2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
4 * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Matthew Dillon <dillon@backplane.com>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * This module implements a slab allocator drop-in replacement for the
40 * A slab allocator reserves a ZONE for each chunk size, then lays the
41 * chunks out in an array within the zone. Allocation and deallocation
42 * is nearly instantanious, and fragmentation/overhead losses are limited
43 * to a fixed worst-case amount.
45 * The downside of this slab implementation is in the chunk size
46 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
47 * In a kernel implementation all this memory will be physical so
48 * the zone size is adjusted downward on machines with less physical
49 * memory. The upside is that overhead is bounded... this is the *worst*
52 * Slab management is done on a per-cpu basis and no locking or mutexes
53 * are required, only a critical section. When one cpu frees memory
54 * belonging to another cpu's slab manager an asynchronous IPI message
55 * will be queued to execute the operation. In addition, both the
56 * high level slab allocator and the low level zone allocator optimize
57 * M_ZERO requests, and the slab allocator does not have to pre initialize
58 * the linked list of chunks.
60 * XXX Balancing is needed between cpus. Balance will be handled through
61 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64 * the new zone should be restricted to M_USE_RESERVE requests only.
66 * Alloc Size Chunking Number of zones
76 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78 * Allocations >= ZoneLimit go directly to kmem.
79 * (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
81 * Alignment properties:
82 * - All power-of-2 sized allocations are power-of-2 aligned.
83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84 * power-of-2 round up of 'size'.
85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86 * above table 'Chunking' column).
88 * API REQUIREMENTS AND SIDE EFFECTS
90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91 * have remained compatible with the following API requirements:
93 * + malloc(0) is allowed and returns non-NULL (ahc driver)
94 * + ability to allocate arbitrarily large chunks of memory
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
110 #include <sys/malloc.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
122 #include <machine/cpu.h>
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
127 #if (__VM_CACHELINE_SIZE == 32)
128 #define CAN_CACHEALIGN(sz) ((sz) >= 256)
129 #elif (__VM_CACHELINE_SIZE == 64)
130 #define CAN_CACHEALIGN(sz) ((sz) >= 512)
131 #elif (__VM_CACHELINE_SIZE == 128)
132 #define CAN_CACHEALIGN(sz) ((sz) >= 1024)
134 #error "unsupported cacheline size"
137 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
139 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x"
140 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags
142 #if !defined(KTR_MEMORY)
143 #define KTR_MEMORY KTR_ALL
145 KTR_INFO_MASTER(memory
);
146 KTR_INFO(KTR_MEMORY
, memory
, malloc_beg
, 0, "malloc begin");
147 KTR_INFO(KTR_MEMORY
, memory
, malloc_end
, 1, MEMORY_STRING
, MEMORY_ARGS
);
148 KTR_INFO(KTR_MEMORY
, memory
, free_zero
, 2, MEMORY_STRING
, MEMORY_ARGS
);
149 KTR_INFO(KTR_MEMORY
, memory
, free_ovsz
, 3, MEMORY_STRING
, MEMORY_ARGS
);
150 KTR_INFO(KTR_MEMORY
, memory
, free_ovsz_delayed
, 4, MEMORY_STRING
, MEMORY_ARGS
);
151 KTR_INFO(KTR_MEMORY
, memory
, free_chunk
, 5, MEMORY_STRING
, MEMORY_ARGS
);
152 KTR_INFO(KTR_MEMORY
, memory
, free_request
, 6, MEMORY_STRING
, MEMORY_ARGS
);
153 KTR_INFO(KTR_MEMORY
, memory
, free_rem_beg
, 7, MEMORY_STRING
, MEMORY_ARGS
);
154 KTR_INFO(KTR_MEMORY
, memory
, free_rem_end
, 8, MEMORY_STRING
, MEMORY_ARGS
);
155 KTR_INFO(KTR_MEMORY
, memory
, free_beg
, 9, "free begin");
156 KTR_INFO(KTR_MEMORY
, memory
, free_end
, 10, "free end");
158 #define logmemory(name, ptr, type, size, flags) \
159 KTR_LOG(memory_ ## name, ptr, type, size, flags)
160 #define logmemory_quick(name) \
161 KTR_LOG(memory_ ## name)
164 * Fixed globals (not per-cpu)
166 __read_frequently
static int ZoneSize
;
167 __read_frequently
static int ZoneLimit
;
168 __read_frequently
static int ZonePageCount
;
169 __read_frequently
static uintptr_t ZoneMask
;
170 __read_frequently
struct malloc_type
*kmemstatistics
; /* exported to vmstat */
172 static void *kmem_slab_alloc(vm_size_t bytes
, vm_offset_t align
, int flags
);
173 static void kmem_slab_free(void *ptr
, vm_size_t bytes
);
175 #if defined(INVARIANTS)
176 static void chunk_mark_allocated(SLZone
*z
, void *chunk
);
177 static void chunk_mark_free(SLZone
*z
, void *chunk
);
179 #define chunk_mark_allocated(z, chunk)
180 #define chunk_mark_free(z, chunk)
184 * Misc constants. Note that allocations that are exact multiples of
185 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
187 #define ZONE_RELS_THRESH 32 /* threshold number of zones */
191 * The WEIRD_ADDR is used as known text to copy into free objects to
192 * try to create deterministic failure cases if the data is accessed after
195 #define WEIRD_ADDR 0xdeadc0de
197 #define ZERO_LENGTH_PTR ((void *)-8)
200 * Misc global malloc buckets
203 MALLOC_DEFINE(M_CACHE
, "cache", "Various Dynamically allocated caches");
204 MALLOC_DEFINE(M_DEVBUF
, "devbuf", "device driver memory");
205 MALLOC_DEFINE(M_TEMP
, "temp", "misc temporary data buffers");
206 MALLOC_DEFINE(M_DRM
, "m_drm", "DRM memory allocations");
208 MALLOC_DEFINE(M_IP6OPT
, "ip6opt", "IPv6 options");
209 MALLOC_DEFINE(M_IP6NDP
, "ip6ndp", "IPv6 Neighbor Discovery");
212 * Initialize the slab memory allocator. We have to choose a zone size based
213 * on available physical memory. We choose a zone side which is approximately
214 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
215 * 128K. The zone size is limited to the bounds set in slaballoc.h
216 * (typically 32K min, 128K max).
