- Add FXP_USABLE_TXCB, which equals (FXP_NTXCB - 1)
[dragonfly.git] / sys / dev / netif / fxp / if_fxp.c
blob6244bf23072de9fe5a4c4037d882cd2f26a1ef22
1 /*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29 * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.53 2008/06/15 10:41:00 sephe Exp $
33 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
36 #include "opt_polling.h"
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
53 #ifdef NS
54 #include <netns/ns.h>
55 #include <netns/ns_if.h>
56 #endif
58 #include <net/bpf.h>
59 #include <sys/sockio.h>
60 #include <sys/bus.h>
61 #include <sys/rman.h>
63 #include <net/ethernet.h>
64 #include <net/if_arp.h>
66 #include <vm/vm.h> /* for vtophys */
67 #include <vm/pmap.h> /* for vtophys */
69 #include <net/if_types.h>
70 #include <net/vlan/if_vlan_var.h>
72 #include <bus/pci/pcivar.h>
73 #include <bus/pci/pcireg.h> /* for PCIM_CMD_xxx */
75 #include "../mii_layer/mii.h"
76 #include "../mii_layer/miivar.h"
78 #include "if_fxpreg.h"
79 #include "if_fxpvar.h"
80 #include "rcvbundl.h"
82 #include "miibus_if.h"
85 * NOTE! On the Alpha, we have an alignment constraint. The
86 * card DMAs the packet immediately following the RFA. However,
87 * the first thing in the packet is a 14-byte Ethernet header.
88 * This means that the packet is misaligned. To compensate,
89 * we actually offset the RFA 2 bytes into the cluster. This
90 * alignes the packet after the Ethernet header at a 32-bit
91 * boundary. HOWEVER! This means that the RFA is misaligned!
93 #define RFA_ALIGNMENT_FUDGE 2
96 * Set initial transmit threshold at 64 (512 bytes). This is
97 * increased by 64 (512 bytes) at a time, to maximum of 192
98 * (1536 bytes), if an underrun occurs.
100 static int tx_threshold = 64;
103 * The configuration byte map has several undefined fields which
104 * must be one or must be zero. Set up a template for these bits
105 * only, (assuming a 82557 chip) leaving the actual configuration
106 * to fxp_init.
108 * See struct fxp_cb_config for the bit definitions.
110 static u_char fxp_cb_config_template[] = {
111 0x0, 0x0, /* cb_status */
112 0x0, 0x0, /* cb_command */
113 0x0, 0x0, 0x0, 0x0, /* link_addr */
114 0x0, /* 0 */
115 0x0, /* 1 */
116 0x0, /* 2 */
117 0x0, /* 3 */
118 0x0, /* 4 */
119 0x0, /* 5 */
120 0x32, /* 6 */
121 0x0, /* 7 */
122 0x0, /* 8 */
123 0x0, /* 9 */
124 0x6, /* 10 */
125 0x0, /* 11 */
126 0x0, /* 12 */
127 0x0, /* 13 */
128 0xf2, /* 14 */
129 0x48, /* 15 */
130 0x0, /* 16 */
131 0x40, /* 17 */
132 0xf0, /* 18 */
133 0x0, /* 19 */
134 0x3f, /* 20 */
135 0x5 /* 21 */
138 struct fxp_ident {
139 u_int16_t devid;
140 int16_t revid; /* -1 matches anything */
141 char *name;
145 * Claim various Intel PCI device identifiers for this driver. The
146 * sub-vendor and sub-device field are extensively used to identify
147 * particular variants, but we don't currently differentiate between
148 * them.
150 static struct fxp_ident fxp_ident_table[] = {
151 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" },
152 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" },
153 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
163 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
165 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
168 { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
169 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" },
170 { 0x1064, -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
171 { 0x1065, -1, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
172 { 0x1068, -1, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
173 { 0x1069, -1, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
174 { 0x1091, -1, "Intel 82562GX Pro/100 Ethernet" },
175 { 0x1092, -1, "Intel Pro/100 VE Network Connection" },
176 { 0x1093, -1, "Intel Pro/100 VM Network Connection" },
177 { 0x1094, -1, "Intel Pro/100 946GZ (ICH7) Network Connection" },
178 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" },
179 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" },
180 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" },
181 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" },
182 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" },
183 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" },
184 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" },
185 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" },
186 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" },
187 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" },
188 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" },
189 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" },
190 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" },
191 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" },
192 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" },
193 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" },
194 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
195 { 0x27dc, -1, "Intel 82801GB (ICH7) 10/100 Ethernet" },
196 { 0, -1, NULL },
199 static int fxp_probe(device_t dev);
200 static int fxp_attach(device_t dev);
201 static int fxp_detach(device_t dev);
202 static int fxp_shutdown(device_t dev);
203 static int fxp_suspend(device_t dev);
204 static int fxp_resume(device_t dev);
206 static void fxp_intr(void *xsc);
207 static void fxp_intr_body(struct fxp_softc *sc,
208 u_int8_t statack, int count);
210 static void fxp_init(void *xsc);
211 static void fxp_tick(void *xsc);
212 static void fxp_powerstate_d0(device_t dev);
213 static void fxp_start(struct ifnet *ifp);
214 static void fxp_stop(struct fxp_softc *sc);
215 static void fxp_release(device_t dev);
216 static int fxp_ioctl(struct ifnet *ifp, u_long command,
217 caddr_t data, struct ucred *);
218 static void fxp_watchdog(struct ifnet *ifp);
219 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
220 static int fxp_mc_addrs(struct fxp_softc *sc);
221 static void fxp_mc_setup(struct fxp_softc *sc);
222 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
223 int autosize);
224 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
225 u_int16_t data);
226 static void fxp_autosize_eeprom(struct fxp_softc *sc);
227 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
228 int offset, int words);
229 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
230 int offset, int words);
231 static int fxp_ifmedia_upd(struct ifnet *ifp);
232 static void fxp_ifmedia_sts(struct ifnet *ifp,
233 struct ifmediareq *ifmr);
234 static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
235 static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
236 struct ifmediareq *ifmr);
237 static int fxp_miibus_readreg(device_t dev, int phy, int reg);
238 static void fxp_miibus_writereg(device_t dev, int phy, int reg,
239 int value);
240 static void fxp_load_ucode(struct fxp_softc *sc);
241 static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
242 int low, int high);
243 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
244 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
245 #ifdef DEVICE_POLLING
246 static poll_handler_t fxp_poll;
247 #endif
249 static void fxp_lwcopy(volatile u_int32_t *src,
250 volatile u_int32_t *dst);
251 static void fxp_scb_wait(struct fxp_softc *sc);
252 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void fxp_dma_wait(volatile u_int16_t *status,
254 struct fxp_softc *sc);
256 static device_method_t fxp_methods[] = {
257 /* Device interface */
258 DEVMETHOD(device_probe, fxp_probe),
259 DEVMETHOD(device_attach, fxp_attach),
260 DEVMETHOD(device_detach, fxp_detach),
261 DEVMETHOD(device_shutdown, fxp_shutdown),
262 DEVMETHOD(device_suspend, fxp_suspend),
263 DEVMETHOD(device_resume, fxp_resume),
265 /* MII interface */
266 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
267 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
269 { 0, 0 }
272 static driver_t fxp_driver = {
273 "fxp",
274 fxp_methods,
275 sizeof(struct fxp_softc),
278 static devclass_t fxp_devclass;
280 DECLARE_DUMMY_MODULE(if_fxp);
281 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
282 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
284 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
286 static int fxp_rnr;
287 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
290 * Copy a 16-bit aligned 32-bit quantity.
