Add missing section number.
[dragonfly.git] / sys / netinet6 / ip6_output.c
blobd1c018a393305759a2960034fe4f95644f2f63b1
1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */
2 /* $DragonFly: src/sys/netinet6/ip6_output.c,v 1.37 2008/09/04 09:08:22 hasso Exp $ */
3 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
69 #include "opt_ip6fw.h"
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
74 #include <sys/param.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/errno.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/pfil.h>
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet/ip6.h>
93 #include <netinet/icmp6.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet6/nd6.h>
97 #include <netinet6/ip6protosw.h>
99 #ifdef IPSEC
100 #include <netinet6/ipsec.h>
101 #ifdef INET6
102 #include <netinet6/ipsec6.h>
103 #endif
104 #include <netproto/key/key.h>
105 #endif /* IPSEC */
107 #ifdef FAST_IPSEC
108 #include <netproto/ipsec/ipsec.h>
109 #include <netproto/ipsec/ipsec6.h>
110 #include <netproto/ipsec/key.h>
111 #endif
113 #include <net/ip6fw/ip6_fw.h>
115 #include <net/net_osdep.h>
117 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
119 struct ip6_exthdrs {
120 struct mbuf *ip6e_ip6;
121 struct mbuf *ip6e_hbh;
122 struct mbuf *ip6e_dest1;
123 struct mbuf *ip6e_rthdr;
124 struct mbuf *ip6e_dest2;
127 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int);
128 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *,
129 int, int, int, int);
130 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *,
131 struct socket *, struct sockopt *);
132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
133 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
134 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
135 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
136 struct ifnet *, struct in6_addr *, u_long *, int *);
137 static int copyexthdr (void *, struct mbuf **);
138 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int,
139 struct ip6_frag **);
140 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
141 static struct mbuf *ip6_splithdr (struct mbuf *);
142 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
145 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
146 * header (with pri, len, nxt, hlim, src, dst).
147 * This function may modify ver and hlim only.
148 * The mbuf chain containing the packet will be freed.
149 * The mbuf opt, if present, will not be freed.
151 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
152 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
153 * which is rt_rmx.rmx_mtu.
156 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
157 int flags, struct ip6_moptions *im6o,
158 struct ifnet **ifpp, /* XXX: just for statistics */
159 struct inpcb *inp)
161 struct ip6_hdr *ip6, *mhip6;
162 struct ifnet *ifp, *origifp;
163 struct mbuf *m = m0;
164 struct mbuf *mprev;
165 u_char *nexthdrp;
166 int hlen, tlen, len, off;
167 struct route_in6 ip6route;
168 struct sockaddr_in6 *dst;
169 int error = 0;
170 struct in6_ifaddr *ia = NULL;
171 u_long mtu;
172 int alwaysfrag, dontfrag;
173 u_int32_t optlen, plen = 0, unfragpartlen;
174 struct ip6_exthdrs exthdrs;
175 struct in6_addr finaldst;
176 struct route_in6 *ro_pmtu = NULL;
177 boolean_t hdrsplit = FALSE;
178 boolean_t needipsec = FALSE;
179 #ifdef IPSEC
180 boolean_t needipsectun = FALSE;
181 struct secpolicy *sp = NULL;
182 struct socket *so = inp ? inp->inp_socket : NULL;
184 ip6 = mtod(m, struct ip6_hdr *);
185 #endif
186 #ifdef FAST_IPSEC
187 boolean_t needipsectun = FALSE;
188 struct secpolicy *sp = NULL;
190 ip6 = mtod(m, struct ip6_hdr *);
191 #endif
193 bzero(&exthdrs, sizeof exthdrs);
195 if (opt) {
196 if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
197 goto freehdrs;
198 if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
199 goto freehdrs;
200 if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
201 goto freehdrs;
202 if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
203 goto freehdrs;
206 #ifdef IPSEC
207 /* get a security policy for this packet */
208 if (so == NULL)
209 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
210 else
211 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
213 if (sp == NULL) {
214 ipsec6stat.out_inval++;
215 goto freehdrs;
218 error = 0;
220 /* check policy */
221 switch (sp->policy) {
222 case IPSEC_POLICY_DISCARD:
224 * This packet is just discarded.
226 ipsec6stat.out_polvio++;
227 goto freehdrs;
229 case IPSEC_POLICY_BYPASS:
230 case IPSEC_POLICY_NONE:
231 /* no need to do IPsec. */
232 needipsec = FALSE;
233 break;
235 case IPSEC_POLICY_IPSEC:
236 if (sp->req == NULL) {
237 error = key_spdacquire(sp); /* acquire a policy */
238 goto freehdrs;
240 needipsec = TRUE;
241 break;
243 case IPSEC_POLICY_ENTRUST:
244 default:
245 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
247 #endif /* IPSEC */
248 #ifdef FAST_IPSEC
249 /* get a security policy for this packet */
250 if (inp == NULL)
251 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
252 else
253 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error);
255 if (sp == NULL) {
256 newipsecstat.ips_out_inval++;
257 goto freehdrs;
260 error = 0;
262 /* check policy */
263 switch (sp->policy) {
264 case IPSEC_POLICY_DISCARD:
266 * This packet is just discarded.
268 newipsecstat.ips_out_polvio++;
269 goto freehdrs;
271 case IPSEC_POLICY_BYPASS:
272 case IPSEC_POLICY_NONE:
273 /* no need to do IPsec. */
274 needipsec = FALSE;
275 break;
277 case IPSEC_POLICY_IPSEC:
278 if (sp->req == NULL) {
279 error = key_spdacquire(sp); /* acquire a policy */
280 goto freehdrs;
282 needipsec = TRUE;
283 break;
285 case IPSEC_POLICY_ENTRUST:
286 default:
287 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
289 #endif /* FAST_IPSEC */
292 * Calculate the total length of the extension header chain.
293 * Keep the length of the unfragmentable part for fragmentation.
295 optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
296 m_lengthm(exthdrs.ip6e_dest1, NULL) +
297 m_lengthm(exthdrs.ip6e_rthdr, NULL);
299 unfragpartlen = optlen + sizeof(struct ip6_hdr);
301 /* NOTE: we don't add AH/ESP length here. do that later. */
302 optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
305 * If we need IPsec, or there is at least one extension header,
306 * separate IP6 header from the payload.
308 if ((needipsec || optlen) && !hdrsplit) {
309 exthdrs.ip6e_ip6 = ip6_splithdr(m);
310 if (exthdrs.ip6e_ip6 == NULL) {
311 error = ENOBUFS;
312 goto freehdrs;
314 m = exthdrs.ip6e_ip6;
315 hdrsplit = TRUE;
318 /* adjust pointer */
319 ip6 = mtod(m, struct ip6_hdr *);
321 /* adjust mbuf packet header length */
322 m->m_pkthdr.len += optlen;
323 plen = m->m_pkthdr.len - sizeof(*ip6);
325 /* If this is a jumbo payload, insert a jumbo payload option. */
326 if (plen > IPV6_MAXPACKET) {
327 if (!hdrsplit) {
328 exthdrs.ip6e_ip6 = ip6_splithdr(m);
329 if (exthdrs.ip6e_ip6 == NULL) {
330 error = ENOBUFS;
331 goto freehdrs;
333 m = exthdrs.ip6e_ip6;
334 hdrsplit = TRUE;
336 /* adjust pointer */
337 ip6 = mtod(m, struct ip6_hdr *);
338 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
339 goto freehdrs;
340 ip6->ip6_plen = 0;
341 } else
342 ip6->ip6_plen = htons(plen);
345 * Concatenate headers and fill in next header fields.
346 * Here we have, on "m"
347 * IPv6 payload
348 * and we insert headers accordingly. Finally, we should be getting:
349 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
351 * during the header composing process, "m" points to IPv6 header.
352 * "mprev" points to an extension header prior to esp.
355 nexthdrp = &ip6->ip6_nxt;
356 mprev = m;
359 * we treat dest2 specially. this makes IPsec processing
360 * much easier. the goal here is to make mprev point the
361 * mbuf prior to dest2.
363 * result: IPv6 dest2 payload
364 * m and mprev will point to IPv6 header.
366 if (exthdrs.ip6e_dest2) {
367 if (!hdrsplit)
368 panic("assumption failed: hdr not split");
369 exthdrs.ip6e_dest2->m_next = m->m_next;
370 m->m_next = exthdrs.ip6e_dest2;
371 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
372 ip6->ip6_nxt = IPPROTO_DSTOPTS;
376 * Place m1 after mprev.
378 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
379 do {\
380 if (m1) {\
381 if (!hdrsplit)\
382 panic("assumption failed: hdr not split");\
383 *mtod(m1, u_char *) = *nexthdrp;\
384 *nexthdrp = (i);\
385 nexthdrp = mtod(m1, u_char *);\
386 m1->m_next = mprev->m_next;\
387 mprev->m_next = m1;\
388 mprev = m1;\
390 } while (0)
393 * result: IPv6 hbh dest1 rthdr dest2 payload
394 * m will point to IPv6 header. mprev will point to the
395 * extension header prior to dest2 (rthdr in the above case).
397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
399 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
401 #if defined(IPSEC) || defined(FAST_IPSEC)
402 if (needipsec) {
403 struct ipsec_output_state state;
404 int segleft_org = 0;
405 struct ip6_rthdr *rh = NULL;
408 * pointers after IPsec headers are not valid any more.
409 * other pointers need a great care too.
410 * (IPsec routines should not mangle mbufs prior to AH/ESP)
412 exthdrs.ip6e_dest2 = NULL;
414 if (exthdrs.ip6e_rthdr) {
415 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
416 segleft_org = rh->ip6r_segleft;
417 rh->ip6r_segleft = 0;
420 bzero(&state, sizeof state);
421 state.m = m;
422 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
423 &needipsectun);
424 m = state.m;
425 if (error) {
426 /* mbuf is already reclaimed in ipsec6_output_trans. */
427 m = NULL;
428 switch (error) {
429 case EHOSTUNREACH:
430 case ENETUNREACH:
431 case EMSGSIZE:
432 case ENOBUFS:
433 case ENOMEM:
434 break;
435 default:
436 kprintf("ip6_output (ipsec): error code %d\n",
437 error);
438 /* fall through */
439 case ENOENT:
440 /* don't show these error codes to the user */
441 error = 0;
442 break;
444 goto bad;
446 if (exthdrs.ip6e_rthdr) {
447 /* ah6_output doesn't modify mbuf chain */
448 rh->ip6r_segleft = segleft_org;
451 #endif
454 * If there is a routing header, replace destination address field
455 * with the first hop of the routing header.
457 if (exthdrs.ip6e_rthdr) {
458 struct ip6_rthdr *rh;
460 finaldst = ip6->ip6_dst;
461 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
462 switch (rh->ip6r_type) {
463 default: /* is it possible? */
464 error = EINVAL;
465 goto bad;
469 /* Source address validation */
470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
471 !(flags & IPV6_DADOUTPUT)) {
472 error = EOPNOTSUPP;
473 ip6stat.ip6s_badscope++;
474 goto bad;
476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
477 error = EOPNOTSUPP;
478 ip6stat.ip6s_badscope++;
479 goto bad;
482 ip6stat.ip6s_localout++;
485 * Route packet.
487 if (ro == NULL) {
488 ro = &ip6route;
489 bzero(ro, sizeof(*ro));
491 ro_pmtu = ro;
492 if (opt && opt->ip6po_rthdr)
493 ro = &opt->ip6po_route;
494 dst = (struct sockaddr_in6 *)&ro->ro_dst;
496 * If there is a cached route,
497 * check that it is to the same destination
498 * and is still up. If not, free it and try again.