218 static void kmeminit(void *dummy
);
222 SYSINIT(kmem
, SI_BOOT1_ALLOCATOR
, SI_ORDER_FIRST
, kmeminit
, NULL
);
226 * If enabled any memory allocated without M_ZERO is initialized to -1.
228 __read_frequently
static int use_malloc_pattern
;
229 SYSCTL_INT(_debug
, OID_AUTO
, use_malloc_pattern
, CTLFLAG_RW
,
230 &use_malloc_pattern
, 0,
231 "Initialize memory to -1 if M_ZERO not specified");
233 __read_frequently
static int32_t weirdary
[16];
234 __read_frequently
static int use_weird_array
;
235 SYSCTL_INT(_debug
, OID_AUTO
, use_weird_array
, CTLFLAG_RW
,
237 "Initialize memory to weird values on kfree()");
240 __read_frequently
static int ZoneRelsThresh
= ZONE_RELS_THRESH
;
241 SYSCTL_INT(_kern
, OID_AUTO
, zone_cache
, CTLFLAG_RW
, &ZoneRelsThresh
, 0, "");
243 static struct spinlock kmemstat_spin
=
244 SPINLOCK_INITIALIZER(&kmemstat_spin
, "malinit");
247 * Returns the kernel memory size limit for the purposes of initializing
248 * various subsystem caches. The smaller of available memory and the KVM
249 * memory space is returned.
251 * The size in megabytes is returned.
258 limsize
= (size_t)vmstats
.v_page_count
* PAGE_SIZE
;
259 if (limsize
> KvaSize
)
261 return (limsize
/ (1024 * 1024));
265 kmeminit(void *dummy
)
273 limsize
= kmem_lim_size();
274 usesize
= (int)(limsize
* 1024); /* convert to KB */
277 * If the machine has a large KVM space and more than 8G of ram,
278 * double the zone release threshold to reduce SMP invalidations.
279 * If more than 16G of ram, do it again.
281 * The BIOS eats a little ram so add some slop. We want 8G worth of
282 * memory sticks to trigger the first adjustment.
284 if (ZoneRelsThresh
== ZONE_RELS_THRESH
) {
285 if (limsize
>= 7 * 1024)
287 if (limsize
>= 15 * 1024)
289 if (limsize
>= 31 * 1024)
291 if (limsize
>= 63 * 1024)
293 if (limsize
>= 127 * 1024)
298 * Calculate the zone size. This typically calculates to
299 * ZALLOC_MAX_ZONE_SIZE
301 ZoneSize
= ZALLOC_MIN_ZONE_SIZE
;
302 while (ZoneSize
< ZALLOC_MAX_ZONE_SIZE
&& (ZoneSize
<< 1) < usesize
)
304 ZoneLimit
= ZoneSize
/ 4;
305 if (ZoneLimit
> ZALLOC_ZONE_LIMIT
)
306 ZoneLimit
= ZALLOC_ZONE_LIMIT
;
307 ZoneMask
= ~(uintptr_t)(ZoneSize
- 1);
308 ZonePageCount
= ZoneSize
/ PAGE_SIZE
;
311 for (i
= 0; i
< NELEM(weirdary
); ++i
)
312 weirdary
[i
] = WEIRD_ADDR
;
315 ZeroPage
= kmem_slab_alloc(PAGE_SIZE
, PAGE_SIZE
, M_WAITOK
|M_ZERO
);
318 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize
/ 1024);
322 * (low level) Initialize slab-related elements in the globaldata structure.
324 * Occurs after kmeminit().
327 slab_gdinit(globaldata_t gd
)
333 for (i
= 0; i
< NZONES
; ++i
)
334 TAILQ_INIT(&slgd
->ZoneAry
[i
]);
335 TAILQ_INIT(&slgd
->FreeZones
);
336 TAILQ_INIT(&slgd
->FreeOvZones
);
340 * Initialize a malloc type tracking structure.
343 malloc_init(void *data
)
345 struct malloc_type
*type
= data
;
346 struct kmalloc_use
*use
;
349 if (type
->ks_magic
!= M_MAGIC
)
350 panic("malloc type lacks magic");
352 if (type
->ks_limit
!= 0)
355 if (vmstats
.v_page_count
== 0)
356 panic("malloc_init not allowed before vm init");
358 limsize
= kmem_lim_size() * (1024 * 1024);
359 type
->ks_limit
= limsize
/ 10;
362 use
= &type
->ks_use0
;
364 use
= kmalloc(ncpus
* sizeof(*use
), M_TEMP
, M_WAITOK
| M_ZERO
);
366 spin_lock(&kmemstat_spin
);
367 type
->ks_next
= kmemstatistics
;
369 kmemstatistics
= type
;
370 spin_unlock(&kmemstat_spin
);
374 malloc_uninit(void *data
)
376 struct malloc_type
*type
= data
;
377 struct malloc_type
*t
;
383 if (type
->ks_magic
!= M_MAGIC
)
384 panic("malloc type lacks magic");
386 if (vmstats
.v_page_count
== 0)
387 panic("malloc_uninit not allowed before vm init");
389 if (type
->ks_limit
== 0)
390 panic("malloc_uninit on uninitialized type");
392 /* Make sure that all pending kfree()s are finished. */
393 lwkt_synchronize_ipiqs("muninit");
397 * memuse is only correct in aggregation. Due to memory being allocated
398 * on one cpu and freed on another individual array entries may be
399 * negative or positive (canceling each other out).
401 for (i
= ttl
= 0; i
< ncpus
; ++i
)
402 ttl
+= type
->ks_use
[i
].memuse
;
404 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
405 ttl
, type
->ks_shortdesc
, i
);
408 spin_lock(&kmemstat_spin
);
409 if (type
== kmemstatistics
) {
410 kmemstatistics
= type
->ks_next
;
412 for (t
= kmemstatistics
; t
->ks_next
!= NULL
; t
= t
->ks_next
) {
413 if (t
->ks_next
== type
) {
414 t
->ks_next
= type
->ks_next
;
419 type
->ks_next
= NULL
;
421 spin_unlock(&kmemstat_spin
);
423 if (type
->ks_use
!= &type
->ks_use0
) {
424 kfree(type
->ks_use
, M_TEMP
);
430 * Reinitialize all installed malloc regions after ncpus has been
431 * determined. type->ks_use0 is initially set to &type->ks_use0,
432 * this function will dynamically allocate it as appropriate for ncpus.