292 static void
293 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
295 #ifdef __i386__
296 *dst = *src;
297 #else
298 volatile u_int16_t *a = (volatile u_int16_t *)src;
299 volatile u_int16_t *b = (volatile u_int16_t *)dst;
301 b[0] = a[0];
302 b[1] = a[1];
303 #endif
307 * Wait for the previous command to be accepted (but not necessarily
308 * completed).
310 static void
311 fxp_scb_wait(struct fxp_softc *sc)
313 int i = 10000;
315 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
316 DELAY(2);
317 if (i == 0) {
318 if_printf(&sc->arpcom.ac_if,
319 "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
320 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
321 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
322 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
323 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
327 static void
328 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
331 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
332 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
333 fxp_scb_wait(sc);
335 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
338 static void
339 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
341 int i = 10000;
343 while (!(*status & FXP_CB_STATUS_C) && --i)
344 DELAY(2);
345 if (i == 0)
346 if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
350 * Return identification string if this is device is ours.
352 static int
353 fxp_probe(device_t dev)
355 u_int16_t devid;
356 u_int8_t revid;
357 struct fxp_ident *ident;
359 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
360 devid = pci_get_device(dev);
361 revid = pci_get_revid(dev);
362 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
363 if (ident->devid == devid &&
364 (ident->revid == revid || ident->revid == -1)) {
365 device_set_desc(dev, ident->name);
366 return (0);
370 return (ENXIO);
373 static void
374 fxp_powerstate_d0(device_t dev)
376 u_int32_t iobase, membase, irq;
378 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
379 /* Save important PCI config data. */
380 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
381 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
382 irq = pci_read_config(dev, PCIR_INTLINE, 4);
384 /* Reset the power state. */
385 device_printf(dev, "chip is in D%d power mode "
386 "-- setting to D0\n", pci_get_powerstate(dev));
388 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
390 /* Restore PCI config data. */
391 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
392 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
393 pci_write_config(dev, PCIR_INTLINE, irq, 4);
397 static int
398 fxp_attach(device_t dev)
400 int error = 0;
401 struct fxp_softc *sc = device_get_softc(dev);
402 struct ifnet *ifp;
403 u_int32_t val;
404 u_int16_t data;
405 int i, rid, m1, m2, prefer_iomap;
407 callout_init(&sc->fxp_stat_timer);
408 sysctl_ctx_init(&sc->sysctl_ctx);
411 * Enable bus mastering. Enable memory space too, in case
412 * BIOS/Prom forgot about it.
414 pci_enable_busmaster(dev);
415 pci_enable_io(dev, SYS_RES_MEMORY);
416 val = pci_read_config(dev, PCIR_COMMAND, 2);
418 fxp_powerstate_d0(dev);
421 * Figure out which we should try first - memory mapping or i/o mapping?
422 * We default to memory mapping. Then we accept an override from the
423 * command line. Then we check to see which one is enabled.
425 m1 = PCIM_CMD_MEMEN;
426 m2 = PCIM_CMD_PORTEN;
427 prefer_iomap = 0;
428 if (resource_int_value(device_get_name(dev), device_get_unit(dev),
429 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
430 m1 = PCIM_CMD_PORTEN;
431 m2 = PCIM_CMD_MEMEN;
434 if (val & m1) {
435 sc->rtp =
436 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
437 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
438 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
439 RF_ACTIVE);
441 if (sc->mem == NULL && (val & m2)) {
442 sc->rtp =
443 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
444 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
445 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
446 RF_ACTIVE);
449 if (!sc->mem) {
450 device_printf(dev, "could not map device registers\n");
451 error = ENXIO;
452 goto fail;
454 if (bootverbose) {
455 device_printf(dev, "using %s space register mapping\n",
456 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
459 sc->sc_st = rman_get_bustag(sc->mem);
460 sc->sc_sh = rman_get_bushandle(sc->mem);
463 * Allocate our interrupt.
465 rid = 0;
466 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
467 RF_SHAREABLE | RF_ACTIVE);
468 if (sc->irq == NULL) {
469 device_printf(dev, "could not map interrupt\n");
470 error = ENXIO;
471 goto fail;
475 * Reset to a stable state.
477 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
478 DELAY(10);
480 sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
481 M_DEVBUF, M_WAITOK | M_ZERO);
483 sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
484 M_WAITOK | M_ZERO);
486 sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
489 * Pre-allocate our receive buffers.
491 for (i = 0; i < FXP_NRFABUFS; i++) {
492 if (fxp_add_rfabuf(sc, NULL) != 0) {
493 goto failmem;
498 * Find out how large of an SEEPROM we have.
500 fxp_autosize_eeprom(sc);
503 * Determine whether we must use the 503 serial interface.
505 fxp_read_eeprom(sc, &data, 6, 1);
506 if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
507 (data & FXP_PHY_SERIAL_ONLY))
508 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
511 * Create the sysctl tree
513 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
514 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
515 device_get_nameunit(dev), CTLFLAG_RD, 0, "");
516 if (sc->sysctl_tree == NULL)
517 goto fail;
518 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
519 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
520 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
521 "FXP driver receive interrupt microcode bundling delay");
522 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
523 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
524 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
525 "FXP driver receive interrupt microcode bundle size limit");
528 * Pull in device tunables.
530 sc->tunable_int_delay = TUNABLE_INT_DELAY;
531 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
532 resource_int_value(device_get_name(dev), device_get_unit(dev),
533 "int_delay", &sc->tunable_int_delay);
534 resource_int_value(device_get_name(dev), device_get_unit(dev),
535 "bundle_max", &sc->tunable_bundle_max);
538 * Find out the chip revision; lump all 82557 revs together.
540 fxp_read_eeprom(sc, &data, 5, 1);
541 if ((data >> 8) == 1)
542 sc->revision = FXP_REV_82557;
543 else
544 sc->revision = pci_get_revid(dev);
547 * Enable workarounds for certain chip revision deficiencies.
549 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
550 * some systems based a normal 82559 design, have a defect where
551 * the chip can cause a PCI protocol violation if it receives
552 * a CU_RESUME command when it is entering the IDLE state. The
553 * workaround is to disable Dynamic Standby Mode, so the chip never
554 * deasserts CLKRUN#, and always remains in an active state.
556 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
558 i = pci_get_device(dev);
559 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
560 sc->revision >= FXP_REV_82559_A0) {
561 fxp_read_eeprom(sc, &data, 10, 1);
562 if (data & 0x02) { /* STB enable */
563 u_int16_t cksum;
564 int i;
566 device_printf(dev,
567 "Disabling dynamic standby mode in EEPROM\n");
568 data &= ~0x02;
569 fxp_write_eeprom(sc, &data, 10, 1);
570 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
571 cksum = 0;
572 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
573 fxp_read_eeprom(sc, &data, i, 1);
574 cksum += data;
576 i = (1 << sc->eeprom_size) - 1;
577 cksum = 0xBABA - cksum;
578 fxp_read_eeprom(sc, &data, i, 1);
579 fxp_write_eeprom(sc, &cksum, i, 1);
580 device_printf(dev,
581 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
582 i, data, cksum);
583 #if 1
585 * If the user elects to continue, try the software
586 * workaround, as it is better than nothing.