500 if (ro->ro_rt != NULL &&
501 (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
502 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
503 RTFREE(ro->ro_rt);
504 ro->ro_rt = NULL;
506 if (ro->ro_rt == NULL) {
507 bzero(dst, sizeof(*dst));
508 dst->sin6_family = AF_INET6;
509 dst->sin6_len = sizeof(struct sockaddr_in6);
510 dst->sin6_addr = ip6->ip6_dst;
512 #if defined(IPSEC) || defined(FAST_IPSEC)
513 if (needipsec && needipsectun) {
514 struct ipsec_output_state state;
517 * All the extension headers will become inaccessible
518 * (since they can be encrypted).
519 * Don't panic, we need no more updates to extension headers
520 * on inner IPv6 packet (since they are now encapsulated).
522 * IPv6 [ESP|AH] IPv6 [extension headers] payload
524 bzero(&exthdrs, sizeof(exthdrs));
525 exthdrs.ip6e_ip6 = m;
527 bzero(&state, sizeof(state));
528 state.m = m;
529 state.ro = (struct route *)ro;
530 state.dst = (struct sockaddr *)dst;
532 error = ipsec6_output_tunnel(&state, sp, flags);
534 m = state.m;
535 ro = (struct route_in6 *)state.ro;
536 dst = (struct sockaddr_in6 *)state.dst;
537 if (error) {
538 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
539 m0 = m = NULL;
540 m = NULL;
541 switch (error) {
542 case EHOSTUNREACH:
543 case ENETUNREACH:
544 case EMSGSIZE:
545 case ENOBUFS:
546 case ENOMEM:
547 break;
548 default:
549 kprintf("ip6_output (ipsec): error code %d\n", error);
550 /* fall through */
551 case ENOENT:
552 /* don't show these error codes to the user */
553 error = 0;
554 break;
556 goto bad;
559 exthdrs.ip6e_ip6 = m;
561 #endif
563 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
564 /* Unicast */
566 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
567 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
568 /* xxx
569 * interface selection comes here
570 * if an interface is specified from an upper layer,
571 * ifp must point it.
573 if (ro->ro_rt == NULL) {
575 * non-bsdi always clone routes, if parent is
576 * PRF_CLONING.
578 rtalloc((struct route *)ro);
580 if (ro->ro_rt == NULL) {
581 ip6stat.ip6s_noroute++;
582 error = EHOSTUNREACH;
583 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
584 goto bad;
586 ia = ifatoia6(ro->ro_rt->rt_ifa);
587 ifp = ro->ro_rt->rt_ifp;
588 ro->ro_rt->rt_use++;
589 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
590 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
591 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
593 in6_ifstat_inc(ifp, ifs6_out_request);
596 * Check if the outgoing interface conflicts with
597 * the interface specified by ifi6_ifindex (if specified).
598 * Note that loopback interface is always okay.
599 * (this may happen when we are sending a packet to one of
600 * our own addresses.)
602 if (opt && opt->ip6po_pktinfo
603 && opt->ip6po_pktinfo->ipi6_ifindex) {
604 if (!(ifp->if_flags & IFF_LOOPBACK)
605 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
606 ip6stat.ip6s_noroute++;
607 in6_ifstat_inc(ifp, ifs6_out_discard);
608 error = EHOSTUNREACH;
609 goto bad;
613 if (opt && opt->ip6po_hlim != -1)
614 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
615 } else {
616 /* Multicast */
617 struct in6_multi *in6m;
619 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
622 * See if the caller provided any multicast options
624 ifp = NULL;
625 if (im6o != NULL) {
626 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
627 if (im6o->im6o_multicast_ifp != NULL)
628 ifp = im6o->im6o_multicast_ifp;
629 } else
630 ip6->ip6_hlim = ip6_defmcasthlim;
633 * See if the caller provided the outgoing interface
634 * as an ancillary data.
635 * Boundary check for ifindex is assumed to be already done.
637 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
638 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
641 * If the destination is a node-local scope multicast,
642 * the packet should be loop-backed only.
644 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
646 * If the outgoing interface is already specified,
647 * it should be a loopback interface.
649 if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
650 ip6stat.ip6s_badscope++;
651 error = ENETUNREACH; /* XXX: better error? */
652 /* XXX correct ifp? */
653 in6_ifstat_inc(ifp, ifs6_out_discard);
654 goto bad;
655 } else {
656 ifp = &loif[0];
660 if (opt && opt->ip6po_hlim != -1)
661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
664 * If caller did not provide an interface lookup a
665 * default in the routing table. This is either a
666 * default for the speicfied group (i.e. a host
667 * route), or a multicast default (a route for the
668 * ``net'' ff00::/8).
670 if (ifp == NULL) {
671 if (ro->ro_rt == NULL) {
672 ro->ro_rt =
673 rtpurelookup((struct sockaddr *)&ro->ro_dst);
675 if (ro->ro_rt == NULL) {
676 ip6stat.ip6s_noroute++;
677 error = EHOSTUNREACH;
678 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
679 goto bad;
681 ia = ifatoia6(ro->ro_rt->rt_ifa);
682 ifp = ro->ro_rt->rt_ifp;
683 ro->ro_rt->rt_use++;
686 if (!(flags & IPV6_FORWARDING))
687 in6_ifstat_inc(ifp, ifs6_out_request);
688 in6_ifstat_inc(ifp, ifs6_out_mcast);
691 * Confirm that the outgoing interface supports multicast.
693 if (!(ifp->if_flags & IFF_MULTICAST)) {
694 ip6stat.ip6s_noroute++;
695 in6_ifstat_inc(ifp, ifs6_out_discard);
696 error = ENETUNREACH;
697 goto bad;
699 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
700 if (in6m != NULL &&
701 (im6o == NULL || im6o->im6o_multicast_loop)) {
703 * If we belong to the destination multicast group
704 * on the outgoing interface, and the caller did not
705 * forbid loopback, loop back a copy.
707 ip6_mloopback(ifp, m, dst);
708 } else {
710 * If we are acting as a multicast router, perform
711 * multicast forwarding as if the packet had just
712 * arrived on the interface to which we are about
713 * to send. The multicast forwarding function
714 * recursively calls this function, using the
715 * IPV6_FORWARDING flag to prevent infinite recursion.
717 * Multicasts that are looped back by ip6_mloopback(),
718 * above, will be forwarded by the ip6_input() routine,
719 * if necessary.
721 if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
722 if (ip6_mforward(ip6, ifp, m) != 0) {
723 m_freem(m);
724 goto done;
729 * Multicasts with a hoplimit of zero may be looped back,
730 * above, but must not be transmitted on a network.
731 * Also, multicasts addressed to the loopback interface
732 * are not sent -- the above call to ip6_mloopback() will
733 * loop back a copy if this host actually belongs to the
734 * destination group on the loopback interface.
736 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
737 m_freem(m);
738 goto done;
743 * Fill the outgoing inteface to tell the upper layer
744 * to increment per-interface statistics.
746 if (ifpp)
747 *ifpp = ifp;
749 /* Determine path MTU. */
750 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
751 &alwaysfrag)) != 0)
752 goto bad;
755 * The caller of this function may specify to use the minimum MTU
756 * in some cases.
757 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
758 * setting. The logic is a bit complicated; by default, unicast
759 * packets will follow path MTU while multicast packets will be sent at
760 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
761 * including unicast ones will be sent at the minimum MTU. Multicast
762 * packets will always be sent at the minimum MTU unless
763 * IP6PO_MINMTU_DISABLE is explicitly specified.
764 * See RFC 3542 for more details.
766 if (mtu > IPV6_MMTU) {
767 if ((flags & IPV6_MINMTU))
768 mtu = IPV6_MMTU;
769 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
770 mtu = IPV6_MMTU;
771 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
772 (opt == NULL ||
773 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
774 mtu = IPV6_MMTU;
778 /* Fake scoped addresses */
779 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
781 * If source or destination address is a scoped address, and
782 * the packet is going to be sent to a loopback interface,
783 * we should keep the original interface.
787 * XXX: this is a very experimental and temporary solution.
788 * We eventually have sockaddr_in6 and use the sin6_scope_id
789 * field of the structure here.
790 * We rely on the consistency between two scope zone ids
791 * of source and destination, which should already be assured.
792 * Larger scopes than link will be supported in the future.
794 origifp = NULL;
795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
796 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
797 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
798 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
800 * XXX: origifp can be NULL even in those two cases above.
801 * For example, if we remove the (only) link-local address
802 * from the loopback interface, and try to send a link-local
803 * address without link-id information. Then the source
804 * address is ::1, and the destination address is the
805 * link-local address with its s6_addr16[1] being zero.
806 * What is worse, if the packet goes to the loopback interface
807 * by a default rejected route, the null pointer would be
808 * passed to looutput, and the kernel would hang.
809 * The following last resort would prevent such disaster.
811 if (origifp == NULL)
812 origifp = ifp;
814 else
815 origifp = ifp;
817 * clear embedded scope identifiers if necessary.
818 * in6_clearscope will touch the addresses only when necessary.
820 in6_clearscope(&ip6->ip6_src);
821 in6_clearscope(&ip6->ip6_dst);
824 * Check with the firewall...
826 if (ip6_fw_enable && ip6_fw_chk_ptr) {
827 u_short port = 0;
829 m->m_pkthdr.rcvif = NULL; /* XXX */
830 /* If ipfw says divert, we have to just drop packet */
831 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
832 m_freem(m);
833 goto done;
835 if (!m) {
836 error = EACCES;
837 goto done;
842 * If the outgoing packet contains a hop-by-hop options header,
843 * it must be examined and processed even by the source node.
844 * (RFC 2460, section 4.)
846 if (exthdrs.ip6e_hbh) {
847 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
848 u_int32_t dummy1; /* XXX unused */
849 u_int32_t dummy2; /* XXX unused */
851 #ifdef DIAGNOSTIC
852 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
853 panic("ip6e_hbh is not continuous");
854 #endif
856 * XXX: if we have to send an ICMPv6 error to the sender,
857 * we need the M_LOOP flag since icmp6_error() expects
858 * the IPv6 and the hop-by-hop options header are
859 * continuous unless the flag is set.
861 m->m_flags |= M_LOOP;
862 m->m_pkthdr.rcvif = ifp;
863 if (ip6_process_hopopts(m,
864 (u_int8_t *)(hbh + 1),
865 ((hbh->ip6h_len + 1) << 3) -
866 sizeof(struct ip6_hbh),
867 &dummy1, &dummy2) < 0) {
868 /* m was already freed at this point */
869 error = EINVAL;/* better error? */
870 goto done;
872 m->m_flags &= ~M_LOOP; /* XXX */
873 m->m_pkthdr.rcvif = NULL;
877 * Run through list of hooks for output packets.
879 if (pfil_has_hooks(&inet6_pfil_hook)) {
880 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
881 if (error != 0 || m == NULL)
882 goto done;
883 ip6 = mtod(m, struct ip6_hdr *);
887 * Send the packet to the outgoing interface.
888 * If necessary, do IPv6 fragmentation before sending.
890 * the logic here is rather complex:
891 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
892 * 1-a: send as is if tlen <= path mtu
893 * 1-b: fragment if tlen > path mtu
895 * 2: if user asks us not to fragment (dontfrag == 1)
896 * 2-a: send as is if tlen <= interface mtu
897 * 2-b: error if tlen > interface mtu
899 * 3: if we always need to attach fragment header (alwaysfrag == 1)
900 * always fragment
902 * 4: if dontfrag == 1 && alwaysfrag == 1
903 * error, as we cannot handle this conflicting request
905 tlen = m->m_pkthdr.len;
907 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
908 dontfrag = 1;
909 else
910 dontfrag = 0;
911 if (dontfrag && alwaysfrag) { /* case 4 */
912 /* conflicting request - can't transmit */
913 error = EMSGSIZE;
914 goto bad;
916 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
918 * Even if the DONTFRAG option is specified, we cannot send the
919 * packet when the data length is larger than the MTU of the
920 * outgoing interface.