435 malloc_reinit_ncpus(void)
437 struct malloc_type
*t
;
438 struct kmalloc_use
*use
;
441 * If only one cpu we can leave ks_use set to ks_use0
447 * Expand ks_use for all kmalloc blocks
449 for (t
= kmemstatistics
; t
; t
= t
->ks_next
) {
450 KKASSERT(t
->ks_use
== &t
->ks_use0
);
451 t
->ks_use
= kmalloc(sizeof(*use
) * ncpus
, M_TEMP
, M_WAITOK
|M_ZERO
);
452 t
->ks_use
[0] = t
->ks_use0
;
457 * Increase the kmalloc pool limit for the specified pool. No changes
458 * are the made if the pool would shrink.
461 kmalloc_raise_limit(struct malloc_type
*type
, size_t bytes
)
463 KKASSERT(type
->ks_limit
!= 0);
466 if (type
->ks_limit
< bytes
)
467 type
->ks_limit
= bytes
;
471 kmalloc_set_unlimited(struct malloc_type
*type
)
473 type
->ks_limit
= kmem_lim_size() * (1024 * 1024);
477 * Dynamically create a malloc pool. This function is a NOP if *typep is
481 kmalloc_create(struct malloc_type
**typep
, const char *descr
)
483 struct malloc_type
*type
;
485 if (*typep
== NULL
) {
486 type
= kmalloc(sizeof(*type
), M_TEMP
, M_WAITOK
| M_ZERO
);
487 type
->ks_magic
= M_MAGIC
;
488 type
->ks_shortdesc
= descr
;
495 * Destroy a dynamically created malloc pool. This function is a NOP if
496 * the pool has already been destroyed.
499 kmalloc_destroy(struct malloc_type
**typep
)
501 if (*typep
!= NULL
) {
502 malloc_uninit(*typep
);
503 kfree(*typep
, M_TEMP
);
509 * Calculate the zone index for the allocation request size and set the
510 * allocation request size to that particular zone's chunk size.
513 zoneindex(unsigned long *bytes
, unsigned long *align
)
515 unsigned int n
= (unsigned int)*bytes
; /* unsigned for shift opt */
518 *bytes
= n
= (n
+ 7) & ~7;
520 return(n
/ 8 - 1); /* 8 byte chunks, 16 zones */
523 *bytes
= n
= (n
+ 15) & ~15;
529 *bytes
= n
= (n
+ 31) & ~31;
534 *bytes
= n
= (n
+ 63) & ~63;
539 *bytes
= n
= (n
+ 127) & ~127;
541 return(n
/ 128 + 31);
544 *bytes
= n
= (n
+ 255) & ~255;
546 return(n
/ 256 + 39);
548 *bytes
= n
= (n
+ 511) & ~511;
550 return(n
/ 512 + 47);
552 #if ZALLOC_ZONE_LIMIT > 8192
554 *bytes
= n
= (n
+ 1023) & ~1023;
556 return(n
/ 1024 + 55);
559 #if ZALLOC_ZONE_LIMIT > 16384
561 *bytes
= n
= (n
+ 2047) & ~2047;
563 return(n
/ 2048 + 63);
566 panic("Unexpected byte count %d", n
);
571 clean_zone_rchunks(SLZone
*z
)
575 while ((bchunk
= z
->z_RChunks
) != NULL
) {
577 if (atomic_cmpset_ptr(&z
->z_RChunks
, bchunk
, NULL
)) {
578 *z
->z_LChunksp
= bchunk
;
580 chunk_mark_free(z
, bchunk
);
581 z
->z_LChunksp
= &bchunk
->c_Next
;
582 bchunk
= bchunk
->c_Next
;
592 * If the zone becomes totally free and is not the only zone listed for a
593 * chunk size we move it to the FreeZones list. We always leave at least
594 * one zone per chunk size listed, even if it is freeable.
596 * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
597 * otherwise MP races can result in our free_remote code accessing a
598 * destroyed zone. The remote end interlocks z_RCount with z_RChunks
599 * so one has to test both z_NFree and z_RCount.
601 * Since this code can be called from an IPI callback, do *NOT* try to mess
602 * with kernel_map here. Hysteresis will be performed at kmalloc() time.
604 static __inline SLZone
*
605 check_zone_free(SLGlobalData
*slgd
, SLZone
*z
)
609 znext
= TAILQ_NEXT(z
, z_Entry
);
610 if (z
->z_NFree
== z
->z_NMax
&& z
->z_RCount
== 0 &&
611 (TAILQ_FIRST(&slgd
->ZoneAry
[z
->z_ZoneIndex
]) != z
|| znext
)) {
614 TAILQ_REMOVE(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
617 TAILQ_INSERT_HEAD(&slgd
->FreeZones
, z
, z_Entry
);
627 * Used to debug memory corruption issues. Record up to (typically 32)
628 * allocation sources for this zone (for a particular chunk size).
632 slab_record_source(SLZone
*z
, const char *file
, int line
)
635 int b
= line
& (SLAB_DEBUG_ENTRIES
- 1);
639 if (z
->z_Sources
[i
].file
== file
&& z
->z_Sources
[i
].line
== line
)
641 if (z
->z_Sources
[i
].file
== NULL
)
643 i
= (i
+ 1) & (SLAB_DEBUG_ENTRIES
- 1);
645 z
->z_Sources
[i
].file
= file
;
646 z
->z_Sources
[i
].line
= line
;
651 static __inline
unsigned long
652 powerof2_size(unsigned long size
)
656 if (size
== 0 || powerof2(size
))
664 * kmalloc() (SLAB ALLOCATOR)
666 * Allocate memory via the slab allocator. If the request is too large,
667 * or if it page-aligned beyond a certain size, we fall back to the
668 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
669 * &SlabMisc if you don't care.