588 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
589 #endif
594 * If we are not a 82557 chip, we can enable extended features.
596 if (sc->revision != FXP_REV_82557) {
598 * If MWI is enabled in the PCI configuration, and there
599 * is a valid cacheline size (8 or 16 dwords), then tell
600 * the board to turn on MWI.
602 if (val & PCIM_CMD_MWRICEN &&
603 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
604 sc->flags |= FXP_FLAG_MWI_ENABLE;
606 /* turn on the extended TxCB feature */
607 sc->flags |= FXP_FLAG_EXT_TXCB;
609 /* enable reception of long frames for VLAN */
610 sc->flags |= FXP_FLAG_LONG_PKT_EN;
614 * Read MAC address.
616 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
617 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
618 device_printf(dev, "10Mbps\n");
619 if (bootverbose) {
620 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
621 pci_get_vendor(dev), pci_get_device(dev),
622 pci_get_subvendor(dev), pci_get_subdevice(dev),
623 pci_get_revid(dev));
624 fxp_read_eeprom(sc, &data, 10, 1);
625 device_printf(dev, "Dynamic Standby mode is %s\n",
626 data & 0x02 ? "enabled" : "disabled");
630 * If this is only a 10Mbps device, then there is no MII, and
631 * the PHY will use a serial interface instead.
633 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
634 * doesn't have a programming interface of any sort. The
635 * media is sensed automatically based on how the link partner
636 * is configured. This is, in essence, manual configuration.
638 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
639 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
640 fxp_serial_ifmedia_sts);
641 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
642 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
643 } else {
644 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
645 fxp_ifmedia_sts)) {
646 device_printf(dev, "MII without any PHY!\n");
647 error = ENXIO;
648 goto fail;
652 ifp = &sc->arpcom.ac_if;
653 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
654 ifp->if_baudrate = 100000000;
655 ifp->if_init = fxp_init;
656 ifp->if_softc = sc;
657 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 ifp->if_ioctl = fxp_ioctl;
659 ifp->if_start = fxp_start;
660 #ifdef DEVICE_POLLING
661 ifp->if_poll = fxp_poll;
662 #endif
663 ifp->if_watchdog = fxp_watchdog;
666 * Attach the interface.
668 ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
671 * Tell the upper layer(s) we support long frames.
673 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
676 * Let the system queue as many packets as we have available
677 * TX descriptors.
679 ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
680 ifq_set_ready(&ifp->if_snd);
682 error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
683 fxp_intr, sc, &sc->ih,
684 ifp->if_serializer);
685 if (error) {
686 ether_ifdetach(ifp);
687 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
688 ifmedia_removeall(&sc->sc_media);
689 device_printf(dev, "could not setup irq\n");
690 goto fail;
693 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
694 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
696 return (0);
698 failmem:
699 device_printf(dev, "Failed to malloc memory\n");
700 error = ENOMEM;
701 fail:
702 fxp_release(dev);
703 return (error);
707 * release all resources
709 static void
710 fxp_release(device_t dev)
712 struct fxp_softc *sc = device_get_softc(dev);
714 if (sc->miibus)
715 device_delete_child(dev, sc->miibus);
716 bus_generic_detach(dev);
718 if (sc->cbl_base)
719 kfree(sc->cbl_base, M_DEVBUF);
720 if (sc->fxp_stats)
721 kfree(sc->fxp_stats, M_DEVBUF);
722 if (sc->mcsp)
723 kfree(sc->mcsp, M_DEVBUF);
724 if (sc->rfa_headm)
725 m_freem(sc->rfa_headm);
727 if (sc->irq)
728 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
729 if (sc->mem)
730 bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
732 sysctl_ctx_free(&sc->sysctl_ctx);
736 * Detach interface.
738 static int
739 fxp_detach(device_t dev)
741 struct fxp_softc *sc = device_get_softc(dev);
743 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
746 * Stop DMA and drop transmit queue.
748 fxp_stop(sc);
751 * Disable interrupts.
753 * NOTE: This should be done after fxp_stop(), because software
754 * resetting in fxp_stop() may leave interrupts turned on.
756 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
759 * Free all media structures.
761 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
762 ifmedia_removeall(&sc->sc_media);
764 if (sc->ih)
765 bus_teardown_intr(dev, sc->irq, sc->ih);
767 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
770 * Close down routes etc.
772 ether_ifdetach(&sc->arpcom.ac_if);
774 /* Release our allocated resources. */
775 fxp_release(dev);
777 return (0);
781 * Device shutdown routine. Called at system shutdown after sync. The
782 * main purpose of this routine is to shut off receiver DMA so that
783 * kernel memory doesn't get clobbered during warmboot.
785 static int
786 fxp_shutdown(device_t dev)
789 * Make sure that DMA is disabled prior to reboot. Not doing
790 * do could allow DMA to corrupt kernel memory during the
791 * reboot before the driver initializes.
793 fxp_stop((struct fxp_softc *) device_get_softc(dev));
794 return (0);
798 * Device suspend routine. Stop the interface and save some PCI
799 * settings in case the BIOS doesn't restore them properly on
800 * resume.
802 static int
803 fxp_suspend(device_t dev)
805 struct fxp_softc *sc = device_get_softc(dev);
806 int i;
808 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
810 fxp_stop(sc);
812 for (i = 0; i < 5; i++)
813 sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
814 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
815 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
816 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
817 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
819 sc->suspended = 1;
821 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
822 return (0);
826 * Device resume routine. Restore some PCI settings in case the BIOS
827 * doesn't, re-enable busmastering, and restart the interface if
828 * appropriate.
830 static int
831 fxp_resume(device_t dev)
833 struct fxp_softc *sc = device_get_softc(dev);
834 struct ifnet *ifp = &sc->arpcom.ac_if;
835 int i;
837 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
839 fxp_powerstate_d0(dev);
841 /* better way to do this? */
842 for (i = 0; i < 5; i++)
843 pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
844 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
845 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
846 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
847 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
849 /* reenable busmastering and memory space */
850 pci_enable_busmaster(dev);
851 pci_enable_io(dev, SYS_RES_MEMORY);
853 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
854 DELAY(10);
856 /* reinitialize interface if necessary */
857 if (ifp->if_flags & IFF_UP)
858 fxp_init(sc);
860 sc->suspended = 0;
862 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
863 return (0);
866 static void
867 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
869 u_int16_t reg;
870 int x;
873 * Shift in data.
875 for (x = 1 << (length - 1); x; x >>= 1) {
876 if (data & x)
877 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
878 else
879 reg = FXP_EEPROM_EECS;
880 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
881 DELAY(1);
882 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
883 DELAY(1);
884 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
885 DELAY(1);
890 * Read from the serial EEPROM. Basically, you manually shift in
891 * the read opcode (one bit at a time) and then shift in the address,
892 * and then you shift out the data (all of this one bit at a time).