921 * Notify the error by sending IPV6_PATHMTU ancillary data as
922 * well as returning an error code (the latter is not described
923 * in the API spec.)
925 u_int32_t mtu32;
926 struct ip6ctlparam ip6cp;
928 mtu32 = (u_int32_t)mtu;
929 bzero(&ip6cp, sizeof(ip6cp));
930 ip6cp.ip6c_cmdarg = (void *)&mtu32;
931 kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
932 (void *)&ip6cp);
934 error = EMSGSIZE;
935 goto bad;
939 * transmit packet without fragmentation
941 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
942 struct in6_ifaddr *ia6;
944 ip6 = mtod(m, struct ip6_hdr *);
945 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
946 if (ia6) {
947 /* Record statistics for this interface address. */
948 ia6->ia_ifa.if_opackets++;
949 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
951 #ifdef IPSEC
952 /* clean ipsec history once it goes out of the node */
953 ipsec_delaux(m);
954 #endif
955 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
956 goto done;
960 * try to fragment the packet. case 1-b and 3
962 if (mtu < IPV6_MMTU) {
964 * note that path MTU is never less than IPV6_MMTU
965 * (see icmp6_input).
967 error = EMSGSIZE;
968 in6_ifstat_inc(ifp, ifs6_out_fragfail);
969 goto bad;
970 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
971 error = EMSGSIZE;
972 in6_ifstat_inc(ifp, ifs6_out_fragfail);
973 goto bad;
974 } else {
975 struct mbuf **mnext, *m_frgpart;
976 struct ip6_frag *ip6f;
977 u_int32_t id = htonl(ip6_id++);
978 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
979 u_char nextproto;
982 * Too large for the destination or interface;
983 * fragment if possible.
984 * Must be able to put at least 8 bytes per fragment.
986 hlen = unfragpartlen;
987 if (mtu > IPV6_MAXPACKET)
988 mtu = IPV6_MAXPACKET;
990 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
991 if (len < 8) {
992 error = EMSGSIZE;
993 in6_ifstat_inc(ifp, ifs6_out_fragfail);
994 goto bad;
998 * Verify that we have any chance at all of being able to queue
999 * the packet or packet fragments
1001 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1002 < tlen /* - hlen */)) {
1003 error = ENOBUFS;
1004 ip6stat.ip6s_odropped++;
1005 goto bad;
1008 mnext = &m->m_nextpkt;
1011 * Change the next header field of the last header in the
1012 * unfragmentable part.
1014 if (exthdrs.ip6e_rthdr) {
1015 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1016 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1017 } else if (exthdrs.ip6e_dest1) {
1018 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1019 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1020 } else if (exthdrs.ip6e_hbh) {
1021 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1022 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1023 } else {
1024 nextproto = ip6->ip6_nxt;
1025 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1029 * Loop through length of segment after first fragment,
1030 * make new header and copy data of each part and link onto
1031 * chain.
1033 m0 = m;
1034 for (off = hlen; off < tlen; off += len) {
1035 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1036 if (!m) {
1037 error = ENOBUFS;
1038 ip6stat.ip6s_odropped++;
1039 goto sendorfree;
1041 m->m_pkthdr.rcvif = NULL;
1042 m->m_flags = m0->m_flags & M_COPYFLAGS;
1043 *mnext = m;
1044 mnext = &m->m_nextpkt;
1045 m->m_data += max_linkhdr;
1046 mhip6 = mtod(m, struct ip6_hdr *);
1047 *mhip6 = *ip6;
1048 m->m_len = sizeof(*mhip6);
1049 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1050 if (error) {
1051 ip6stat.ip6s_odropped++;
1052 goto sendorfree;
1054 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1055 if (off + len >= tlen)
1056 len = tlen - off;
1057 else
1058 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1059 mhip6->ip6_plen = htons((u_short)(len + hlen +
1060 sizeof(*ip6f) -
1061 sizeof(struct ip6_hdr)));
1062 if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
1063 error = ENOBUFS;
1064 ip6stat.ip6s_odropped++;
1065 goto sendorfree;
1067 m_cat(m, m_frgpart);
1068 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1069 m->m_pkthdr.rcvif = (struct ifnet *)0;
1070 ip6f->ip6f_reserved = 0;
1071 ip6f->ip6f_ident = id;
1072 ip6f->ip6f_nxt = nextproto;
1073 ip6stat.ip6s_ofragments++;
1074 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1077 in6_ifstat_inc(ifp, ifs6_out_fragok);
1081 * Remove leading garbages.
1083 sendorfree:
1084 m = m0->m_nextpkt;
1085 m0->m_nextpkt = NULL;
1086 m_freem(m0);
1087 for (m0 = m; m; m = m0) {
1088 m0 = m->m_nextpkt;
1089 m->m_nextpkt = NULL;
1090 if (error == 0) {
1091 /* Record statistics for this interface address. */
1092 if (ia) {
1093 ia->ia_ifa.if_opackets++;
1094 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1096 #ifdef IPSEC
1097 /* clean ipsec history once it goes out of the node */
1098 ipsec_delaux(m);
1099 #endif
1100 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1101 } else
1102 m_freem(m);
1105 if (error == 0)
1106 ip6stat.ip6s_fragmented++;
1108 done:
1109 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1110 RTFREE(ro->ro_rt);
1111 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1112 RTFREE(ro_pmtu->ro_rt);
1115 #ifdef IPSEC
1116 if (sp != NULL)
1117 key_freesp(sp);
1118 #endif
1119 #ifdef FAST_IPSEC
1120 if (sp != NULL)
1121 KEY_FREESP(&sp);
1122 #endif
1124 return (error);
1126 freehdrs:
1127 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1128 m_freem(exthdrs.ip6e_dest1);
1129 m_freem(exthdrs.ip6e_rthdr);
1130 m_freem(exthdrs.ip6e_dest2);
1131 /* fall through */
1132 bad:
1133 m_freem(m);
1134 goto done;
1137 static int
1138 copyexthdr(void *h, struct mbuf **mp)
1140 struct ip6_ext *hdr = h;
1141 int hlen;
1142 struct mbuf *m;
1144 if (hdr == NULL)
1145 return 0;
1147 hlen = (hdr->ip6e_len + 1) * 8;
1148 if (hlen > MCLBYTES)
1149 return ENOBUFS; /* XXX */
1151 m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0);
1152 if (!m)
1153 return ENOBUFS;
1154 m->m_len = hlen;
1156 bcopy(hdr, mtod(m, caddr_t), hlen);
1158 *mp = m;
1159 return 0;
1163 * Insert jumbo payload option.
1165 static int
1166 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1168 struct mbuf *mopt;
1169 u_char *optbuf;
1170 u_int32_t v;
1172 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1175 * If there is no hop-by-hop options header, allocate new one.
1176 * If there is one but it doesn't have enough space to store the
1177 * jumbo payload option, allocate a cluster to store the whole options.
1178 * Otherwise, use it to store the options.
1180 if (exthdrs->ip6e_hbh == NULL) {
1181 MGET(mopt, MB_DONTWAIT, MT_DATA);
1182 if (mopt == NULL)
1183 return (ENOBUFS);
1184 mopt->m_len = JUMBOOPTLEN;
1185 optbuf = mtod(mopt, u_char *);
1186 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1187 exthdrs->ip6e_hbh = mopt;
1188 } else {
1189 struct ip6_hbh *hbh;
1191 mopt = exthdrs->ip6e_hbh;
1192 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1194 * XXX assumption:
1195 * - exthdrs->ip6e_hbh is not referenced from places
1196 * other than exthdrs.
1197 * - exthdrs->ip6e_hbh is not an mbuf chain.
1199 int oldoptlen = mopt->m_len;
1200 struct mbuf *n;
1203 * XXX: give up if the whole (new) hbh header does
1204 * not fit even in an mbuf cluster.
1206 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1207 return (ENOBUFS);
1210 * As a consequence, we must always prepare a cluster
1211 * at this point.
1213 n = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1214 if (!n)
1215 return (ENOBUFS);
1216 n->m_len = oldoptlen + JUMBOOPTLEN;
1217 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
1218 optbuf = mtod(n, caddr_t) + oldoptlen;
1219 m_freem(mopt);
1220 mopt = exthdrs->ip6e_hbh = n;
1221 } else {
1222 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1223 mopt->m_len += JUMBOOPTLEN;
1225 optbuf[0] = IP6OPT_PADN;
1226 optbuf[1] = 1;
1229 * Adjust the header length according to the pad and
1230 * the jumbo payload option.
1232 hbh = mtod(mopt, struct ip6_hbh *);
1233 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1236 /* fill in the option. */
1237 optbuf[2] = IP6OPT_JUMBO;
1238 optbuf[3] = 4;
1239 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1240 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1242 /* finally, adjust the packet header length */
1243 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1245 return (0);
1246 #undef JUMBOOPTLEN
1250 * Insert fragment header and copy unfragmentable header portions.
1252 static int
1253 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1254 struct ip6_frag **frghdrp)
1256 struct mbuf *n, *mlast;
1258 if (hlen > sizeof(struct ip6_hdr)) {
1259 n = m_copym(m0, sizeof(struct ip6_hdr),
1260 hlen - sizeof(struct ip6_hdr), MB_DONTWAIT);
1261 if (n == NULL)
1262 return (ENOBUFS);
1263 m->m_next = n;
1264 } else
1265 n = m;
1267 /* Search for the last mbuf of unfragmentable part. */
1268 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1271 if (!(mlast->m_flags & M_EXT) &&
1272 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1273 /* use the trailing space of the last mbuf for the fragment hdr */
1274 *frghdrp =
1275 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1276 mlast->m_len += sizeof(struct ip6_frag);
1277 m->m_pkthdr.len += sizeof(struct ip6_frag);
1278 } else {
1279 /* allocate a new mbuf for the fragment header */
1280 struct mbuf *mfrg;
1282 MGET(mfrg, MB_DONTWAIT, MT_DATA);
1283 if (mfrg == NULL)
1284 return (ENOBUFS);
1285 mfrg->m_len = sizeof(struct ip6_frag);
1286 *frghdrp = mtod(mfrg, struct ip6_frag *);
1287 mlast->m_next = mfrg;
1290 return (0);
1293 static int
1294 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1295 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1296 int *alwaysfragp)
1298 u_int32_t mtu = 0;
1299 int alwaysfrag = 0;
1300 int error = 0;
1302 if (ro_pmtu != ro) {
1303 /* The first hop and the final destination may differ. */
1304 struct sockaddr_in6 *sa6_dst =
1305 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1306 if (ro_pmtu->ro_rt &&
1307 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1308 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1309 RTFREE(ro_pmtu->ro_rt);
1310 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1312 if (ro_pmtu->ro_rt == NULL) {
1313 bzero(sa6_dst, sizeof(*sa6_dst));
1314 sa6_dst->sin6_family = AF_INET6;
1315 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1316 sa6_dst->sin6_addr = *dst;
1318 rtalloc((struct route *)ro_pmtu);
1321 if (ro_pmtu->ro_rt) {
1322 u_int32_t ifmtu;
1323 struct in_conninfo inc;
1325 bzero(&inc, sizeof(inc));
1326 inc.inc_flags = 1; /* IPv6 */
1327 inc.inc6_faddr = *dst;
1329 if (ifp == NULL)
1330 ifp = ro_pmtu->ro_rt->rt_ifp;
1331 ifmtu = IN6_LINKMTU(ifp);
1332 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1333 if (mtu == 0)
1334 mtu = ifmtu;
1335 else if (mtu < IPV6_MMTU) {
1337 * RFC2460 section 5, last paragraph:
1338 * if we record ICMPv6 too big message with
1339 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1340 * or smaller, with framgent header attached.