671 * M_RNOWAIT - don't block.
672 * M_NULLOK - return NULL instead of blocking.
673 * M_ZERO - zero the returned memory.
674 * M_USE_RESERVE - allow greater drawdown of the free list
675 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
676 * M_POWEROF2 - roundup size to the nearest power of 2
681 /* don't let kmalloc macro mess up function declaration */
686 kmalloc_debug(unsigned long size
, struct malloc_type
*type
, int flags
,
687 const char *file
, int line
)
690 kmalloc(unsigned long size
, struct malloc_type
*type
, int flags
)
696 struct globaldata
*gd
;
703 logmemory_quick(malloc_beg
);
708 * XXX silly to have this in the critical path.
710 KKASSERT(type
->ks_limit
!= 0);
711 ++type
->ks_use
[gd
->gd_cpuid
].calls
;
714 * Flagged for cache-alignment
716 if (flags
& M_CACHEALIGN
) {
717 if (size
< __VM_CACHELINE_SIZE
)
718 size
= __VM_CACHELINE_SIZE
;
719 else if (!CAN_CACHEALIGN(size
))
724 * Flagged to force nearest power-of-2 (higher or same)
726 if (flags
& M_POWEROF2
)
727 size
= powerof2_size(size
);
730 * Handle the case where the limit is reached. Panic if we can't return
731 * NULL. The original malloc code looped, but this tended to
732 * simply deadlock the computer.
734 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
735 * to determine if a more complete limit check should be done. The
736 * actual memory use is tracked via ks_use[cpu].memuse.
738 while (type
->ks_loosememuse
>= type
->ks_limit
) {
742 for (i
= ttl
= 0; i
< ncpus
; ++i
)
743 ttl
+= type
->ks_use
[i
].memuse
;
744 type
->ks_loosememuse
= ttl
; /* not MP synchronized */
745 if ((ssize_t
)ttl
< 0) /* deal with occassional race */
747 if (ttl
>= type
->ks_limit
) {
748 if (flags
& M_NULLOK
) {
749 logmemory(malloc_end
, NULL
, type
, size
, flags
);
752 panic("%s: malloc limit exceeded", type
->ks_shortdesc
);
757 * Handle the degenerate size == 0 case. Yes, this does happen.
758 * Return a special pointer. This is to maintain compatibility with
759 * the original malloc implementation. Certain devices, such as the
760 * adaptec driver, not only allocate 0 bytes, they check for NULL and
761 * also realloc() later on. Joy.
764 logmemory(malloc_end
, ZERO_LENGTH_PTR
, type
, size
, flags
);
765 return(ZERO_LENGTH_PTR
);
769 * Handle hysteresis from prior frees here in malloc(). We cannot
770 * safely manipulate the kernel_map in free() due to free() possibly
771 * being called via an IPI message or from sensitive interrupt code.
773 * NOTE: ku_pagecnt must be cleared before we free the slab or we
774 * might race another cpu allocating the kva and setting
777 while (slgd
->NFreeZones
> ZoneRelsThresh
&& (flags
& M_RNOWAIT
) == 0) {
779 if (slgd
->NFreeZones
> ZoneRelsThresh
) { /* crit sect race */
782 z
= TAILQ_LAST(&slgd
->FreeZones
, SLZoneList
);
784 TAILQ_REMOVE(&slgd
->FreeZones
, z
, z_Entry
);
788 kmem_slab_free(z
, ZoneSize
); /* may block */
794 * XXX handle oversized frees that were queued from kfree().
796 while (TAILQ_FIRST(&slgd
->FreeOvZones
) && (flags
& M_RNOWAIT
) == 0) {
798 if ((z
= TAILQ_LAST(&slgd
->FreeOvZones
, SLZoneList
)) != NULL
) {
801 KKASSERT(z
->z_Magic
== ZALLOC_OVSZ_MAGIC
);
802 TAILQ_REMOVE(&slgd
->FreeOvZones
, z
, z_Entry
);
803 tsize
= z
->z_ChunkSize
;
804 kmem_slab_free(z
, tsize
); /* may block */
810 * Handle large allocations directly. There should not be very many of
811 * these so performance is not a big issue.
813 * The backend allocator is pretty nasty on a SMP system. Use the
814 * slab allocator for one and two page-sized chunks even though we lose
815 * some efficiency. XXX maybe fix mmio and the elf loader instead.
817 if (size
>= ZoneLimit
|| ((size
& PAGE_MASK
) == 0 && size
> PAGE_SIZE
*2)) {
820 size
= round_page(size
);
821 chunk
= kmem_slab_alloc(size
, PAGE_SIZE
, flags
);
823 logmemory(malloc_end
, NULL
, type
, size
, flags
);
826 flags
&= ~M_ZERO
; /* result already zero'd if M_ZERO was set */
827 flags
|= M_PASSIVE_ZERO
;
829 *kup
= size
/ PAGE_SIZE
;
835 * Attempt to allocate out of an existing zone. First try the free list,
836 * then allocate out of unallocated space. If we find a good zone move
837 * it to the head of the list so later allocations find it quickly
838 * (we might have thousands of zones in the list).
840 * Note: zoneindex() will panic of size is too large.
842 zi
= zoneindex(&size
, &align
);
843 KKASSERT(zi
< NZONES
);
846 if ((z
= TAILQ_LAST(&slgd
->ZoneAry
[zi
], SLZoneList
)) != NULL
) {
848 * Locate a chunk - we have to have at least one. If this is the
849 * last chunk go ahead and do the work to retrieve chunks freed
850 * from remote cpus, and if the zone is still empty move it off
853 if (--z
->z_NFree
<= 0) {
854 KKASSERT(z
->z_NFree
== 0);
857 * WARNING! This code competes with other cpus. It is ok
858 * for us to not drain RChunks here but we might as well, and
859 * it is ok if more accumulate after we're done.
861 * Set RSignal before pulling rchunks off, indicating that we
862 * will be moving ourselves off of the ZoneAry. Remote ends will
863 * read RSignal before putting rchunks on thus interlocking
864 * their IPI signaling.
866 if (z
->z_RChunks
== NULL
)
867 atomic_swap_int(&z
->z_RSignal
, 1);
869 clean_zone_rchunks(z
);
872 * Remove from the zone list if no free chunks remain.