893 * The word size is 16 bits, so you have to provide the address for
894 * every 16 bits of data.
896 static u_int16_t
897 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
899 u_int16_t reg, data;
900 int x;
902 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
904 * Shift in read opcode.
906 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
908 * Shift in address.
910 data = 0;
911 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
912 if (offset & x)
913 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
914 else
915 reg = FXP_EEPROM_EECS;
916 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
917 DELAY(1);
918 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
919 DELAY(1);
920 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
921 DELAY(1);
922 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
923 data++;
924 if (autosize && reg == 0) {
925 sc->eeprom_size = data;
926 break;
930 * Shift out data.
932 data = 0;
933 reg = FXP_EEPROM_EECS;
934 for (x = 1 << 15; x; x >>= 1) {
935 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
936 DELAY(1);
937 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
938 data |= x;
939 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
940 DELAY(1);
942 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
943 DELAY(1);
945 return (data);
948 static void
949 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
951 int i;
954 * Erase/write enable.
956 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
957 fxp_eeprom_shiftin(sc, 0x4, 3);
958 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
959 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
960 DELAY(1);
962 * Shift in write opcode, address, data.
964 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
965 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
966 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
967 fxp_eeprom_shiftin(sc, data, 16);
968 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
969 DELAY(1);
971 * Wait for EEPROM to finish up.
973 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
974 DELAY(1);
975 for (i = 0; i < 1000; i++) {
976 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
977 break;
978 DELAY(50);
980 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
981 DELAY(1);
983 * Erase/write disable.
985 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
986 fxp_eeprom_shiftin(sc, 0x4, 3);
987 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
988 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
989 DELAY(1);
993 * From NetBSD:
995 * Figure out EEPROM size.
997 * 559's can have either 64-word or 256-word EEPROMs, the 558
998 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
999 * talks about the existance of 16 to 256 word EEPROMs.
1001 * The only known sizes are 64 and 256, where the 256 version is used
1002 * by CardBus cards to store CIS information.
1004 * The address is shifted in msb-to-lsb, and after the last
1005 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1006 * after which follows the actual data. We try to detect this zero, by
1007 * probing the data-out bit in the EEPROM control register just after
1008 * having shifted in a bit. If the bit is zero, we assume we've
1009 * shifted enough address bits. The data-out should be tri-state,
1010 * before this, which should translate to a logical one.
1012 static void
1013 fxp_autosize_eeprom(struct fxp_softc *sc)
1016 /* guess maximum size of 256 words */
1017 sc->eeprom_size = 8;
1019 /* autosize */
1020 fxp_eeprom_getword(sc, 0, 1);
1023 static void
1024 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1026 int i;
1028 for (i = 0; i < words; i++)
1029 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1032 static void
1033 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1035 int i;
1037 for (i = 0; i < words; i++)
1038 fxp_eeprom_putword(sc, offset + i, data[i]);
1042 * Start packet transmission on the interface.
1044 static void
1045 fxp_start(struct ifnet *ifp)
1047 struct fxp_softc *sc = ifp->if_softc;
1048 struct fxp_cb_tx *txp;
1051 * See if we need to suspend xmit until the multicast filter
1052 * has been reprogrammed (which can only be done at the head
1053 * of the command chain).
1055 if (sc->need_mcsetup) {
1056 ifq_purge(&ifp->if_snd);
1057 return;
1060 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1061 return;
1063 txp = NULL;
1066 * We're finished if there is nothing more to add to the list or if
1067 * we're all filled up with buffers to transmit.
1068 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1069 * a NOP command when needed.
1071 while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1072 struct mbuf *m, *mb_head;
1073 int segment, ntries = 0;
1076 * Grab a packet to transmit.
1078 mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1079 if (mb_head == NULL)
1080 break;
1081 tbdinit:
1083 * Make sure that the packet fits into one TX desc
1085 segment = 0;
1086 for (m = mb_head; m != NULL; m = m->m_next) {
1087 if (m->m_len != 0) {
1088 ++segment;
1089 if (segment >= FXP_NTXSEG)
1090 break;
1093 if (segment >= FXP_NTXSEG) {
1094 struct mbuf *mn;
1096 if (ntries) {
1098 * Packet is excessively fragmented,
1099 * and will never fit into one TX
1100 * desc. Give it up.
1102 m_freem(mb_head);
1103 ifp->if_oerrors++;
1104 continue;
1107 mn = m_dup(mb_head, MB_DONTWAIT);
1108 if (mn == NULL) {
1109 m_freem(mb_head);
1110 ifp->if_oerrors++;
1111 continue;
1114 m_freem(mb_head);
1115 mb_head = mn;
1116 ntries = 1;
1117 goto tbdinit;
1121 * Get pointer to next available tx desc.
1123 txp = sc->cbl_last->next;
1126 * Go through each of the mbufs in the chain and initialize
1127 * the transmit buffer descriptors with the physical address
1128 * and size of the mbuf.
1130 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1131 if (m->m_len != 0) {
1132 KKASSERT(segment < FXP_NTXSEG);
1134 txp->tbd[segment].tb_addr =
1135 vtophys(mtod(m, vm_offset_t));
1136 txp->tbd[segment].tb_size = m->m_len;
1137 segment++;
1140 KKASSERT(m == NULL);
1142 txp->tbd_number = segment;
1143 txp->mb_head = mb_head;
1144 txp->cb_status = 0;
1145 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1146 txp->cb_command =
1147 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1148 FXP_CB_COMMAND_S;
1149 } else {
1150 txp->cb_command =
1151 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1152 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1154 txp->tx_threshold = tx_threshold;
1157 * Advance the end of list forward.
1159 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1160 sc->cbl_last = txp;
1163 * Advance the beginning of the list forward if there are
1164 * no other packets queued (when nothing is queued, cbl_first
1165 * sits on the last TxCB that was sent out).
1167 if (sc->tx_queued == 0)
1168 sc->cbl_first = txp;
1170 sc->tx_queued++;
1172 * Set a 5 second timer just in case we don't hear
1173 * from the card again.
1175 ifp->if_timer = 5;
1177 BPF_MTAP(ifp, mb_head);
1180 if (sc->tx_queued >= FXP_USABLE_TXCB)
1181 ifp->if_flags |= IFF_OACTIVE;
1184 * We're finished. If we added to the list, issue a RESUME to get DMA
1185 * going again if suspended.
1187 if (txp != NULL) {
1188 fxp_scb_wait(sc);
1189 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1193 #ifdef DEVICE_POLLING
1195 static void
1196 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1198 struct fxp_softc *sc = ifp->if_softc;
1199 u_int8_t statack;
1201 switch(cmd) {
1202 case POLL_REGISTER:
1203 /* disable interrupts */
1204 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1205 break;
1206 case POLL_DEREGISTER:
1207 /* enable interrupts */
1208 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1209 break;
1210 default:
1211 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1212 FXP_SCB_STATACK_FR;
1213 if (cmd == POLL_AND_CHECK_STATUS) {
1214 u_int8_t tmp;
1216 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1217 if (tmp == 0xff || tmp == 0)
1218 return; /* nothing to do */
1219 tmp &= ~statack;
1220 /* ack what we can */
1221 if (tmp != 0)
1222 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1223 statack |= tmp;
1225 fxp_intr_body(sc, statack, count);
1226 break;
1230 #endif /* DEVICE_POLLING */
1233 * Process interface interrupts.