1341 * (fragment header is needed regardless from the
1342 * packet size, for translators to identify packets)
1344 alwaysfrag = 1;
1345 mtu = IPV6_MMTU;
1346 } else if (mtu > ifmtu) {
1348 * The MTU on the route is larger than the MTU on
1349 * the interface! This shouldn't happen, unless the
1350 * MTU of the interface has been changed after the
1351 * interface was brought up. Change the MTU in the
1352 * route to match the interface MTU (as long as the
1353 * field isn't locked).
1355 mtu = ifmtu;
1356 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1358 } else if (ifp) {
1359 mtu = IN6_LINKMTU(ifp);
1360 } else
1361 error = EHOSTUNREACH; /* XXX */
1363 *mtup = mtu;
1364 if (alwaysfragp)
1365 *alwaysfragp = alwaysfrag;
1366 return (error);
1370 * IP6 socket option processing.
1373 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1375 int optdatalen,uproto;
1376 int privileged;
1377 struct inpcb *in6p = so->so_pcb;
1378 void *optdata;
1379 int error, optval;
1380 int level, op, optname;
1381 int optlen;
1382 struct thread *td;
1384 if (sopt) {
1385 level = sopt->sopt_level;
1386 op = sopt->sopt_dir;
1387 optname = sopt->sopt_name;
1388 optlen = sopt->sopt_valsize;
1389 td = sopt->sopt_td;
1390 } else {
1391 panic("ip6_ctloutput: arg soopt is NULL");
1392 /* NOT REACHED */
1393 td = NULL;
1395 error = optval = 0;
1397 uproto = (int)so->so_proto->pr_protocol;
1398 privileged = (td == NULL || suser(td)) ? 0 : 1;
1400 if (level == IPPROTO_IPV6) {
1401 switch (op) {
1403 case SOPT_SET:
1404 switch (optname) {
1405 case IPV6_2292PKTOPTIONS:
1406 #ifdef IPV6_PKTOPTIONS
1407 case IPV6_PKTOPTIONS:
1408 #endif
1410 struct mbuf *m;
1412 error = soopt_getm(sopt, &m); /* XXX */
1413 if (error != 0)
1414 break;
1415 soopt_to_mbuf(sopt, m); /* XXX */
1416 error = ip6_pcbopts(&in6p->in6p_outputopts,
1417 m, so, sopt);
1418 m_freem(m); /* XXX */
1419 break;
1423 * Use of some Hop-by-Hop options or some
1424 * Destination options, might require special
1425 * privilege. That is, normal applications
1426 * (without special privilege) might be forbidden
1427 * from setting certain options in outgoing packets,
1428 * and might never see certain options in received
1429 * packets. [RFC 2292 Section 6]
1430 * KAME specific note:
1431 * KAME prevents non-privileged users from sending or
1432 * receiving ANY hbh/dst options in order to avoid
1433 * overhead of parsing options in the kernel.
1435 case IPV6_RECVHOPOPTS:
1436 case IPV6_RECVDSTOPTS:
1437 case IPV6_RECVRTHDRDSTOPTS:
1438 if (!privileged)
1439 return (EPERM);
1440 case IPV6_RECVPKTINFO:
1441 case IPV6_RECVHOPLIMIT:
1442 case IPV6_RECVRTHDR:
1443 case IPV6_RECVPATHMTU:
1444 case IPV6_RECVTCLASS:
1445 case IPV6_AUTOFLOWLABEL:
1446 case IPV6_HOPLIMIT:
1447 /* FALLTHROUGH */
1448 case IPV6_UNICAST_HOPS:
1449 case IPV6_FAITH:
1451 case IPV6_V6ONLY:
1452 if (optlen != sizeof(int)) {
1453 error = EINVAL;
1454 break;
1456 error = soopt_to_kbuf(sopt, &optval,
1457 sizeof optval, sizeof optval);
1458 if (error)
1459 break;
1460 switch (optname) {
1462 case IPV6_UNICAST_HOPS:
1463 if (optval < -1 || optval >= 256)
1464 error = EINVAL;
1465 else {
1466 /* -1 = kernel default */
1467 in6p->in6p_hops = optval;
1469 if ((in6p->in6p_vflag &
1470 INP_IPV4) != 0)
1471 in6p->inp_ip_ttl = optval;
1473 break;
1474 #define OPTSET(bit) \
1475 do { \
1476 if (optval) \
1477 in6p->in6p_flags |= (bit); \
1478 else \
1479 in6p->in6p_flags &= ~(bit); \
1480 } while (0)
1481 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1483 * Although changed to RFC3542, It's better to also support RFC2292 API
1485 #define OPTSET2292(bit) \
1486 do { \
1487 in6p->in6p_flags |= IN6P_RFC2292; \
1488 if (optval) \
1489 in6p->in6p_flags |= (bit); \
1490 else \
1491 in6p->in6p_flags &= ~(bit); \
1492 } while (/*CONSTCOND*/ 0)
1494 case IPV6_RECVPKTINFO:
1495 /* cannot mix with RFC2292 */
1496 if (OPTBIT(IN6P_RFC2292)) {
1497 error = EINVAL;
1498 break;
1500 OPTSET(IN6P_PKTINFO);
1501 break;
1503 case IPV6_HOPLIMIT:
1505 struct ip6_pktopts **optp;
1507 /* cannot mix with RFC2292 */
1508 if (OPTBIT(IN6P_RFC2292)) {
1509 error = EINVAL;
1510 break;
1512 optp = &in6p->in6p_outputopts;
1513 error = ip6_pcbopt(IPV6_HOPLIMIT,
1514 (u_char *)&optval, sizeof(optval),
1515 optp, uproto);
1516 break;
1519 case IPV6_RECVHOPLIMIT:
1520 /* cannot mix with RFC2292 */
1521 if (OPTBIT(IN6P_RFC2292)) {
1522 error = EINVAL;
1523 break;
1525 OPTSET(IN6P_HOPLIMIT);
1526 break;
1528 case IPV6_RECVHOPOPTS:
1529 /* cannot mix with RFC2292 */
1530 if (OPTBIT(IN6P_RFC2292)) {
1531 error = EINVAL;
1532 break;
1534 OPTSET(IN6P_HOPOPTS);
1535 break;
1537 case IPV6_RECVDSTOPTS:
1538 /* cannot mix with RFC2292 */
1539 if (OPTBIT(IN6P_RFC2292)) {
1540 error = EINVAL;
1541 break;
1543 OPTSET(IN6P_DSTOPTS);
1544 break;
1546 case IPV6_RECVRTHDRDSTOPTS:
1547 /* cannot mix with RFC2292 */
1548 if (OPTBIT(IN6P_RFC2292)) {
1549 error = EINVAL;
1550 break;
1552 OPTSET(IN6P_RTHDRDSTOPTS);
1553 break;
1555 case IPV6_RECVRTHDR:
1556 /* cannot mix with RFC2292 */
1557 if (OPTBIT(IN6P_RFC2292)) {
1558 error = EINVAL;
1559 break;
1561 OPTSET(IN6P_RTHDR);
1562 break;
1564 case IPV6_RECVPATHMTU:
1566 * We ignore this option for TCP
1567 * sockets.
1568 * (RFC3542 leaves this case
1569 * unspecified.)
1571 if (uproto != IPPROTO_TCP)
1572 OPTSET(IN6P_MTU);
1573 break;
1575 case IPV6_RECVTCLASS:
1576 /* cannot mix with RFC2292 XXX */
1577 if (OPTBIT(IN6P_RFC2292)) {
1578 error = EINVAL;
1579 break;
1581 OPTSET(IN6P_TCLASS);
1582 break;
1584 case IPV6_AUTOFLOWLABEL:
1585 OPTSET(IN6P_AUTOFLOWLABEL);
1586 break;
1588 case IPV6_FAITH:
1589 OPTSET(IN6P_FAITH);
1590 break;
1592 case IPV6_V6ONLY:
1594 * make setsockopt(IPV6_V6ONLY)
1595 * available only prior to bind(2).
1597 if (in6p->in6p_lport ||
1598 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1600 error = EINVAL;
1601 break;
1603 OPTSET(IN6P_IPV6_V6ONLY);
1604 if (optval)
1605 in6p->in6p_vflag &= ~INP_IPV4;
1606 else
1607 in6p->in6p_vflag |= INP_IPV4;
1608 break;
1610 break;
1612 case IPV6_TCLASS:
1613 case IPV6_DONTFRAG:
1614 case IPV6_USE_MIN_MTU:
1615 case IPV6_PREFER_TEMPADDR:
1616 if (optlen != sizeof(optval)) {
1617 error = EINVAL;
1618 break;
1620 error = soopt_to_kbuf(sopt, &optval,
1621 sizeof optval, sizeof optval);
1622 if (error)
1623 break;
1625 struct ip6_pktopts **optp;
1626 optp = &in6p->in6p_outputopts;
1627 error = ip6_pcbopt(optname,
1628 (u_char *)&optval, sizeof(optval),
1629 optp, uproto);
1630 break;
1633 case IPV6_2292PKTINFO:
1634 case IPV6_2292HOPLIMIT:
1635 case IPV6_2292HOPOPTS:
1636 case IPV6_2292DSTOPTS:
1637 case IPV6_2292RTHDR:
1638 /* RFC 2292 */
1639 if (optlen != sizeof(int)) {
1640 error = EINVAL;
1641 break;
1643 error = soopt_to_kbuf(sopt, &optval,
1644 sizeof optval, sizeof optval);
1645 if (error)
1646 break;
1647 switch (optname) {
1648 case IPV6_2292PKTINFO:
1649 OPTSET2292(IN6P_PKTINFO);
1650 break;
1651 case IPV6_2292HOPLIMIT:
1652 OPTSET2292(IN6P_HOPLIMIT);
1653 break;
1654 case IPV6_2292HOPOPTS:
1656 * Check super-user privilege.
1657 * See comments for IPV6_RECVHOPOPTS.
1659 if (!privileged)
1660 return (EPERM);
1661 OPTSET2292(IN6P_HOPOPTS);
1662 break;
1663 case IPV6_2292DSTOPTS:
1664 if (!privileged)
1665 return (EPERM);
1666 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1667 break;
1668 case IPV6_2292RTHDR:
1669 OPTSET2292(IN6P_RTHDR);
1670 break;
1672 break;
1674 case IPV6_PKTINFO:
1675 case IPV6_HOPOPTS:
1676 case IPV6_RTHDR:
1677 case IPV6_DSTOPTS:
1678 case IPV6_RTHDRDSTOPTS:
1679 case IPV6_NEXTHOP:
1682 * New advanced API (RFC3542)
1684 u_char *optbuf;
1685 u_char optbuf_storage[MCLBYTES];
1686 int optlen;
1687 struct ip6_pktopts **optp;
1689 /* cannot mix with RFC2292 */
1690 if (OPTBIT(IN6P_RFC2292)) {
1691 error = EINVAL;
1692 break;
1696 * We only ensure valsize is not too large
1697 * here. Further validation will be done
1698 * later.