875 if (z
->z_NFree
== 0) {
876 TAILQ_REMOVE(&slgd
->ZoneAry
[zi
], z
, z_Entry
);
883 * Fast path, we have chunks available in z_LChunks.
885 chunk
= z
->z_LChunks
;
887 chunk_mark_allocated(z
, chunk
);
888 z
->z_LChunks
= chunk
->c_Next
;
889 if (z
->z_LChunks
== NULL
)
890 z
->z_LChunksp
= &z
->z_LChunks
;
892 slab_record_source(z
, file
, line
);
898 * No chunks are available in LChunks, the free chunk MUST be
899 * in the never-before-used memory area, controlled by UIndex.
901 * The consequences are very serious if our zone got corrupted so
902 * we use an explicit panic rather than a KASSERT.
904 if (z
->z_UIndex
+ 1 != z
->z_NMax
)
909 if (z
->z_UIndex
== z
->z_UEndIndex
)
910 panic("slaballoc: corrupted zone");
912 chunk
= (SLChunk
*)(z
->z_BasePtr
+ z
->z_UIndex
* size
);
913 if ((z
->z_Flags
& SLZF_UNOTZEROD
) == 0) {
915 flags
|= M_PASSIVE_ZERO
;
917 chunk_mark_allocated(z
, chunk
);
919 slab_record_source(z
, file
, line
);
925 * If all zones are exhausted we need to allocate a new zone for this
926 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
927 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
928 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
929 * we do not pre-zero it because we do not want to mess up the L1 cache.
931 * At least one subsystem, the tty code (see CROUND) expects power-of-2
932 * allocations to be power-of-2 aligned. We maintain compatibility by
933 * adjusting the base offset below.
939 if ((z
= TAILQ_FIRST(&slgd
->FreeZones
)) != NULL
) {
940 TAILQ_REMOVE(&slgd
->FreeZones
, z
, z_Entry
);
942 bzero(z
, sizeof(SLZone
));
943 z
->z_Flags
|= SLZF_UNOTZEROD
;
945 z
= kmem_slab_alloc(ZoneSize
, ZoneSize
, flags
|M_ZERO
);
951 * How big is the base structure?
953 #if defined(INVARIANTS)
955 * Make room for z_Bitmap. An exact calculation is somewhat more
956 * complicated so don't make an exact calculation.
958 off
= offsetof(SLZone
, z_Bitmap
[(ZoneSize
/ size
+ 31) / 32]);
959 bzero(z
->z_Bitmap
, (ZoneSize
/ size
+ 31) / 8);
961 off
= sizeof(SLZone
);
965 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
966 * Otherwise properly align the data according to the chunk size.
970 off
= roundup2(off
, align
);
972 z
->z_Magic
= ZALLOC_SLAB_MAGIC
;
974 z
->z_NMax
= (ZoneSize
- off
) / size
;
975 z
->z_NFree
= z
->z_NMax
- 1;
976 z
->z_BasePtr
= (char *)z
+ off
;
977 z
->z_UIndex
= z
->z_UEndIndex
= slgd
->JunkIndex
% z
->z_NMax
;
978 z
->z_ChunkSize
= size
;
980 z
->z_Cpu
= gd
->gd_cpuid
;
981 z
->z_LChunksp
= &z
->z_LChunks
;
983 bcopy(z
->z_Sources
, z
->z_AltSources
, sizeof(z
->z_Sources
));
984 bzero(z
->z_Sources
, sizeof(z
->z_Sources
));
986 chunk
= (SLChunk
*)(z
->z_BasePtr
+ z
->z_UIndex
* size
);
987 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[zi
], z
, z_Entry
);
988 if ((z
->z_Flags
& SLZF_UNOTZEROD
) == 0) {
989 flags
&= ~M_ZERO
; /* already zero'd */
990 flags
|= M_PASSIVE_ZERO
;
993 *kup
= -(z
->z_Cpu
+ 1); /* -1 to -(N+1) */
994 chunk_mark_allocated(z
, chunk
);
996 slab_record_source(z
, file
, line
);
1000 * Slide the base index for initial allocations out of the next
1001 * zone we create so we do not over-weight the lower part of the
1002 * cpu memory caches.
1004 slgd
->JunkIndex
= (slgd
->JunkIndex
+ ZALLOC_SLAB_SLIDE
)
1005 & (ZALLOC_MAX_ZONE_SIZE
- 1);
1009 ++type
->ks_use
[gd
->gd_cpuid
].inuse
;
1010 type
->ks_use
[gd
->gd_cpuid
].memuse
+= size
;
1011 type
->ks_use
[gd
->gd_cpuid
].loosememuse
+= size
;
1012 if (type
->ks_use
[gd
->gd_cpuid
].loosememuse
>= ZoneSize
) {
1013 /* not MP synchronized */
1014 type
->ks_loosememuse
+= type
->ks_use
[gd
->gd_cpuid
].loosememuse
;
1015 type
->ks_use
[gd
->gd_cpuid
].loosememuse
= 0;
1022 else if ((flags
& (M_ZERO
|M_PASSIVE_ZERO
)) == 0) {
1023 if (use_malloc_pattern
) {
1024 for (i
= 0; i
< size
; i
+= sizeof(int)) {
1025 *(int *)((char *)chunk
+ i
) = -1;
1028 chunk
->c_Next
= (void *)-1; /* avoid accidental double-free check */
1031 logmemory(malloc_end
, chunk
, type
, size
, flags
);
1035 logmemory(malloc_end
, NULL
, type
, size
, flags
);
1040 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
1042 * Generally speaking this routine is not called very often and we do
1043 * not attempt to optimize it beyond reusing the same pointer if the
1044 * new size fits within the chunking of the old pointer's zone.
1048 krealloc_debug(void *ptr
, unsigned long size
,
1049 struct malloc_type
*type
, int flags
,
1050 const char *file
, int line
)
1053 krealloc(void *ptr
, unsigned long size
, struct malloc_type
*type
, int flags
)
1056 unsigned long osize
;
1057 unsigned long align
;
1062 KKASSERT((flags
& M_ZERO
) == 0); /* not supported */
1064 if (ptr
== NULL
|| ptr
== ZERO_LENGTH_PTR
)
1065 return(kmalloc_debug(size
, type
, flags
, file
, line
));
1072 * Handle oversized allocations. XXX we really should require that a
1073 * size be passed to free() instead of this nonsense.