1235 static void
1236 fxp_intr(void *xsc)
1238 struct fxp_softc *sc = xsc;
1239 u_int8_t statack;
1241 if (sc->suspended) {
1242 return;
1245 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1247 * It should not be possible to have all bits set; the
1248 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1249 * all bits are set, this may indicate that the card has
1250 * been physically ejected, so ignore it.
1252 if (statack == 0xff)
1253 return;
1256 * First ACK all the interrupts in this pass.
1258 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1259 fxp_intr_body(sc, statack, -1);
1263 static void
1264 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1266 struct ifnet *ifp = &sc->arpcom.ac_if;
1267 struct mbuf *m;
1268 struct fxp_rfa *rfa;
1269 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1271 if (rnr)
1272 fxp_rnr++;
1273 #ifdef DEVICE_POLLING
1274 /* Pick up a deferred RNR condition if `count' ran out last time. */
1275 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1276 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1277 rnr = 1;
1279 #endif
1282 * Free any finished transmit mbuf chains.
1284 * Handle the CNA event likt a CXTNO event. It used to
1285 * be that this event (control unit not ready) was not
1286 * encountered, but it is now with the SMPng modifications.
1287 * The exact sequence of events that occur when the interface
1288 * is brought up are different now, and if this event
1289 * goes unhandled, the configuration/rxfilter setup sequence
1290 * can stall for several seconds. The result is that no
1291 * packets go out onto the wire for about 5 to 10 seconds
1292 * after the interface is ifconfig'ed for the first time.
1294 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1295 struct fxp_cb_tx *txp;
1297 for (txp = sc->cbl_first; sc->tx_queued &&
1298 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1299 txp = txp->next) {
1300 if ((m = txp->mb_head) != NULL) {
1301 txp->mb_head = NULL;
1302 sc->tx_queued--;
1303 m_freem(m);
1304 } else {
1305 sc->tx_queued--;
1308 sc->cbl_first = txp;
1310 if (sc->tx_queued < FXP_USABLE_TXCB)
1311 ifp->if_flags &= ~IFF_OACTIVE;
1313 if (sc->tx_queued == 0) {
1314 ifp->if_timer = 0;
1315 if (sc->need_mcsetup)
1316 fxp_mc_setup(sc);
1320 * Try to start more packets transmitting.
1322 if (!ifq_is_empty(&ifp->if_snd))
1323 if_devstart(ifp);
1327 * Just return if nothing happened on the receive side.
1329 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1330 return;
1333 * Process receiver interrupts. If a no-resource (RNR)
1334 * condition exists, get whatever packets we can and
1335 * re-start the receiver.
1337 * When using polling, we do not process the list to completion,
1338 * so when we get an RNR interrupt we must defer the restart
1339 * until we hit the last buffer with the C bit set.
1340 * If we run out of cycles and rfa_headm has the C bit set,
1341 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1342 * that the info will be used in the subsequent polling cycle.
1344 for (;;) {
1345 m = sc->rfa_headm;
1346 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1347 RFA_ALIGNMENT_FUDGE);
1349 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1350 if (count >= 0 && count-- == 0) {
1351 if (rnr) {
1352 /* Defer RNR processing until the next time. */
1353 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1354 rnr = 0;
1356 break;
1358 #endif /* DEVICE_POLLING */
1360 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1361 break;
1364 * Remove first packet from the chain.
1366 sc->rfa_headm = m->m_next;
1367 m->m_next = NULL;
1370 * Add a new buffer to the receive chain.
1371 * If this fails, the old buffer is recycled
1372 * instead.
1374 if (fxp_add_rfabuf(sc, m) == 0) {
1375 int total_len;
1378 * Fetch packet length (the top 2 bits of
1379 * actual_size are flags set by the controller
1380 * upon completion), and drop the packet in case
1381 * of bogus length or CRC errors.
1383 total_len = rfa->actual_size & 0x3fff;
1384 if (total_len < sizeof(struct ether_header) ||
1385 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1386 sizeof(struct fxp_rfa) ||
1387 rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1388 m_freem(m);
1389 continue;
1391 m->m_pkthdr.len = m->m_len = total_len;
1392 ifp->if_input(ifp, m);
1395 if (rnr) {
1396 fxp_scb_wait(sc);
1397 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1398 vtophys(sc->rfa_headm->m_ext.ext_buf) +
1399 RFA_ALIGNMENT_FUDGE);
1400 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1405 * Update packet in/out/collision statistics. The i82557 doesn't
1406 * allow you to access these counters without doing a fairly
1407 * expensive DMA to get _all_ of the statistics it maintains, so
1408 * we do this operation here only once per second. The statistics
1409 * counters in the kernel are updated from the previous dump-stats
1410 * DMA and then a new dump-stats DMA is started. The on-chip
1411 * counters are zeroed when the DMA completes. If we can't start
1412 * the DMA immediately, we don't wait - we just prepare to read
1413 * them again next time.
1415 static void
1416 fxp_tick(void *xsc)
1418 struct fxp_softc *sc = xsc;
1419 struct ifnet *ifp = &sc->arpcom.ac_if;
1420 struct fxp_stats *sp = sc->fxp_stats;
1421 struct fxp_cb_tx *txp;
1422 struct mbuf *m;
1424 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1426 ifp->if_opackets += sp->tx_good;
1427 ifp->if_collisions += sp->tx_total_collisions;
1428 if (sp->rx_good) {
1429 ifp->if_ipackets += sp->rx_good;
1430 sc->rx_idle_secs = 0;
1431 } else {
1433 * Receiver's been idle for another second.
1435 sc->rx_idle_secs++;
1437 ifp->if_ierrors +=
1438 sp->rx_crc_errors +
1439 sp->rx_alignment_errors +
1440 sp->rx_rnr_errors +
1441 sp->rx_overrun_errors;
1443 * If any transmit underruns occured, bump up the transmit
1444 * threshold by another 512 bytes (64 * 8).
1446 if (sp->tx_underruns) {
1447 ifp->if_oerrors += sp->tx_underruns;
1448 if (tx_threshold < 192)
1449 tx_threshold += 64;
1453 * Release any xmit buffers that have completed DMA. This isn't
1454 * strictly necessary to do here, but it's advantagous for mbufs
1455 * with external storage to be released in a timely manner rather
1456 * than being defered for a potentially long time. This limits
1457 * the delay to a maximum of one second.
1459 for (txp = sc->cbl_first; sc->tx_queued &&
1460 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1461 txp = txp->next) {
1462 if ((m = txp->mb_head) != NULL) {
1463 txp->mb_head = NULL;
1464 sc->tx_queued--;
1465 m_freem(m);
1466 } else {
1467 sc->tx_queued--;
1470 sc->cbl_first = txp;
1472 if (sc->tx_queued < FXP_USABLE_TXCB)
1473 ifp->if_flags &= ~IFF_OACTIVE;
1474 if (sc->tx_queued == 0)
1475 ifp->if_timer = 0;
1478 * Try to start more packets transmitting.