1700 error = soopt_to_kbuf(sopt, optbuf_storage,
1701 sizeof(optbuf_storage), 0);
1702 if (error)
1703 break;
1704 optlen = sopt->sopt_valsize;
1705 optbuf = optbuf_storage;
1706 optp = &in6p->in6p_outputopts;
1707 error = ip6_pcbopt(optname, optbuf, optlen,
1708 optp, uproto);
1709 break;
1711 #undef OPTSET
1713 case IPV6_MULTICAST_IF:
1714 case IPV6_MULTICAST_HOPS:
1715 case IPV6_MULTICAST_LOOP:
1716 case IPV6_JOIN_GROUP:
1717 case IPV6_LEAVE_GROUP:
1719 struct mbuf *m;
1720 if (sopt->sopt_valsize > MLEN) {
1721 error = EMSGSIZE;
1722 break;
1724 /* XXX */
1725 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1726 if (m == NULL) {
1727 error = ENOBUFS;
1728 break;
1730 m->m_len = sopt->sopt_valsize;
1731 error = soopt_to_kbuf(sopt, mtod(m, char *),
1732 m->m_len, m->m_len);
1733 error = ip6_setmoptions(sopt->sopt_name,
1734 &in6p->in6p_moptions,
1736 m_free(m);
1738 break;
1740 case IPV6_PORTRANGE:
1741 error = soopt_to_kbuf(sopt, &optval,
1742 sizeof optval, sizeof optval);
1743 if (error)
1744 break;
1746 switch (optval) {
1747 case IPV6_PORTRANGE_DEFAULT:
1748 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1749 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1750 break;
1752 case IPV6_PORTRANGE_HIGH:
1753 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1754 in6p->in6p_flags |= IN6P_HIGHPORT;
1755 break;
1757 case IPV6_PORTRANGE_LOW:
1758 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1759 in6p->in6p_flags |= IN6P_LOWPORT;
1760 break;
1762 default:
1763 error = EINVAL;
1764 break;
1766 break;
1768 #if defined(IPSEC) || defined(FAST_IPSEC)
1769 case IPV6_IPSEC_POLICY:
1771 caddr_t req = NULL;
1772 size_t len = 0;
1773 struct mbuf *m;
1775 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1776 break;
1777 soopt_to_mbuf(sopt, m); /* XXX */
1778 if (m) {
1779 req = mtod(m, caddr_t);
1780 len = m->m_len;
1782 error = ipsec6_set_policy(in6p, optname, req,
1783 len, privileged);
1784 m_freem(m);
1786 break;
1787 #endif /* KAME IPSEC */
1789 case IPV6_FW_ADD:
1790 case IPV6_FW_DEL:
1791 case IPV6_FW_FLUSH:
1792 case IPV6_FW_ZERO:
1794 struct mbuf *m;
1795 struct mbuf **mp = &m;
1797 if (ip6_fw_ctl_ptr == NULL)
1798 return EINVAL;
1799 /* XXX */
1800 if ((error = soopt_getm(sopt, &m)) != 0)
1801 break;
1802 /* XXX */
1803 soopt_to_mbuf(sopt, m);
1804 error = (*ip6_fw_ctl_ptr)(optname, mp);
1805 m = *mp;
1807 break;
1809 default:
1810 error = ENOPROTOOPT;
1811 break;
1813 break;
1815 case SOPT_GET:
1816 switch (optname) {
1817 case IPV6_2292PKTOPTIONS:
1818 #ifdef IPV6_PKTOPTIONS
1819 case IPV6_PKTOPTIONS:
1820 #endif
1822 * RFC3542 (effectively) deprecated the
1823 * semantics of the 2292-style pktoptions.
1824 * Since it was not reliable in nature (i.e.,
1825 * applications had to expect the lack of some
1826 * information after all), it would make sense
1827 * to simplify this part by always returning
1828 * empty data.
1830 if (in6p->in6p_options) {
1831 struct mbuf *m;
1832 m = m_copym(in6p->in6p_options,
1833 0, M_COPYALL, MB_WAIT);
1834 error = soopt_from_mbuf(sopt, m);
1835 if (error == 0)
1836 m_freem(m);
1837 } else
1838 sopt->sopt_valsize = 0;
1839 break;
1841 case IPV6_RECVHOPOPTS:
1842 case IPV6_RECVDSTOPTS:
1843 case IPV6_RECVRTHDRDSTOPTS:
1844 case IPV6_UNICAST_HOPS:
1845 case IPV6_RECVPKTINFO:
1846 case IPV6_RECVHOPLIMIT:
1847 case IPV6_RECVRTHDR:
1848 case IPV6_RECVPATHMTU:
1849 case IPV6_RECVTCLASS:
1850 case IPV6_AUTOFLOWLABEL:
1851 case IPV6_FAITH:
1852 case IPV6_V6ONLY:
1853 case IPV6_PORTRANGE:
1854 switch (optname) {
1856 case IPV6_RECVHOPOPTS:
1857 optval = OPTBIT(IN6P_HOPOPTS);
1858 break;
1860 case IPV6_RECVDSTOPTS:
1861 optval = OPTBIT(IN6P_DSTOPTS);
1862 break;
1864 case IPV6_RECVRTHDRDSTOPTS:
1865 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1866 break;
1868 case IPV6_RECVPKTINFO:
1869 optval = OPTBIT(IN6P_PKTINFO);
1870 break;
1872 case IPV6_RECVHOPLIMIT:
1873 optval = OPTBIT(IN6P_HOPLIMIT);
1874 break;
1876 case IPV6_RECVRTHDR:
1877 optval = OPTBIT(IN6P_RTHDR);
1878 break;
1880 case IPV6_RECVPATHMTU:
1881 optval = OPTBIT(IN6P_MTU);
1882 break;
1884 case IPV6_RECVTCLASS:
1885 optval = OPTBIT(IN6P_TCLASS);
1886 break;
1888 case IPV6_AUTOFLOWLABEL:
1889 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1890 break;
1893 case IPV6_UNICAST_HOPS:
1894 optval = in6p->in6p_hops;
1895 break;
1897 case IPV6_FAITH:
1898 optval = OPTBIT(IN6P_FAITH);
1899 break;
1901 case IPV6_V6ONLY:
1902 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1903 break;
1905 case IPV6_PORTRANGE:
1907 int flags;
1908 flags = in6p->in6p_flags;
1909 if (flags & IN6P_HIGHPORT)
1910 optval = IPV6_PORTRANGE_HIGH;
1911 else if (flags & IN6P_LOWPORT)
1912 optval = IPV6_PORTRANGE_LOW;
1913 else
1914 optval = 0;
1915 break;
1918 soopt_from_kbuf(sopt, &optval,
1919 sizeof optval);
1920 break;
1922 case IPV6_PATHMTU:
1924 u_long pmtu = 0;
1925 struct ip6_mtuinfo mtuinfo;
1926 struct route_in6 sro;
1928 bzero(&sro, sizeof(sro));
1930 if (!(so->so_state & SS_ISCONNECTED))
1931 return (ENOTCONN);
1933 * XXX: we dot not consider the case of source
1934 * routing, or optional information to specify
1935 * the outgoing interface.
1937 error = ip6_getpmtu(&sro, NULL, NULL,
1938 &in6p->in6p_faddr, &pmtu, NULL);
1939 if (sro.ro_rt)
1940 RTFREE(sro.ro_rt);
1941 if (error)
1942 break;
1943 if (pmtu > IPV6_MAXPACKET)
1944 pmtu = IPV6_MAXPACKET;
1946 bzero(&mtuinfo, sizeof(mtuinfo));
1947 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1948 optdata = (void *)&mtuinfo;
1949 optdatalen = sizeof(mtuinfo);
1950 soopt_from_kbuf(sopt, optdata,
1951 optdatalen);
1952 break;
1955 case IPV6_2292PKTINFO:
1956 case IPV6_2292HOPLIMIT:
1957 case IPV6_2292HOPOPTS:
1958 case IPV6_2292RTHDR:
1959 case IPV6_2292DSTOPTS:
1960 if (optname == IPV6_2292HOPOPTS ||
1961 optname == IPV6_2292DSTOPTS ||
1962 !privileged)
1963 return (EPERM);
1964 switch (optname) {
1965 case IPV6_2292PKTINFO:
1966 optval = OPTBIT(IN6P_PKTINFO);
1967 break;
1968 case IPV6_2292HOPLIMIT:
1969 optval = OPTBIT(IN6P_HOPLIMIT);
1970 break;
1971 case IPV6_2292HOPOPTS:
1972 if (!privileged)
1973 return (EPERM);
1974 optval = OPTBIT(IN6P_HOPOPTS);
1975 break;
1976 case IPV6_2292RTHDR:
1977 optval = OPTBIT(IN6P_RTHDR);
1978 break;
1979 case IPV6_2292DSTOPTS:
1980 if (!privileged)
1981 return (EPERM);
1982 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1983 break;
1985 soopt_from_kbuf(sopt, &optval,
1986 sizeof optval);
1987 break;
1989 case IPV6_PKTINFO:
1990 case IPV6_HOPOPTS:
1991 case IPV6_RTHDR:
1992 case IPV6_DSTOPTS:
1993 case IPV6_RTHDRDSTOPTS:
1994 case IPV6_NEXTHOP:
1995 case IPV6_TCLASS:
1996 case IPV6_DONTFRAG:
1997 case IPV6_USE_MIN_MTU:
1998 case IPV6_PREFER_TEMPADDR:
1999 error = ip6_getpcbopt(in6p->in6p_outputopts,
2000 optname, sopt);
2001 break;
2003 case IPV6_MULTICAST_IF:
2004 case IPV6_MULTICAST_HOPS:
2005 case IPV6_MULTICAST_LOOP:
2006 case IPV6_JOIN_GROUP:
2007 case IPV6_LEAVE_GROUP:
2009 struct mbuf *m;
2010 error = ip6_getmoptions(sopt->sopt_name,
2011 in6p->in6p_moptions, &m);
2012 if (error == 0)
2013 soopt_from_kbuf(sopt,
2014 mtod(m, char *), m->m_len);
2015 m_freem(m);
2017 break;
2019 #if defined(IPSEC) || defined(FAST_IPSEC)
2020 case IPV6_IPSEC_POLICY:
2022 caddr_t req = NULL;
2023 size_t len = 0;
2024 struct mbuf *m = NULL;
2025 struct mbuf **mp = &m;
2027 error = soopt_getm(sopt, &m); /* XXX */
2028 if (error != 0)
2029 break;
2030 soopt_to_mbuf(sopt, m); /* XXX */
2031 if (m) {
2032 req = mtod(m, caddr_t);
2033 len = m->m_len;
2035 error = ipsec6_get_policy(in6p, req, len, mp);
2036 if (error == 0)
2037 error = soopt_from_mbuf(sopt, m); /*XXX*/
2038 if (error == 0 && m != NULL)
2039 m_freem(m);
2040 break;
2042 #endif /* KAME IPSEC */
2044 case IPV6_FW_GET:
2046 struct mbuf *m;
2047 struct mbuf **mp = &m;
2049 if (ip6_fw_ctl_ptr == NULL)
2051 return EINVAL;
2053 error = (*ip6_fw_ctl_ptr)(optname, mp);
2054 if (error == 0)
2055 error = soopt_from_mbuf(sopt, m); /* XXX */
2056 if (error == 0 && m != NULL)
2057 m_freem(m);
2059 break;
2061 default:
2062 error = ENOPROTOOPT;
2063 break;
2065 break;
2067 } else {
2068 error = EINVAL;
2070 return (error);
2074 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2076 int error = 0, optval, optlen;
2077 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2078 struct in6pcb *in6p = sotoin6pcb(so);
2079 int level, op, optname;
2081 if (sopt) {
2082 level = sopt->sopt_level;
2083 op = sopt->sopt_dir;
2084 optname = sopt->sopt_name;
2085 optlen = sopt->sopt_valsize;
2086 } else
2087 panic("ip6_raw_ctloutput: arg soopt is NULL");
2089 if (level != IPPROTO_IPV6) {
2090 return (EINVAL);
2093 switch (optname) {
2094 case IPV6_CHECKSUM:
2096 * For ICMPv6 sockets, no modification allowed for checksum
2097 * offset, permit "no change" values to help existing apps.