1077 osize
= *kup
<< PAGE_SHIFT
;
1078 if (osize
== round_page(size
))
1080 if ((nptr
= kmalloc_debug(size
, type
, flags
, file
, line
)) == NULL
)
1082 bcopy(ptr
, nptr
, min(size
, osize
));
1088 * Get the original allocation's zone. If the new request winds up
1089 * using the same chunk size we do not have to do anything.
1091 z
= (SLZone
*)((uintptr_t)ptr
& ZoneMask
);
1094 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1097 * Allocate memory for the new request size. Note that zoneindex has
1098 * already adjusted the request size to the appropriate chunk size, which
1099 * should optimize our bcopy(). Then copy and return the new pointer.
1101 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1102 * necessary align the result.
1104 * We can only zoneindex (to align size to the chunk size) if the new
1105 * size is not too large.
1107 if (size
< ZoneLimit
) {
1108 zoneindex(&size
, &align
);
1109 if (z
->z_ChunkSize
== size
)
1112 if ((nptr
= kmalloc_debug(size
, type
, flags
, file
, line
)) == NULL
)
1114 bcopy(ptr
, nptr
, min(size
, z
->z_ChunkSize
));
1120 * Return the kmalloc limit for this type, in bytes.
1123 kmalloc_limit(struct malloc_type
*type
)
1125 KKASSERT(type
->ks_limit
!= 0);
1126 return(type
->ks_limit
);
1130 * Allocate a copy of the specified string.
1132 * (MP SAFE) (MAY BLOCK)
1136 kstrdup_debug(const char *str
, struct malloc_type
*type
,
1137 const char *file
, int line
)
1140 kstrdup(const char *str
, struct malloc_type
*type
)
1143 int zlen
; /* length inclusive of terminating NUL */
1148 zlen
= strlen(str
) + 1;
1149 nstr
= kmalloc_debug(zlen
, type
, M_WAITOK
, file
, line
);
1150 bcopy(str
, nstr
, zlen
);
1156 kstrndup_debug(const char *str
, size_t maxlen
, struct malloc_type
*type
,
1157 const char *file
, int line
)
1160 kstrndup(const char *str
, size_t maxlen
, struct malloc_type
*type
)
1163 int zlen
; /* length inclusive of terminating NUL */
1168 zlen
= strnlen(str
, maxlen
) + 1;
1169 nstr
= kmalloc_debug(zlen
, type
, M_WAITOK
, file
, line
);
1170 bcopy(str
, nstr
, zlen
);
1171 nstr
[zlen
- 1] = '\0';
1176 * Notify our cpu that a remote cpu has freed some chunks in a zone that
1177 * we own. RCount will be bumped so the memory should be good, but validate
1178 * that it really is.
1181 kfree_remote(void *ptr
)
1188 slgd
= &mycpu
->gd_slab
;
1191 KKASSERT(*kup
== -((int)mycpuid
+ 1));
1192 KKASSERT(z
->z_RCount
> 0);
1193 atomic_subtract_int(&z
->z_RCount
, 1);
1195 logmemory(free_rem_beg
, z
, NULL
, 0L, 0);
1196 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1197 KKASSERT(z
->z_Cpu
== mycpu
->gd_cpuid
);
1201 * Indicate that we will no longer be off of the ZoneAry by
1208 * Atomically extract the bchunks list and then process it back
1209 * into the lchunks list. We want to append our bchunks to the
1210 * lchunks list and not prepend since we likely do not have
1211 * cache mastership of the related data (not that it helps since
1212 * we are using c_Next).
1214 clean_zone_rchunks(z
);
1215 if (z
->z_NFree
&& nfree
== 0) {
1216 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
1219 check_zone_free(slgd
, z
);
1220 logmemory(free_rem_end
, z
, NULL
, 0L, 0);
1224 * free (SLAB ALLOCATOR)
1226 * Free a memory block previously allocated by malloc.
1228 * Note: We do not attempt to update ks_loosememuse as MP races could
1229 * prevent us from checking memory limits in malloc. YYY we may
1230 * consider updating ks_cpu.loosememuse.
1235 kfree(void *ptr
, struct malloc_type
*type
)
1240 struct globaldata
*gd
;
1246 logmemory_quick(free_beg
);
1248 slgd
= &gd
->gd_slab
;
1251 panic("trying to free NULL pointer");
1254 * Handle special 0-byte allocations
1256 if (ptr
== ZERO_LENGTH_PTR
) {
1257 logmemory(free_zero
, ptr
, type
, -1UL, 0);
1258 logmemory_quick(free_end
);
1263 * Panic on bad malloc type
1265 if (type
->ks_magic
!= M_MAGIC
)
1266 panic("free: malloc type lacks magic");
1269 * Handle oversized allocations. XXX we really should require that a
1270 * size be passed to free() instead of this nonsense.
1272 * This code is never called via an ipi.
1276 size
= *kup
<< PAGE_SHIFT
;
1279 if (use_weird_array
) {
1280 KKASSERT(sizeof(weirdary
) <= size
);
1281 bcopy(weirdary
, ptr
, sizeof(weirdary
));
1285 * NOTE: For oversized allocations we do not record the
1286 * originating cpu. It gets freed on the cpu calling
1287 * kfree(). The statistics are in aggregate.
1289 * note: XXX we have still inherited the interrupts-can't-block
1290 * assumption. An interrupt thread does not bump
1291 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
1292 * primarily until we can fix softupdate's assumptions about free().