1480 if (!ifq_is_empty(&ifp->if_snd))
1481 if_devstart(ifp);
1484 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1485 * then assume the receiver has locked up and attempt to clear
1486 * the condition by reprogramming the multicast filter. This is
1487 * a work-around for a bug in the 82557 where the receiver locks
1488 * up if it gets certain types of garbage in the syncronization
1489 * bits prior to the packet header. This bug is supposed to only
1490 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1491 * mode as well (perhaps due to a 10/100 speed transition).
1493 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1494 sc->rx_idle_secs = 0;
1495 fxp_mc_setup(sc);
1498 * If there is no pending command, start another stats
1499 * dump. Otherwise punt for now.
1501 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1503 * Start another stats dump.
1505 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1506 } else {
1508 * A previous command is still waiting to be accepted.
1509 * Just zero our copy of the stats and wait for the
1510 * next timer event to update them.
1512 sp->tx_good = 0;
1513 sp->tx_underruns = 0;
1514 sp->tx_total_collisions = 0;
1516 sp->rx_good = 0;
1517 sp->rx_crc_errors = 0;
1518 sp->rx_alignment_errors = 0;
1519 sp->rx_rnr_errors = 0;
1520 sp->rx_overrun_errors = 0;
1522 if (sc->miibus != NULL)
1523 mii_tick(device_get_softc(sc->miibus));
1525 * Schedule another timeout one second from now.
1527 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1529 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1533 * Stop the interface. Cancels the statistics updater and resets
1534 * the interface.
1536 static void
1537 fxp_stop(struct fxp_softc *sc)
1539 struct ifnet *ifp = &sc->arpcom.ac_if;
1540 struct fxp_cb_tx *txp;
1541 int i;
1543 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1544 ifp->if_timer = 0;
1547 * Cancel stats updater.
1549 callout_stop(&sc->fxp_stat_timer);
1552 * Issue software reset, which also unloads the microcode.
1554 sc->flags &= ~FXP_FLAG_UCODE;
1555 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1556 DELAY(50);
1559 * Release any xmit buffers.
1561 txp = sc->cbl_base;
1562 if (txp != NULL) {
1563 for (i = 0; i < FXP_NTXCB; i++) {
1564 if (txp[i].mb_head != NULL) {
1565 m_freem(txp[i].mb_head);
1566 txp[i].mb_head = NULL;
1570 sc->tx_queued = 0;
1573 * Free all the receive buffers then reallocate/reinitialize
1575 if (sc->rfa_headm != NULL)
1576 m_freem(sc->rfa_headm);
1577 sc->rfa_headm = NULL;
1578 sc->rfa_tailm = NULL;
1579 for (i = 0; i < FXP_NRFABUFS; i++) {
1580 if (fxp_add_rfabuf(sc, NULL) != 0) {
1582 * This "can't happen" - we're at splimp()
1583 * and we just freed all the buffers we need
1584 * above.
1586 panic("fxp_stop: no buffers!");
1592 * Watchdog/transmission transmit timeout handler. Called when a
1593 * transmission is started on the interface, but no interrupt is
1594 * received before the timeout. This usually indicates that the
1595 * card has wedged for some reason.
1597 static void
1598 fxp_watchdog(struct ifnet *ifp)
1600 if_printf(ifp, "device timeout\n");
1601 ifp->if_oerrors++;
1602 fxp_init(ifp->if_softc);
1605 static void
1606 fxp_init(void *xsc)
1608 struct fxp_softc *sc = xsc;
1609 struct ifnet *ifp = &sc->arpcom.ac_if;
1610 struct fxp_cb_config *cbp;
1611 struct fxp_cb_ias *cb_ias;
1612 struct fxp_cb_tx *txp;
1613 struct fxp_cb_mcs *mcsp;
1614 int i, prm;
1617 * Cancel any pending I/O
1619 fxp_stop(sc);
1621 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1624 * Initialize base of CBL and RFA memory. Loading with zero
1625 * sets it up for regular linear addressing.
1627 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1628 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1630 fxp_scb_wait(sc);
1631 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1634 * Initialize base of dump-stats buffer.
1636 fxp_scb_wait(sc);
1637 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1638 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1641 * Attempt to load microcode if requested.
1643 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1644 fxp_load_ucode(sc);
1647 * Initialize the multicast address list.
1649 if (fxp_mc_addrs(sc)) {
1650 mcsp = sc->mcsp;
1651 mcsp->cb_status = 0;
1652 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1653 mcsp->link_addr = -1;
1655 * Start the multicast setup command.
1657 fxp_scb_wait(sc);
1658 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1659 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1660 /* ...and wait for it to complete. */
1661 fxp_dma_wait(&mcsp->cb_status, sc);
1665 * We temporarily use memory that contains the TxCB list to
1666 * construct the config CB. The TxCB list memory is rebuilt
1667 * later.
1669 cbp = (struct fxp_cb_config *) sc->cbl_base;
1672 * This bcopy is kind of disgusting, but there are a bunch of must be
1673 * zero and must be one bits in this structure and this is the easiest
1674 * way to initialize them all to proper values.
1676 bcopy(fxp_cb_config_template,
1677 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1678 sizeof(fxp_cb_config_template));
1680 cbp->cb_status = 0;
1681 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1682 cbp->link_addr = -1; /* (no) next command */
1683 cbp->byte_count = 22; /* (22) bytes to config */
1684 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1685 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1686 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1687 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1688 cbp->type_enable = 0; /* actually reserved */
1689 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1690 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1691 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1692 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1693 cbp->dma_mbce = 0; /* (disable) dma max counters */
1694 cbp->late_scb = 0; /* (don't) defer SCB update */
1695 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
1696 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1697 cbp->ci_int = 1; /* interrupt on CU idle */
1698 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1699 cbp->ext_stats_dis = 1; /* disable extended counters */
1700 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1701 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
1702 cbp->disc_short_rx = !prm; /* discard short packets */
1703 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
1704 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1705 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1706 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1707 cbp->csma_dis = 0; /* (don't) disable link */
1708 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1709 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1710 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1711 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1712 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
1713 cbp->nsai = 1; /* (don't) disable source addr insert */
1714 cbp->preamble_length = 2; /* (7 byte) preamble */
1715 cbp->loopback = 0; /* (don't) loopback */
1716 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1717 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1718 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1719 cbp->promiscuous = prm; /* promiscuous mode */
1720 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1721 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1722 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1723 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1724 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1726 cbp->stripping = !prm; /* truncate rx packet to byte count */
1727 cbp->padding = 1; /* (do) pad short tx packets */
1728 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1729 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1730 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1731 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1732 /* must set wake_en in PMCSR also */
1733 cbp->force_fdx = 0; /* (don't) force full duplex */
1734 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1735 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1736 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1738 if (sc->revision == FXP_REV_82557) {
1740 * The 82557 has no hardware flow control, the values
1741 * below are the defaults for the chip.