2099 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2100 * for an ICMPv6 socket will fail."
2101 * The current behavior does not meet RFC3542.
2103 switch (op) {
2104 case SOPT_SET:
2105 if (optlen != sizeof(int)) {
2106 error = EINVAL;
2107 break;
2109 error = soopt_to_kbuf(sopt, &optval,
2110 sizeof optval, sizeof optval);
2111 if (error)
2112 break;
2113 if ((optval % 2) != 0) {
2114 /* the API assumes even offset values */
2115 error = EINVAL;
2116 } else if (so->so_proto->pr_protocol ==
2117 IPPROTO_ICMPV6) {
2118 if (optval != icmp6off)
2119 error = EINVAL;
2120 } else
2121 in6p->in6p_cksum = optval;
2122 break;
2124 case SOPT_GET:
2125 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2126 optval = icmp6off;
2127 else
2128 optval = in6p->in6p_cksum;
2130 soopt_from_kbuf(sopt, &optval, sizeof(optval));
2131 break;
2133 default:
2134 error = EINVAL;
2135 break;
2137 break;
2139 default:
2140 error = ENOPROTOOPT;
2141 break;
2144 return (error);
2148 * Set up IP6 options in pcb for insertion in output packets or
2149 * specifying behavior of outgoing packets.
2151 static int
2152 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2153 struct socket *so, struct sockopt *sopt)
2155 int priv = 0;
2156 struct ip6_pktopts *opt = *pktopt;
2157 int error = 0;
2159 /* turn off any old options. */
2160 if (opt) {
2161 #ifdef DIAGNOSTIC
2162 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2163 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2164 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2165 kprintf("ip6_pcbopts: all specified options are cleared.\n");
2166 #endif
2167 ip6_clearpktopts(opt, -1);
2168 } else
2169 opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2170 *pktopt = NULL;
2172 if (!m || m->m_len == 0) {
2174 * Only turning off any previous options, regardless of
2175 * whether the opt is just created or given.
2177 kfree(opt, M_IP6OPT);
2178 return (0);
2181 /* set options specified by user. */
2182 if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) {
2183 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2184 kfree(opt, M_IP6OPT);
2185 return (error);
2187 *pktopt = opt;
2188 return (0);
2193 * Below three functions are introduced by merge to RFC3542
2196 static int
2197 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2199 void *optdata = NULL;
2200 int optdatalen = 0;
2201 struct ip6_ext *ip6e;
2202 int error = 0;
2203 struct in6_pktinfo null_pktinfo;
2204 int deftclass = 0, on;
2205 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2206 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2208 switch (optname) {
2209 case IPV6_PKTINFO:
2210 if (pktopt && pktopt->ip6po_pktinfo)
2211 optdata = (void *)pktopt->ip6po_pktinfo;
2212 else {
2213 /* XXX: we don't have to do this every time... */
2214 bzero(&null_pktinfo, sizeof(null_pktinfo));
2215 optdata = (void *)&null_pktinfo;
2217 optdatalen = sizeof(struct in6_pktinfo);
2218 break;
2219 case IPV6_TCLASS:
2220 if (pktopt && pktopt->ip6po_tclass >= 0)
2221 optdata = (void *)&pktopt->ip6po_tclass;
2222 else
2223 optdata = (void *)&deftclass;
2224 optdatalen = sizeof(int);
2225 break;
2226 case IPV6_HOPOPTS:
2227 if (pktopt && pktopt->ip6po_hbh) {
2228 optdata = (void *)pktopt->ip6po_hbh;
2229 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2230 optdatalen = (ip6e->ip6e_len + 1) << 3;
2232 break;
2233 case IPV6_RTHDR:
2234 if (pktopt && pktopt->ip6po_rthdr) {
2235 optdata = (void *)pktopt->ip6po_rthdr;
2236 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2237 optdatalen = (ip6e->ip6e_len + 1) << 3;
2239 break;
2240 case IPV6_RTHDRDSTOPTS:
2241 if (pktopt && pktopt->ip6po_dest1) {
2242 optdata = (void *)pktopt->ip6po_dest1;
2243 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2244 optdatalen = (ip6e->ip6e_len + 1) << 3;
2246 break;
2247 case IPV6_DSTOPTS:
2248 if (pktopt && pktopt->ip6po_dest2) {
2249 optdata = (void *)pktopt->ip6po_dest2;
2250 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2251 optdatalen = (ip6e->ip6e_len + 1) << 3;
2253 break;
2254 case IPV6_NEXTHOP:
2255 if (pktopt && pktopt->ip6po_nexthop) {
2256 optdata = (void *)pktopt->ip6po_nexthop;
2257 optdatalen = pktopt->ip6po_nexthop->sa_len;
2259 break;
2260 case IPV6_USE_MIN_MTU:
2261 if (pktopt)
2262 optdata = (void *)&pktopt->ip6po_minmtu;
2263 else
2264 optdata = (void *)&defminmtu;
2265 optdatalen = sizeof(int);
2266 break;
2267 case IPV6_DONTFRAG:
2268 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2269 on = 1;
2270 else
2271 on = 0;
2272 optdata = (void *)&on;
2273 optdatalen = sizeof(on);
2274 break;
2275 case IPV6_PREFER_TEMPADDR:
2276 if (pktopt)
2277 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2278 else
2279 optdata = (void *)&defpreftemp;
2280 optdatalen = sizeof(int);
2281 break;
2282 default: /* should not happen */
2283 #ifdef DIAGNOSTIC
2284 panic("ip6_getpcbopt: unexpected option\n");
2285 #endif
2286 return (ENOPROTOOPT);
2289 soopt_from_kbuf(sopt, optdata, optdatalen);
2291 return (error);
2295 * initialize ip6_pktopts. beware that there are non-zero default values in
2296 * the struct.
2299 static int
2300 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto)
2302 struct ip6_pktopts *opt;
2303 int priv =0;
2304 if (*pktopt == NULL) {
2305 *pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2306 init_ip6pktopts(*pktopt);
2308 opt = *pktopt;
2310 return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv));
2314 * initialize ip6_pktopts. beware that there are non-zero default values in
2315 * the struct.
2317 void
2318 init_ip6pktopts(struct ip6_pktopts *opt)
2321 bzero(opt, sizeof(*opt));
2322 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2323 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2324 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2325 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2328 void
2329 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2331 if (pktopt == NULL)
2332 return;
2334 if (optname == -1 || optname == IPV6_PKTINFO) {
2335 if (pktopt->ip6po_pktinfo)
2336 kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
2337 pktopt->ip6po_pktinfo = NULL;
2339 if (optname == -1 || optname == IPV6_HOPLIMIT)
2340 pktopt->ip6po_hlim = -1;
2341 if (optname == -1 || optname == IPV6_TCLASS)
2342 pktopt->ip6po_tclass = -1;
2343 if (optname == -1 || optname == IPV6_NEXTHOP) {
2344 if (pktopt->ip6po_nextroute.ro_rt) {
2345 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2346 pktopt->ip6po_nextroute.ro_rt = NULL;
2348 if (pktopt->ip6po_nexthop)
2349 kfree(pktopt->ip6po_nexthop, M_IP6OPT);
2350 pktopt->ip6po_nexthop = NULL;
2352 if (optname == -1 || optname == IPV6_HOPOPTS) {
2353 if (pktopt->ip6po_hbh)
2354 kfree(pktopt->ip6po_hbh, M_IP6OPT);
2355 pktopt->ip6po_hbh = NULL;
2357 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2358 if (pktopt->ip6po_dest1)
2359 kfree(pktopt->ip6po_dest1, M_IP6OPT);
2360 pktopt->ip6po_dest1 = NULL;
2362 if (optname == -1 || optname == IPV6_RTHDR) {
2363 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2364 kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2365 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2366 if (pktopt->ip6po_route.ro_rt) {
2367 RTFREE(pktopt->ip6po_route.ro_rt);
2368 pktopt->ip6po_route.ro_rt = NULL;
2371 if (optname == -1 || optname == IPV6_DSTOPTS) {
2372 if (pktopt->ip6po_dest2)
2373 kfree(pktopt->ip6po_dest2, M_IP6OPT);
2374 pktopt->ip6po_dest2 = NULL;
2378 #define PKTOPT_EXTHDRCPY(type) \
2379 do {\
2380 if (src->type) {\
2381 int hlen =\
2382 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2383 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2384 if (dst->type == NULL)\
2385 goto bad;\
2386 bcopy(src->type, dst->type, hlen);\
2388 } while (0)
2390 struct ip6_pktopts *
2391 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2393 struct ip6_pktopts *dst;
2395 if (src == NULL) {
2396 kprintf("ip6_clearpktopts: invalid argument\n");
2397 return (NULL);
2400 dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
2401 if (dst == NULL)
2402 return (NULL);
2404 dst->ip6po_hlim = src->ip6po_hlim;
2405 if (src->ip6po_pktinfo) {
2406 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2407 M_IP6OPT, canwait);
2408 if (dst->ip6po_pktinfo == NULL)
2409 goto bad;
2410 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2412 if (src->ip6po_nexthop) {
2413 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2414 M_IP6OPT, canwait);
2415 if (dst->ip6po_nexthop == NULL)
2416 goto bad;
2417 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2418 src->ip6po_nexthop->sa_len);
2420 PKTOPT_EXTHDRCPY(ip6po_hbh);
2421 PKTOPT_EXTHDRCPY(ip6po_dest1);
2422 PKTOPT_EXTHDRCPY(ip6po_dest2);
2423 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2424 return (dst);
2426 bad:
2427 if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
2428 if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
2429 if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
2430 if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
2431 if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
2432 if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
2433 kfree(dst, M_IP6OPT);
2434 return (NULL);
2437 static int
2438 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2440 if (dst == NULL || src == NULL) {
2441 #ifdef DIAGNOSTIC
2442 kprintf("ip6_clearpktopts: invalid argument\n");
2443 #endif
2444 return (EINVAL);
2447 dst->ip6po_hlim = src->ip6po_hlim;
2448 dst->ip6po_tclass = src->ip6po_tclass;
2449 dst->ip6po_flags = src->ip6po_flags;
2450 if (src->ip6po_pktinfo) {
2451 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2452 M_IP6OPT, canwait);
2453 if (dst->ip6po_pktinfo == NULL)
2454 goto bad;
2455 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2457 if (src->ip6po_nexthop) {
2458 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2459 M_IP6OPT, canwait);
2460 if (dst->ip6po_nexthop == NULL)
2461 goto bad;
2462 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2463 src->ip6po_nexthop->sa_len);
2465 PKTOPT_EXTHDRCPY(ip6po_hbh);
2466 PKTOPT_EXTHDRCPY(ip6po_dest1);
2467 PKTOPT_EXTHDRCPY(ip6po_dest2);
2468 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2469 return (0);
2471 bad:
2472 ip6_clearpktopts(dst, -1);
2473 return (ENOBUFS);
2475 #undef PKTOPT_EXTHDRCPY
2477 void
2478 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2480 if (pktopt == NULL)
2481 return;
2483 ip6_clearpktopts(pktopt, -1);
2485 kfree(pktopt, M_IP6OPT);
2489 * Set the IP6 multicast options in response to user setsockopt().
2491 static int
2492 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2494 int error = 0;
2495 u_int loop, ifindex;
2496 struct ipv6_mreq *mreq;
2497 struct ifnet *ifp;
2498 struct ip6_moptions *im6o = *im6op;
2499 struct route_in6 ro;
2500 struct sockaddr_in6 *dst;
2501 struct in6_multi_mship *imm;
2502 struct thread *td = curthread; /* XXX */
2504 if (im6o == NULL) {
2506 * No multicast option buffer attached to the pcb;
2507 * allocate one and initialize to default values.