1295 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1296 type
->ks_use
[gd
->gd_cpuid
].memuse
-= size
;
1297 if (mycpu
->gd_intr_nesting_level
||
1298 (gd
->gd_curthread
->td_flags
& TDF_INTTHREAD
)) {
1299 logmemory(free_ovsz_delayed
, ptr
, type
, size
, 0);
1301 z
->z_Magic
= ZALLOC_OVSZ_MAGIC
;
1302 z
->z_ChunkSize
= size
;
1304 TAILQ_INSERT_HEAD(&slgd
->FreeOvZones
, z
, z_Entry
);
1308 logmemory(free_ovsz
, ptr
, type
, size
, 0);
1309 kmem_slab_free(ptr
, size
); /* may block */
1311 logmemory_quick(free_end
);
1316 * Zone case. Figure out the zone based on the fact that it is
1319 z
= (SLZone
*)((uintptr_t)ptr
& ZoneMask
);
1322 KKASSERT(z
->z_Magic
== ZALLOC_SLAB_MAGIC
);
1325 * If we do not own the zone then use atomic ops to free to the
1326 * remote cpu linked list and notify the target zone using a
1329 * The target zone cannot be deallocated while we own a chunk of it,
1330 * so the zone header's storage is stable until the very moment
1331 * we adjust z_RChunks. After that we cannot safely dereference (z).
1333 * (no critical section needed)
1335 if (z
->z_CpuGd
!= gd
) {
1337 * Making these adjustments now allow us to avoid passing (type)
1338 * to the remote cpu. Note that inuse/memuse is being
1339 * adjusted on OUR cpu, not the zone cpu, but it should all still
1340 * sum up properly and cancel out.
1343 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1344 type
->ks_use
[gd
->gd_cpuid
].memuse
-= z
->z_ChunkSize
;
1348 * WARNING! This code competes with other cpus. Once we
1349 * successfully link the chunk to RChunks the remote
1350 * cpu can rip z's storage out from under us.
1352 * Bumping RCount prevents z's storage from getting
1355 rsignal
= z
->z_RSignal
;
1358 atomic_add_int(&z
->z_RCount
, 1);
1362 bchunk
= z
->z_RChunks
;
1364 chunk
->c_Next
= bchunk
;
1367 if (atomic_cmpset_ptr(&z
->z_RChunks
, bchunk
, chunk
))
1372 * We have to signal the remote cpu if our actions will cause
1373 * the remote zone to be placed back on ZoneAry so it can
1374 * move the zone back on.
1376 * We only need to deal with NULL->non-NULL RChunk transitions
1377 * and only if z_RSignal is set. We interlock by reading rsignal
1378 * before adding our chunk to RChunks. This should result in
1379 * virtually no IPI traffic.
1381 * We can use a passive IPI to reduce overhead even further.
1383 if (bchunk
== NULL
&& rsignal
) {
1384 logmemory(free_request
, ptr
, type
,
1385 (unsigned long)z
->z_ChunkSize
, 0);
1386 lwkt_send_ipiq_passive(z
->z_CpuGd
, kfree_remote
, z
);
1387 /* z can get ripped out from under us from this point on */
1388 } else if (rsignal
) {
1389 atomic_subtract_int(&z
->z_RCount
, 1);
1390 /* z can get ripped out from under us from this point on */
1392 logmemory_quick(free_end
);
1399 logmemory(free_chunk
, ptr
, type
, (unsigned long)z
->z_ChunkSize
, 0);
1403 chunk_mark_free(z
, chunk
);
1406 * Put weird data into the memory to detect modifications after freeing,
1407 * illegal pointer use after freeing (we should fault on the odd address),
1408 * and so forth. XXX needs more work, see the old malloc code.
1411 if (use_weird_array
) {
1412 if (z
->z_ChunkSize
< sizeof(weirdary
))
1413 bcopy(weirdary
, chunk
, z
->z_ChunkSize
);
1415 bcopy(weirdary
, chunk
, sizeof(weirdary
));
1420 * Add this free non-zero'd chunk to a linked list for reuse. Add
1421 * to the front of the linked list so it is more likely to be
1422 * reallocated, since it is already in our L1 cache.
1425 if ((vm_offset_t
)chunk
< KvaStart
|| (vm_offset_t
)chunk
>= KvaEnd
)
1426 panic("BADFREE %p", chunk
);
1428 chunk
->c_Next
= z
->z_LChunks
;
1429 z
->z_LChunks
= chunk
;
1430 if (chunk
->c_Next
== NULL
)
1431 z
->z_LChunksp
= &chunk
->c_Next
;
1434 if (chunk
->c_Next
&& (vm_offset_t
)chunk
->c_Next
< KvaStart
)
1439 * Bump the number of free chunks. If it becomes non-zero the zone
1440 * must be added back onto the appropriate list. A fully allocated
1441 * zone that sees its first free is considered 'mature' and is placed
1442 * at the head, giving the system time to potentially free the remaining
1443 * entries even while other allocations are going on and making the zone
1446 if (z
->z_NFree
++ == 0)
1447 TAILQ_INSERT_HEAD(&slgd
->ZoneAry
[z
->z_ZoneIndex
], z
, z_Entry
);
1449 --type
->ks_use
[gd
->gd_cpuid
].inuse
;
1450 type
->ks_use
[gd
->gd_cpuid
].memuse
-= z
->z_ChunkSize
;
1452 check_zone_free(slgd
, z
);
1453 logmemory_quick(free_end
);
1458 * Cleanup slabs which are hanging around due to RChunks or which are wholely
1459 * free and can be moved to the free list if not moved by other means.
1461 * Called once every 10 seconds on all cpus.
1466 SLGlobalData
*slgd
= &mycpu
->gd_slab
;
1471 for (i
= 0; i
< NZONES
; ++i
) {
1472 if ((z
= TAILQ_FIRST(&slgd
->ZoneAry
[i
])) == NULL
)
1480 * Shift all RChunks to the end of the LChunks list. This is
1481 * an O(1) operation.
1483 * Then free the zone if possible.