1743 cbp->fc_delay_lsb = 0;
1744 cbp->fc_delay_msb = 0x40;
1745 cbp->pri_fc_thresh = 3;
1746 cbp->tx_fc_dis = 0;
1747 cbp->rx_fc_restop = 0;
1748 cbp->rx_fc_restart = 0;
1749 cbp->fc_filter = 0;
1750 cbp->pri_fc_loc = 1;
1751 } else {
1752 cbp->fc_delay_lsb = 0x1f;
1753 cbp->fc_delay_msb = 0x01;
1754 cbp->pri_fc_thresh = 3;
1755 cbp->tx_fc_dis = 0; /* enable transmit FC */
1756 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1757 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1758 cbp->fc_filter = !prm; /* drop FC frames to host */
1759 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1763 * Start the config command/DMA.
1765 fxp_scb_wait(sc);
1766 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1767 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1768 /* ...and wait for it to complete. */
1769 fxp_dma_wait(&cbp->cb_status, sc);
1772 * Now initialize the station address. Temporarily use the TxCB
1773 * memory area like we did above for the config CB.
1775 cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1776 cb_ias->cb_status = 0;
1777 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1778 cb_ias->link_addr = -1;
1779 bcopy(sc->arpcom.ac_enaddr,
1780 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1781 sizeof(sc->arpcom.ac_enaddr));
1784 * Start the IAS (Individual Address Setup) command/DMA.
1786 fxp_scb_wait(sc);
1787 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1788 /* ...and wait for it to complete. */
1789 fxp_dma_wait(&cb_ias->cb_status, sc);
1792 * Initialize transmit control block (TxCB) list.
1795 txp = sc->cbl_base;
1796 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1797 for (i = 0; i < FXP_NTXCB; i++) {
1798 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1799 txp[i].cb_command = FXP_CB_COMMAND_NOP;
1800 txp[i].link_addr =
1801 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1802 if (sc->flags & FXP_FLAG_EXT_TXCB)
1803 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1804 else
1805 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1806 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1809 * Set the suspend flag on the first TxCB and start the control
1810 * unit. It will execute the NOP and then suspend.
1812 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1813 sc->cbl_first = sc->cbl_last = txp;
1814 sc->tx_queued = 1;
1816 fxp_scb_wait(sc);
1817 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820 * Initialize receiver buffer area - RFA.
1822 fxp_scb_wait(sc);
1823 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1824 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1825 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1828 * Set current media.
1830 if (sc->miibus != NULL)
1831 mii_mediachg(device_get_softc(sc->miibus));
1833 ifp->if_flags |= IFF_RUNNING;
1834 ifp->if_flags &= ~IFF_OACTIVE;
1837 * Enable interrupts.
1839 #ifdef DEVICE_POLLING
1841 * ... but only do that if we are not polling. And because (presumably)
1842 * the default is interrupts on, we need to disable them explicitly!
1844 if ( ifp->if_flags & IFF_POLLING )
1845 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1846 else
1847 #endif /* DEVICE_POLLING */
1848 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1851 * Start stats updater.
1853 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1856 static int
1857 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1860 return (0);
1863 static void
1864 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1867 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1871 * Change media according to request.
1873 static int
1874 fxp_ifmedia_upd(struct ifnet *ifp)
1876 struct fxp_softc *sc = ifp->if_softc;
1877 struct mii_data *mii;
1879 mii = device_get_softc(sc->miibus);
1880 mii_mediachg(mii);
1881 return (0);
1885 * Notify the world which media we're using.
1887 static void
1888 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1890 struct fxp_softc *sc = ifp->if_softc;
1891 struct mii_data *mii;
1893 mii = device_get_softc(sc->miibus);
1894 mii_pollstat(mii);
1895 ifmr->ifm_active = mii->mii_media_active;
1896 ifmr->ifm_status = mii->mii_media_status;
1898 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1899 sc->cu_resume_bug = 1;
1900 else
1901 sc->cu_resume_bug = 0;
1905 * Add a buffer to the end of the RFA buffer list.
1906 * Return 0 if successful, 1 for failure. A failure results in
1907 * adding the 'oldm' (if non-NULL) on to the end of the list -
1908 * tossing out its old contents and recycling it.
1909 * The RFA struct is stuck at the beginning of mbuf cluster and the
1910 * data pointer is fixed up to point just past it.
1912 static int
1913 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1915 u_int32_t v;
1916 struct mbuf *m;
1917 struct fxp_rfa *rfa, *p_rfa;
1919 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1920 if (m == NULL) { /* try to recycle the old mbuf instead */
1921 if (oldm == NULL)
1922 return 1;
1923 m = oldm;
1924 m->m_data = m->m_ext.ext_buf;
1928 * Move the data pointer up so that the incoming data packet
1929 * will be 32-bit aligned.
1931 m->m_data += RFA_ALIGNMENT_FUDGE;
1934 * Get a pointer to the base of the mbuf cluster and move
1935 * data start past it.
1937 rfa = mtod(m, struct fxp_rfa *);
1938 m->m_data += sizeof(struct fxp_rfa);
1939 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1942 * Initialize the rest of the RFA. Note that since the RFA
1943 * is misaligned, we cannot store values directly. Instead,
1944 * we use an optimized, inline copy.
1947 rfa->rfa_status = 0;
1948 rfa->rfa_control = FXP_RFA_CONTROL_EL;
1949 rfa->actual_size = 0;
1951 v = -1;
1952 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1953 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1956 * If there are other buffers already on the list, attach this
1957 * one to the end by fixing up the tail to point to this one.
1959 if (sc->rfa_headm != NULL) {
1960 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1961 RFA_ALIGNMENT_FUDGE);
1962 sc->rfa_tailm->m_next = m;
1963 v = vtophys(rfa);
1964 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1965 p_rfa->rfa_control = 0;
1966 } else {
1967 sc->rfa_headm = m;
1969 sc->rfa_tailm = m;
1971 return (m == oldm);
1974 static int
1975 fxp_miibus_readreg(device_t dev, int phy, int reg)
1977 struct fxp_softc *sc = device_get_softc(dev);
1978 int count = 10000;
1979 int value;
1981 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1982 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1984 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1985 && count--)
1986 DELAY(10);
1988 if (count <= 0)
1989 device_printf(dev, "fxp_miibus_readreg: timed out\n");
1991 return (value & 0xffff);
1994 static void
1995 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1997 struct fxp_softc *sc = device_get_softc(dev);
1998 int count = 10000;
2000 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2001 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2002 (value & 0xffff));
2004 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2005 count--)
2006 DELAY(10);
2008 if (count <= 0)
2009 device_printf(dev, "fxp_miibus_writereg: timed out\n");
2012 static int
2013 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2015 struct fxp_softc *sc = ifp->if_softc;
2016 struct ifreq *ifr = (struct ifreq *)data;
2017 struct mii_data *mii;
2018 int error = 0;
2020 switch (command) {
2022 case SIOCSIFFLAGS:
2023 if (ifp->if_flags & IFF_ALLMULTI)
2024 sc->flags |= FXP_FLAG_ALL_MCAST;
2025 else
2026 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2029 * If interface is marked up and not running, then start it.
2030 * If it is marked down and running, stop it.