2509 im6o = (struct ip6_moptions *)
2510 kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2512 *im6op = im6o;
2513 im6o->im6o_multicast_ifp = NULL;
2514 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2515 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2516 LIST_INIT(&im6o->im6o_memberships);
2519 switch (optname) {
2521 case IPV6_MULTICAST_IF:
2523 * Select the interface for outgoing multicast packets.
2525 if (m == NULL || m->m_len != sizeof(u_int)) {
2526 error = EINVAL;
2527 break;
2529 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2530 if (ifindex < 0 || if_index < ifindex) {
2531 error = ENXIO; /* XXX EINVAL? */
2532 break;
2534 ifp = ifindex2ifnet[ifindex];
2535 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2536 error = EADDRNOTAVAIL;
2537 break;
2539 im6o->im6o_multicast_ifp = ifp;
2540 break;
2542 case IPV6_MULTICAST_HOPS:
2545 * Set the IP6 hoplimit for outgoing multicast packets.
2547 int optval;
2548 if (m == NULL || m->m_len != sizeof(int)) {
2549 error = EINVAL;
2550 break;
2552 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2553 if (optval < -1 || optval >= 256)
2554 error = EINVAL;
2555 else if (optval == -1)
2556 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2557 else
2558 im6o->im6o_multicast_hlim = optval;
2559 break;
2562 case IPV6_MULTICAST_LOOP:
2564 * Set the loopback flag for outgoing multicast packets.
2565 * Must be zero or one.
2567 if (m == NULL || m->m_len != sizeof(u_int)) {
2568 error = EINVAL;
2569 break;
2571 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2572 if (loop > 1) {
2573 error = EINVAL;
2574 break;
2576 im6o->im6o_multicast_loop = loop;
2577 break;
2579 case IPV6_JOIN_GROUP:
2581 * Add a multicast group membership.
2582 * Group must be a valid IP6 multicast address.
2584 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2585 error = EINVAL;
2586 break;
2588 mreq = mtod(m, struct ipv6_mreq *);
2589 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2591 * We use the unspecified address to specify to accept
2592 * all multicast addresses. Only super user is allowed
2593 * to do this.
2595 if (suser(td))
2597 error = EACCES;
2598 break;
2600 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2601 error = EINVAL;
2602 break;
2606 * If the interface is specified, validate it.
2608 if (mreq->ipv6mr_interface < 0
2609 || if_index < mreq->ipv6mr_interface) {
2610 error = ENXIO; /* XXX EINVAL? */
2611 break;
2614 * If no interface was explicitly specified, choose an
2615 * appropriate one according to the given multicast address.
2617 if (mreq->ipv6mr_interface == 0) {
2619 * If the multicast address is in node-local scope,
2620 * the interface should be a loopback interface.
2621 * Otherwise, look up the routing table for the
2622 * address, and choose the outgoing interface.
2623 * XXX: is it a good approach?
2625 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
2626 ifp = &loif[0];
2627 } else {
2628 ro.ro_rt = NULL;
2629 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2630 bzero(dst, sizeof(*dst));
2631 dst->sin6_len = sizeof(struct sockaddr_in6);
2632 dst->sin6_family = AF_INET6;
2633 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2634 rtalloc((struct route *)&ro);
2635 if (ro.ro_rt == NULL) {
2636 error = EADDRNOTAVAIL;
2637 break;
2639 ifp = ro.ro_rt->rt_ifp;
2640 rtfree(ro.ro_rt);
2642 } else
2643 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2646 * See if we found an interface, and confirm that it
2647 * supports multicast
2649 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2650 error = EADDRNOTAVAIL;
2651 break;
2654 * Put interface index into the multicast address,
2655 * if the address has link-local scope.
2657 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2658 mreq->ipv6mr_multiaddr.s6_addr16[1]
2659 = htons(mreq->ipv6mr_interface);
2662 * See if the membership already exists.
2664 for (imm = im6o->im6o_memberships.lh_first;
2665 imm != NULL; imm = imm->i6mm_chain.le_next)
2666 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2667 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2668 &mreq->ipv6mr_multiaddr))
2669 break;
2670 if (imm != NULL) {
2671 error = EADDRINUSE;
2672 break;
2675 * Everything looks good; add a new record to the multicast
2676 * address list for the given interface.
2678 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2679 if ((imm->i6mm_maddr =
2680 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2681 kfree(imm, M_IPMADDR);
2682 break;
2684 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2685 break;
2687 case IPV6_LEAVE_GROUP:
2689 * Drop a multicast group membership.
2690 * Group must be a valid IP6 multicast address.
2692 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2693 error = EINVAL;
2694 break;
2696 mreq = mtod(m, struct ipv6_mreq *);
2697 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2698 if (suser(td)) {
2699 error = EACCES;
2700 break;
2702 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2703 error = EINVAL;
2704 break;
2707 * If an interface address was specified, get a pointer
2708 * to its ifnet structure.
2710 if (mreq->ipv6mr_interface < 0
2711 || if_index < mreq->ipv6mr_interface) {
2712 error = ENXIO; /* XXX EINVAL? */
2713 break;
2715 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2717 * Put interface index into the multicast address,
2718 * if the address has link-local scope.
2720 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2721 mreq->ipv6mr_multiaddr.s6_addr16[1]
2722 = htons(mreq->ipv6mr_interface);
2725 * Find the membership in the membership list.
2727 for (imm = im6o->im6o_memberships.lh_first;
2728 imm != NULL; imm = imm->i6mm_chain.le_next) {
2729 if ((ifp == NULL ||
2730 imm->i6mm_maddr->in6m_ifp == ifp) &&
2731 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2732 &mreq->ipv6mr_multiaddr))
2733 break;
2735 if (imm == NULL) {
2736 /* Unable to resolve interface */
2737 error = EADDRNOTAVAIL;
2738 break;
2741 * Give up the multicast address record to which the
2742 * membership points.
2744 LIST_REMOVE(imm, i6mm_chain);
2745 in6_delmulti(imm->i6mm_maddr);
2746 kfree(imm, M_IPMADDR);
2747 break;
2749 default:
2750 error = EOPNOTSUPP;
2751 break;
2755 * If all options have default values, no need to keep the mbuf.
2757 if (im6o->im6o_multicast_ifp == NULL &&
2758 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2759 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2760 im6o->im6o_memberships.lh_first == NULL) {
2761 kfree(*im6op, M_IPMOPTS);
2762 *im6op = NULL;
2765 return (error);
2769 * Return the IP6 multicast options in response to user getsockopt().
2771 static int
2772 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2774 u_int *hlim, *loop, *ifindex;
2776 *mp = m_get(MB_WAIT, MT_HEADER); /* XXX */
2778 switch (optname) {
2780 case IPV6_MULTICAST_IF:
2781 ifindex = mtod(*mp, u_int *);
2782 (*mp)->m_len = sizeof(u_int);
2783 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2784 *ifindex = 0;
2785 else
2786 *ifindex = im6o->im6o_multicast_ifp->if_index;
2787 return (0);
2789 case IPV6_MULTICAST_HOPS:
2790 hlim = mtod(*mp, u_int *);
2791 (*mp)->m_len = sizeof(u_int);
2792 if (im6o == NULL)
2793 *hlim = ip6_defmcasthlim;
2794 else
2795 *hlim = im6o->im6o_multicast_hlim;
2796 return (0);
2798 case IPV6_MULTICAST_LOOP:
2799 loop = mtod(*mp, u_int *);
2800 (*mp)->m_len = sizeof(u_int);
2801 if (im6o == NULL)
2802 *loop = ip6_defmcasthlim;
2803 else
2804 *loop = im6o->im6o_multicast_loop;
2805 return (0);
2807 default:
2808 return (EOPNOTSUPP);
2813 * Discard the IP6 multicast options.
2815 void
2816 ip6_freemoptions(struct ip6_moptions *im6o)
2818 struct in6_multi_mship *imm;
2820 if (im6o == NULL)
2821 return;
2823 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2824 LIST_REMOVE(imm, i6mm_chain);
2825 if (imm->i6mm_maddr)
2826 in6_delmulti(imm->i6mm_maddr);
2827 kfree(imm, M_IPMADDR);
2829 kfree(im6o, M_IPMOPTS);
2833 * Set a particular packet option, as a sticky option or an ancillary data
2834 * item. "len" can be 0 only when it's a sticky option.
2835 * We have 4 cases of combination of "sticky" and "cmsg":
2836 * "sticky=0, cmsg=0": impossible
2837 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2838 * "sticky=1, cmsg=0": RFC3542 socket option
2839 * "sticky=1, cmsg=1": RFC2292 socket option
2841 static int
2842 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2843 int sticky, int cmsg, int uproto, int priv)
2845 int minmtupolicy, preftemp;
2846 //int error;
2848 if (!sticky && !cmsg) {
2849 kprintf("ip6_setpktoption: impossible case\n");
2850 return (EINVAL);
2854 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2855 * not be specified in the context of RFC3542. Conversely,
2856 * RFC3542 types should not be specified in the context of RFC2292.
2858 if (!cmsg) {
2859 switch (optname) {
2860 case IPV6_2292PKTINFO:
2861 case IPV6_2292HOPLIMIT:
2862 case IPV6_2292NEXTHOP:
2863 case IPV6_2292HOPOPTS:
2864 case IPV6_2292DSTOPTS:
2865 case IPV6_2292RTHDR:
2866 case IPV6_2292PKTOPTIONS:
2867 return (ENOPROTOOPT);
2870 if (sticky && cmsg) {
2871 switch (optname) {
2872 case IPV6_PKTINFO:
2873 case IPV6_HOPLIMIT:
2874 case IPV6_NEXTHOP:
2875 case IPV6_HOPOPTS:
2876 case IPV6_DSTOPTS:
2877 case IPV6_RTHDRDSTOPTS:
2878 case IPV6_RTHDR:
2879 case IPV6_USE_MIN_MTU:
2880 case IPV6_DONTFRAG:
2881 case IPV6_TCLASS:
2882 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2883 return (ENOPROTOOPT);
2887 switch (optname) {
2888 case IPV6_2292PKTINFO:
2889 case IPV6_PKTINFO:
2891 struct in6_pktinfo *pktinfo;
2892 if (len != sizeof(struct in6_pktinfo))
2893 return (EINVAL);
2894 pktinfo = (struct in6_pktinfo *)buf;
2897 * An application can clear any sticky IPV6_PKTINFO option by
2898 * doing a "regular" setsockopt with ipi6_addr being
2899 * in6addr_any and ipi6_ifindex being zero.
2900 * [RFC 3542, Section 6]
2902 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2903 pktinfo->ipi6_ifindex == 0 &&
2904 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2905 ip6_clearpktopts(opt, optname);
2906 break;
2909 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2910 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2911 return (EINVAL);
2914 /* validate the interface index if specified. */
2915 if (pktinfo->ipi6_ifindex > if_index ||
2916 pktinfo->ipi6_ifindex < 0) {
2917 return (ENXIO);
2920 * Check if the requested source address is indeed a
2921 * unicast address assigned to the node, and can be
2922 * used as the packet's source address.
2924 if (opt->ip6po_pktinfo != NULL &&
2925 !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2926 struct in6_ifaddr *ia6;
2927 struct sockaddr_in6 sin6;
2929 bzero(&sin6, sizeof(sin6));
2930 sin6.sin6_len = sizeof(sin6);
2931 sin6.sin6_family = AF_INET6;
2932 sin6.sin6_addr =
2933 opt->ip6po_pktinfo->ipi6_addr;
2934 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2935 if (ia6 == NULL ||
2936 (ia6->ia6_flags & (IN6_IFF_ANYCAST |
2937 IN6_IFF_NOTREADY)) != 0)
2938 return (EADDRNOTAVAIL);
2942 * We store the address anyway, and let in6_selectsrc()
2943 * validate the specified address. This is because ipi6_addr
2944 * may not have enough information about its scope zone, and
2945 * we may need additional information (such as outgoing
2946 * interface or the scope zone of a destination address) to
2947 * disambiguate the scope.