1485 clean_zone_rchunks(z
);
1486 z
= check_zone_free(slgd
, z
);
1492 #if defined(INVARIANTS)
1495 * Helper routines for sanity checks
1498 chunk_mark_allocated(SLZone
*z
, void *chunk
)
1500 int bitdex
= ((char *)chunk
- (char *)z
->z_BasePtr
) / z
->z_ChunkSize
;
1503 KKASSERT((((intptr_t)chunk
^ (intptr_t)z
) & ZoneMask
) == 0);
1504 KASSERT(bitdex
>= 0 && bitdex
< z
->z_NMax
,
1505 ("memory chunk %p bit index %d is illegal", chunk
, bitdex
));
1506 bitptr
= &z
->z_Bitmap
[bitdex
>> 5];
1508 KASSERT((*bitptr
& (1 << bitdex
)) == 0,
1509 ("memory chunk %p is already allocated!", chunk
));
1510 *bitptr
|= 1 << bitdex
;
1514 chunk_mark_free(SLZone
*z
, void *chunk
)
1516 int bitdex
= ((char *)chunk
- (char *)z
->z_BasePtr
) / z
->z_ChunkSize
;
1519 KKASSERT((((intptr_t)chunk
^ (intptr_t)z
) & ZoneMask
) == 0);
1520 KASSERT(bitdex
>= 0 && bitdex
< z
->z_NMax
,
1521 ("memory chunk %p bit index %d is illegal!", chunk
, bitdex
));
1522 bitptr
= &z
->z_Bitmap
[bitdex
>> 5];
1524 KASSERT((*bitptr
& (1 << bitdex
)) != 0,
1525 ("memory chunk %p is already free!", chunk
));
1526 *bitptr
&= ~(1 << bitdex
);
1534 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1535 * specified alignment. M_* flags are expected in the flags field.
1537 * Alignment must be a multiple of PAGE_SIZE.
1539 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1540 * but when we move zalloc() over to use this function as its backend
1541 * we will have to switch to kreserve/krelease and call reserve(0)
1542 * after the new space is made available.
1544 * Interrupt code which has preempted other code is not allowed to
1545 * use PQ_CACHE pages. However, if an interrupt thread is run
1546 * non-preemptively or blocks and then runs non-preemptively, then
1547 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX
1550 kmem_slab_alloc(vm_size_t size
, vm_offset_t align
, int flags
)
1554 int count
, vmflags
, base_vmflags
;
1555 vm_page_t mbase
= NULL
;
1559 size
= round_page(size
);
1560 addr
= vm_map_min(&kernel_map
);
1562 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1564 vm_map_lock(&kernel_map
);
1565 if (vm_map_findspace(&kernel_map
, addr
, size
, align
, 0, &addr
)) {
1566 vm_map_unlock(&kernel_map
);
1567 if ((flags
& M_NULLOK
) == 0)
1568 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1569 vm_map_entry_release(count
);
1575 * kernel_object maps 1:1 to kernel_map.
1577 vm_object_hold(&kernel_object
);
1578 vm_object_reference_locked(&kernel_object
);
1579 vm_map_insert(&kernel_map
, &count
,
1580 &kernel_object
, NULL
,
1585 VM_PROT_ALL
, VM_PROT_ALL
, 0);
1586 vm_object_drop(&kernel_object
);
1587 vm_map_set_wired_quick(&kernel_map
, addr
, size
, &count
);
1588 vm_map_unlock(&kernel_map
);
1594 base_vmflags
|= VM_ALLOC_ZERO
;
1595 if (flags
& M_USE_RESERVE
)
1596 base_vmflags
|= VM_ALLOC_SYSTEM
;
1597 if (flags
& M_USE_INTERRUPT_RESERVE
)
1598 base_vmflags
|= VM_ALLOC_INTERRUPT
;
1599 if ((flags
& (M_RNOWAIT
|M_WAITOK
)) == 0) {
1600 panic("kmem_slab_alloc: bad flags %08x (%p)",
1601 flags
, ((int **)&size
)[-1]);
1605 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only
1606 * be set if we are not preempting.
1608 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1609 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1610 * implied in this case), though I'm not sure if we really need to
1613 vmflags
= base_vmflags
;
1614 if (flags
& M_WAITOK
) {
1615 if (td
->td_preempted
)
1616 vmflags
|= VM_ALLOC_SYSTEM
;
1618 vmflags
|= VM_ALLOC_NORMAL
;
1621 vm_object_hold(&kernel_object
);
1622 for (i
= 0; i
< size
; i
+= PAGE_SIZE
) {
1623 m
= vm_page_alloc(&kernel_object
, OFF_TO_IDX(addr
+ i
), vmflags
);
1628 * If the allocation failed we either return NULL or we retry.
1630 * If M_WAITOK is specified we wait for more memory and retry.
1631 * If M_WAITOK is specified from a preemption we yield instead of
1632 * wait. Livelock will not occur because the interrupt thread
1633 * will not be preempting anyone the second time around after the
1637 if (flags
& M_WAITOK
) {
1638 if (td
->td_preempted
) {
1643 i
-= PAGE_SIZE
; /* retry */
1651 * Check and deal with an allocation failure
1656 m
= vm_page_lookup(&kernel_object
, OFF_TO_IDX(addr
+ i
));
1657 /* page should already be busy */
1660 vm_map_lock(&kernel_map
);
1661 vm_map_delete(&kernel_map
, addr
, addr
+ size
, &count
);
1662 vm_map_unlock(&kernel_map
);
1663 vm_object_drop(&kernel_object
);
1665 vm_map_entry_release(count
);
1673 * NOTE: The VM pages are still busied. mbase points to the first one
1674 * but we have to iterate via vm_page_next()
1676 vm_object_drop(&kernel_object
);
1680 * Enter the pages into the pmap and deal with M_ZERO.
1687 * page should already be busy
1689 m
->valid
= VM_PAGE_BITS_ALL
;
1691 pmap_enter(&kernel_pmap
, addr
+ i
, m
,
1692 VM_PROT_ALL
| VM_PROT_NOSYNC
, 1, NULL
);
1694 pagezero((char *)addr
+ i
);
1695 KKASSERT(m
->flags
& (PG_WRITEABLE
| PG_MAPPED
));
1696 vm_page_flag_set(m
, PG_REFERENCED
);
1700 vm_object_hold(&kernel_object
);
1701 m
= vm_page_next(m
);
1702 vm_object_drop(&kernel_object
);
1705 vm_map_entry_release(count
);
1706 return((void *)addr
);
1713 kmem_slab_free(void *ptr
, vm_size_t size
)
1716 vm_map_remove(&kernel_map
, (vm_offset_t
)ptr
, (vm_offset_t
)ptr
+ size
);