2031 * XXX If it's up then re-initialize it. This is so flags
2032 * such as IFF_PROMISC are handled.
2034 if (ifp->if_flags & IFF_UP) {
2035 fxp_init(sc);
2036 } else {
2037 if (ifp->if_flags & IFF_RUNNING)
2038 fxp_stop(sc);
2040 break;
2042 case SIOCADDMULTI:
2043 case SIOCDELMULTI:
2044 if (ifp->if_flags & IFF_ALLMULTI)
2045 sc->flags |= FXP_FLAG_ALL_MCAST;
2046 else
2047 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2049 * Multicast list has changed; set the hardware filter
2050 * accordingly.
2052 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2053 fxp_mc_setup(sc);
2055 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2056 * again rather than else {}.
2058 if (sc->flags & FXP_FLAG_ALL_MCAST)
2059 fxp_init(sc);
2060 error = 0;
2061 break;
2063 case SIOCSIFMEDIA:
2064 case SIOCGIFMEDIA:
2065 if (sc->miibus != NULL) {
2066 mii = device_get_softc(sc->miibus);
2067 error = ifmedia_ioctl(ifp, ifr,
2068 &mii->mii_media, command);
2069 } else {
2070 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2072 break;
2074 default:
2075 error = ether_ioctl(ifp, command, data);
2076 break;
2078 return (error);
2082 * Fill in the multicast address list and return number of entries.
2084 static int
2085 fxp_mc_addrs(struct fxp_softc *sc)
2087 struct fxp_cb_mcs *mcsp = sc->mcsp;
2088 struct ifnet *ifp = &sc->arpcom.ac_if;
2089 struct ifmultiaddr *ifma;
2090 int nmcasts;
2092 nmcasts = 0;
2093 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2094 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2095 if (ifma->ifma_addr->sa_family != AF_LINK)
2096 continue;
2097 if (nmcasts >= MAXMCADDR) {
2098 sc->flags |= FXP_FLAG_ALL_MCAST;
2099 nmcasts = 0;
2100 break;
2102 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2103 (void *)(uintptr_t)(volatile void *)
2104 &sc->mcsp->mc_addr[nmcasts][0], 6);
2105 nmcasts++;
2108 mcsp->mc_cnt = nmcasts * 6;
2109 return (nmcasts);
2113 * Program the multicast filter.
2115 * We have an artificial restriction that the multicast setup command
2116 * must be the first command in the chain, so we take steps to ensure
2117 * this. By requiring this, it allows us to keep up the performance of
2118 * the pre-initialized command ring (esp. link pointers) by not actually
2119 * inserting the mcsetup command in the ring - i.e. its link pointer
2120 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2121 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2122 * lead into the regular TxCB ring when it completes.
2124 * This function must be called at splimp.
2126 static void
2127 fxp_mc_setup(struct fxp_softc *sc)
2129 struct fxp_cb_mcs *mcsp = sc->mcsp;
2130 struct ifnet *ifp = &sc->arpcom.ac_if;
2131 int count;
2134 * If there are queued commands, we must wait until they are all
2135 * completed. If we are already waiting, then add a NOP command
2136 * with interrupt option so that we're notified when all commands
2137 * have been completed - fxp_start() ensures that no additional
2138 * TX commands will be added when need_mcsetup is true.
2140 if (sc->tx_queued) {
2141 struct fxp_cb_tx *txp;
2144 * need_mcsetup will be true if we are already waiting for the
2145 * NOP command to be completed (see below). In this case, bail.
2147 if (sc->need_mcsetup)
2148 return;
2149 sc->need_mcsetup = 1;
2152 * Add a NOP command with interrupt so that we are notified
2153 * when all TX commands have been processed.
2155 txp = sc->cbl_last->next;
2156 txp->mb_head = NULL;
2157 txp->cb_status = 0;
2158 txp->cb_command = FXP_CB_COMMAND_NOP |
2159 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2161 * Advance the end of list forward.
2163 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2164 sc->cbl_last = txp;
2165 sc->tx_queued++;
2167 * Issue a resume in case the CU has just suspended.
2169 fxp_scb_wait(sc);
2170 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2172 * Set a 5 second timer just in case we don't hear from the
2173 * card again.
2175 ifp->if_timer = 5;
2177 return;
2179 sc->need_mcsetup = 0;
2182 * Initialize multicast setup descriptor.
2184 mcsp->next = sc->cbl_base;
2185 mcsp->mb_head = NULL;
2186 mcsp->cb_status = 0;
2187 mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2188 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2189 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2190 fxp_mc_addrs(sc);
2191 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2192 sc->tx_queued = 1;
2195 * Wait until command unit is not active. This should never
2196 * be the case when nothing is queued, but make sure anyway.
2198 count = 100;
2199 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2200 FXP_SCB_CUS_ACTIVE && --count)
2201 DELAY(10);
2202 if (count == 0) {
2203 if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2204 return;
2208 * Start the multicast setup command.
2210 fxp_scb_wait(sc);
2211 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2212 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2214 ifp->if_timer = 2;
2215 return;
2218 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2219 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2220 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2221 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2222 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2223 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2225 #define UCODE(x) x, sizeof(x)
2227 struct ucode {
2228 u_int32_t revision;
2229 u_int32_t *ucode;
2230 int length;
2231 u_short int_delay_offset;
2232 u_short bundle_max_offset;
2233 } ucode_table[] = {
2234 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2235 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2236 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2237 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2238 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2239 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2240 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2241 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2242 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2243 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2244 { 0, NULL, 0, 0, 0 }
2247 static void
2248 fxp_load_ucode(struct fxp_softc *sc)
2250 struct ucode *uc;
2251 struct fxp_cb_ucode *cbp;
2253 for (uc = ucode_table; uc->ucode != NULL; uc++)
2254 if (sc->revision == uc->revision)
2255 break;
2256 if (uc->ucode == NULL)
2257 return;
2258 cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2259 cbp->cb_status = 0;
2260 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2261 cbp->link_addr = -1; /* (no) next command */
2262 memcpy(cbp->ucode, uc->ucode, uc->length);
2263 if (uc->int_delay_offset)
2264 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
2265 sc->tunable_int_delay + sc->tunable_int_delay / 2;
2266 if (uc->bundle_max_offset)
2267 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2268 sc->tunable_bundle_max;
2270 * Download the ucode to the chip.
2272 fxp_scb_wait(sc);
2273 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2274 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2275 /* ...and wait for it to complete. */
2276 fxp_dma_wait(&cbp->cb_status, sc);
2277 if_printf(&sc->arpcom.ac_if,
2278 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
2279 sc->tunable_int_delay,
2280 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2281 sc->flags |= FXP_FLAG_UCODE;
2284 static int
2285 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2287 int error, value;
2289 value = *(int *)arg1;
2290 error = sysctl_handle_int(oidp, &value, 0, req);
2291 if (error || !req->newptr)
2292 return (error);
2293 if (value < low || value > high)
2294 return (EINVAL);
2295 *(int *)arg1 = value;
2296 return (0);
2300 * Interrupt delay is expressed in microseconds, a multiplier is used
2301 * to convert this to the appropriate clock ticks before using.
2303 static int
2304 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2306 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2309 static int
2310 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2312 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));