2948 * XXX: the delay of the validation may confuse the
2949 * application when it is used as a sticky option.
2951 if (opt->ip6po_pktinfo == NULL) {
2952 opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo),
2953 M_IP6OPT, M_NOWAIT);
2954 if (opt->ip6po_pktinfo == NULL)
2955 return (ENOBUFS);
2957 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2958 break;
2961 case IPV6_2292HOPLIMIT:
2962 case IPV6_HOPLIMIT:
2964 int *hlimp;
2967 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2968 * to simplify the ordering among hoplimit options.
2970 if (optname == IPV6_HOPLIMIT && sticky)
2971 return (ENOPROTOOPT);
2973 if (len != sizeof(int))
2974 return (EINVAL);
2975 hlimp = (int *)buf;
2976 if (*hlimp < -1 || *hlimp > 255)
2977 return (EINVAL);
2979 opt->ip6po_hlim = *hlimp;
2980 break;
2983 case IPV6_TCLASS:
2985 int tclass;
2987 if (len != sizeof(int))
2988 return (EINVAL);
2989 tclass = *(int *)buf;
2990 if (tclass < -1 || tclass > 255)
2991 return (EINVAL);
2993 opt->ip6po_tclass = tclass;
2994 break;
2997 case IPV6_2292NEXTHOP:
2998 case IPV6_NEXTHOP:
2999 if (!priv)
3000 return (EPERM);
3002 if (len == 0) { /* just remove the option */
3003 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3004 break;
3007 /* check if cmsg_len is large enough for sa_len */
3008 if (len < sizeof(struct sockaddr) || len < *buf)
3009 return (EINVAL);
3011 switch (((struct sockaddr *)buf)->sa_family) {
3012 case AF_INET6:
3014 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3015 //int error;
3017 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3018 return (EINVAL);
3020 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3021 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3022 return (EINVAL);
3024 break;
3026 case AF_LINK: /* should eventually be supported */
3027 default:
3028 return (EAFNOSUPPORT);
3031 /* turn off the previous option, then set the new option. */
3032 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3033 opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT);
3034 if (opt->ip6po_nexthop == NULL)
3035 return (ENOBUFS);
3036 bcopy(buf, opt->ip6po_nexthop, *buf);
3037 break;
3039 case IPV6_2292HOPOPTS:
3040 case IPV6_HOPOPTS:
3042 struct ip6_hbh *hbh;
3043 int hbhlen;
3046 * XXX: We don't allow a non-privileged user to set ANY HbH
3047 * options, since per-option restriction has too much
3048 * overhead.
3050 if (!priv)
3051 return (EPERM);
3052 if (len == 0) {
3053 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3054 break; /* just remove the option */
3057 /* message length validation */
3058 if (len < sizeof(struct ip6_hbh))
3059 return (EINVAL);
3060 hbh = (struct ip6_hbh *)buf;
3061 hbhlen = (hbh->ip6h_len + 1) << 3;
3062 if (len != hbhlen)
3063 return (EINVAL);
3065 /* turn off the previous option, then set the new option. */
3066 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3067 opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT);
3068 if (opt->ip6po_hbh == NULL)
3069 return (ENOBUFS);
3070 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3072 break;
3075 case IPV6_2292DSTOPTS:
3076 case IPV6_DSTOPTS:
3077 case IPV6_RTHDRDSTOPTS:
3079 struct ip6_dest *dest, **newdest = NULL;
3080 int destlen;
3081 if (!priv)
3082 return (EPERM);
3084 if (len == 0) {
3085 ip6_clearpktopts(opt, optname);
3086 break; /* just remove the option */
3089 /* message length validation */
3090 if (len < sizeof(struct ip6_dest))
3091 return (EINVAL);
3092 dest = (struct ip6_dest *)buf;
3093 destlen = (dest->ip6d_len + 1) << 3;
3094 if (len != destlen)
3095 return (EINVAL);
3098 * Determine the position that the destination options header
3099 * should be inserted; before or after the routing header.
3101 switch (optname) {
3102 case IPV6_2292DSTOPTS:
3104 * The old advacned API is ambiguous on this point.
3105 * Our approach is to determine the position based
3106 * according to the existence of a routing header.
3107 * Note, however, that this depends on the order of the
3108 * extension headers in the ancillary data; the 1st
3109 * part of the destination options header must appear
3110 * before the routing header in the ancillary data,
3111 * too.
3112 * RFC3542 solved the ambiguity by introducing
3113 * separate ancillary data or option types.
3115 if (opt->ip6po_rthdr == NULL)
3116 newdest = &opt->ip6po_dest1;
3117 else
3118 newdest = &opt->ip6po_dest2;
3119 break;
3120 case IPV6_RTHDRDSTOPTS:
3121 newdest = &opt->ip6po_dest1;
3122 break;
3123 case IPV6_DSTOPTS:
3124 newdest = &opt->ip6po_dest2;
3125 break;
3128 /* turn off the previous option, then set the new option. */
3129 ip6_clearpktopts(opt, optname);
3130 *newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT);
3131 if (*newdest == NULL)
3132 return (ENOBUFS);
3133 bcopy(dest, *newdest, destlen);
3135 break;
3138 case IPV6_2292RTHDR:
3139 case IPV6_RTHDR:
3141 struct ip6_rthdr *rth;
3142 int rthlen;
3144 if (len == 0) {
3145 ip6_clearpktopts(opt, IPV6_RTHDR);
3146 break; /* just remove the option */
3149 /* message length validation */
3150 if (len < sizeof(struct ip6_rthdr))
3151 return (EINVAL);
3152 rth = (struct ip6_rthdr *)buf;
3153 rthlen = (rth->ip6r_len + 1) << 3;
3154 if (len != rthlen)
3155 return (EINVAL);
3157 switch (rth->ip6r_type) {
3158 default:
3159 return (EINVAL); /* not supported */
3162 /* turn off the previous option */
3163 ip6_clearpktopts(opt, IPV6_RTHDR);
3164 opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT);
3165 if (opt->ip6po_rthdr == NULL)
3166 return (ENOBUFS);
3167 bcopy(rth, opt->ip6po_rthdr, rthlen);
3169 break;
3172 case IPV6_USE_MIN_MTU:
3173 if (len != sizeof(int))
3174 return (EINVAL);
3175 minmtupolicy = *(int *)buf;
3176 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3177 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3178 minmtupolicy != IP6PO_MINMTU_ALL) {
3179 return (EINVAL);
3181 opt->ip6po_minmtu = minmtupolicy;
3182 break;
3184 case IPV6_DONTFRAG:
3185 if (len != sizeof(int))
3186 return (EINVAL);
3188 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3190 * we ignore this option for TCP sockets.
3191 * (RFC3542 leaves this case unspecified.)
3193 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3194 } else
3195 opt->ip6po_flags |= IP6PO_DONTFRAG;
3196 break;
3198 case IPV6_PREFER_TEMPADDR:
3199 if (len != sizeof(int))
3200 return (EINVAL);
3201 preftemp = *(int *)buf;
3202 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3203 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3204 preftemp != IP6PO_TEMPADDR_PREFER) {
3205 return (EINVAL);
3207 opt->ip6po_prefer_tempaddr = preftemp;
3208 break;
3210 default:
3211 return (ENOPROTOOPT);
3212 } /* end of switch */
3214 return (0);
3219 * Set IPv6 outgoing packet options based on advanced API.
3222 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt,
3223 struct ip6_pktopts *stickyopt, int uproto, int priv)
3225 struct cmsghdr *cm = NULL;
3227 if (control == NULL || opt == NULL)
3228 return (EINVAL);
3230 init_ip6pktopts(opt);
3233 * XXX: Currently, we assume all the optional information is stored
3234 * in a single mbuf.
3236 if (stickyopt) {
3237 int error;
3240 * If stickyopt is provided, make a local copy of the options
3241 * for this particular packet, then override them by ancillary
3242 * objects.
3243 * XXX: copypktopts() does not copy the cached route to a next
3244 * hop (if any). This is not very good in terms of efficiency,
3245 * but we can allow this since this option should be rarely
3246 * used.
3248 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
3249 return (error);
3253 * XXX: Currently, we assume all the optional information is stored
3254 * in a single mbuf.
3256 if (control->m_next)
3257 return (EINVAL);
3259 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
3260 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
3261 int error;
3263 if (control->m_len < CMSG_LEN(0))
3264 return (EINVAL);
3266 cm = mtod(control, struct cmsghdr *);
3267 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
3268 return (EINVAL);
3269 if (cm->cmsg_level != IPPROTO_IPV6)
3270 continue;
3272 error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
3273 cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto, priv);
3274 if (error)
3275 return (error);
3278 return (0);
3282 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3283 * packet to the input queue of a specified interface. Note that this
3284 * calls the output routine of the loopback "driver", but with an interface
3285 * pointer that might NOT be &loif -- easier than replicating that code here.
3287 void
3288 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3290 struct mbuf *copym;
3291 struct ip6_hdr *ip6;
3293 copym = m_copy(m, 0, M_COPYALL);
3294 if (copym == NULL)
3295 return;
3298 * Make sure to deep-copy IPv6 header portion in case the data
3299 * is in an mbuf cluster, so that we can safely override the IPv6
3300 * header portion later.
3302 if ((copym->m_flags & M_EXT) != 0 ||
3303 copym->m_len < sizeof(struct ip6_hdr)) {
3304 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3305 if (copym == NULL)
3306 return;
3309 #ifdef DIAGNOSTIC
3310 if (copym->m_len < sizeof(*ip6)) {
3311 m_freem(copym);
3312 return;
3314 #endif
3316 ip6 = mtod(copym, struct ip6_hdr *);
3318 * clear embedded scope identifiers if necessary.
3319 * in6_clearscope will touch the addresses only when necessary.
3321 in6_clearscope(&ip6->ip6_src);
3322 in6_clearscope(&ip6->ip6_dst);
3324 if_simloop(ifp, copym, dst->sin6_family, 0);
3328 * Separate the IPv6 header from the payload into its own mbuf.
3330 * Returns the new mbuf chain or the original mbuf if no payload.
3331 * Returns NULL if can't allocate new mbuf for header.
3333 static struct mbuf *
3334 ip6_splithdr(struct mbuf *m)
3336 struct mbuf *mh;
3338 if (m->m_len <= sizeof(struct ip6_hdr)) /* no payload */
3339 return (m);
3341 MGETHDR(mh, MB_DONTWAIT, MT_HEADER);
3342 if (mh == NULL)
3343 return (NULL);
3344 mh->m_len = sizeof(struct ip6_hdr);
3345 M_MOVE_PKTHDR(mh, m);
3346 MH_ALIGN(mh, sizeof(struct ip6_hdr));
3347 bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
3348 m->m_data += sizeof(struct ip6_hdr);
3349 m->m_len -= sizeof(struct ip6_hdr);
3350 mh->m_next = m;
3351 return (mh);
3355 * Compute IPv6 extension header length.
3358 ip6_optlen(struct in6pcb *in6p)
3360 int len;
3362 if (!in6p->in6p_outputopts)
3363 return 0;
3365 len = 0;
3366 #define elen(x) \
3367 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3369 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3370 if (in6p->in6p_outputopts->ip6po_rthdr)
3371 /* dest1 is valid with rthdr only */
3372 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3373 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3374 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3375 return len;
3376 #undef elen