902 /* copy the controller command */
2903 bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2905 /* clear command completion handler so that we get woken up */
2906 mc->mc_complete = NULL;
2908 /* execute the command */
2909 if ((error = mly_start(mc)) != 0)
2910 goto out;
2911 crit_enter();
2912 while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2913 tsleep(mc, 0, "mlyioctl", 0);
2914 crit_exit();
2916 /* return the data to userspace */
2917 if (uc->DataTransferLength > 0)
2918 if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2919 goto out;
2921 /* return the sense buffer to userspace */
2922 if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2923 if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2924 min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2925 goto out;
2928 /* return command results to userspace (caller will copy out) */
2929 uc->DataTransferLength = mc->mc_resid;
2930 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2931 uc->CommandStatus = mc->mc_status;
2932 error = 0;
2934 out:
2935 if (mc->mc_data != NULL)
2936 kfree(mc->mc_data, M_DEVBUF);
2937 if (mc != NULL)
2938 mly_release_command(mc);
2939 return(error);
2942 /********************************************************************************
2943 * Return health status to userspace. If the health change index in the user
2944 * structure does not match that currently exported by the controller, we
2945 * return the current status immediately. Otherwise, we block until either
2946 * interrupted or new status is delivered.
2948 static int
2949 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2951 struct mly_health_status mh;
2952 int error;
2954 /* fetch the current health status from userspace */
2955 if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2956 return(error);
2958 /* spin waiting for a status update */
2959 crit_enter();
2960 error = EWOULDBLOCK;
2961 while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2962 error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2963 crit_exit();
2965 /* copy the controller's health status buffer out (there is a race here if it changes again) */
2966 error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2967 sizeof(uh->HealthStatusBuffer));
2968 return(error);
2971 #ifdef MLY_DEBUG
2972 static int
2973 mly_timeout(struct mly_softc *sc)
2975 struct mly_command *mc;
2976 int deadline;
2978 deadline = time_uptime - MLY_CMD_TIMEOUT;
2979 TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2980 if ((mc->mc_timestamp < deadline)) {
2981 device_printf(sc->mly_dev,
2982 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2983 (int)(time_uptime - mc->mc_timestamp));
2987 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2988 (timeout_t *)mly_timeout, sc);
2990 return (0);
2992 #endif